2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
53 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map
);
55 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
56 EXPORT_SYMBOL(node_possible_map
);
57 unsigned long totalram_pages __read_mostly
;
58 unsigned long totalreserve_pages __read_mostly
;
60 int percpu_pagelist_fraction
;
62 static void __free_pages_ok(struct page
*page
, unsigned int order
);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
77 #ifdef CONFIG_ZONE_DMA32
85 EXPORT_SYMBOL(totalram_pages
);
87 static char * const zone_names
[MAX_NR_ZONES
] = {
89 #ifdef CONFIG_ZONE_DMA32
98 int min_free_kbytes
= 1024;
100 unsigned long __meminitdata nr_kernel_pages
;
101 unsigned long __meminitdata nr_all_pages
;
102 static unsigned long __initdata dma_reserve
;
104 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
106 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
107 * ranges of memory (RAM) that may be registered with add_active_range().
108 * Ranges passed to add_active_range() will be merged if possible
109 * so the number of times add_active_range() can be called is
110 * related to the number of nodes and the number of holes
112 #ifdef CONFIG_MAX_ACTIVE_REGIONS
113 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
114 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
116 #if MAX_NUMNODES >= 32
117 /* If there can be many nodes, allow up to 50 holes per node */
118 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
120 /* By default, allow up to 256 distinct regions */
121 #define MAX_ACTIVE_REGIONS 256
125 struct node_active_region __initdata early_node_map
[MAX_ACTIVE_REGIONS
];
126 int __initdata nr_nodemap_entries
;
127 unsigned long __initdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
128 unsigned long __initdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
129 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
130 unsigned long __initdata node_boundary_start_pfn
[MAX_NUMNODES
];
131 unsigned long __initdata node_boundary_end_pfn
[MAX_NUMNODES
];
132 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
133 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
135 #ifdef CONFIG_DEBUG_VM
136 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
140 unsigned long pfn
= page_to_pfn(page
);
143 seq
= zone_span_seqbegin(zone
);
144 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
146 else if (pfn
< zone
->zone_start_pfn
)
148 } while (zone_span_seqretry(zone
, seq
));
153 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
155 #ifdef CONFIG_HOLES_IN_ZONE
156 if (!pfn_valid(page_to_pfn(page
)))
159 if (zone
!= page_zone(page
))
165 * Temporary debugging check for pages not lying within a given zone.
167 static int bad_range(struct zone
*zone
, struct page
*page
)
169 if (page_outside_zone_boundaries(zone
, page
))
171 if (!page_is_consistent(zone
, page
))
177 static inline int bad_range(struct zone
*zone
, struct page
*page
)
183 static void bad_page(struct page
*page
)
185 printk(KERN_EMERG
"Bad page state in process '%s'\n"
186 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
187 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
188 KERN_EMERG
"Backtrace:\n",
189 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
190 (unsigned long)page
->flags
, page
->mapping
,
191 page_mapcount(page
), page_count(page
));
193 page
->flags
&= ~(1 << PG_lru
|
203 set_page_count(page
, 0);
204 reset_page_mapcount(page
);
205 page
->mapping
= NULL
;
206 add_taint(TAINT_BAD_PAGE
);
210 * Higher-order pages are called "compound pages". They are structured thusly:
212 * The first PAGE_SIZE page is called the "head page".
214 * The remaining PAGE_SIZE pages are called "tail pages".
216 * All pages have PG_compound set. All pages have their ->private pointing at
217 * the head page (even the head page has this).
219 * The first tail page's ->lru.next holds the address of the compound page's
220 * put_page() function. Its ->lru.prev holds the order of allocation.
221 * This usage means that zero-order pages may not be compound.
224 static void free_compound_page(struct page
*page
)
226 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
229 static void prep_compound_page(struct page
*page
, unsigned long order
)
232 int nr_pages
= 1 << order
;
234 set_compound_page_dtor(page
, free_compound_page
);
235 page
[1].lru
.prev
= (void *)order
;
236 for (i
= 0; i
< nr_pages
; i
++) {
237 struct page
*p
= page
+ i
;
239 __SetPageCompound(p
);
240 set_page_private(p
, (unsigned long)page
);
244 static void destroy_compound_page(struct page
*page
, unsigned long order
)
247 int nr_pages
= 1 << order
;
249 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
252 for (i
= 0; i
< nr_pages
; i
++) {
253 struct page
*p
= page
+ i
;
255 if (unlikely(!PageCompound(p
) |
256 (page_private(p
) != (unsigned long)page
)))
258 __ClearPageCompound(p
);
262 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
266 VM_BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
268 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
269 * and __GFP_HIGHMEM from hard or soft interrupt context.
271 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
272 for (i
= 0; i
< (1 << order
); i
++)
273 clear_highpage(page
+ i
);
277 * function for dealing with page's order in buddy system.
278 * zone->lock is already acquired when we use these.
279 * So, we don't need atomic page->flags operations here.
281 static inline unsigned long page_order(struct page
*page
)
283 return page_private(page
);
286 static inline void set_page_order(struct page
*page
, int order
)
288 set_page_private(page
, order
);
289 __SetPageBuddy(page
);
292 static inline void rmv_page_order(struct page
*page
)
294 __ClearPageBuddy(page
);
295 set_page_private(page
, 0);
299 * Locate the struct page for both the matching buddy in our
300 * pair (buddy1) and the combined O(n+1) page they form (page).
302 * 1) Any buddy B1 will have an order O twin B2 which satisfies
303 * the following equation:
305 * For example, if the starting buddy (buddy2) is #8 its order
307 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
309 * 2) Any buddy B will have an order O+1 parent P which
310 * satisfies the following equation:
313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
315 static inline struct page
*
316 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
318 unsigned long buddy_idx
= page_idx
^ (1 << order
);
320 return page
+ (buddy_idx
- page_idx
);
323 static inline unsigned long
324 __find_combined_index(unsigned long page_idx
, unsigned int order
)
326 return (page_idx
& ~(1 << order
));
330 * This function checks whether a page is free && is the buddy
331 * we can do coalesce a page and its buddy if
332 * (a) the buddy is not in a hole &&
333 * (b) the buddy is in the buddy system &&
334 * (c) a page and its buddy have the same order &&
335 * (d) a page and its buddy are in the same zone.
337 * For recording whether a page is in the buddy system, we use PG_buddy.
338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
340 * For recording page's order, we use page_private(page).
342 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
345 #ifdef CONFIG_HOLES_IN_ZONE
346 if (!pfn_valid(page_to_pfn(buddy
)))
350 if (page_zone_id(page
) != page_zone_id(buddy
))
353 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
354 BUG_ON(page_count(buddy
) != 0);
361 * Freeing function for a buddy system allocator.
363 * The concept of a buddy system is to maintain direct-mapped table
364 * (containing bit values) for memory blocks of various "orders".
365 * The bottom level table contains the map for the smallest allocatable
366 * units of memory (here, pages), and each level above it describes
367 * pairs of units from the levels below, hence, "buddies".
368 * At a high level, all that happens here is marking the table entry
369 * at the bottom level available, and propagating the changes upward
370 * as necessary, plus some accounting needed to play nicely with other
371 * parts of the VM system.
372 * At each level, we keep a list of pages, which are heads of continuous
373 * free pages of length of (1 << order) and marked with PG_buddy. Page's
374 * order is recorded in page_private(page) field.
375 * So when we are allocating or freeing one, we can derive the state of the
376 * other. That is, if we allocate a small block, and both were
377 * free, the remainder of the region must be split into blocks.
378 * If a block is freed, and its buddy is also free, then this
379 * triggers coalescing into a block of larger size.
384 static inline void __free_one_page(struct page
*page
,
385 struct zone
*zone
, unsigned int order
)
387 unsigned long page_idx
;
388 int order_size
= 1 << order
;
390 if (unlikely(PageCompound(page
)))
391 destroy_compound_page(page
, order
);
393 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
395 VM_BUG_ON(page_idx
& (order_size
- 1));
396 VM_BUG_ON(bad_range(zone
, page
));
398 zone
->free_pages
+= order_size
;
399 while (order
< MAX_ORDER
-1) {
400 unsigned long combined_idx
;
401 struct free_area
*area
;
404 buddy
= __page_find_buddy(page
, page_idx
, order
);
405 if (!page_is_buddy(page
, buddy
, order
))
406 break; /* Move the buddy up one level. */
408 list_del(&buddy
->lru
);
409 area
= zone
->free_area
+ order
;
411 rmv_page_order(buddy
);
412 combined_idx
= __find_combined_index(page_idx
, order
);
413 page
= page
+ (combined_idx
- page_idx
);
414 page_idx
= combined_idx
;
417 set_page_order(page
, order
);
418 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
419 zone
->free_area
[order
].nr_free
++;
422 static inline int free_pages_check(struct page
*page
)
424 if (unlikely(page_mapcount(page
) |
425 (page
->mapping
!= NULL
) |
426 (page_count(page
) != 0) |
440 __ClearPageDirty(page
);
442 * For now, we report if PG_reserved was found set, but do not
443 * clear it, and do not free the page. But we shall soon need
444 * to do more, for when the ZERO_PAGE count wraps negative.
446 return PageReserved(page
);
450 * Frees a list of pages.
451 * Assumes all pages on list are in same zone, and of same order.
452 * count is the number of pages to free.
454 * If the zone was previously in an "all pages pinned" state then look to
455 * see if this freeing clears that state.
457 * And clear the zone's pages_scanned counter, to hold off the "all pages are
458 * pinned" detection logic.
460 static void free_pages_bulk(struct zone
*zone
, int count
,
461 struct list_head
*list
, int order
)
463 spin_lock(&zone
->lock
);
464 zone
->all_unreclaimable
= 0;
465 zone
->pages_scanned
= 0;
469 VM_BUG_ON(list_empty(list
));
470 page
= list_entry(list
->prev
, struct page
, lru
);
471 /* have to delete it as __free_one_page list manipulates */
472 list_del(&page
->lru
);
473 __free_one_page(page
, zone
, order
);
475 spin_unlock(&zone
->lock
);
478 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
480 spin_lock(&zone
->lock
);
481 zone
->all_unreclaimable
= 0;
482 zone
->pages_scanned
= 0;
483 __free_one_page(page
, zone
, order
);
484 spin_unlock(&zone
->lock
);
487 static void __free_pages_ok(struct page
*page
, unsigned int order
)
493 for (i
= 0 ; i
< (1 << order
) ; ++i
)
494 reserved
+= free_pages_check(page
+ i
);
498 if (!PageHighMem(page
))
499 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
500 arch_free_page(page
, order
);
501 kernel_map_pages(page
, 1 << order
, 0);
503 local_irq_save(flags
);
504 __count_vm_events(PGFREE
, 1 << order
);
505 free_one_page(page_zone(page
), page
, order
);
506 local_irq_restore(flags
);
510 * permit the bootmem allocator to evade page validation on high-order frees
512 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
515 __ClearPageReserved(page
);
516 set_page_count(page
, 0);
517 set_page_refcounted(page
);
523 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
524 struct page
*p
= &page
[loop
];
526 if (loop
+ 1 < BITS_PER_LONG
)
528 __ClearPageReserved(p
);
529 set_page_count(p
, 0);
532 set_page_refcounted(page
);
533 __free_pages(page
, order
);
539 * The order of subdivision here is critical for the IO subsystem.
540 * Please do not alter this order without good reasons and regression
541 * testing. Specifically, as large blocks of memory are subdivided,
542 * the order in which smaller blocks are delivered depends on the order
543 * they're subdivided in this function. This is the primary factor
544 * influencing the order in which pages are delivered to the IO
545 * subsystem according to empirical testing, and this is also justified
546 * by considering the behavior of a buddy system containing a single
547 * large block of memory acted on by a series of small allocations.
548 * This behavior is a critical factor in sglist merging's success.
552 static inline void expand(struct zone
*zone
, struct page
*page
,
553 int low
, int high
, struct free_area
*area
)
555 unsigned long size
= 1 << high
;
561 VM_BUG_ON(bad_range(zone
, &page
[size
]));
562 list_add(&page
[size
].lru
, &area
->free_list
);
564 set_page_order(&page
[size
], high
);
569 * This page is about to be returned from the page allocator
571 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
573 if (unlikely(page_mapcount(page
) |
574 (page
->mapping
!= NULL
) |
575 (page_count(page
) != 0) |
591 * For now, we report if PG_reserved was found set, but do not
592 * clear it, and do not allocate the page: as a safety net.
594 if (PageReserved(page
))
597 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
598 1 << PG_referenced
| 1 << PG_arch_1
|
599 1 << PG_checked
| 1 << PG_mappedtodisk
);
600 set_page_private(page
, 0);
601 set_page_refcounted(page
);
603 arch_alloc_page(page
, order
);
604 kernel_map_pages(page
, 1 << order
, 1);
606 if (gfp_flags
& __GFP_ZERO
)
607 prep_zero_page(page
, order
, gfp_flags
);
609 if (order
&& (gfp_flags
& __GFP_COMP
))
610 prep_compound_page(page
, order
);
616 * Do the hard work of removing an element from the buddy allocator.
617 * Call me with the zone->lock already held.
619 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
621 struct free_area
* area
;
622 unsigned int current_order
;
625 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
626 area
= zone
->free_area
+ current_order
;
627 if (list_empty(&area
->free_list
))
630 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
631 list_del(&page
->lru
);
632 rmv_page_order(page
);
634 zone
->free_pages
-= 1UL << order
;
635 expand(zone
, page
, order
, current_order
, area
);
643 * Obtain a specified number of elements from the buddy allocator, all under
644 * a single hold of the lock, for efficiency. Add them to the supplied list.
645 * Returns the number of new pages which were placed at *list.
647 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
648 unsigned long count
, struct list_head
*list
)
652 spin_lock(&zone
->lock
);
653 for (i
= 0; i
< count
; ++i
) {
654 struct page
*page
= __rmqueue(zone
, order
);
655 if (unlikely(page
== NULL
))
657 list_add_tail(&page
->lru
, list
);
659 spin_unlock(&zone
->lock
);
665 * Called from the slab reaper to drain pagesets on a particular node that
666 * belongs to the currently executing processor.
667 * Note that this function must be called with the thread pinned to
668 * a single processor.
670 void drain_node_pages(int nodeid
)
676 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
677 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
678 struct per_cpu_pageset
*pset
;
680 if (!populated_zone(zone
))
683 pset
= zone_pcp(zone
, smp_processor_id());
684 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
685 struct per_cpu_pages
*pcp
;
691 local_irq_save(flags
);
692 if (pcp
->count
>= pcp
->batch
)
693 to_drain
= pcp
->batch
;
695 to_drain
= pcp
->count
;
696 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
697 pcp
->count
-= to_drain
;
698 local_irq_restore(flags
);
705 static void __drain_pages(unsigned int cpu
)
711 for_each_zone(zone
) {
712 struct per_cpu_pageset
*pset
;
714 pset
= zone_pcp(zone
, cpu
);
715 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
716 struct per_cpu_pages
*pcp
;
719 local_irq_save(flags
);
720 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
722 local_irq_restore(flags
);
729 void mark_free_pages(struct zone
*zone
)
731 unsigned long pfn
, max_zone_pfn
;
734 struct list_head
*curr
;
736 if (!zone
->spanned_pages
)
739 spin_lock_irqsave(&zone
->lock
, flags
);
741 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
742 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
743 if (pfn_valid(pfn
)) {
744 struct page
*page
= pfn_to_page(pfn
);
746 if (!PageNosave(page
))
747 ClearPageNosaveFree(page
);
750 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
751 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
754 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
755 for (i
= 0; i
< (1UL << order
); i
++)
756 SetPageNosaveFree(pfn_to_page(pfn
+ i
));
759 spin_unlock_irqrestore(&zone
->lock
, flags
);
763 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
765 void drain_local_pages(void)
769 local_irq_save(flags
);
770 __drain_pages(smp_processor_id());
771 local_irq_restore(flags
);
773 #endif /* CONFIG_PM */
776 * Free a 0-order page
778 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
780 struct zone
*zone
= page_zone(page
);
781 struct per_cpu_pages
*pcp
;
785 page
->mapping
= NULL
;
786 if (free_pages_check(page
))
789 if (!PageHighMem(page
))
790 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
791 arch_free_page(page
, 0);
792 kernel_map_pages(page
, 1, 0);
794 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
795 local_irq_save(flags
);
796 __count_vm_event(PGFREE
);
797 list_add(&page
->lru
, &pcp
->list
);
799 if (pcp
->count
>= pcp
->high
) {
800 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
801 pcp
->count
-= pcp
->batch
;
803 local_irq_restore(flags
);
807 void fastcall
free_hot_page(struct page
*page
)
809 free_hot_cold_page(page
, 0);
812 void fastcall
free_cold_page(struct page
*page
)
814 free_hot_cold_page(page
, 1);
818 * split_page takes a non-compound higher-order page, and splits it into
819 * n (1<<order) sub-pages: page[0..n]
820 * Each sub-page must be freed individually.
822 * Note: this is probably too low level an operation for use in drivers.
823 * Please consult with lkml before using this in your driver.
825 void split_page(struct page
*page
, unsigned int order
)
829 VM_BUG_ON(PageCompound(page
));
830 VM_BUG_ON(!page_count(page
));
831 for (i
= 1; i
< (1 << order
); i
++)
832 set_page_refcounted(page
+ i
);
836 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
837 * we cheat by calling it from here, in the order > 0 path. Saves a branch
840 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
841 struct zone
*zone
, int order
, gfp_t gfp_flags
)
845 int cold
= !!(gfp_flags
& __GFP_COLD
);
850 if (likely(order
== 0)) {
851 struct per_cpu_pages
*pcp
;
853 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
854 local_irq_save(flags
);
856 pcp
->count
= rmqueue_bulk(zone
, 0,
857 pcp
->batch
, &pcp
->list
);
858 if (unlikely(!pcp
->count
))
861 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
862 list_del(&page
->lru
);
865 spin_lock_irqsave(&zone
->lock
, flags
);
866 page
= __rmqueue(zone
, order
);
867 spin_unlock(&zone
->lock
);
872 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
873 zone_statistics(zonelist
, zone
);
874 local_irq_restore(flags
);
877 VM_BUG_ON(bad_range(zone
, page
));
878 if (prep_new_page(page
, order
, gfp_flags
))
883 local_irq_restore(flags
);
888 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
889 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
890 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
891 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
892 #define ALLOC_HARDER 0x10 /* try to alloc harder */
893 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
894 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
896 #ifdef CONFIG_FAIL_PAGE_ALLOC
898 static struct fail_page_alloc_attr
{
899 struct fault_attr attr
;
901 u32 ignore_gfp_highmem
;
904 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
906 struct dentry
*ignore_gfp_highmem_file
;
907 struct dentry
*ignore_gfp_wait_file
;
909 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
911 } fail_page_alloc
= {
912 .attr
= FAULT_ATTR_INITIALIZER
,
913 .ignore_gfp_wait
= 1,
914 .ignore_gfp_highmem
= 1,
917 static int __init
setup_fail_page_alloc(char *str
)
919 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
921 __setup("fail_page_alloc=", setup_fail_page_alloc
);
923 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
925 if (gfp_mask
& __GFP_NOFAIL
)
927 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
929 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
932 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
935 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
937 static int __init
fail_page_alloc_debugfs(void)
939 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
943 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
947 dir
= fail_page_alloc
.attr
.dentries
.dir
;
949 fail_page_alloc
.ignore_gfp_wait_file
=
950 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
951 &fail_page_alloc
.ignore_gfp_wait
);
953 fail_page_alloc
.ignore_gfp_highmem_file
=
954 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
955 &fail_page_alloc
.ignore_gfp_highmem
);
957 if (!fail_page_alloc
.ignore_gfp_wait_file
||
958 !fail_page_alloc
.ignore_gfp_highmem_file
) {
960 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
961 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
962 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
968 late_initcall(fail_page_alloc_debugfs
);
970 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
972 #else /* CONFIG_FAIL_PAGE_ALLOC */
974 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
979 #endif /* CONFIG_FAIL_PAGE_ALLOC */
982 * Return 1 if free pages are above 'mark'. This takes into account the order
985 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
986 int classzone_idx
, int alloc_flags
)
988 /* free_pages my go negative - that's OK */
989 unsigned long min
= mark
;
990 long free_pages
= z
->free_pages
- (1 << order
) + 1;
993 if (alloc_flags
& ALLOC_HIGH
)
995 if (alloc_flags
& ALLOC_HARDER
)
998 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1000 for (o
= 0; o
< order
; o
++) {
1001 /* At the next order, this order's pages become unavailable */
1002 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1004 /* Require fewer higher order pages to be free */
1007 if (free_pages
<= min
)
1015 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1016 * skip over zones that are not allowed by the cpuset, or that have
1017 * been recently (in last second) found to be nearly full. See further
1018 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1019 * that have to skip over alot of full or unallowed zones.
1021 * If the zonelist cache is present in the passed in zonelist, then
1022 * returns a pointer to the allowed node mask (either the current
1023 * tasks mems_allowed, or node_online_map.)
1025 * If the zonelist cache is not available for this zonelist, does
1026 * nothing and returns NULL.
1028 * If the fullzones BITMAP in the zonelist cache is stale (more than
1029 * a second since last zap'd) then we zap it out (clear its bits.)
1031 * We hold off even calling zlc_setup, until after we've checked the
1032 * first zone in the zonelist, on the theory that most allocations will
1033 * be satisfied from that first zone, so best to examine that zone as
1034 * quickly as we can.
1036 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1038 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1039 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1041 zlc
= zonelist
->zlcache_ptr
;
1045 if (jiffies
- zlc
->last_full_zap
> 1 * HZ
) {
1046 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1047 zlc
->last_full_zap
= jiffies
;
1050 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1051 &cpuset_current_mems_allowed
:
1053 return allowednodes
;
1057 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1058 * if it is worth looking at further for free memory:
1059 * 1) Check that the zone isn't thought to be full (doesn't have its
1060 * bit set in the zonelist_cache fullzones BITMAP).
1061 * 2) Check that the zones node (obtained from the zonelist_cache
1062 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1063 * Return true (non-zero) if zone is worth looking at further, or
1064 * else return false (zero) if it is not.
1066 * This check -ignores- the distinction between various watermarks,
1067 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1068 * found to be full for any variation of these watermarks, it will
1069 * be considered full for up to one second by all requests, unless
1070 * we are so low on memory on all allowed nodes that we are forced
1071 * into the second scan of the zonelist.
1073 * In the second scan we ignore this zonelist cache and exactly
1074 * apply the watermarks to all zones, even it is slower to do so.
1075 * We are low on memory in the second scan, and should leave no stone
1076 * unturned looking for a free page.
1078 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1079 nodemask_t
*allowednodes
)
1081 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1082 int i
; /* index of *z in zonelist zones */
1083 int n
; /* node that zone *z is on */
1085 zlc
= zonelist
->zlcache_ptr
;
1089 i
= z
- zonelist
->zones
;
1092 /* This zone is worth trying if it is allowed but not full */
1093 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1097 * Given 'z' scanning a zonelist, set the corresponding bit in
1098 * zlc->fullzones, so that subsequent attempts to allocate a page
1099 * from that zone don't waste time re-examining it.
1101 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1103 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1104 int i
; /* index of *z in zonelist zones */
1106 zlc
= zonelist
->zlcache_ptr
;
1110 i
= z
- zonelist
->zones
;
1112 set_bit(i
, zlc
->fullzones
);
1115 #else /* CONFIG_NUMA */
1117 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1122 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1123 nodemask_t
*allowednodes
)
1128 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1131 #endif /* CONFIG_NUMA */
1134 * get_page_from_freelist goes through the zonelist trying to allocate
1137 static struct page
*
1138 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1139 struct zonelist
*zonelist
, int alloc_flags
)
1142 struct page
*page
= NULL
;
1143 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1145 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1146 int zlc_active
= 0; /* set if using zonelist_cache */
1147 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1151 * Scan zonelist, looking for a zone with enough free.
1152 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1154 z
= zonelist
->zones
;
1157 if (NUMA_BUILD
&& zlc_active
&&
1158 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1161 if (unlikely(NUMA_BUILD
&& (gfp_mask
& __GFP_THISNODE
) &&
1162 zone
->zone_pgdat
!= zonelist
->zones
[0]->zone_pgdat
))
1164 if ((alloc_flags
& ALLOC_CPUSET
) &&
1165 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1168 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1170 if (alloc_flags
& ALLOC_WMARK_MIN
)
1171 mark
= zone
->pages_min
;
1172 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1173 mark
= zone
->pages_low
;
1175 mark
= zone
->pages_high
;
1176 if (!zone_watermark_ok(zone
, order
, mark
,
1177 classzone_idx
, alloc_flags
)) {
1178 if (!zone_reclaim_mode
||
1179 !zone_reclaim(zone
, gfp_mask
, order
))
1180 goto this_zone_full
;
1184 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1189 zlc_mark_zone_full(zonelist
, z
);
1191 if (NUMA_BUILD
&& !did_zlc_setup
) {
1192 /* we do zlc_setup after the first zone is tried */
1193 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1197 } while (*(++z
) != NULL
);
1199 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1200 /* Disable zlc cache for second zonelist scan */
1208 * This is the 'heart' of the zoned buddy allocator.
1210 struct page
* fastcall
1211 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1212 struct zonelist
*zonelist
)
1214 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1217 struct reclaim_state reclaim_state
;
1218 struct task_struct
*p
= current
;
1221 int did_some_progress
;
1223 might_sleep_if(wait
);
1225 if (should_fail_alloc_page(gfp_mask
, order
))
1229 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1231 if (unlikely(*z
== NULL
)) {
1232 /* Should this ever happen?? */
1236 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1237 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1242 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1243 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1244 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1245 * using a larger set of nodes after it has established that the
1246 * allowed per node queues are empty and that nodes are
1249 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1252 for (z
= zonelist
->zones
; *z
; z
++)
1253 wakeup_kswapd(*z
, order
);
1256 * OK, we're below the kswapd watermark and have kicked background
1257 * reclaim. Now things get more complex, so set up alloc_flags according
1258 * to how we want to proceed.
1260 * The caller may dip into page reserves a bit more if the caller
1261 * cannot run direct reclaim, or if the caller has realtime scheduling
1262 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1263 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1265 alloc_flags
= ALLOC_WMARK_MIN
;
1266 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1267 alloc_flags
|= ALLOC_HARDER
;
1268 if (gfp_mask
& __GFP_HIGH
)
1269 alloc_flags
|= ALLOC_HIGH
;
1271 alloc_flags
|= ALLOC_CPUSET
;
1274 * Go through the zonelist again. Let __GFP_HIGH and allocations
1275 * coming from realtime tasks go deeper into reserves.
1277 * This is the last chance, in general, before the goto nopage.
1278 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1279 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1281 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1285 /* This allocation should allow future memory freeing. */
1288 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1289 && !in_interrupt()) {
1290 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1292 /* go through the zonelist yet again, ignoring mins */
1293 page
= get_page_from_freelist(gfp_mask
, order
,
1294 zonelist
, ALLOC_NO_WATERMARKS
);
1297 if (gfp_mask
& __GFP_NOFAIL
) {
1298 congestion_wait(WRITE
, HZ
/50);
1305 /* Atomic allocations - we can't balance anything */
1311 /* We now go into synchronous reclaim */
1312 cpuset_memory_pressure_bump();
1313 p
->flags
|= PF_MEMALLOC
;
1314 reclaim_state
.reclaimed_slab
= 0;
1315 p
->reclaim_state
= &reclaim_state
;
1317 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1319 p
->reclaim_state
= NULL
;
1320 p
->flags
&= ~PF_MEMALLOC
;
1324 if (likely(did_some_progress
)) {
1325 page
= get_page_from_freelist(gfp_mask
, order
,
1326 zonelist
, alloc_flags
);
1329 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1331 * Go through the zonelist yet one more time, keep
1332 * very high watermark here, this is only to catch
1333 * a parallel oom killing, we must fail if we're still
1334 * under heavy pressure.
1336 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1337 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1341 out_of_memory(zonelist
, gfp_mask
, order
);
1346 * Don't let big-order allocations loop unless the caller explicitly
1347 * requests that. Wait for some write requests to complete then retry.
1349 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1350 * <= 3, but that may not be true in other implementations.
1353 if (!(gfp_mask
& __GFP_NORETRY
)) {
1354 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1356 if (gfp_mask
& __GFP_NOFAIL
)
1360 congestion_wait(WRITE
, HZ
/50);
1365 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1366 printk(KERN_WARNING
"%s: page allocation failure."
1367 " order:%d, mode:0x%x\n",
1368 p
->comm
, order
, gfp_mask
);
1376 EXPORT_SYMBOL(__alloc_pages
);
1379 * Common helper functions.
1381 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1384 page
= alloc_pages(gfp_mask
, order
);
1387 return (unsigned long) page_address(page
);
1390 EXPORT_SYMBOL(__get_free_pages
);
1392 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1397 * get_zeroed_page() returns a 32-bit address, which cannot represent
1400 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1402 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1404 return (unsigned long) page_address(page
);
1408 EXPORT_SYMBOL(get_zeroed_page
);
1410 void __pagevec_free(struct pagevec
*pvec
)
1412 int i
= pagevec_count(pvec
);
1415 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1418 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1420 if (put_page_testzero(page
)) {
1422 free_hot_page(page
);
1424 __free_pages_ok(page
, order
);
1428 EXPORT_SYMBOL(__free_pages
);
1430 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1433 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1434 __free_pages(virt_to_page((void *)addr
), order
);
1438 EXPORT_SYMBOL(free_pages
);
1441 * Total amount of free (allocatable) RAM:
1443 unsigned int nr_free_pages(void)
1445 unsigned int sum
= 0;
1449 sum
+= zone
->free_pages
;
1454 EXPORT_SYMBOL(nr_free_pages
);
1457 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1459 unsigned int sum
= 0;
1462 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1463 sum
+= pgdat
->node_zones
[i
].free_pages
;
1469 static unsigned int nr_free_zone_pages(int offset
)
1471 /* Just pick one node, since fallback list is circular */
1472 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1473 unsigned int sum
= 0;
1475 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1476 struct zone
**zonep
= zonelist
->zones
;
1479 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1480 unsigned long size
= zone
->present_pages
;
1481 unsigned long high
= zone
->pages_high
;
1490 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1492 unsigned int nr_free_buffer_pages(void)
1494 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1498 * Amount of free RAM allocatable within all zones
1500 unsigned int nr_free_pagecache_pages(void)
1502 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1505 static inline void show_node(struct zone
*zone
)
1508 printk("Node %d ", zone_to_nid(zone
));
1511 void si_meminfo(struct sysinfo
*val
)
1513 val
->totalram
= totalram_pages
;
1515 val
->freeram
= nr_free_pages();
1516 val
->bufferram
= nr_blockdev_pages();
1517 val
->totalhigh
= totalhigh_pages
;
1518 val
->freehigh
= nr_free_highpages();
1519 val
->mem_unit
= PAGE_SIZE
;
1522 EXPORT_SYMBOL(si_meminfo
);
1525 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1527 pg_data_t
*pgdat
= NODE_DATA(nid
);
1529 val
->totalram
= pgdat
->node_present_pages
;
1530 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1531 #ifdef CONFIG_HIGHMEM
1532 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1533 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1538 val
->mem_unit
= PAGE_SIZE
;
1542 #define K(x) ((x) << (PAGE_SHIFT-10))
1545 * Show free area list (used inside shift_scroll-lock stuff)
1546 * We also calculate the percentage fragmentation. We do this by counting the
1547 * memory on each free list with the exception of the first item on the list.
1549 void show_free_areas(void)
1552 unsigned long active
;
1553 unsigned long inactive
;
1557 for_each_zone(zone
) {
1558 if (!populated_zone(zone
))
1562 printk("%s per-cpu:\n", zone
->name
);
1564 for_each_online_cpu(cpu
) {
1565 struct per_cpu_pageset
*pageset
;
1567 pageset
= zone_pcp(zone
, cpu
);
1569 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1570 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1571 cpu
, pageset
->pcp
[0].high
,
1572 pageset
->pcp
[0].batch
, pageset
->pcp
[0].count
,
1573 pageset
->pcp
[1].high
, pageset
->pcp
[1].batch
,
1574 pageset
->pcp
[1].count
);
1578 get_zone_counts(&active
, &inactive
, &free
);
1580 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1581 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1584 global_page_state(NR_FILE_DIRTY
),
1585 global_page_state(NR_WRITEBACK
),
1586 global_page_state(NR_UNSTABLE_NFS
),
1588 global_page_state(NR_SLAB_RECLAIMABLE
) +
1589 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1590 global_page_state(NR_FILE_MAPPED
),
1591 global_page_state(NR_PAGETABLE
));
1593 for_each_zone(zone
) {
1596 if (!populated_zone(zone
))
1608 " pages_scanned:%lu"
1609 " all_unreclaimable? %s"
1612 K(zone
->free_pages
),
1615 K(zone
->pages_high
),
1617 K(zone
->nr_inactive
),
1618 K(zone
->present_pages
),
1619 zone
->pages_scanned
,
1620 (zone
->all_unreclaimable
? "yes" : "no")
1622 printk("lowmem_reserve[]:");
1623 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1624 printk(" %lu", zone
->lowmem_reserve
[i
]);
1628 for_each_zone(zone
) {
1629 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1631 if (!populated_zone(zone
))
1635 printk("%s: ", zone
->name
);
1637 spin_lock_irqsave(&zone
->lock
, flags
);
1638 for (order
= 0; order
< MAX_ORDER
; order
++) {
1639 nr
[order
] = zone
->free_area
[order
].nr_free
;
1640 total
+= nr
[order
] << order
;
1642 spin_unlock_irqrestore(&zone
->lock
, flags
);
1643 for (order
= 0; order
< MAX_ORDER
; order
++)
1644 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1645 printk("= %lukB\n", K(total
));
1648 show_swap_cache_info();
1652 * Builds allocation fallback zone lists.
1654 * Add all populated zones of a node to the zonelist.
1656 static int __meminit
build_zonelists_node(pg_data_t
*pgdat
,
1657 struct zonelist
*zonelist
, int nr_zones
, enum zone_type zone_type
)
1661 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1666 zone
= pgdat
->node_zones
+ zone_type
;
1667 if (populated_zone(zone
)) {
1668 zonelist
->zones
[nr_zones
++] = zone
;
1669 check_highest_zone(zone_type
);
1672 } while (zone_type
);
1677 #define MAX_NODE_LOAD (num_online_nodes())
1678 static int __meminitdata node_load
[MAX_NUMNODES
];
1680 * find_next_best_node - find the next node that should appear in a given node's fallback list
1681 * @node: node whose fallback list we're appending
1682 * @used_node_mask: nodemask_t of already used nodes
1684 * We use a number of factors to determine which is the next node that should
1685 * appear on a given node's fallback list. The node should not have appeared
1686 * already in @node's fallback list, and it should be the next closest node
1687 * according to the distance array (which contains arbitrary distance values
1688 * from each node to each node in the system), and should also prefer nodes
1689 * with no CPUs, since presumably they'll have very little allocation pressure
1690 * on them otherwise.
1691 * It returns -1 if no node is found.
1693 static int __meminit
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1696 int min_val
= INT_MAX
;
1699 /* Use the local node if we haven't already */
1700 if (!node_isset(node
, *used_node_mask
)) {
1701 node_set(node
, *used_node_mask
);
1705 for_each_online_node(n
) {
1708 /* Don't want a node to appear more than once */
1709 if (node_isset(n
, *used_node_mask
))
1712 /* Use the distance array to find the distance */
1713 val
= node_distance(node
, n
);
1715 /* Penalize nodes under us ("prefer the next node") */
1718 /* Give preference to headless and unused nodes */
1719 tmp
= node_to_cpumask(n
);
1720 if (!cpus_empty(tmp
))
1721 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1723 /* Slight preference for less loaded node */
1724 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1725 val
+= node_load
[n
];
1727 if (val
< min_val
) {
1734 node_set(best_node
, *used_node_mask
);
1739 static void __meminit
build_zonelists(pg_data_t
*pgdat
)
1741 int j
, node
, local_node
;
1743 int prev_node
, load
;
1744 struct zonelist
*zonelist
;
1745 nodemask_t used_mask
;
1747 /* initialize zonelists */
1748 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1749 zonelist
= pgdat
->node_zonelists
+ i
;
1750 zonelist
->zones
[0] = NULL
;
1753 /* NUMA-aware ordering of nodes */
1754 local_node
= pgdat
->node_id
;
1755 load
= num_online_nodes();
1756 prev_node
= local_node
;
1757 nodes_clear(used_mask
);
1758 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1759 int distance
= node_distance(local_node
, node
);
1762 * If another node is sufficiently far away then it is better
1763 * to reclaim pages in a zone before going off node.
1765 if (distance
> RECLAIM_DISTANCE
)
1766 zone_reclaim_mode
= 1;
1769 * We don't want to pressure a particular node.
1770 * So adding penalty to the first node in same
1771 * distance group to make it round-robin.
1774 if (distance
!= node_distance(local_node
, prev_node
))
1775 node_load
[node
] += load
;
1778 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1779 zonelist
= pgdat
->node_zonelists
+ i
;
1780 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1782 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1783 zonelist
->zones
[j
] = NULL
;
1788 /* Construct the zonelist performance cache - see further mmzone.h */
1789 static void __meminit
build_zonelist_cache(pg_data_t
*pgdat
)
1793 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1794 struct zonelist
*zonelist
;
1795 struct zonelist_cache
*zlc
;
1798 zonelist
= pgdat
->node_zonelists
+ i
;
1799 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
1800 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1801 for (z
= zonelist
->zones
; *z
; z
++)
1802 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
1806 #else /* CONFIG_NUMA */
1808 static void __meminit
build_zonelists(pg_data_t
*pgdat
)
1810 int node
, local_node
;
1813 local_node
= pgdat
->node_id
;
1814 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1815 struct zonelist
*zonelist
;
1817 zonelist
= pgdat
->node_zonelists
+ i
;
1819 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
1821 * Now we build the zonelist so that it contains the zones
1822 * of all the other nodes.
1823 * We don't want to pressure a particular node, so when
1824 * building the zones for node N, we make sure that the
1825 * zones coming right after the local ones are those from
1826 * node N+1 (modulo N)
1828 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1829 if (!node_online(node
))
1831 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1833 for (node
= 0; node
< local_node
; node
++) {
1834 if (!node_online(node
))
1836 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1839 zonelist
->zones
[j
] = NULL
;
1843 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1844 static void __meminit
build_zonelist_cache(pg_data_t
*pgdat
)
1848 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1849 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
1852 #endif /* CONFIG_NUMA */
1854 /* return values int ....just for stop_machine_run() */
1855 static int __meminit
__build_all_zonelists(void *dummy
)
1859 for_each_online_node(nid
) {
1860 build_zonelists(NODE_DATA(nid
));
1861 build_zonelist_cache(NODE_DATA(nid
));
1866 void __meminit
build_all_zonelists(void)
1868 if (system_state
== SYSTEM_BOOTING
) {
1869 __build_all_zonelists(NULL
);
1870 cpuset_init_current_mems_allowed();
1872 /* we have to stop all cpus to guaranntee there is no user
1874 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
1875 /* cpuset refresh routine should be here */
1877 vm_total_pages
= nr_free_pagecache_pages();
1878 printk("Built %i zonelists. Total pages: %ld\n",
1879 num_online_nodes(), vm_total_pages
);
1883 * Helper functions to size the waitqueue hash table.
1884 * Essentially these want to choose hash table sizes sufficiently
1885 * large so that collisions trying to wait on pages are rare.
1886 * But in fact, the number of active page waitqueues on typical
1887 * systems is ridiculously low, less than 200. So this is even
1888 * conservative, even though it seems large.
1890 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1891 * waitqueues, i.e. the size of the waitq table given the number of pages.
1893 #define PAGES_PER_WAITQUEUE 256
1895 #ifndef CONFIG_MEMORY_HOTPLUG
1896 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
1898 unsigned long size
= 1;
1900 pages
/= PAGES_PER_WAITQUEUE
;
1902 while (size
< pages
)
1906 * Once we have dozens or even hundreds of threads sleeping
1907 * on IO we've got bigger problems than wait queue collision.
1908 * Limit the size of the wait table to a reasonable size.
1910 size
= min(size
, 4096UL);
1912 return max(size
, 4UL);
1916 * A zone's size might be changed by hot-add, so it is not possible to determine
1917 * a suitable size for its wait_table. So we use the maximum size now.
1919 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1921 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1922 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1923 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1925 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1926 * or more by the traditional way. (See above). It equals:
1928 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1929 * ia64(16K page size) : = ( 8G + 4M)byte.
1930 * powerpc (64K page size) : = (32G +16M)byte.
1932 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
1939 * This is an integer logarithm so that shifts can be used later
1940 * to extract the more random high bits from the multiplicative
1941 * hash function before the remainder is taken.
1943 static inline unsigned long wait_table_bits(unsigned long size
)
1948 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1951 * Initially all pages are reserved - free ones are freed
1952 * up by free_all_bootmem() once the early boot process is
1953 * done. Non-atomic initialization, single-pass.
1955 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1956 unsigned long start_pfn
)
1959 unsigned long end_pfn
= start_pfn
+ size
;
1962 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1963 if (!early_pfn_valid(pfn
))
1965 if (!early_pfn_in_nid(pfn
, nid
))
1967 page
= pfn_to_page(pfn
);
1968 set_page_links(page
, zone
, nid
, pfn
);
1969 init_page_count(page
);
1970 reset_page_mapcount(page
);
1971 SetPageReserved(page
);
1972 INIT_LIST_HEAD(&page
->lru
);
1973 #ifdef WANT_PAGE_VIRTUAL
1974 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1975 if (!is_highmem_idx(zone
))
1976 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1981 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1985 for (order
= 0; order
< MAX_ORDER
; order
++) {
1986 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1987 zone
->free_area
[order
].nr_free
= 0;
1991 #ifndef __HAVE_ARCH_MEMMAP_INIT
1992 #define memmap_init(size, nid, zone, start_pfn) \
1993 memmap_init_zone((size), (nid), (zone), (start_pfn))
1996 static int __cpuinit
zone_batchsize(struct zone
*zone
)
2001 * The per-cpu-pages pools are set to around 1000th of the
2002 * size of the zone. But no more than 1/2 of a meg.
2004 * OK, so we don't know how big the cache is. So guess.
2006 batch
= zone
->present_pages
/ 1024;
2007 if (batch
* PAGE_SIZE
> 512 * 1024)
2008 batch
= (512 * 1024) / PAGE_SIZE
;
2009 batch
/= 4; /* We effectively *= 4 below */
2014 * Clamp the batch to a 2^n - 1 value. Having a power
2015 * of 2 value was found to be more likely to have
2016 * suboptimal cache aliasing properties in some cases.
2018 * For example if 2 tasks are alternately allocating
2019 * batches of pages, one task can end up with a lot
2020 * of pages of one half of the possible page colors
2021 * and the other with pages of the other colors.
2023 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2028 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2030 struct per_cpu_pages
*pcp
;
2032 memset(p
, 0, sizeof(*p
));
2034 pcp
= &p
->pcp
[0]; /* hot */
2036 pcp
->high
= 6 * batch
;
2037 pcp
->batch
= max(1UL, 1 * batch
);
2038 INIT_LIST_HEAD(&pcp
->list
);
2040 pcp
= &p
->pcp
[1]; /* cold*/
2042 pcp
->high
= 2 * batch
;
2043 pcp
->batch
= max(1UL, batch
/2);
2044 INIT_LIST_HEAD(&pcp
->list
);
2048 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2049 * to the value high for the pageset p.
2052 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2055 struct per_cpu_pages
*pcp
;
2057 pcp
= &p
->pcp
[0]; /* hot list */
2059 pcp
->batch
= max(1UL, high
/4);
2060 if ((high
/4) > (PAGE_SHIFT
* 8))
2061 pcp
->batch
= PAGE_SHIFT
* 8;
2067 * Boot pageset table. One per cpu which is going to be used for all
2068 * zones and all nodes. The parameters will be set in such a way
2069 * that an item put on a list will immediately be handed over to
2070 * the buddy list. This is safe since pageset manipulation is done
2071 * with interrupts disabled.
2073 * Some NUMA counter updates may also be caught by the boot pagesets.
2075 * The boot_pagesets must be kept even after bootup is complete for
2076 * unused processors and/or zones. They do play a role for bootstrapping
2077 * hotplugged processors.
2079 * zoneinfo_show() and maybe other functions do
2080 * not check if the processor is online before following the pageset pointer.
2081 * Other parts of the kernel may not check if the zone is available.
2083 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2086 * Dynamically allocate memory for the
2087 * per cpu pageset array in struct zone.
2089 static int __cpuinit
process_zones(int cpu
)
2091 struct zone
*zone
, *dzone
;
2093 for_each_zone(zone
) {
2095 if (!populated_zone(zone
))
2098 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2099 GFP_KERNEL
, cpu_to_node(cpu
));
2100 if (!zone_pcp(zone
, cpu
))
2103 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2105 if (percpu_pagelist_fraction
)
2106 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2107 (zone
->present_pages
/ percpu_pagelist_fraction
));
2112 for_each_zone(dzone
) {
2115 kfree(zone_pcp(dzone
, cpu
));
2116 zone_pcp(dzone
, cpu
) = NULL
;
2121 static inline void free_zone_pagesets(int cpu
)
2125 for_each_zone(zone
) {
2126 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2128 /* Free per_cpu_pageset if it is slab allocated */
2129 if (pset
!= &boot_pageset
[cpu
])
2131 zone_pcp(zone
, cpu
) = NULL
;
2135 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2136 unsigned long action
,
2139 int cpu
= (long)hcpu
;
2140 int ret
= NOTIFY_OK
;
2143 case CPU_UP_PREPARE
:
2144 if (process_zones(cpu
))
2147 case CPU_UP_CANCELED
:
2149 free_zone_pagesets(cpu
);
2157 static struct notifier_block __cpuinitdata pageset_notifier
=
2158 { &pageset_cpuup_callback
, NULL
, 0 };
2160 void __init
setup_per_cpu_pageset(void)
2164 /* Initialize per_cpu_pageset for cpu 0.
2165 * A cpuup callback will do this for every cpu
2166 * as it comes online
2168 err
= process_zones(smp_processor_id());
2170 register_cpu_notifier(&pageset_notifier
);
2176 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2179 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2183 * The per-page waitqueue mechanism uses hashed waitqueues
2186 zone
->wait_table_hash_nr_entries
=
2187 wait_table_hash_nr_entries(zone_size_pages
);
2188 zone
->wait_table_bits
=
2189 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2190 alloc_size
= zone
->wait_table_hash_nr_entries
2191 * sizeof(wait_queue_head_t
);
2193 if (system_state
== SYSTEM_BOOTING
) {
2194 zone
->wait_table
= (wait_queue_head_t
*)
2195 alloc_bootmem_node(pgdat
, alloc_size
);
2198 * This case means that a zone whose size was 0 gets new memory
2199 * via memory hot-add.
2200 * But it may be the case that a new node was hot-added. In
2201 * this case vmalloc() will not be able to use this new node's
2202 * memory - this wait_table must be initialized to use this new
2203 * node itself as well.
2204 * To use this new node's memory, further consideration will be
2207 zone
->wait_table
= (wait_queue_head_t
*)vmalloc(alloc_size
);
2209 if (!zone
->wait_table
)
2212 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2213 init_waitqueue_head(zone
->wait_table
+ i
);
2218 static __meminit
void zone_pcp_init(struct zone
*zone
)
2221 unsigned long batch
= zone_batchsize(zone
);
2223 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2225 /* Early boot. Slab allocator not functional yet */
2226 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2227 setup_pageset(&boot_pageset
[cpu
],0);
2229 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2232 if (zone
->present_pages
)
2233 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2234 zone
->name
, zone
->present_pages
, batch
);
2237 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2238 unsigned long zone_start_pfn
,
2241 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2243 ret
= zone_wait_table_init(zone
, size
);
2246 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2248 zone
->zone_start_pfn
= zone_start_pfn
;
2250 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2252 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2257 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2259 * Basic iterator support. Return the first range of PFNs for a node
2260 * Note: nid == MAX_NUMNODES returns first region regardless of node
2262 static int __init
first_active_region_index_in_nid(int nid
)
2266 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2267 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2274 * Basic iterator support. Return the next active range of PFNs for a node
2275 * Note: nid == MAX_NUMNODES returns next region regardles of node
2277 static int __init
next_active_region_index_in_nid(int index
, int nid
)
2279 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2280 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2286 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2288 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2289 * Architectures may implement their own version but if add_active_range()
2290 * was used and there are no special requirements, this is a convenient
2293 int __init
early_pfn_to_nid(unsigned long pfn
)
2297 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2298 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2299 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2301 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2302 return early_node_map
[i
].nid
;
2307 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2309 /* Basic iterator support to walk early_node_map[] */
2310 #define for_each_active_range_index_in_nid(i, nid) \
2311 for (i = first_active_region_index_in_nid(nid); i != -1; \
2312 i = next_active_region_index_in_nid(i, nid))
2315 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2316 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2317 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2319 * If an architecture guarantees that all ranges registered with
2320 * add_active_ranges() contain no holes and may be freed, this
2321 * this function may be used instead of calling free_bootmem() manually.
2323 void __init
free_bootmem_with_active_regions(int nid
,
2324 unsigned long max_low_pfn
)
2328 for_each_active_range_index_in_nid(i
, nid
) {
2329 unsigned long size_pages
= 0;
2330 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2332 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2335 if (end_pfn
> max_low_pfn
)
2336 end_pfn
= max_low_pfn
;
2338 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2339 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2340 PFN_PHYS(early_node_map
[i
].start_pfn
),
2341 size_pages
<< PAGE_SHIFT
);
2346 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2347 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2349 * If an architecture guarantees that all ranges registered with
2350 * add_active_ranges() contain no holes and may be freed, this
2351 * function may be used instead of calling memory_present() manually.
2353 void __init
sparse_memory_present_with_active_regions(int nid
)
2357 for_each_active_range_index_in_nid(i
, nid
)
2358 memory_present(early_node_map
[i
].nid
,
2359 early_node_map
[i
].start_pfn
,
2360 early_node_map
[i
].end_pfn
);
2364 * push_node_boundaries - Push node boundaries to at least the requested boundary
2365 * @nid: The nid of the node to push the boundary for
2366 * @start_pfn: The start pfn of the node
2367 * @end_pfn: The end pfn of the node
2369 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2370 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2371 * be hotplugged even though no physical memory exists. This function allows
2372 * an arch to push out the node boundaries so mem_map is allocated that can
2375 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2376 void __init
push_node_boundaries(unsigned int nid
,
2377 unsigned long start_pfn
, unsigned long end_pfn
)
2379 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2380 nid
, start_pfn
, end_pfn
);
2382 /* Initialise the boundary for this node if necessary */
2383 if (node_boundary_end_pfn
[nid
] == 0)
2384 node_boundary_start_pfn
[nid
] = -1UL;
2386 /* Update the boundaries */
2387 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2388 node_boundary_start_pfn
[nid
] = start_pfn
;
2389 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2390 node_boundary_end_pfn
[nid
] = end_pfn
;
2393 /* If necessary, push the node boundary out for reserve hotadd */
2394 static void __init
account_node_boundary(unsigned int nid
,
2395 unsigned long *start_pfn
, unsigned long *end_pfn
)
2397 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2398 nid
, *start_pfn
, *end_pfn
);
2400 /* Return if boundary information has not been provided */
2401 if (node_boundary_end_pfn
[nid
] == 0)
2404 /* Check the boundaries and update if necessary */
2405 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2406 *start_pfn
= node_boundary_start_pfn
[nid
];
2407 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
2408 *end_pfn
= node_boundary_end_pfn
[nid
];
2411 void __init
push_node_boundaries(unsigned int nid
,
2412 unsigned long start_pfn
, unsigned long end_pfn
) {}
2414 static void __init
account_node_boundary(unsigned int nid
,
2415 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
2420 * get_pfn_range_for_nid - Return the start and end page frames for a node
2421 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2422 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2423 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2425 * It returns the start and end page frame of a node based on information
2426 * provided by an arch calling add_active_range(). If called for a node
2427 * with no available memory, a warning is printed and the start and end
2430 void __init
get_pfn_range_for_nid(unsigned int nid
,
2431 unsigned long *start_pfn
, unsigned long *end_pfn
)
2437 for_each_active_range_index_in_nid(i
, nid
) {
2438 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
2439 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
2442 if (*start_pfn
== -1UL) {
2443 printk(KERN_WARNING
"Node %u active with no memory\n", nid
);
2447 /* Push the node boundaries out if requested */
2448 account_node_boundary(nid
, start_pfn
, end_pfn
);
2452 * Return the number of pages a zone spans in a node, including holes
2453 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2455 unsigned long __init
zone_spanned_pages_in_node(int nid
,
2456 unsigned long zone_type
,
2457 unsigned long *ignored
)
2459 unsigned long node_start_pfn
, node_end_pfn
;
2460 unsigned long zone_start_pfn
, zone_end_pfn
;
2462 /* Get the start and end of the node and zone */
2463 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
2464 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
2465 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
2467 /* Check that this node has pages within the zone's required range */
2468 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
2471 /* Move the zone boundaries inside the node if necessary */
2472 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
2473 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
2475 /* Return the spanned pages */
2476 return zone_end_pfn
- zone_start_pfn
;
2480 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2481 * then all holes in the requested range will be accounted for.
2483 unsigned long __init
__absent_pages_in_range(int nid
,
2484 unsigned long range_start_pfn
,
2485 unsigned long range_end_pfn
)
2488 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
2489 unsigned long start_pfn
;
2491 /* Find the end_pfn of the first active range of pfns in the node */
2492 i
= first_active_region_index_in_nid(nid
);
2496 /* Account for ranges before physical memory on this node */
2497 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
2498 hole_pages
= early_node_map
[i
].start_pfn
- range_start_pfn
;
2500 prev_end_pfn
= early_node_map
[i
].start_pfn
;
2502 /* Find all holes for the zone within the node */
2503 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
2505 /* No need to continue if prev_end_pfn is outside the zone */
2506 if (prev_end_pfn
>= range_end_pfn
)
2509 /* Make sure the end of the zone is not within the hole */
2510 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
2511 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
2513 /* Update the hole size cound and move on */
2514 if (start_pfn
> range_start_pfn
) {
2515 BUG_ON(prev_end_pfn
> start_pfn
);
2516 hole_pages
+= start_pfn
- prev_end_pfn
;
2518 prev_end_pfn
= early_node_map
[i
].end_pfn
;
2521 /* Account for ranges past physical memory on this node */
2522 if (range_end_pfn
> prev_end_pfn
)
2523 hole_pages
+= range_end_pfn
-
2524 max(range_start_pfn
, prev_end_pfn
);
2530 * absent_pages_in_range - Return number of page frames in holes within a range
2531 * @start_pfn: The start PFN to start searching for holes
2532 * @end_pfn: The end PFN to stop searching for holes
2534 * It returns the number of pages frames in memory holes within a range.
2536 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
2537 unsigned long end_pfn
)
2539 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
2542 /* Return the number of page frames in holes in a zone on a node */
2543 unsigned long __init
zone_absent_pages_in_node(int nid
,
2544 unsigned long zone_type
,
2545 unsigned long *ignored
)
2547 unsigned long node_start_pfn
, node_end_pfn
;
2548 unsigned long zone_start_pfn
, zone_end_pfn
;
2550 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
2551 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
2553 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
2556 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
2560 static inline unsigned long zone_spanned_pages_in_node(int nid
,
2561 unsigned long zone_type
,
2562 unsigned long *zones_size
)
2564 return zones_size
[zone_type
];
2567 static inline unsigned long zone_absent_pages_in_node(int nid
,
2568 unsigned long zone_type
,
2569 unsigned long *zholes_size
)
2574 return zholes_size
[zone_type
];
2579 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
2580 unsigned long *zones_size
, unsigned long *zholes_size
)
2582 unsigned long realtotalpages
, totalpages
= 0;
2585 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2586 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
2588 pgdat
->node_spanned_pages
= totalpages
;
2590 realtotalpages
= totalpages
;
2591 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2593 zone_absent_pages_in_node(pgdat
->node_id
, i
,
2595 pgdat
->node_present_pages
= realtotalpages
;
2596 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
2601 * Set up the zone data structures:
2602 * - mark all pages reserved
2603 * - mark all memory queues empty
2604 * - clear the memory bitmaps
2606 static void __meminit
free_area_init_core(struct pglist_data
*pgdat
,
2607 unsigned long *zones_size
, unsigned long *zholes_size
)
2610 int nid
= pgdat
->node_id
;
2611 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2614 pgdat_resize_init(pgdat
);
2615 pgdat
->nr_zones
= 0;
2616 init_waitqueue_head(&pgdat
->kswapd_wait
);
2617 pgdat
->kswapd_max_order
= 0;
2619 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2620 struct zone
*zone
= pgdat
->node_zones
+ j
;
2621 unsigned long size
, realsize
, memmap_pages
;
2623 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
2624 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
2628 * Adjust realsize so that it accounts for how much memory
2629 * is used by this zone for memmap. This affects the watermark
2630 * and per-cpu initialisations
2632 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
2633 if (realsize
>= memmap_pages
) {
2634 realsize
-= memmap_pages
;
2636 " %s zone: %lu pages used for memmap\n",
2637 zone_names
[j
], memmap_pages
);
2640 " %s zone: %lu pages exceeds realsize %lu\n",
2641 zone_names
[j
], memmap_pages
, realsize
);
2643 /* Account for reserved DMA pages */
2644 if (j
== ZONE_DMA
&& realsize
> dma_reserve
) {
2645 realsize
-= dma_reserve
;
2646 printk(KERN_DEBUG
" DMA zone: %lu pages reserved\n",
2650 if (!is_highmem_idx(j
))
2651 nr_kernel_pages
+= realsize
;
2652 nr_all_pages
+= realsize
;
2654 zone
->spanned_pages
= size
;
2655 zone
->present_pages
= realsize
;
2658 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
2660 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
2662 zone
->name
= zone_names
[j
];
2663 spin_lock_init(&zone
->lock
);
2664 spin_lock_init(&zone
->lru_lock
);
2665 zone_seqlock_init(zone
);
2666 zone
->zone_pgdat
= pgdat
;
2667 zone
->free_pages
= 0;
2669 zone
->prev_priority
= DEF_PRIORITY
;
2671 zone_pcp_init(zone
);
2672 INIT_LIST_HEAD(&zone
->active_list
);
2673 INIT_LIST_HEAD(&zone
->inactive_list
);
2674 zone
->nr_scan_active
= 0;
2675 zone
->nr_scan_inactive
= 0;
2676 zone
->nr_active
= 0;
2677 zone
->nr_inactive
= 0;
2678 zap_zone_vm_stats(zone
);
2679 atomic_set(&zone
->reclaim_in_progress
, 0);
2683 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2685 zone_start_pfn
+= size
;
2689 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2691 /* Skip empty nodes */
2692 if (!pgdat
->node_spanned_pages
)
2695 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2696 /* ia64 gets its own node_mem_map, before this, without bootmem */
2697 if (!pgdat
->node_mem_map
) {
2698 unsigned long size
, start
, end
;
2702 * The zone's endpoints aren't required to be MAX_ORDER
2703 * aligned but the node_mem_map endpoints must be in order
2704 * for the buddy allocator to function correctly.
2706 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
2707 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
2708 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
2709 size
= (end
- start
) * sizeof(struct page
);
2710 map
= alloc_remap(pgdat
->node_id
, size
);
2712 map
= alloc_bootmem_node(pgdat
, size
);
2713 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
2715 #ifdef CONFIG_FLATMEM
2717 * With no DISCONTIG, the global mem_map is just set as node 0's
2719 if (pgdat
== NODE_DATA(0)) {
2720 mem_map
= NODE_DATA(0)->node_mem_map
;
2721 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2722 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
2723 mem_map
-= pgdat
->node_start_pfn
;
2724 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2727 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2730 void __meminit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2731 unsigned long *zones_size
, unsigned long node_start_pfn
,
2732 unsigned long *zholes_size
)
2734 pgdat
->node_id
= nid
;
2735 pgdat
->node_start_pfn
= node_start_pfn
;
2736 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
2738 alloc_node_mem_map(pgdat
);
2740 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2743 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2745 * add_active_range - Register a range of PFNs backed by physical memory
2746 * @nid: The node ID the range resides on
2747 * @start_pfn: The start PFN of the available physical memory
2748 * @end_pfn: The end PFN of the available physical memory
2750 * These ranges are stored in an early_node_map[] and later used by
2751 * free_area_init_nodes() to calculate zone sizes and holes. If the
2752 * range spans a memory hole, it is up to the architecture to ensure
2753 * the memory is not freed by the bootmem allocator. If possible
2754 * the range being registered will be merged with existing ranges.
2756 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
2757 unsigned long end_pfn
)
2761 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
2762 "%d entries of %d used\n",
2763 nid
, start_pfn
, end_pfn
,
2764 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
2766 /* Merge with existing active regions if possible */
2767 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2768 if (early_node_map
[i
].nid
!= nid
)
2771 /* Skip if an existing region covers this new one */
2772 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
2773 end_pfn
<= early_node_map
[i
].end_pfn
)
2776 /* Merge forward if suitable */
2777 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
2778 end_pfn
> early_node_map
[i
].end_pfn
) {
2779 early_node_map
[i
].end_pfn
= end_pfn
;
2783 /* Merge backward if suitable */
2784 if (start_pfn
< early_node_map
[i
].end_pfn
&&
2785 end_pfn
>= early_node_map
[i
].start_pfn
) {
2786 early_node_map
[i
].start_pfn
= start_pfn
;
2791 /* Check that early_node_map is large enough */
2792 if (i
>= MAX_ACTIVE_REGIONS
) {
2793 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
2794 MAX_ACTIVE_REGIONS
);
2798 early_node_map
[i
].nid
= nid
;
2799 early_node_map
[i
].start_pfn
= start_pfn
;
2800 early_node_map
[i
].end_pfn
= end_pfn
;
2801 nr_nodemap_entries
= i
+ 1;
2805 * shrink_active_range - Shrink an existing registered range of PFNs
2806 * @nid: The node id the range is on that should be shrunk
2807 * @old_end_pfn: The old end PFN of the range
2808 * @new_end_pfn: The new PFN of the range
2810 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2811 * The map is kept at the end physical page range that has already been
2812 * registered with add_active_range(). This function allows an arch to shrink
2813 * an existing registered range.
2815 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
2816 unsigned long new_end_pfn
)
2820 /* Find the old active region end and shrink */
2821 for_each_active_range_index_in_nid(i
, nid
)
2822 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
2823 early_node_map
[i
].end_pfn
= new_end_pfn
;
2829 * remove_all_active_ranges - Remove all currently registered regions
2831 * During discovery, it may be found that a table like SRAT is invalid
2832 * and an alternative discovery method must be used. This function removes
2833 * all currently registered regions.
2835 void __init
remove_all_active_ranges(void)
2837 memset(early_node_map
, 0, sizeof(early_node_map
));
2838 nr_nodemap_entries
= 0;
2839 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2840 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
2841 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
2842 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2845 /* Compare two active node_active_regions */
2846 static int __init
cmp_node_active_region(const void *a
, const void *b
)
2848 struct node_active_region
*arange
= (struct node_active_region
*)a
;
2849 struct node_active_region
*brange
= (struct node_active_region
*)b
;
2851 /* Done this way to avoid overflows */
2852 if (arange
->start_pfn
> brange
->start_pfn
)
2854 if (arange
->start_pfn
< brange
->start_pfn
)
2860 /* sort the node_map by start_pfn */
2861 static void __init
sort_node_map(void)
2863 sort(early_node_map
, (size_t)nr_nodemap_entries
,
2864 sizeof(struct node_active_region
),
2865 cmp_node_active_region
, NULL
);
2868 /* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2869 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
2873 /* Regions in the early_node_map can be in any order */
2876 /* Assuming a sorted map, the first range found has the starting pfn */
2877 for_each_active_range_index_in_nid(i
, nid
)
2878 return early_node_map
[i
].start_pfn
;
2880 printk(KERN_WARNING
"Could not find start_pfn for node %lu\n", nid
);
2885 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2887 * It returns the minimum PFN based on information provided via
2888 * add_active_range().
2890 unsigned long __init
find_min_pfn_with_active_regions(void)
2892 return find_min_pfn_for_node(MAX_NUMNODES
);
2896 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2898 * It returns the maximum PFN based on information provided via
2899 * add_active_range().
2901 unsigned long __init
find_max_pfn_with_active_regions(void)
2904 unsigned long max_pfn
= 0;
2906 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2907 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
2913 * free_area_init_nodes - Initialise all pg_data_t and zone data
2914 * @max_zone_pfn: an array of max PFNs for each zone
2916 * This will call free_area_init_node() for each active node in the system.
2917 * Using the page ranges provided by add_active_range(), the size of each
2918 * zone in each node and their holes is calculated. If the maximum PFN
2919 * between two adjacent zones match, it is assumed that the zone is empty.
2920 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2921 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2922 * starts where the previous one ended. For example, ZONE_DMA32 starts
2923 * at arch_max_dma_pfn.
2925 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
2930 /* Record where the zone boundaries are */
2931 memset(arch_zone_lowest_possible_pfn
, 0,
2932 sizeof(arch_zone_lowest_possible_pfn
));
2933 memset(arch_zone_highest_possible_pfn
, 0,
2934 sizeof(arch_zone_highest_possible_pfn
));
2935 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
2936 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
2937 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
2938 arch_zone_lowest_possible_pfn
[i
] =
2939 arch_zone_highest_possible_pfn
[i
-1];
2940 arch_zone_highest_possible_pfn
[i
] =
2941 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
2944 /* Print out the zone ranges */
2945 printk("Zone PFN ranges:\n");
2946 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2947 printk(" %-8s %8lu -> %8lu\n",
2949 arch_zone_lowest_possible_pfn
[i
],
2950 arch_zone_highest_possible_pfn
[i
]);
2952 /* Print out the early_node_map[] */
2953 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
2954 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2955 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
2956 early_node_map
[i
].start_pfn
,
2957 early_node_map
[i
].end_pfn
);
2959 /* Initialise every node */
2960 for_each_online_node(nid
) {
2961 pg_data_t
*pgdat
= NODE_DATA(nid
);
2962 free_area_init_node(nid
, pgdat
, NULL
,
2963 find_min_pfn_for_node(nid
), NULL
);
2966 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2969 * set_dma_reserve - set the specified number of pages reserved in the first zone
2970 * @new_dma_reserve: The number of pages to mark reserved
2972 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2973 * In the DMA zone, a significant percentage may be consumed by kernel image
2974 * and other unfreeable allocations which can skew the watermarks badly. This
2975 * function may optionally be used to account for unfreeable pages in the
2976 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2977 * smaller per-cpu batchsize.
2979 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
2981 dma_reserve
= new_dma_reserve
;
2984 #ifndef CONFIG_NEED_MULTIPLE_NODES
2985 static bootmem_data_t contig_bootmem_data
;
2986 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2988 EXPORT_SYMBOL(contig_page_data
);
2991 void __init
free_area_init(unsigned long *zones_size
)
2993 free_area_init_node(0, NODE_DATA(0), zones_size
,
2994 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2997 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2998 unsigned long action
, void *hcpu
)
3000 int cpu
= (unsigned long)hcpu
;
3002 if (action
== CPU_DEAD
) {
3003 local_irq_disable();
3005 vm_events_fold_cpu(cpu
);
3007 refresh_cpu_vm_stats(cpu
);
3012 void __init
page_alloc_init(void)
3014 hotcpu_notifier(page_alloc_cpu_notify
, 0);
3018 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3019 * or min_free_kbytes changes.
3021 static void calculate_totalreserve_pages(void)
3023 struct pglist_data
*pgdat
;
3024 unsigned long reserve_pages
= 0;
3025 enum zone_type i
, j
;
3027 for_each_online_pgdat(pgdat
) {
3028 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3029 struct zone
*zone
= pgdat
->node_zones
+ i
;
3030 unsigned long max
= 0;
3032 /* Find valid and maximum lowmem_reserve in the zone */
3033 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
3034 if (zone
->lowmem_reserve
[j
] > max
)
3035 max
= zone
->lowmem_reserve
[j
];
3038 /* we treat pages_high as reserved pages. */
3039 max
+= zone
->pages_high
;
3041 if (max
> zone
->present_pages
)
3042 max
= zone
->present_pages
;
3043 reserve_pages
+= max
;
3046 totalreserve_pages
= reserve_pages
;
3050 * setup_per_zone_lowmem_reserve - called whenever
3051 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3052 * has a correct pages reserved value, so an adequate number of
3053 * pages are left in the zone after a successful __alloc_pages().
3055 static void setup_per_zone_lowmem_reserve(void)
3057 struct pglist_data
*pgdat
;
3058 enum zone_type j
, idx
;
3060 for_each_online_pgdat(pgdat
) {
3061 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3062 struct zone
*zone
= pgdat
->node_zones
+ j
;
3063 unsigned long present_pages
= zone
->present_pages
;
3065 zone
->lowmem_reserve
[j
] = 0;
3069 struct zone
*lower_zone
;
3073 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
3074 sysctl_lowmem_reserve_ratio
[idx
] = 1;
3076 lower_zone
= pgdat
->node_zones
+ idx
;
3077 lower_zone
->lowmem_reserve
[j
] = present_pages
/
3078 sysctl_lowmem_reserve_ratio
[idx
];
3079 present_pages
+= lower_zone
->present_pages
;
3084 /* update totalreserve_pages */
3085 calculate_totalreserve_pages();
3089 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3091 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3092 * with respect to min_free_kbytes.
3094 void setup_per_zone_pages_min(void)
3096 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
3097 unsigned long lowmem_pages
= 0;
3099 unsigned long flags
;
3101 /* Calculate total number of !ZONE_HIGHMEM pages */
3102 for_each_zone(zone
) {
3103 if (!is_highmem(zone
))
3104 lowmem_pages
+= zone
->present_pages
;
3107 for_each_zone(zone
) {
3110 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3111 tmp
= (u64
)pages_min
* zone
->present_pages
;
3112 do_div(tmp
, lowmem_pages
);
3113 if (is_highmem(zone
)) {
3115 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3116 * need highmem pages, so cap pages_min to a small
3119 * The (pages_high-pages_low) and (pages_low-pages_min)
3120 * deltas controls asynch page reclaim, and so should
3121 * not be capped for highmem.
3125 min_pages
= zone
->present_pages
/ 1024;
3126 if (min_pages
< SWAP_CLUSTER_MAX
)
3127 min_pages
= SWAP_CLUSTER_MAX
;
3128 if (min_pages
> 128)
3130 zone
->pages_min
= min_pages
;
3133 * If it's a lowmem zone, reserve a number of pages
3134 * proportionate to the zone's size.
3136 zone
->pages_min
= tmp
;
3139 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
3140 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
3141 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3144 /* update totalreserve_pages */
3145 calculate_totalreserve_pages();
3149 * Initialise min_free_kbytes.
3151 * For small machines we want it small (128k min). For large machines
3152 * we want it large (64MB max). But it is not linear, because network
3153 * bandwidth does not increase linearly with machine size. We use
3155 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3156 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3172 static int __init
init_per_zone_pages_min(void)
3174 unsigned long lowmem_kbytes
;
3176 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
3178 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
3179 if (min_free_kbytes
< 128)
3180 min_free_kbytes
= 128;
3181 if (min_free_kbytes
> 65536)
3182 min_free_kbytes
= 65536;
3183 setup_per_zone_pages_min();
3184 setup_per_zone_lowmem_reserve();
3187 module_init(init_per_zone_pages_min
)
3190 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3191 * that we can call two helper functions whenever min_free_kbytes
3194 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
3195 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3197 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
3198 setup_per_zone_pages_min();
3203 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
3204 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3209 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3214 zone
->min_unmapped_pages
= (zone
->present_pages
*
3215 sysctl_min_unmapped_ratio
) / 100;
3219 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
3220 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3225 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3230 zone
->min_slab_pages
= (zone
->present_pages
*
3231 sysctl_min_slab_ratio
) / 100;
3237 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3238 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3239 * whenever sysctl_lowmem_reserve_ratio changes.
3241 * The reserve ratio obviously has absolutely no relation with the
3242 * pages_min watermarks. The lowmem reserve ratio can only make sense
3243 * if in function of the boot time zone sizes.
3245 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
3246 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3248 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3249 setup_per_zone_lowmem_reserve();
3254 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3255 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3256 * can have before it gets flushed back to buddy allocator.
3259 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
3260 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3266 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3267 if (!write
|| (ret
== -EINVAL
))
3269 for_each_zone(zone
) {
3270 for_each_online_cpu(cpu
) {
3272 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
3273 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
3279 int hashdist
= HASHDIST_DEFAULT
;
3282 static int __init
set_hashdist(char *str
)
3286 hashdist
= simple_strtoul(str
, &str
, 0);
3289 __setup("hashdist=", set_hashdist
);
3293 * allocate a large system hash table from bootmem
3294 * - it is assumed that the hash table must contain an exact power-of-2
3295 * quantity of entries
3296 * - limit is the number of hash buckets, not the total allocation size
3298 void *__init
alloc_large_system_hash(const char *tablename
,
3299 unsigned long bucketsize
,
3300 unsigned long numentries
,
3303 unsigned int *_hash_shift
,
3304 unsigned int *_hash_mask
,
3305 unsigned long limit
)
3307 unsigned long long max
= limit
;
3308 unsigned long log2qty
, size
;
3311 /* allow the kernel cmdline to have a say */
3313 /* round applicable memory size up to nearest megabyte */
3314 numentries
= nr_kernel_pages
;
3315 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
3316 numentries
>>= 20 - PAGE_SHIFT
;
3317 numentries
<<= 20 - PAGE_SHIFT
;
3319 /* limit to 1 bucket per 2^scale bytes of low memory */
3320 if (scale
> PAGE_SHIFT
)
3321 numentries
>>= (scale
- PAGE_SHIFT
);
3323 numentries
<<= (PAGE_SHIFT
- scale
);
3325 numentries
= roundup_pow_of_two(numentries
);
3327 /* limit allocation size to 1/16 total memory by default */
3329 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
3330 do_div(max
, bucketsize
);
3333 if (numentries
> max
)
3336 log2qty
= ilog2(numentries
);
3339 size
= bucketsize
<< log2qty
;
3340 if (flags
& HASH_EARLY
)
3341 table
= alloc_bootmem(size
);
3343 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
3345 unsigned long order
;
3346 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
3348 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
3350 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
3353 panic("Failed to allocate %s hash table\n", tablename
);
3355 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3358 ilog2(size
) - PAGE_SHIFT
,
3362 *_hash_shift
= log2qty
;
3364 *_hash_mask
= (1 << log2qty
) - 1;
3369 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3370 struct page
*pfn_to_page(unsigned long pfn
)
3372 return __pfn_to_page(pfn
);
3374 unsigned long page_to_pfn(struct page
*page
)
3376 return __page_to_pfn(page
);
3378 EXPORT_SYMBOL(pfn_to_page
);
3379 EXPORT_SYMBOL(page_to_pfn
);
3380 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3382 #if MAX_NUMNODES > 1
3384 * Find the highest possible node id.
3386 int highest_possible_node_id(void)
3389 unsigned int highest
= 0;
3391 for_each_node_mask(node
, node_possible_map
)
3395 EXPORT_SYMBOL(highest_possible_node_id
);