2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
27 * - test ext4_ext_search_left() and ext4_ext_search_right()
28 * - search for metadata in few groups
31 * - normalization should take into account whether file is still open
32 * - discard preallocations if no free space left (policy?)
33 * - don't normalize tails
35 * - reservation for superuser
38 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
39 * - track min/max extents in each group for better group selection
40 * - mb_mark_used() may allocate chunk right after splitting buddy
41 * - tree of groups sorted by number of free blocks
46 * The allocation request involve request for multiple number of blocks
47 * near to the goal(block) value specified.
49 * During initialization phase of the allocator we decide to use the group
50 * preallocation or inode preallocation depending on the size file. The
51 * size of the file could be the resulting file size we would have after
52 * allocation or the current file size which ever is larger. If the size is
53 * less that sbi->s_mb_stream_request we select the group
54 * preallocation. The default value of s_mb_stream_request is 16
55 * blocks. This can also be tuned via
56 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57 * of number of blocks.
59 * The main motivation for having small file use group preallocation is to
60 * ensure that we have small file closer in the disk.
62 * First stage the allocator looks at the inode prealloc list
63 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64 * this particular inode. The inode prealloc space is represented as:
66 * pa_lstart -> the logical start block for this prealloc space
67 * pa_pstart -> the physical start block for this prealloc space
68 * pa_len -> lenght for this prealloc space
69 * pa_free -> free space available in this prealloc space
71 * The inode preallocation space is used looking at the _logical_ start
72 * block. If only the logical file block falls within the range of prealloc
73 * space we will consume the particular prealloc space. This make sure that
74 * that the we have contiguous physical blocks representing the file blocks
76 * The important thing to be noted in case of inode prealloc space is that
77 * we don't modify the values associated to inode prealloc space except
80 * If we are not able to find blocks in the inode prealloc space and if we
81 * have the group allocation flag set then we look at the locality group
82 * prealloc space. These are per CPU prealloc list repreasented as
84 * ext4_sb_info.s_locality_groups[smp_processor_id()]
86 * The reason for having a per cpu locality group is to reduce the contention
87 * between CPUs. It is possible to get scheduled at this point.
89 * The locality group prealloc space is used looking at whether we have
90 * enough free space (pa_free) withing the prealloc space.
92 * If we can't allocate blocks via inode prealloc or/and locality group
93 * prealloc then we look at the buddy cache. The buddy cache is represented
94 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95 * mapped to the buddy and bitmap information regarding different
96 * groups. The buddy information is attached to buddy cache inode so that
97 * we can access them through the page cache. The information regarding
98 * each group is loaded via ext4_mb_load_buddy. The information involve
99 * block bitmap and buddy information. The information are stored in the
103 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
106 * one block each for bitmap and buddy information. So for each group we
107 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108 * blocksize) blocks. So it can have information regarding groups_per_page
109 * which is blocks_per_page/2
111 * The buddy cache inode is not stored on disk. The inode is thrown
112 * away when the filesystem is unmounted.
114 * We look for count number of blocks in the buddy cache. If we were able
115 * to locate that many free blocks we return with additional information
116 * regarding rest of the contiguous physical block available
118 * Before allocating blocks via buddy cache we normalize the request
119 * blocks. This ensure we ask for more blocks that we needed. The extra
120 * blocks that we get after allocation is added to the respective prealloc
121 * list. In case of inode preallocation we follow a list of heuristics
122 * based on file size. This can be found in ext4_mb_normalize_request. If
123 * we are doing a group prealloc we try to normalize the request to
124 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125 * 512 blocks. This can be tuned via
126 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * stripe value (sbi->s_stripe)
131 * The regular allocator(using the buddy cache) support few tunables.
133 * /proc/fs/ext4/<partition>/min_to_scan
134 * /proc/fs/ext4/<partition>/max_to_scan
135 * /proc/fs/ext4/<partition>/order2_req
137 * The regular allocator use buddy scan only if the request len is power of
138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139 * value of s_mb_order2_reqs can be tuned via
140 * /proc/fs/ext4/<partition>/order2_req. If the request len is equal to
141 * stripe size (sbi->s_stripe), we try to search for contigous block in
142 * stripe size. This should result in better allocation on RAID setup. If
143 * not we search in the specific group using bitmap for best extents. The
144 * tunable min_to_scan and max_to_scan controll the behaviour here.
145 * min_to_scan indicate how long the mballoc __must__ look for a best
146 * extent and max_to_scanindicate how long the mballoc __can__ look for a
147 * best extent in the found extents. Searching for the blocks starts with
148 * the group specified as the goal value in allocation context via
149 * ac_g_ex. Each group is first checked based on the criteria whether it
150 * can used for allocation. ext4_mb_good_group explains how the groups are
153 * Both the prealloc space are getting populated as above. So for the first
154 * request we will hit the buddy cache which will result in this prealloc
155 * space getting filled. The prealloc space is then later used for the
156 * subsequent request.
160 * mballoc operates on the following data:
162 * - in-core buddy (actually includes buddy and bitmap)
163 * - preallocation descriptors (PAs)
165 * there are two types of preallocations:
167 * assiged to specific inode and can be used for this inode only.
168 * it describes part of inode's space preallocated to specific
169 * physical blocks. any block from that preallocated can be used
170 * independent. the descriptor just tracks number of blocks left
171 * unused. so, before taking some block from descriptor, one must
172 * make sure corresponded logical block isn't allocated yet. this
173 * also means that freeing any block within descriptor's range
174 * must discard all preallocated blocks.
176 * assigned to specific locality group which does not translate to
177 * permanent set of inodes: inode can join and leave group. space
178 * from this type of preallocation can be used for any inode. thus
179 * it's consumed from the beginning to the end.
181 * relation between them can be expressed as:
182 * in-core buddy = on-disk bitmap + preallocation descriptors
184 * this mean blocks mballoc considers used are:
185 * - allocated blocks (persistent)
186 * - preallocated blocks (non-persistent)
188 * consistency in mballoc world means that at any time a block is either
189 * free or used in ALL structures. notice: "any time" should not be read
190 * literally -- time is discrete and delimited by locks.
192 * to keep it simple, we don't use block numbers, instead we count number of
193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
195 * all operations can be expressed as:
196 * - init buddy: buddy = on-disk + PAs
197 * - new PA: buddy += N; PA = N
198 * - use inode PA: on-disk += N; PA -= N
199 * - discard inode PA buddy -= on-disk - PA; PA = 0
200 * - use locality group PA on-disk += N; PA -= N
201 * - discard locality group PA buddy -= PA; PA = 0
202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203 * is used in real operation because we can't know actual used
204 * bits from PA, only from on-disk bitmap
206 * if we follow this strict logic, then all operations above should be atomic.
207 * given some of them can block, we'd have to use something like semaphores
208 * killing performance on high-end SMP hardware. let's try to relax it using
209 * the following knowledge:
210 * 1) if buddy is referenced, it's already initialized
211 * 2) while block is used in buddy and the buddy is referenced,
212 * nobody can re-allocate that block
213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214 * bit set and PA claims same block, it's OK. IOW, one can set bit in
215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
218 * so, now we're building a concurrency table:
221 * blocks for PA are allocated in the buddy, buddy must be referenced
222 * until PA is linked to allocation group to avoid concurrent buddy init
224 * we need to make sure that either on-disk bitmap or PA has uptodate data
225 * given (3) we care that PA-=N operation doesn't interfere with init
227 * the simplest way would be to have buddy initialized by the discard
228 * - use locality group PA
229 * again PA-=N must be serialized with init
230 * - discard locality group PA
231 * the simplest way would be to have buddy initialized by the discard
234 * i_data_sem serializes them
236 * discard process must wait until PA isn't used by another process
237 * - use locality group PA
238 * some mutex should serialize them
239 * - discard locality group PA
240 * discard process must wait until PA isn't used by another process
243 * i_data_sem or another mutex should serializes them
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * nothing wrong here -- they're different PAs covering different blocks
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
251 * now we're ready to make few consequences:
252 * - PA is referenced and while it is no discard is possible
253 * - PA is referenced until block isn't marked in on-disk bitmap
254 * - PA changes only after on-disk bitmap
255 * - discard must not compete with init. either init is done before
256 * any discard or they're serialized somehow
257 * - buddy init as sum of on-disk bitmap and PAs is done atomically
259 * a special case when we've used PA to emptiness. no need to modify buddy
260 * in this case, but we should care about concurrent init
265 * Logic in few words:
270 * mark bits in on-disk bitmap
273 * - use preallocation:
274 * find proper PA (per-inode or group)
276 * mark bits in on-disk bitmap
282 * mark bits in on-disk bitmap
285 * - discard preallocations in group:
287 * move them onto local list
288 * load on-disk bitmap
290 * remove PA from object (inode or locality group)
291 * mark free blocks in-core
293 * - discard inode's preallocations:
300 * - bitlock on a group (group)
301 * - object (inode/locality) (object)
312 * - release consumed pa:
317 * - generate in-core bitmap:
321 * - discard all for given object (inode, locality group):
326 * - discard all for given group:
333 static struct kmem_cache
*ext4_pspace_cachep
;
334 static struct kmem_cache
*ext4_ac_cachep
;
335 static struct kmem_cache
*ext4_free_ext_cachep
;
336 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
338 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
340 static int ext4_mb_init_per_dev_proc(struct super_block
*sb
);
341 static int ext4_mb_destroy_per_dev_proc(struct super_block
*sb
);
342 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
);
346 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
348 #if BITS_PER_LONG == 64
349 *bit
+= ((unsigned long) addr
& 7UL) << 3;
350 addr
= (void *) ((unsigned long) addr
& ~7UL);
351 #elif BITS_PER_LONG == 32
352 *bit
+= ((unsigned long) addr
& 3UL) << 3;
353 addr
= (void *) ((unsigned long) addr
& ~3UL);
355 #error "how many bits you are?!"
360 static inline int mb_test_bit(int bit
, void *addr
)
363 * ext4_test_bit on architecture like powerpc
364 * needs unsigned long aligned address
366 addr
= mb_correct_addr_and_bit(&bit
, addr
);
367 return ext4_test_bit(bit
, addr
);
370 static inline void mb_set_bit(int bit
, void *addr
)
372 addr
= mb_correct_addr_and_bit(&bit
, addr
);
373 ext4_set_bit(bit
, addr
);
376 static inline void mb_set_bit_atomic(spinlock_t
*lock
, int bit
, void *addr
)
378 addr
= mb_correct_addr_and_bit(&bit
, addr
);
379 ext4_set_bit_atomic(lock
, bit
, addr
);
382 static inline void mb_clear_bit(int bit
, void *addr
)
384 addr
= mb_correct_addr_and_bit(&bit
, addr
);
385 ext4_clear_bit(bit
, addr
);
388 static inline void mb_clear_bit_atomic(spinlock_t
*lock
, int bit
, void *addr
)
390 addr
= mb_correct_addr_and_bit(&bit
, addr
);
391 ext4_clear_bit_atomic(lock
, bit
, addr
);
394 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
396 int fix
= 0, ret
, tmpmax
;
397 addr
= mb_correct_addr_and_bit(&fix
, addr
);
401 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
407 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
409 int fix
= 0, ret
, tmpmax
;
410 addr
= mb_correct_addr_and_bit(&fix
, addr
);
414 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
420 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
424 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
427 if (order
> e4b
->bd_blkbits
+ 1) {
432 /* at order 0 we see each particular block */
433 *max
= 1 << (e4b
->bd_blkbits
+ 3);
435 return EXT4_MB_BITMAP(e4b
);
437 bb
= EXT4_MB_BUDDY(e4b
) + EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
438 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
444 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
445 int first
, int count
)
448 struct super_block
*sb
= e4b
->bd_sb
;
450 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
452 BUG_ON(!ext4_is_group_locked(sb
, e4b
->bd_group
));
453 for (i
= 0; i
< count
; i
++) {
454 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
455 ext4_fsblk_t blocknr
;
456 blocknr
= e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(sb
);
457 blocknr
+= first
+ i
;
459 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
460 ext4_grp_locked_error(sb
, e4b
->bd_group
,
461 __func__
, "double-free of inode"
462 " %lu's block %llu(bit %u in group %u)",
463 inode
? inode
->i_ino
: 0, blocknr
,
464 first
+ i
, e4b
->bd_group
);
466 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
470 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
474 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
476 BUG_ON(!ext4_is_group_locked(e4b
->bd_sb
, e4b
->bd_group
));
477 for (i
= 0; i
< count
; i
++) {
478 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
479 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
483 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
485 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
486 unsigned char *b1
, *b2
;
488 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
489 b2
= (unsigned char *) bitmap
;
490 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
491 if (b1
[i
] != b2
[i
]) {
492 printk(KERN_ERR
"corruption in group %u "
493 "at byte %u(%u): %x in copy != %x "
494 "on disk/prealloc\n",
495 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
503 static inline void mb_free_blocks_double(struct inode
*inode
,
504 struct ext4_buddy
*e4b
, int first
, int count
)
508 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
509 int first
, int count
)
513 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
519 #ifdef AGGRESSIVE_CHECK
521 #define MB_CHECK_ASSERT(assert) \
525 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
526 function, file, line, # assert); \
531 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
532 const char *function
, int line
)
534 struct super_block
*sb
= e4b
->bd_sb
;
535 int order
= e4b
->bd_blkbits
+ 1;
542 struct ext4_group_info
*grp
;
545 struct list_head
*cur
;
550 static int mb_check_counter
;
551 if (mb_check_counter
++ % 100 != 0)
556 buddy
= mb_find_buddy(e4b
, order
, &max
);
557 MB_CHECK_ASSERT(buddy
);
558 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
559 MB_CHECK_ASSERT(buddy2
);
560 MB_CHECK_ASSERT(buddy
!= buddy2
);
561 MB_CHECK_ASSERT(max
* 2 == max2
);
564 for (i
= 0; i
< max
; i
++) {
566 if (mb_test_bit(i
, buddy
)) {
567 /* only single bit in buddy2 may be 1 */
568 if (!mb_test_bit(i
<< 1, buddy2
)) {
570 mb_test_bit((i
<<1)+1, buddy2
));
571 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
573 mb_test_bit(i
<< 1, buddy2
));
578 /* both bits in buddy2 must be 0 */
579 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
580 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
582 for (j
= 0; j
< (1 << order
); j
++) {
583 k
= (i
* (1 << order
)) + j
;
585 !mb_test_bit(k
, EXT4_MB_BITMAP(e4b
)));
589 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
594 buddy
= mb_find_buddy(e4b
, 0, &max
);
595 for (i
= 0; i
< max
; i
++) {
596 if (!mb_test_bit(i
, buddy
)) {
597 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
605 /* check used bits only */
606 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
607 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
609 MB_CHECK_ASSERT(k
< max2
);
610 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
613 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
614 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
616 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
617 buddy
= mb_find_buddy(e4b
, 0, &max
);
618 list_for_each(cur
, &grp
->bb_prealloc_list
) {
619 ext4_group_t groupnr
;
620 struct ext4_prealloc_space
*pa
;
621 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
622 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
623 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
624 for (i
= 0; i
< pa
->pa_len
; i
++)
625 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
629 #undef MB_CHECK_ASSERT
630 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
631 __FILE__, __func__, __LINE__)
633 #define mb_check_buddy(e4b)
636 /* FIXME!! need more doc */
637 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
638 void *buddy
, unsigned first
, int len
,
639 struct ext4_group_info
*grp
)
641 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
644 unsigned short chunk
;
645 unsigned short border
;
647 BUG_ON(len
> EXT4_BLOCKS_PER_GROUP(sb
));
649 border
= 2 << sb
->s_blocksize_bits
;
652 /* find how many blocks can be covered since this position */
653 max
= ffs(first
| border
) - 1;
655 /* find how many blocks of power 2 we need to mark */
662 /* mark multiblock chunks only */
663 grp
->bb_counters
[min
]++;
665 mb_clear_bit(first
>> min
,
666 buddy
+ sbi
->s_mb_offsets
[min
]);
673 static void ext4_mb_generate_buddy(struct super_block
*sb
,
674 void *buddy
, void *bitmap
, ext4_group_t group
)
676 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
677 unsigned short max
= EXT4_BLOCKS_PER_GROUP(sb
);
678 unsigned short i
= 0;
679 unsigned short first
;
682 unsigned fragments
= 0;
683 unsigned long long period
= get_cycles();
685 /* initialize buddy from bitmap which is aggregation
686 * of on-disk bitmap and preallocations */
687 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
688 grp
->bb_first_free
= i
;
692 i
= mb_find_next_bit(bitmap
, max
, i
);
696 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
698 grp
->bb_counters
[0]++;
700 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
702 grp
->bb_fragments
= fragments
;
704 if (free
!= grp
->bb_free
) {
705 ext4_grp_locked_error(sb
, group
, __func__
,
706 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
707 group
, free
, grp
->bb_free
);
709 * If we intent to continue, we consider group descritor
710 * corrupt and update bb_free using bitmap value
715 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
717 period
= get_cycles() - period
;
718 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
719 EXT4_SB(sb
)->s_mb_buddies_generated
++;
720 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
721 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
724 /* The buddy information is attached the buddy cache inode
725 * for convenience. The information regarding each group
726 * is loaded via ext4_mb_load_buddy. The information involve
727 * block bitmap and buddy information. The information are
728 * stored in the inode as
731 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
734 * one block each for bitmap and buddy information.
735 * So for each group we take up 2 blocks. A page can
736 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
737 * So it can have information regarding groups_per_page which
738 * is blocks_per_page/2
741 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
748 ext4_group_t first_group
;
750 struct super_block
*sb
;
751 struct buffer_head
*bhs
;
752 struct buffer_head
**bh
;
757 mb_debug("init page %lu\n", page
->index
);
759 inode
= page
->mapping
->host
;
761 blocksize
= 1 << inode
->i_blkbits
;
762 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
764 groups_per_page
= blocks_per_page
>> 1;
765 if (groups_per_page
== 0)
768 /* allocate buffer_heads to read bitmaps */
769 if (groups_per_page
> 1) {
771 i
= sizeof(struct buffer_head
*) * groups_per_page
;
772 bh
= kzalloc(i
, GFP_NOFS
);
778 first_group
= page
->index
* blocks_per_page
/ 2;
780 /* read all groups the page covers into the cache */
781 for (i
= 0; i
< groups_per_page
; i
++) {
782 struct ext4_group_desc
*desc
;
784 if (first_group
+ i
>= EXT4_SB(sb
)->s_groups_count
)
788 desc
= ext4_get_group_desc(sb
, first_group
+ i
, NULL
);
793 bh
[i
] = sb_getblk(sb
, ext4_block_bitmap(sb
, desc
));
797 if (bitmap_uptodate(bh
[i
]))
801 if (bitmap_uptodate(bh
[i
])) {
802 unlock_buffer(bh
[i
]);
805 spin_lock(sb_bgl_lock(EXT4_SB(sb
), first_group
+ i
));
806 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
807 ext4_init_block_bitmap(sb
, bh
[i
],
808 first_group
+ i
, desc
);
809 set_bitmap_uptodate(bh
[i
]);
810 set_buffer_uptodate(bh
[i
]);
811 spin_unlock(sb_bgl_lock(EXT4_SB(sb
), first_group
+ i
));
812 unlock_buffer(bh
[i
]);
815 spin_unlock(sb_bgl_lock(EXT4_SB(sb
), first_group
+ i
));
816 if (buffer_uptodate(bh
[i
])) {
818 * if not uninit if bh is uptodate,
819 * bitmap is also uptodate
821 set_bitmap_uptodate(bh
[i
]);
822 unlock_buffer(bh
[i
]);
827 * submit the buffer_head for read. We can
828 * safely mark the bitmap as uptodate now.
829 * We do it here so the bitmap uptodate bit
830 * get set with buffer lock held.
832 set_bitmap_uptodate(bh
[i
]);
833 bh
[i
]->b_end_io
= end_buffer_read_sync
;
834 submit_bh(READ
, bh
[i
]);
835 mb_debug("read bitmap for group %u\n", first_group
+ i
);
838 /* wait for I/O completion */
839 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
840 wait_on_buffer(bh
[i
]);
843 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
844 if (!buffer_uptodate(bh
[i
]))
848 first_block
= page
->index
* blocks_per_page
;
850 memset(page_address(page
), 0xff, PAGE_CACHE_SIZE
);
851 for (i
= 0; i
< blocks_per_page
; i
++) {
853 struct ext4_group_info
*grinfo
;
855 group
= (first_block
+ i
) >> 1;
856 if (group
>= EXT4_SB(sb
)->s_groups_count
)
860 * data carry information regarding this
861 * particular group in the format specified
865 data
= page_address(page
) + (i
* blocksize
);
866 bitmap
= bh
[group
- first_group
]->b_data
;
869 * We place the buddy block and bitmap block
872 if ((first_block
+ i
) & 1) {
873 /* this is block of buddy */
874 BUG_ON(incore
== NULL
);
875 mb_debug("put buddy for group %u in page %lu/%x\n",
876 group
, page
->index
, i
* blocksize
);
877 grinfo
= ext4_get_group_info(sb
, group
);
878 grinfo
->bb_fragments
= 0;
879 memset(grinfo
->bb_counters
, 0,
880 sizeof(unsigned short)*(sb
->s_blocksize_bits
+2));
882 * incore got set to the group block bitmap below
884 ext4_lock_group(sb
, group
);
885 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
886 ext4_unlock_group(sb
, group
);
889 /* this is block of bitmap */
890 BUG_ON(incore
!= NULL
);
891 mb_debug("put bitmap for group %u in page %lu/%x\n",
892 group
, page
->index
, i
* blocksize
);
894 /* see comments in ext4_mb_put_pa() */
895 ext4_lock_group(sb
, group
);
896 memcpy(data
, bitmap
, blocksize
);
898 /* mark all preallocated blks used in in-core bitmap */
899 ext4_mb_generate_from_pa(sb
, data
, group
);
900 ext4_mb_generate_from_freelist(sb
, data
, group
);
901 ext4_unlock_group(sb
, group
);
903 /* set incore so that the buddy information can be
904 * generated using this
909 SetPageUptodate(page
);
913 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
921 static noinline_for_stack
int
922 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
923 struct ext4_buddy
*e4b
)
931 struct ext4_group_info
*grp
;
932 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
933 struct inode
*inode
= sbi
->s_buddy_cache
;
935 mb_debug("load group %u\n", group
);
937 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
938 grp
= ext4_get_group_info(sb
, group
);
940 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
941 e4b
->bd_info
= ext4_get_group_info(sb
, group
);
943 e4b
->bd_group
= group
;
944 e4b
->bd_buddy_page
= NULL
;
945 e4b
->bd_bitmap_page
= NULL
;
946 e4b
->alloc_semp
= &grp
->alloc_sem
;
948 /* Take the read lock on the group alloc
949 * sem. This would make sure a parallel
950 * ext4_mb_init_group happening on other
951 * groups mapped by the page is blocked
952 * till we are done with allocation
954 down_read(e4b
->alloc_semp
);
957 * the buddy cache inode stores the block bitmap
958 * and buddy information in consecutive blocks.
959 * So for each group we need two blocks.
962 pnum
= block
/ blocks_per_page
;
963 poff
= block
% blocks_per_page
;
965 /* we could use find_or_create_page(), but it locks page
966 * what we'd like to avoid in fast path ... */
967 page
= find_get_page(inode
->i_mapping
, pnum
);
968 if (page
== NULL
|| !PageUptodate(page
)) {
971 * drop the page reference and try
972 * to get the page with lock. If we
973 * are not uptodate that implies
974 * somebody just created the page but
975 * is yet to initialize the same. So
976 * wait for it to initialize.
978 page_cache_release(page
);
979 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
981 BUG_ON(page
->mapping
!= inode
->i_mapping
);
982 if (!PageUptodate(page
)) {
983 ret
= ext4_mb_init_cache(page
, NULL
);
988 mb_cmp_bitmaps(e4b
, page_address(page
) +
989 (poff
* sb
->s_blocksize
));
994 if (page
== NULL
|| !PageUptodate(page
)) {
998 e4b
->bd_bitmap_page
= page
;
999 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1000 mark_page_accessed(page
);
1003 pnum
= block
/ blocks_per_page
;
1004 poff
= block
% blocks_per_page
;
1006 page
= find_get_page(inode
->i_mapping
, pnum
);
1007 if (page
== NULL
|| !PageUptodate(page
)) {
1009 page_cache_release(page
);
1010 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1012 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1013 if (!PageUptodate(page
)) {
1014 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1023 if (page
== NULL
|| !PageUptodate(page
)) {
1027 e4b
->bd_buddy_page
= page
;
1028 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1029 mark_page_accessed(page
);
1031 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1032 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1037 if (e4b
->bd_bitmap_page
)
1038 page_cache_release(e4b
->bd_bitmap_page
);
1039 if (e4b
->bd_buddy_page
)
1040 page_cache_release(e4b
->bd_buddy_page
);
1041 e4b
->bd_buddy
= NULL
;
1042 e4b
->bd_bitmap
= NULL
;
1044 /* Done with the buddy cache */
1045 up_read(e4b
->alloc_semp
);
1049 static void ext4_mb_release_desc(struct ext4_buddy
*e4b
)
1051 if (e4b
->bd_bitmap_page
)
1052 page_cache_release(e4b
->bd_bitmap_page
);
1053 if (e4b
->bd_buddy_page
)
1054 page_cache_release(e4b
->bd_buddy_page
);
1055 /* Done with the buddy cache */
1056 if (e4b
->alloc_semp
)
1057 up_read(e4b
->alloc_semp
);
1061 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1066 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
1067 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1069 bb
= EXT4_MB_BUDDY(e4b
);
1070 while (order
<= e4b
->bd_blkbits
+ 1) {
1072 if (!mb_test_bit(block
, bb
)) {
1073 /* this block is part of buddy of order 'order' */
1076 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1082 static void mb_clear_bits(spinlock_t
*lock
, void *bm
, int cur
, int len
)
1088 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1089 /* fast path: clear whole word at once */
1090 addr
= bm
+ (cur
>> 3);
1096 mb_clear_bit_atomic(lock
, cur
, bm
);
1098 mb_clear_bit(cur
, bm
);
1103 static void mb_set_bits(spinlock_t
*lock
, void *bm
, int cur
, int len
)
1109 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1110 /* fast path: set whole word at once */
1111 addr
= bm
+ (cur
>> 3);
1117 mb_set_bit_atomic(lock
, cur
, bm
);
1119 mb_set_bit(cur
, bm
);
1124 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1125 int first
, int count
)
1132 struct super_block
*sb
= e4b
->bd_sb
;
1134 BUG_ON(first
+ count
> (sb
->s_blocksize
<< 3));
1135 BUG_ON(!ext4_is_group_locked(sb
, e4b
->bd_group
));
1136 mb_check_buddy(e4b
);
1137 mb_free_blocks_double(inode
, e4b
, first
, count
);
1139 e4b
->bd_info
->bb_free
+= count
;
1140 if (first
< e4b
->bd_info
->bb_first_free
)
1141 e4b
->bd_info
->bb_first_free
= first
;
1143 /* let's maintain fragments counter */
1145 block
= !mb_test_bit(first
- 1, EXT4_MB_BITMAP(e4b
));
1146 if (first
+ count
< EXT4_SB(sb
)->s_mb_maxs
[0])
1147 max
= !mb_test_bit(first
+ count
, EXT4_MB_BITMAP(e4b
));
1149 e4b
->bd_info
->bb_fragments
--;
1150 else if (!block
&& !max
)
1151 e4b
->bd_info
->bb_fragments
++;
1153 /* let's maintain buddy itself */
1154 while (count
-- > 0) {
1158 if (!mb_test_bit(block
, EXT4_MB_BITMAP(e4b
))) {
1159 ext4_fsblk_t blocknr
;
1160 blocknr
= e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(sb
);
1163 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
1164 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1165 __func__
, "double-free of inode"
1166 " %lu's block %llu(bit %u in group %u)",
1167 inode
? inode
->i_ino
: 0, blocknr
, block
,
1170 mb_clear_bit(block
, EXT4_MB_BITMAP(e4b
));
1171 e4b
->bd_info
->bb_counters
[order
]++;
1173 /* start of the buddy */
1174 buddy
= mb_find_buddy(e4b
, order
, &max
);
1178 if (mb_test_bit(block
, buddy
) ||
1179 mb_test_bit(block
+ 1, buddy
))
1182 /* both the buddies are free, try to coalesce them */
1183 buddy2
= mb_find_buddy(e4b
, order
+ 1, &max
);
1189 /* for special purposes, we don't set
1190 * free bits in bitmap */
1191 mb_set_bit(block
, buddy
);
1192 mb_set_bit(block
+ 1, buddy
);
1194 e4b
->bd_info
->bb_counters
[order
]--;
1195 e4b
->bd_info
->bb_counters
[order
]--;
1199 e4b
->bd_info
->bb_counters
[order
]++;
1201 mb_clear_bit(block
, buddy2
);
1205 mb_check_buddy(e4b
);
1208 static int mb_find_extent(struct ext4_buddy
*e4b
, int order
, int block
,
1209 int needed
, struct ext4_free_extent
*ex
)
1216 BUG_ON(!ext4_is_group_locked(e4b
->bd_sb
, e4b
->bd_group
));
1219 buddy
= mb_find_buddy(e4b
, order
, &max
);
1220 BUG_ON(buddy
== NULL
);
1221 BUG_ON(block
>= max
);
1222 if (mb_test_bit(block
, buddy
)) {
1229 /* FIXME dorp order completely ? */
1230 if (likely(order
== 0)) {
1231 /* find actual order */
1232 order
= mb_find_order_for_block(e4b
, block
);
1233 block
= block
>> order
;
1236 ex
->fe_len
= 1 << order
;
1237 ex
->fe_start
= block
<< order
;
1238 ex
->fe_group
= e4b
->bd_group
;
1240 /* calc difference from given start */
1241 next
= next
- ex
->fe_start
;
1243 ex
->fe_start
+= next
;
1245 while (needed
> ex
->fe_len
&&
1246 (buddy
= mb_find_buddy(e4b
, order
, &max
))) {
1248 if (block
+ 1 >= max
)
1251 next
= (block
+ 1) * (1 << order
);
1252 if (mb_test_bit(next
, EXT4_MB_BITMAP(e4b
)))
1255 ord
= mb_find_order_for_block(e4b
, next
);
1258 block
= next
>> order
;
1259 ex
->fe_len
+= 1 << order
;
1262 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1266 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1272 int start
= ex
->fe_start
;
1273 int len
= ex
->fe_len
;
1278 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1279 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1280 BUG_ON(!ext4_is_group_locked(e4b
->bd_sb
, e4b
->bd_group
));
1281 mb_check_buddy(e4b
);
1282 mb_mark_used_double(e4b
, start
, len
);
1284 e4b
->bd_info
->bb_free
-= len
;
1285 if (e4b
->bd_info
->bb_first_free
== start
)
1286 e4b
->bd_info
->bb_first_free
+= len
;
1288 /* let's maintain fragments counter */
1290 mlen
= !mb_test_bit(start
- 1, EXT4_MB_BITMAP(e4b
));
1291 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1292 max
= !mb_test_bit(start
+ len
, EXT4_MB_BITMAP(e4b
));
1294 e4b
->bd_info
->bb_fragments
++;
1295 else if (!mlen
&& !max
)
1296 e4b
->bd_info
->bb_fragments
--;
1298 /* let's maintain buddy itself */
1300 ord
= mb_find_order_for_block(e4b
, start
);
1302 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1303 /* the whole chunk may be allocated at once! */
1305 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1306 BUG_ON((start
>> ord
) >= max
);
1307 mb_set_bit(start
>> ord
, buddy
);
1308 e4b
->bd_info
->bb_counters
[ord
]--;
1315 /* store for history */
1317 ret
= len
| (ord
<< 16);
1319 /* we have to split large buddy */
1321 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1322 mb_set_bit(start
>> ord
, buddy
);
1323 e4b
->bd_info
->bb_counters
[ord
]--;
1326 cur
= (start
>> ord
) & ~1U;
1327 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1328 mb_clear_bit(cur
, buddy
);
1329 mb_clear_bit(cur
+ 1, buddy
);
1330 e4b
->bd_info
->bb_counters
[ord
]++;
1331 e4b
->bd_info
->bb_counters
[ord
]++;
1334 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b
->bd_sb
), ex
->fe_group
),
1335 EXT4_MB_BITMAP(e4b
), ex
->fe_start
, len0
);
1336 mb_check_buddy(e4b
);
1342 * Must be called under group lock!
1344 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1345 struct ext4_buddy
*e4b
)
1347 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1350 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1351 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1353 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1354 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1355 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1357 /* preallocation can change ac_b_ex, thus we store actually
1358 * allocated blocks for history */
1359 ac
->ac_f_ex
= ac
->ac_b_ex
;
1361 ac
->ac_status
= AC_STATUS_FOUND
;
1362 ac
->ac_tail
= ret
& 0xffff;
1363 ac
->ac_buddy
= ret
>> 16;
1366 * take the page reference. We want the page to be pinned
1367 * so that we don't get a ext4_mb_init_cache_call for this
1368 * group until we update the bitmap. That would mean we
1369 * double allocate blocks. The reference is dropped
1370 * in ext4_mb_release_context
1372 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1373 get_page(ac
->ac_bitmap_page
);
1374 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1375 get_page(ac
->ac_buddy_page
);
1376 /* on allocation we use ac to track the held semaphore */
1377 ac
->alloc_semp
= e4b
->alloc_semp
;
1378 e4b
->alloc_semp
= NULL
;
1379 /* store last allocated for subsequent stream allocation */
1380 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
)) {
1381 spin_lock(&sbi
->s_md_lock
);
1382 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1383 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1384 spin_unlock(&sbi
->s_md_lock
);
1389 * regular allocator, for general purposes allocation
1392 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1393 struct ext4_buddy
*e4b
,
1396 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1397 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1398 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1399 struct ext4_free_extent ex
;
1402 if (ac
->ac_status
== AC_STATUS_FOUND
)
1405 * We don't want to scan for a whole year
1407 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1408 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1409 ac
->ac_status
= AC_STATUS_BREAK
;
1414 * Haven't found good chunk so far, let's continue
1416 if (bex
->fe_len
< gex
->fe_len
)
1419 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1420 && bex
->fe_group
== e4b
->bd_group
) {
1421 /* recheck chunk's availability - we don't know
1422 * when it was found (within this lock-unlock
1424 max
= mb_find_extent(e4b
, 0, bex
->fe_start
, gex
->fe_len
, &ex
);
1425 if (max
>= gex
->fe_len
) {
1426 ext4_mb_use_best_found(ac
, e4b
);
1433 * The routine checks whether found extent is good enough. If it is,
1434 * then the extent gets marked used and flag is set to the context
1435 * to stop scanning. Otherwise, the extent is compared with the
1436 * previous found extent and if new one is better, then it's stored
1437 * in the context. Later, the best found extent will be used, if
1438 * mballoc can't find good enough extent.
1440 * FIXME: real allocation policy is to be designed yet!
1442 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1443 struct ext4_free_extent
*ex
,
1444 struct ext4_buddy
*e4b
)
1446 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1447 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1449 BUG_ON(ex
->fe_len
<= 0);
1450 BUG_ON(ex
->fe_len
>= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1451 BUG_ON(ex
->fe_start
>= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1452 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1457 * The special case - take what you catch first
1459 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1461 ext4_mb_use_best_found(ac
, e4b
);
1466 * Let's check whether the chuck is good enough
1468 if (ex
->fe_len
== gex
->fe_len
) {
1470 ext4_mb_use_best_found(ac
, e4b
);
1475 * If this is first found extent, just store it in the context
1477 if (bex
->fe_len
== 0) {
1483 * If new found extent is better, store it in the context
1485 if (bex
->fe_len
< gex
->fe_len
) {
1486 /* if the request isn't satisfied, any found extent
1487 * larger than previous best one is better */
1488 if (ex
->fe_len
> bex
->fe_len
)
1490 } else if (ex
->fe_len
> gex
->fe_len
) {
1491 /* if the request is satisfied, then we try to find
1492 * an extent that still satisfy the request, but is
1493 * smaller than previous one */
1494 if (ex
->fe_len
< bex
->fe_len
)
1498 ext4_mb_check_limits(ac
, e4b
, 0);
1501 static int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1502 struct ext4_buddy
*e4b
)
1504 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1505 ext4_group_t group
= ex
.fe_group
;
1509 BUG_ON(ex
.fe_len
<= 0);
1510 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1514 ext4_lock_group(ac
->ac_sb
, group
);
1515 max
= mb_find_extent(e4b
, 0, ex
.fe_start
, ex
.fe_len
, &ex
);
1519 ext4_mb_use_best_found(ac
, e4b
);
1522 ext4_unlock_group(ac
->ac_sb
, group
);
1523 ext4_mb_release_desc(e4b
);
1528 static int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1529 struct ext4_buddy
*e4b
)
1531 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1534 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1535 struct ext4_super_block
*es
= sbi
->s_es
;
1536 struct ext4_free_extent ex
;
1538 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1541 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1545 ext4_lock_group(ac
->ac_sb
, group
);
1546 max
= mb_find_extent(e4b
, 0, ac
->ac_g_ex
.fe_start
,
1547 ac
->ac_g_ex
.fe_len
, &ex
);
1549 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1552 start
= (e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
)) +
1553 ex
.fe_start
+ le32_to_cpu(es
->s_first_data_block
);
1554 /* use do_div to get remainder (would be 64-bit modulo) */
1555 if (do_div(start
, sbi
->s_stripe
) == 0) {
1558 ext4_mb_use_best_found(ac
, e4b
);
1560 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1561 BUG_ON(ex
.fe_len
<= 0);
1562 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1563 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1566 ext4_mb_use_best_found(ac
, e4b
);
1567 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1568 /* Sometimes, caller may want to merge even small
1569 * number of blocks to an existing extent */
1570 BUG_ON(ex
.fe_len
<= 0);
1571 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1572 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1575 ext4_mb_use_best_found(ac
, e4b
);
1577 ext4_unlock_group(ac
->ac_sb
, group
);
1578 ext4_mb_release_desc(e4b
);
1584 * The routine scans buddy structures (not bitmap!) from given order
1585 * to max order and tries to find big enough chunk to satisfy the req
1587 static void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1588 struct ext4_buddy
*e4b
)
1590 struct super_block
*sb
= ac
->ac_sb
;
1591 struct ext4_group_info
*grp
= e4b
->bd_info
;
1597 BUG_ON(ac
->ac_2order
<= 0);
1598 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1599 if (grp
->bb_counters
[i
] == 0)
1602 buddy
= mb_find_buddy(e4b
, i
, &max
);
1603 BUG_ON(buddy
== NULL
);
1605 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1610 ac
->ac_b_ex
.fe_len
= 1 << i
;
1611 ac
->ac_b_ex
.fe_start
= k
<< i
;
1612 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1614 ext4_mb_use_best_found(ac
, e4b
);
1616 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1618 if (EXT4_SB(sb
)->s_mb_stats
)
1619 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1626 * The routine scans the group and measures all found extents.
1627 * In order to optimize scanning, caller must pass number of
1628 * free blocks in the group, so the routine can know upper limit.
1630 static void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1631 struct ext4_buddy
*e4b
)
1633 struct super_block
*sb
= ac
->ac_sb
;
1634 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1635 struct ext4_free_extent ex
;
1639 free
= e4b
->bd_info
->bb_free
;
1642 i
= e4b
->bd_info
->bb_first_free
;
1644 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1645 i
= mb_find_next_zero_bit(bitmap
,
1646 EXT4_BLOCKS_PER_GROUP(sb
), i
);
1647 if (i
>= EXT4_BLOCKS_PER_GROUP(sb
)) {
1649 * IF we have corrupt bitmap, we won't find any
1650 * free blocks even though group info says we
1651 * we have free blocks
1653 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1654 __func__
, "%d free blocks as per "
1655 "group info. But bitmap says 0",
1660 mb_find_extent(e4b
, 0, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1661 BUG_ON(ex
.fe_len
<= 0);
1662 if (free
< ex
.fe_len
) {
1663 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1664 __func__
, "%d free blocks as per "
1665 "group info. But got %d blocks",
1668 * The number of free blocks differs. This mostly
1669 * indicate that the bitmap is corrupt. So exit
1670 * without claiming the space.
1675 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1681 ext4_mb_check_limits(ac
, e4b
, 1);
1685 * This is a special case for storages like raid5
1686 * we try to find stripe-aligned chunks for stripe-size requests
1687 * XXX should do so at least for multiples of stripe size as well
1689 static void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1690 struct ext4_buddy
*e4b
)
1692 struct super_block
*sb
= ac
->ac_sb
;
1693 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1694 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1695 struct ext4_free_extent ex
;
1696 ext4_fsblk_t first_group_block
;
1701 BUG_ON(sbi
->s_stripe
== 0);
1703 /* find first stripe-aligned block in group */
1704 first_group_block
= e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(sb
)
1705 + le32_to_cpu(sbi
->s_es
->s_first_data_block
);
1706 a
= first_group_block
+ sbi
->s_stripe
- 1;
1707 do_div(a
, sbi
->s_stripe
);
1708 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1710 while (i
< EXT4_BLOCKS_PER_GROUP(sb
)) {
1711 if (!mb_test_bit(i
, bitmap
)) {
1712 max
= mb_find_extent(e4b
, 0, i
, sbi
->s_stripe
, &ex
);
1713 if (max
>= sbi
->s_stripe
) {
1716 ext4_mb_use_best_found(ac
, e4b
);
1724 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
1725 ext4_group_t group
, int cr
)
1727 unsigned free
, fragments
;
1729 struct ext4_group_desc
*desc
;
1730 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1732 BUG_ON(cr
< 0 || cr
>= 4);
1733 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp
));
1735 free
= grp
->bb_free
;
1736 fragments
= grp
->bb_fragments
;
1744 BUG_ON(ac
->ac_2order
== 0);
1745 /* If this group is uninitialized, skip it initially */
1746 desc
= ext4_get_group_desc(ac
->ac_sb
, group
, NULL
);
1747 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))
1750 bits
= ac
->ac_sb
->s_blocksize_bits
+ 1;
1751 for (i
= ac
->ac_2order
; i
<= bits
; i
++)
1752 if (grp
->bb_counters
[i
] > 0)
1756 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
1760 if (free
>= ac
->ac_g_ex
.fe_len
)
1773 * lock the group_info alloc_sem of all the groups
1774 * belonging to the same buddy cache page. This
1775 * make sure other parallel operation on the buddy
1776 * cache doesn't happen whild holding the buddy cache
1779 int ext4_mb_get_buddy_cache_lock(struct super_block
*sb
, ext4_group_t group
)
1783 int blocks_per_page
;
1784 int groups_per_page
;
1785 ext4_group_t first_group
;
1786 struct ext4_group_info
*grp
;
1788 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1790 * the buddy cache inode stores the block bitmap
1791 * and buddy information in consecutive blocks.
1792 * So for each group we need two blocks.
1795 pnum
= block
/ blocks_per_page
;
1796 first_group
= pnum
* blocks_per_page
/ 2;
1798 groups_per_page
= blocks_per_page
>> 1;
1799 if (groups_per_page
== 0)
1800 groups_per_page
= 1;
1801 /* read all groups the page covers into the cache */
1802 for (i
= 0; i
< groups_per_page
; i
++) {
1804 if ((first_group
+ i
) >= EXT4_SB(sb
)->s_groups_count
)
1806 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1807 /* take all groups write allocation
1808 * semaphore. This make sure there is
1809 * no block allocation going on in any
1812 down_write_nested(&grp
->alloc_sem
, i
);
1817 void ext4_mb_put_buddy_cache_lock(struct super_block
*sb
,
1818 ext4_group_t group
, int locked_group
)
1822 int blocks_per_page
;
1823 ext4_group_t first_group
;
1824 struct ext4_group_info
*grp
;
1826 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1828 * the buddy cache inode stores the block bitmap
1829 * and buddy information in consecutive blocks.
1830 * So for each group we need two blocks.
1833 pnum
= block
/ blocks_per_page
;
1834 first_group
= pnum
* blocks_per_page
/ 2;
1835 /* release locks on all the groups */
1836 for (i
= 0; i
< locked_group
; i
++) {
1838 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1839 /* take all groups write allocation
1840 * semaphore. This make sure there is
1841 * no block allocation going on in any
1844 up_write(&grp
->alloc_sem
);
1849 static int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
1854 int blocks_per_page
;
1855 int block
, pnum
, poff
;
1856 int num_grp_locked
= 0;
1857 struct ext4_group_info
*this_grp
;
1858 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1859 struct inode
*inode
= sbi
->s_buddy_cache
;
1860 struct page
*page
= NULL
, *bitmap_page
= NULL
;
1862 mb_debug("init group %lu\n", group
);
1863 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1864 this_grp
= ext4_get_group_info(sb
, group
);
1866 * This ensures we don't add group
1867 * to this buddy cache via resize
1869 num_grp_locked
= ext4_mb_get_buddy_cache_lock(sb
, group
);
1870 if (!EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1872 * somebody initialized the group
1873 * return without doing anything
1879 * the buddy cache inode stores the block bitmap
1880 * and buddy information in consecutive blocks.
1881 * So for each group we need two blocks.
1884 pnum
= block
/ blocks_per_page
;
1885 poff
= block
% blocks_per_page
;
1886 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1888 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1889 ret
= ext4_mb_init_cache(page
, NULL
);
1896 if (page
== NULL
|| !PageUptodate(page
)) {
1900 mark_page_accessed(page
);
1902 bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1904 /* init buddy cache */
1906 pnum
= block
/ blocks_per_page
;
1907 poff
= block
% blocks_per_page
;
1908 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1909 if (page
== bitmap_page
) {
1911 * If both the bitmap and buddy are in
1912 * the same page we don't need to force
1917 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1918 ret
= ext4_mb_init_cache(page
, bitmap
);
1925 if (page
== NULL
|| !PageUptodate(page
)) {
1929 mark_page_accessed(page
);
1931 ext4_mb_put_buddy_cache_lock(sb
, group
, num_grp_locked
);
1933 page_cache_release(bitmap_page
);
1935 page_cache_release(page
);
1939 static noinline_for_stack
int
1940 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
1947 struct ext4_sb_info
*sbi
;
1948 struct super_block
*sb
;
1949 struct ext4_buddy e4b
;
1954 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1956 /* first, try the goal */
1957 err
= ext4_mb_find_by_goal(ac
, &e4b
);
1958 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
1961 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
1965 * ac->ac2_order is set only if the fe_len is a power of 2
1966 * if ac2_order is set we also set criteria to 0 so that we
1967 * try exact allocation using buddy.
1969 i
= fls(ac
->ac_g_ex
.fe_len
);
1972 * We search using buddy data only if the order of the request
1973 * is greater than equal to the sbi_s_mb_order2_reqs
1974 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1976 if (i
>= sbi
->s_mb_order2_reqs
) {
1978 * This should tell if fe_len is exactly power of 2
1980 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
1981 ac
->ac_2order
= i
- 1;
1984 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
1985 /* if stream allocation is enabled, use global goal */
1986 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
1987 isize
= i_size_read(ac
->ac_inode
) >> bsbits
;
1991 if (size
< sbi
->s_mb_stream_request
&&
1992 (ac
->ac_flags
& EXT4_MB_HINT_DATA
)) {
1993 /* TBD: may be hot point */
1994 spin_lock(&sbi
->s_md_lock
);
1995 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
1996 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
1997 spin_unlock(&sbi
->s_md_lock
);
1999 /* Let's just scan groups to find more-less suitable blocks */
2000 cr
= ac
->ac_2order
? 0 : 1;
2002 * cr == 0 try to get exact allocation,
2003 * cr == 3 try to get anything
2006 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2007 ac
->ac_criteria
= cr
;
2009 * searching for the right group start
2010 * from the goal value specified
2012 group
= ac
->ac_g_ex
.fe_group
;
2014 for (i
= 0; i
< EXT4_SB(sb
)->s_groups_count
; group
++, i
++) {
2015 struct ext4_group_info
*grp
;
2016 struct ext4_group_desc
*desc
;
2018 if (group
== EXT4_SB(sb
)->s_groups_count
)
2021 /* quick check to skip empty groups */
2022 grp
= ext4_get_group_info(sb
, group
);
2023 if (grp
->bb_free
== 0)
2027 * if the group is already init we check whether it is
2028 * a good group and if not we don't load the buddy
2030 if (EXT4_MB_GRP_NEED_INIT(grp
)) {
2032 * we need full data about the group
2033 * to make a good selection
2035 err
= ext4_mb_init_group(sb
, group
);
2041 * If the particular group doesn't satisfy our
2042 * criteria we continue with the next group
2044 if (!ext4_mb_good_group(ac
, group
, cr
))
2047 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2051 ext4_lock_group(sb
, group
);
2052 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2053 /* someone did allocation from this group */
2054 ext4_unlock_group(sb
, group
);
2055 ext4_mb_release_desc(&e4b
);
2059 ac
->ac_groups_scanned
++;
2060 desc
= ext4_get_group_desc(sb
, group
, NULL
);
2061 if (cr
== 0 || (desc
->bg_flags
&
2062 cpu_to_le16(EXT4_BG_BLOCK_UNINIT
) &&
2063 ac
->ac_2order
!= 0))
2064 ext4_mb_simple_scan_group(ac
, &e4b
);
2066 ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
)
2067 ext4_mb_scan_aligned(ac
, &e4b
);
2069 ext4_mb_complex_scan_group(ac
, &e4b
);
2071 ext4_unlock_group(sb
, group
);
2072 ext4_mb_release_desc(&e4b
);
2074 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2079 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2080 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2082 * We've been searching too long. Let's try to allocate
2083 * the best chunk we've found so far
2086 ext4_mb_try_best_found(ac
, &e4b
);
2087 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2089 * Someone more lucky has already allocated it.
2090 * The only thing we can do is just take first
2092 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2094 ac
->ac_b_ex
.fe_group
= 0;
2095 ac
->ac_b_ex
.fe_start
= 0;
2096 ac
->ac_b_ex
.fe_len
= 0;
2097 ac
->ac_status
= AC_STATUS_CONTINUE
;
2098 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2100 atomic_inc(&sbi
->s_mb_lost_chunks
);
2108 #ifdef EXT4_MB_HISTORY
2109 struct ext4_mb_proc_session
{
2110 struct ext4_mb_history
*history
;
2111 struct super_block
*sb
;
2116 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session
*s
,
2117 struct ext4_mb_history
*hs
,
2120 if (hs
== s
->history
+ s
->max
)
2122 if (!first
&& hs
== s
->history
+ s
->start
)
2124 while (hs
->orig
.fe_len
== 0) {
2126 if (hs
== s
->history
+ s
->max
)
2128 if (hs
== s
->history
+ s
->start
)
2134 static void *ext4_mb_seq_history_start(struct seq_file
*seq
, loff_t
*pos
)
2136 struct ext4_mb_proc_session
*s
= seq
->private;
2137 struct ext4_mb_history
*hs
;
2141 return SEQ_START_TOKEN
;
2142 hs
= ext4_mb_history_skip_empty(s
, s
->history
+ s
->start
, 1);
2145 while (--l
&& (hs
= ext4_mb_history_skip_empty(s
, ++hs
, 0)) != NULL
);
2149 static void *ext4_mb_seq_history_next(struct seq_file
*seq
, void *v
,
2152 struct ext4_mb_proc_session
*s
= seq
->private;
2153 struct ext4_mb_history
*hs
= v
;
2156 if (v
== SEQ_START_TOKEN
)
2157 return ext4_mb_history_skip_empty(s
, s
->history
+ s
->start
, 1);
2159 return ext4_mb_history_skip_empty(s
, ++hs
, 0);
2162 static int ext4_mb_seq_history_show(struct seq_file
*seq
, void *v
)
2164 char buf
[25], buf2
[25], buf3
[25], *fmt
;
2165 struct ext4_mb_history
*hs
= v
;
2167 if (v
== SEQ_START_TOKEN
) {
2168 seq_printf(seq
, "%-5s %-8s %-23s %-23s %-23s %-5s "
2169 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2170 "pid", "inode", "original", "goal", "result", "found",
2171 "grps", "cr", "flags", "merge", "tail", "broken");
2175 if (hs
->op
== EXT4_MB_HISTORY_ALLOC
) {
2176 fmt
= "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2177 "%-5u %-5s %-5u %-6u\n";
2178 sprintf(buf2
, "%u/%d/%u@%u", hs
->result
.fe_group
,
2179 hs
->result
.fe_start
, hs
->result
.fe_len
,
2180 hs
->result
.fe_logical
);
2181 sprintf(buf
, "%u/%d/%u@%u", hs
->orig
.fe_group
,
2182 hs
->orig
.fe_start
, hs
->orig
.fe_len
,
2183 hs
->orig
.fe_logical
);
2184 sprintf(buf3
, "%u/%d/%u@%u", hs
->goal
.fe_group
,
2185 hs
->goal
.fe_start
, hs
->goal
.fe_len
,
2186 hs
->goal
.fe_logical
);
2187 seq_printf(seq
, fmt
, hs
->pid
, hs
->ino
, buf
, buf3
, buf2
,
2188 hs
->found
, hs
->groups
, hs
->cr
, hs
->flags
,
2189 hs
->merged
? "M" : "", hs
->tail
,
2190 hs
->buddy
? 1 << hs
->buddy
: 0);
2191 } else if (hs
->op
== EXT4_MB_HISTORY_PREALLOC
) {
2192 fmt
= "%-5u %-8u %-23s %-23s %-23s\n";
2193 sprintf(buf2
, "%u/%d/%u@%u", hs
->result
.fe_group
,
2194 hs
->result
.fe_start
, hs
->result
.fe_len
,
2195 hs
->result
.fe_logical
);
2196 sprintf(buf
, "%u/%d/%u@%u", hs
->orig
.fe_group
,
2197 hs
->orig
.fe_start
, hs
->orig
.fe_len
,
2198 hs
->orig
.fe_logical
);
2199 seq_printf(seq
, fmt
, hs
->pid
, hs
->ino
, buf
, "", buf2
);
2200 } else if (hs
->op
== EXT4_MB_HISTORY_DISCARD
) {
2201 sprintf(buf2
, "%u/%d/%u", hs
->result
.fe_group
,
2202 hs
->result
.fe_start
, hs
->result
.fe_len
);
2203 seq_printf(seq
, "%-5u %-8u %-23s discard\n",
2204 hs
->pid
, hs
->ino
, buf2
);
2205 } else if (hs
->op
== EXT4_MB_HISTORY_FREE
) {
2206 sprintf(buf2
, "%u/%d/%u", hs
->result
.fe_group
,
2207 hs
->result
.fe_start
, hs
->result
.fe_len
);
2208 seq_printf(seq
, "%-5u %-8u %-23s free\n",
2209 hs
->pid
, hs
->ino
, buf2
);
2214 static void ext4_mb_seq_history_stop(struct seq_file
*seq
, void *v
)
2218 static struct seq_operations ext4_mb_seq_history_ops
= {
2219 .start
= ext4_mb_seq_history_start
,
2220 .next
= ext4_mb_seq_history_next
,
2221 .stop
= ext4_mb_seq_history_stop
,
2222 .show
= ext4_mb_seq_history_show
,
2225 static int ext4_mb_seq_history_open(struct inode
*inode
, struct file
*file
)
2227 struct super_block
*sb
= PDE(inode
)->data
;
2228 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2229 struct ext4_mb_proc_session
*s
;
2233 if (unlikely(sbi
->s_mb_history
== NULL
))
2235 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
2239 size
= sizeof(struct ext4_mb_history
) * sbi
->s_mb_history_max
;
2240 s
->history
= kmalloc(size
, GFP_KERNEL
);
2241 if (s
->history
== NULL
) {
2246 spin_lock(&sbi
->s_mb_history_lock
);
2247 memcpy(s
->history
, sbi
->s_mb_history
, size
);
2248 s
->max
= sbi
->s_mb_history_max
;
2249 s
->start
= sbi
->s_mb_history_cur
% s
->max
;
2250 spin_unlock(&sbi
->s_mb_history_lock
);
2252 rc
= seq_open(file
, &ext4_mb_seq_history_ops
);
2254 struct seq_file
*m
= (struct seq_file
*)file
->private_data
;
2264 static int ext4_mb_seq_history_release(struct inode
*inode
, struct file
*file
)
2266 struct seq_file
*seq
= (struct seq_file
*)file
->private_data
;
2267 struct ext4_mb_proc_session
*s
= seq
->private;
2270 return seq_release(inode
, file
);
2273 static ssize_t
ext4_mb_seq_history_write(struct file
*file
,
2274 const char __user
*buffer
,
2275 size_t count
, loff_t
*ppos
)
2277 struct seq_file
*seq
= (struct seq_file
*)file
->private_data
;
2278 struct ext4_mb_proc_session
*s
= seq
->private;
2279 struct super_block
*sb
= s
->sb
;
2283 if (count
>= sizeof(str
)) {
2284 printk(KERN_ERR
"EXT4-fs: %s string too long, max %u bytes\n",
2285 "mb_history", (int)sizeof(str
));
2289 if (copy_from_user(str
, buffer
, count
))
2292 value
= simple_strtol(str
, NULL
, 0);
2295 EXT4_SB(sb
)->s_mb_history_filter
= value
;
2300 static struct file_operations ext4_mb_seq_history_fops
= {
2301 .owner
= THIS_MODULE
,
2302 .open
= ext4_mb_seq_history_open
,
2304 .write
= ext4_mb_seq_history_write
,
2305 .llseek
= seq_lseek
,
2306 .release
= ext4_mb_seq_history_release
,
2309 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2311 struct super_block
*sb
= seq
->private;
2312 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2315 if (*pos
< 0 || *pos
>= sbi
->s_groups_count
)
2319 return (void *) ((unsigned long) group
);
2322 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2324 struct super_block
*sb
= seq
->private;
2325 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2329 if (*pos
< 0 || *pos
>= sbi
->s_groups_count
)
2332 return (void *) ((unsigned long) group
);
2335 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2337 struct super_block
*sb
= seq
->private;
2338 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2341 struct ext4_buddy e4b
;
2343 struct ext4_group_info info
;
2344 unsigned short counters
[16];
2349 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2350 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2351 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2352 "group", "free", "frags", "first",
2353 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2354 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2356 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2357 sizeof(struct ext4_group_info
);
2358 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2360 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2363 ext4_lock_group(sb
, group
);
2364 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2365 ext4_unlock_group(sb
, group
);
2366 ext4_mb_release_desc(&e4b
);
2368 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2369 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2370 for (i
= 0; i
<= 13; i
++)
2371 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2372 sg
.info
.bb_counters
[i
] : 0);
2373 seq_printf(seq
, " ]\n");
2378 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2382 static struct seq_operations ext4_mb_seq_groups_ops
= {
2383 .start
= ext4_mb_seq_groups_start
,
2384 .next
= ext4_mb_seq_groups_next
,
2385 .stop
= ext4_mb_seq_groups_stop
,
2386 .show
= ext4_mb_seq_groups_show
,
2389 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2391 struct super_block
*sb
= PDE(inode
)->data
;
2394 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2396 struct seq_file
*m
= (struct seq_file
*)file
->private_data
;
2403 static struct file_operations ext4_mb_seq_groups_fops
= {
2404 .owner
= THIS_MODULE
,
2405 .open
= ext4_mb_seq_groups_open
,
2407 .llseek
= seq_lseek
,
2408 .release
= seq_release
,
2411 static void ext4_mb_history_release(struct super_block
*sb
)
2413 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2415 if (sbi
->s_proc
!= NULL
) {
2416 remove_proc_entry("mb_groups", sbi
->s_proc
);
2417 remove_proc_entry("mb_history", sbi
->s_proc
);
2419 kfree(sbi
->s_mb_history
);
2422 static void ext4_mb_history_init(struct super_block
*sb
)
2424 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2427 if (sbi
->s_proc
!= NULL
) {
2428 proc_create_data("mb_history", S_IRUGO
, sbi
->s_proc
,
2429 &ext4_mb_seq_history_fops
, sb
);
2430 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2431 &ext4_mb_seq_groups_fops
, sb
);
2434 sbi
->s_mb_history_max
= 1000;
2435 sbi
->s_mb_history_cur
= 0;
2436 spin_lock_init(&sbi
->s_mb_history_lock
);
2437 i
= sbi
->s_mb_history_max
* sizeof(struct ext4_mb_history
);
2438 sbi
->s_mb_history
= kzalloc(i
, GFP_KERNEL
);
2439 /* if we can't allocate history, then we simple won't use it */
2442 static noinline_for_stack
void
2443 ext4_mb_store_history(struct ext4_allocation_context
*ac
)
2445 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
2446 struct ext4_mb_history h
;
2448 if (unlikely(sbi
->s_mb_history
== NULL
))
2451 if (!(ac
->ac_op
& sbi
->s_mb_history_filter
))
2455 h
.pid
= current
->pid
;
2456 h
.ino
= ac
->ac_inode
? ac
->ac_inode
->i_ino
: 0;
2457 h
.orig
= ac
->ac_o_ex
;
2458 h
.result
= ac
->ac_b_ex
;
2459 h
.flags
= ac
->ac_flags
;
2460 h
.found
= ac
->ac_found
;
2461 h
.groups
= ac
->ac_groups_scanned
;
2462 h
.cr
= ac
->ac_criteria
;
2463 h
.tail
= ac
->ac_tail
;
2464 h
.buddy
= ac
->ac_buddy
;
2466 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
) {
2467 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
2468 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
2470 h
.goal
= ac
->ac_g_ex
;
2471 h
.result
= ac
->ac_f_ex
;
2474 spin_lock(&sbi
->s_mb_history_lock
);
2475 memcpy(sbi
->s_mb_history
+ sbi
->s_mb_history_cur
, &h
, sizeof(h
));
2476 if (++sbi
->s_mb_history_cur
>= sbi
->s_mb_history_max
)
2477 sbi
->s_mb_history_cur
= 0;
2478 spin_unlock(&sbi
->s_mb_history_lock
);
2482 #define ext4_mb_history_release(sb)
2483 #define ext4_mb_history_init(sb)
2487 /* Create and initialize ext4_group_info data for the given group. */
2488 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2489 struct ext4_group_desc
*desc
)
2493 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2494 struct ext4_group_info
**meta_group_info
;
2497 * First check if this group is the first of a reserved block.
2498 * If it's true, we have to allocate a new table of pointers
2499 * to ext4_group_info structures
2501 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2502 metalen
= sizeof(*meta_group_info
) <<
2503 EXT4_DESC_PER_BLOCK_BITS(sb
);
2504 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2505 if (meta_group_info
== NULL
) {
2506 printk(KERN_ERR
"EXT4-fs: can't allocate mem for a "
2508 goto exit_meta_group_info
;
2510 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2515 * calculate needed size. if change bb_counters size,
2516 * don't forget about ext4_mb_generate_buddy()
2518 len
= offsetof(typeof(**meta_group_info
),
2519 bb_counters
[sb
->s_blocksize_bits
+ 2]);
2522 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2523 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2525 meta_group_info
[i
] = kzalloc(len
, GFP_KERNEL
);
2526 if (meta_group_info
[i
] == NULL
) {
2527 printk(KERN_ERR
"EXT4-fs: can't allocate buddy mem\n");
2528 goto exit_group_info
;
2530 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2531 &(meta_group_info
[i
]->bb_state
));
2534 * initialize bb_free to be able to skip
2535 * empty groups without initialization
2537 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2538 meta_group_info
[i
]->bb_free
=
2539 ext4_free_blocks_after_init(sb
, group
, desc
);
2541 meta_group_info
[i
]->bb_free
=
2542 ext4_free_blks_count(sb
, desc
);
2545 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2546 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2547 meta_group_info
[i
]->bb_free_root
.rb_node
= NULL
;;
2551 struct buffer_head
*bh
;
2552 meta_group_info
[i
]->bb_bitmap
=
2553 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2554 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2555 bh
= ext4_read_block_bitmap(sb
, group
);
2557 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2566 /* If a meta_group_info table has been allocated, release it now */
2567 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0)
2568 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2569 exit_meta_group_info
:
2571 } /* ext4_mb_add_groupinfo */
2574 * Update an existing group.
2575 * This function is used for online resize
2577 void ext4_mb_update_group_info(struct ext4_group_info
*grp
, ext4_grpblk_t add
)
2579 grp
->bb_free
+= add
;
2582 static int ext4_mb_init_backend(struct super_block
*sb
)
2586 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2587 struct ext4_super_block
*es
= sbi
->s_es
;
2588 int num_meta_group_infos
;
2589 int num_meta_group_infos_max
;
2591 struct ext4_group_info
**meta_group_info
;
2592 struct ext4_group_desc
*desc
;
2594 /* This is the number of blocks used by GDT */
2595 num_meta_group_infos
= (sbi
->s_groups_count
+ EXT4_DESC_PER_BLOCK(sb
) -
2596 1) >> EXT4_DESC_PER_BLOCK_BITS(sb
);
2599 * This is the total number of blocks used by GDT including
2600 * the number of reserved blocks for GDT.
2601 * The s_group_info array is allocated with this value
2602 * to allow a clean online resize without a complex
2603 * manipulation of pointer.
2604 * The drawback is the unused memory when no resize
2605 * occurs but it's very low in terms of pages
2606 * (see comments below)
2607 * Need to handle this properly when META_BG resizing is allowed
2609 num_meta_group_infos_max
= num_meta_group_infos
+
2610 le16_to_cpu(es
->s_reserved_gdt_blocks
);
2613 * array_size is the size of s_group_info array. We round it
2614 * to the next power of two because this approximation is done
2615 * internally by kmalloc so we can have some more memory
2616 * for free here (e.g. may be used for META_BG resize).
2619 while (array_size
< sizeof(*sbi
->s_group_info
) *
2620 num_meta_group_infos_max
)
2621 array_size
= array_size
<< 1;
2622 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2623 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2624 * So a two level scheme suffices for now. */
2625 sbi
->s_group_info
= kmalloc(array_size
, GFP_KERNEL
);
2626 if (sbi
->s_group_info
== NULL
) {
2627 printk(KERN_ERR
"EXT4-fs: can't allocate buddy meta group\n");
2630 sbi
->s_buddy_cache
= new_inode(sb
);
2631 if (sbi
->s_buddy_cache
== NULL
) {
2632 printk(KERN_ERR
"EXT4-fs: can't get new inode\n");
2635 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2637 metalen
= sizeof(*meta_group_info
) << EXT4_DESC_PER_BLOCK_BITS(sb
);
2638 for (i
= 0; i
< num_meta_group_infos
; i
++) {
2639 if ((i
+ 1) == num_meta_group_infos
)
2640 metalen
= sizeof(*meta_group_info
) *
2641 (sbi
->s_groups_count
-
2642 (i
<< EXT4_DESC_PER_BLOCK_BITS(sb
)));
2643 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2644 if (meta_group_info
== NULL
) {
2645 printk(KERN_ERR
"EXT4-fs: can't allocate mem for a "
2649 sbi
->s_group_info
[i
] = meta_group_info
;
2652 for (i
= 0; i
< sbi
->s_groups_count
; i
++) {
2653 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2656 "EXT4-fs: can't read descriptor %u\n", i
);
2659 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2667 kfree(ext4_get_group_info(sb
, i
));
2668 i
= num_meta_group_infos
;
2671 kfree(sbi
->s_group_info
[i
]);
2672 iput(sbi
->s_buddy_cache
);
2674 kfree(sbi
->s_group_info
);
2678 int ext4_mb_init(struct super_block
*sb
, int needs_recovery
)
2680 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2686 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(unsigned short);
2688 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2689 if (sbi
->s_mb_offsets
== NULL
) {
2693 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(unsigned int);
2694 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2695 if (sbi
->s_mb_maxs
== NULL
) {
2696 kfree(sbi
->s_mb_maxs
);
2700 /* order 0 is regular bitmap */
2701 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2702 sbi
->s_mb_offsets
[0] = 0;
2706 max
= sb
->s_blocksize
<< 2;
2708 sbi
->s_mb_offsets
[i
] = offset
;
2709 sbi
->s_mb_maxs
[i
] = max
;
2710 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2713 } while (i
<= sb
->s_blocksize_bits
+ 1);
2715 /* init file for buddy data */
2716 ret
= ext4_mb_init_backend(sb
);
2718 kfree(sbi
->s_mb_offsets
);
2719 kfree(sbi
->s_mb_maxs
);
2723 spin_lock_init(&sbi
->s_md_lock
);
2724 spin_lock_init(&sbi
->s_bal_lock
);
2726 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2727 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2728 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2729 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2730 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2731 sbi
->s_mb_history_filter
= EXT4_MB_HISTORY_DEFAULT
;
2732 sbi
->s_mb_group_prealloc
= MB_DEFAULT_GROUP_PREALLOC
;
2734 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2735 if (sbi
->s_locality_groups
== NULL
) {
2736 kfree(sbi
->s_mb_offsets
);
2737 kfree(sbi
->s_mb_maxs
);
2740 for_each_possible_cpu(i
) {
2741 struct ext4_locality_group
*lg
;
2742 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2743 mutex_init(&lg
->lg_mutex
);
2744 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2745 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2746 spin_lock_init(&lg
->lg_prealloc_lock
);
2749 ext4_mb_init_per_dev_proc(sb
);
2750 ext4_mb_history_init(sb
);
2753 sbi
->s_journal
->j_commit_callback
= release_blocks_on_commit
;
2755 printk(KERN_INFO
"EXT4-fs: mballoc enabled\n");
2759 /* need to called with ext4 group lock (ext4_lock_group) */
2760 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2762 struct ext4_prealloc_space
*pa
;
2763 struct list_head
*cur
, *tmp
;
2766 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2767 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2768 list_del(&pa
->pa_group_list
);
2770 kmem_cache_free(ext4_pspace_cachep
, pa
);
2773 mb_debug("mballoc: %u PAs left\n", count
);
2777 int ext4_mb_release(struct super_block
*sb
)
2780 int num_meta_group_infos
;
2781 struct ext4_group_info
*grinfo
;
2782 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2784 if (sbi
->s_group_info
) {
2785 for (i
= 0; i
< sbi
->s_groups_count
; i
++) {
2786 grinfo
= ext4_get_group_info(sb
, i
);
2788 kfree(grinfo
->bb_bitmap
);
2790 ext4_lock_group(sb
, i
);
2791 ext4_mb_cleanup_pa(grinfo
);
2792 ext4_unlock_group(sb
, i
);
2795 num_meta_group_infos
= (sbi
->s_groups_count
+
2796 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2797 EXT4_DESC_PER_BLOCK_BITS(sb
);
2798 for (i
= 0; i
< num_meta_group_infos
; i
++)
2799 kfree(sbi
->s_group_info
[i
]);
2800 kfree(sbi
->s_group_info
);
2802 kfree(sbi
->s_mb_offsets
);
2803 kfree(sbi
->s_mb_maxs
);
2804 if (sbi
->s_buddy_cache
)
2805 iput(sbi
->s_buddy_cache
);
2806 if (sbi
->s_mb_stats
) {
2808 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2809 atomic_read(&sbi
->s_bal_allocated
),
2810 atomic_read(&sbi
->s_bal_reqs
),
2811 atomic_read(&sbi
->s_bal_success
));
2813 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2814 "%u 2^N hits, %u breaks, %u lost\n",
2815 atomic_read(&sbi
->s_bal_ex_scanned
),
2816 atomic_read(&sbi
->s_bal_goals
),
2817 atomic_read(&sbi
->s_bal_2orders
),
2818 atomic_read(&sbi
->s_bal_breaks
),
2819 atomic_read(&sbi
->s_mb_lost_chunks
));
2821 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2822 sbi
->s_mb_buddies_generated
++,
2823 sbi
->s_mb_generation_time
);
2825 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2826 atomic_read(&sbi
->s_mb_preallocated
),
2827 atomic_read(&sbi
->s_mb_discarded
));
2830 free_percpu(sbi
->s_locality_groups
);
2831 ext4_mb_history_release(sb
);
2832 ext4_mb_destroy_per_dev_proc(sb
);
2838 * This function is called by the jbd2 layer once the commit has finished,
2839 * so we know we can free the blocks that were released with that commit.
2841 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
)
2843 struct super_block
*sb
= journal
->j_private
;
2844 struct ext4_buddy e4b
;
2845 struct ext4_group_info
*db
;
2846 int err
, count
= 0, count2
= 0;
2847 struct ext4_free_data
*entry
;
2848 ext4_fsblk_t discard_block
;
2849 struct list_head
*l
, *ltmp
;
2851 list_for_each_safe(l
, ltmp
, &txn
->t_private_list
) {
2852 entry
= list_entry(l
, struct ext4_free_data
, list
);
2854 mb_debug("gonna free %u blocks in group %u (0x%p):",
2855 entry
->count
, entry
->group
, entry
);
2857 err
= ext4_mb_load_buddy(sb
, entry
->group
, &e4b
);
2858 /* we expect to find existing buddy because it's pinned */
2862 /* there are blocks to put in buddy to make them really free */
2863 count
+= entry
->count
;
2865 ext4_lock_group(sb
, entry
->group
);
2866 /* Take it out of per group rb tree */
2867 rb_erase(&entry
->node
, &(db
->bb_free_root
));
2868 mb_free_blocks(NULL
, &e4b
, entry
->start_blk
, entry
->count
);
2870 if (!db
->bb_free_root
.rb_node
) {
2871 /* No more items in the per group rb tree
2872 * balance refcounts from ext4_mb_free_metadata()
2874 page_cache_release(e4b
.bd_buddy_page
);
2875 page_cache_release(e4b
.bd_bitmap_page
);
2877 ext4_unlock_group(sb
, entry
->group
);
2878 discard_block
= (ext4_fsblk_t
) entry
->group
* EXT4_BLOCKS_PER_GROUP(sb
)
2880 + le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
2881 trace_mark(ext4_discard_blocks
, "dev %s blk %llu count %u",
2882 sb
->s_id
, (unsigned long long) discard_block
,
2884 sb_issue_discard(sb
, discard_block
, entry
->count
);
2886 kmem_cache_free(ext4_free_ext_cachep
, entry
);
2887 ext4_mb_release_desc(&e4b
);
2890 mb_debug("freed %u blocks in %u structures\n", count
, count2
);
2893 #define EXT4_MB_STATS_NAME "stats"
2894 #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan"
2895 #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan"
2896 #define EXT4_MB_ORDER2_REQ "order2_req"
2897 #define EXT4_MB_STREAM_REQ "stream_req"
2898 #define EXT4_MB_GROUP_PREALLOC "group_prealloc"
2900 static int ext4_mb_init_per_dev_proc(struct super_block
*sb
)
2902 #ifdef CONFIG_PROC_FS
2903 mode_t mode
= S_IFREG
| S_IRUGO
| S_IWUSR
;
2904 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2905 struct proc_dir_entry
*proc
;
2907 if (sbi
->s_proc
== NULL
)
2910 EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME
, mb_stats
);
2911 EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME
, mb_max_to_scan
);
2912 EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME
, mb_min_to_scan
);
2913 EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ
, mb_order2_reqs
);
2914 EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ
, mb_stream_request
);
2915 EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC
, mb_group_prealloc
);
2919 remove_proc_entry(EXT4_MB_GROUP_PREALLOC
, sbi
->s_proc
);
2920 remove_proc_entry(EXT4_MB_STREAM_REQ
, sbi
->s_proc
);
2921 remove_proc_entry(EXT4_MB_ORDER2_REQ
, sbi
->s_proc
);
2922 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME
, sbi
->s_proc
);
2923 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME
, sbi
->s_proc
);
2924 remove_proc_entry(EXT4_MB_STATS_NAME
, sbi
->s_proc
);
2931 static int ext4_mb_destroy_per_dev_proc(struct super_block
*sb
)
2933 #ifdef CONFIG_PROC_FS
2934 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2936 if (sbi
->s_proc
== NULL
)
2939 remove_proc_entry(EXT4_MB_GROUP_PREALLOC
, sbi
->s_proc
);
2940 remove_proc_entry(EXT4_MB_STREAM_REQ
, sbi
->s_proc
);
2941 remove_proc_entry(EXT4_MB_ORDER2_REQ
, sbi
->s_proc
);
2942 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME
, sbi
->s_proc
);
2943 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME
, sbi
->s_proc
);
2944 remove_proc_entry(EXT4_MB_STATS_NAME
, sbi
->s_proc
);
2949 int __init
init_ext4_mballoc(void)
2951 ext4_pspace_cachep
=
2952 kmem_cache_create("ext4_prealloc_space",
2953 sizeof(struct ext4_prealloc_space
),
2954 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2955 if (ext4_pspace_cachep
== NULL
)
2959 kmem_cache_create("ext4_alloc_context",
2960 sizeof(struct ext4_allocation_context
),
2961 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2962 if (ext4_ac_cachep
== NULL
) {
2963 kmem_cache_destroy(ext4_pspace_cachep
);
2967 ext4_free_ext_cachep
=
2968 kmem_cache_create("ext4_free_block_extents",
2969 sizeof(struct ext4_free_data
),
2970 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2971 if (ext4_free_ext_cachep
== NULL
) {
2972 kmem_cache_destroy(ext4_pspace_cachep
);
2973 kmem_cache_destroy(ext4_ac_cachep
);
2979 void exit_ext4_mballoc(void)
2981 /* XXX: synchronize_rcu(); */
2982 kmem_cache_destroy(ext4_pspace_cachep
);
2983 kmem_cache_destroy(ext4_ac_cachep
);
2984 kmem_cache_destroy(ext4_free_ext_cachep
);
2989 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2990 * Returns 0 if success or error code
2992 static noinline_for_stack
int
2993 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2994 handle_t
*handle
, unsigned int reserv_blks
)
2996 struct buffer_head
*bitmap_bh
= NULL
;
2997 struct ext4_super_block
*es
;
2998 struct ext4_group_desc
*gdp
;
2999 struct buffer_head
*gdp_bh
;
3000 struct ext4_sb_info
*sbi
;
3001 struct super_block
*sb
;
3005 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3006 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
3014 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
3018 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
3023 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
3027 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
3028 gdp
->bg_free_blocks_count
);
3030 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
3034 block
= ac
->ac_b_ex
.fe_group
* EXT4_BLOCKS_PER_GROUP(sb
)
3035 + ac
->ac_b_ex
.fe_start
3036 + le32_to_cpu(es
->s_first_data_block
);
3038 len
= ac
->ac_b_ex
.fe_len
;
3039 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, len
) ||
3040 in_range(ext4_inode_bitmap(sb
, gdp
), block
, len
) ||
3041 in_range(block
, ext4_inode_table(sb
, gdp
),
3042 EXT4_SB(sb
)->s_itb_per_group
) ||
3043 in_range(block
+ len
- 1, ext4_inode_table(sb
, gdp
),
3044 EXT4_SB(sb
)->s_itb_per_group
)) {
3045 ext4_error(sb
, __func__
,
3046 "Allocating block %llu in system zone of %d group\n",
3047 block
, ac
->ac_b_ex
.fe_group
);
3048 /* File system mounted not to panic on error
3049 * Fix the bitmap and repeat the block allocation
3050 * We leak some of the blocks here.
3052 mb_set_bits(sb_bgl_lock(sbi
, ac
->ac_b_ex
.fe_group
),
3053 bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
3054 ac
->ac_b_ex
.fe_len
);
3055 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
3060 #ifdef AGGRESSIVE_CHECK
3063 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
3064 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
3065 bitmap_bh
->b_data
));
3069 spin_lock(sb_bgl_lock(sbi
, ac
->ac_b_ex
.fe_group
));
3070 mb_set_bits(NULL
, bitmap_bh
->b_data
,
3071 ac
->ac_b_ex
.fe_start
, ac
->ac_b_ex
.fe_len
);
3072 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
3073 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
3074 ext4_free_blks_set(sb
, gdp
,
3075 ext4_free_blocks_after_init(sb
,
3076 ac
->ac_b_ex
.fe_group
, gdp
));
3078 len
= ext4_free_blks_count(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
3079 ext4_free_blks_set(sb
, gdp
, len
);
3080 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, ac
->ac_b_ex
.fe_group
, gdp
);
3081 spin_unlock(sb_bgl_lock(sbi
, ac
->ac_b_ex
.fe_group
));
3082 percpu_counter_sub(&sbi
->s_freeblocks_counter
, ac
->ac_b_ex
.fe_len
);
3084 * Now reduce the dirty block count also. Should not go negative
3086 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
3087 /* release all the reserved blocks if non delalloc */
3088 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, reserv_blks
);
3090 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
3091 ac
->ac_b_ex
.fe_len
);
3093 if (sbi
->s_log_groups_per_flex
) {
3094 ext4_group_t flex_group
= ext4_flex_group(sbi
,
3095 ac
->ac_b_ex
.fe_group
);
3096 spin_lock(sb_bgl_lock(sbi
, flex_group
));
3097 sbi
->s_flex_groups
[flex_group
].free_blocks
-= ac
->ac_b_ex
.fe_len
;
3098 spin_unlock(sb_bgl_lock(sbi
, flex_group
));
3101 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
3104 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
3113 * here we normalize request for locality group
3114 * Group request are normalized to s_strip size if we set the same via mount
3115 * option. If not we set it to s_mb_group_prealloc which can be configured via
3116 * /proc/fs/ext4/<partition>/group_prealloc
3118 * XXX: should we try to preallocate more than the group has now?
3120 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
3122 struct super_block
*sb
= ac
->ac_sb
;
3123 struct ext4_locality_group
*lg
= ac
->ac_lg
;
3126 if (EXT4_SB(sb
)->s_stripe
)
3127 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_stripe
;
3129 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
3130 mb_debug("#%u: goal %u blocks for locality group\n",
3131 current
->pid
, ac
->ac_g_ex
.fe_len
);
3135 * Normalization means making request better in terms of
3136 * size and alignment
3138 static noinline_for_stack
void
3139 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
3140 struct ext4_allocation_request
*ar
)
3144 loff_t size
, orig_size
, start_off
;
3145 ext4_lblk_t start
, orig_start
;
3146 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3147 struct ext4_prealloc_space
*pa
;
3149 /* do normalize only data requests, metadata requests
3150 do not need preallocation */
3151 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3154 /* sometime caller may want exact blocks */
3155 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3158 /* caller may indicate that preallocation isn't
3159 * required (it's a tail, for example) */
3160 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
3163 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
3164 ext4_mb_normalize_group_request(ac
);
3168 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3170 /* first, let's learn actual file size
3171 * given current request is allocated */
3172 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
3173 size
= size
<< bsbits
;
3174 if (size
< i_size_read(ac
->ac_inode
))
3175 size
= i_size_read(ac
->ac_inode
);
3177 /* max size of free chunks */
3180 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3181 (req <= (size) || max <= (chunk_size))
3183 /* first, try to predict filesize */
3184 /* XXX: should this table be tunable? */
3186 if (size
<= 16 * 1024) {
3188 } else if (size
<= 32 * 1024) {
3190 } else if (size
<= 64 * 1024) {
3192 } else if (size
<= 128 * 1024) {
3194 } else if (size
<= 256 * 1024) {
3196 } else if (size
<= 512 * 1024) {
3198 } else if (size
<= 1024 * 1024) {
3200 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
3201 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3202 (21 - bsbits
)) << 21;
3203 size
= 2 * 1024 * 1024;
3204 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
3205 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3206 (22 - bsbits
)) << 22;
3207 size
= 4 * 1024 * 1024;
3208 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
3209 (8<<20)>>bsbits
, max
, 8 * 1024)) {
3210 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3211 (23 - bsbits
)) << 23;
3212 size
= 8 * 1024 * 1024;
3214 start_off
= (loff_t
)ac
->ac_o_ex
.fe_logical
<< bsbits
;
3215 size
= ac
->ac_o_ex
.fe_len
<< bsbits
;
3217 orig_size
= size
= size
>> bsbits
;
3218 orig_start
= start
= start_off
>> bsbits
;
3220 /* don't cover already allocated blocks in selected range */
3221 if (ar
->pleft
&& start
<= ar
->lleft
) {
3222 size
-= ar
->lleft
+ 1 - start
;
3223 start
= ar
->lleft
+ 1;
3225 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
3226 size
-= start
+ size
- ar
->lright
;
3230 /* check we don't cross already preallocated blocks */
3232 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3237 spin_lock(&pa
->pa_lock
);
3238 if (pa
->pa_deleted
) {
3239 spin_unlock(&pa
->pa_lock
);
3243 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
3245 /* PA must not overlap original request */
3246 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
3247 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
3249 /* skip PA normalized request doesn't overlap with */
3250 if (pa
->pa_lstart
>= end
) {
3251 spin_unlock(&pa
->pa_lock
);
3254 if (pa_end
<= start
) {
3255 spin_unlock(&pa
->pa_lock
);
3258 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3260 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3261 BUG_ON(pa_end
< start
);
3265 if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3266 BUG_ON(pa
->pa_lstart
> end
);
3267 end
= pa
->pa_lstart
;
3269 spin_unlock(&pa
->pa_lock
);
3274 /* XXX: extra loop to check we really don't overlap preallocations */
3276 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3278 spin_lock(&pa
->pa_lock
);
3279 if (pa
->pa_deleted
== 0) {
3280 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
3281 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3283 spin_unlock(&pa
->pa_lock
);
3287 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3288 start
> ac
->ac_o_ex
.fe_logical
) {
3289 printk(KERN_ERR
"start %lu, size %lu, fe_logical %lu\n",
3290 (unsigned long) start
, (unsigned long) size
,
3291 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3293 BUG_ON(start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3294 start
> ac
->ac_o_ex
.fe_logical
);
3295 BUG_ON(size
<= 0 || size
>= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3297 /* now prepare goal request */
3299 /* XXX: is it better to align blocks WRT to logical
3300 * placement or satisfy big request as is */
3301 ac
->ac_g_ex
.fe_logical
= start
;
3302 ac
->ac_g_ex
.fe_len
= size
;
3304 /* define goal start in order to merge */
3305 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3306 /* merge to the right */
3307 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3308 &ac
->ac_f_ex
.fe_group
,
3309 &ac
->ac_f_ex
.fe_start
);
3310 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3312 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3313 /* merge to the left */
3314 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3315 &ac
->ac_f_ex
.fe_group
,
3316 &ac
->ac_f_ex
.fe_start
);
3317 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3320 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3321 (unsigned) orig_size
, (unsigned) start
);
3324 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3326 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3328 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3329 atomic_inc(&sbi
->s_bal_reqs
);
3330 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3331 if (ac
->ac_o_ex
.fe_len
>= ac
->ac_g_ex
.fe_len
)
3332 atomic_inc(&sbi
->s_bal_success
);
3333 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3334 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3335 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3336 atomic_inc(&sbi
->s_bal_goals
);
3337 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3338 atomic_inc(&sbi
->s_bal_breaks
);
3341 ext4_mb_store_history(ac
);
3345 * use blocks preallocated to inode
3347 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3348 struct ext4_prealloc_space
*pa
)
3354 /* found preallocated blocks, use them */
3355 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3356 end
= min(pa
->pa_pstart
+ pa
->pa_len
, start
+ ac
->ac_o_ex
.fe_len
);
3358 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3359 &ac
->ac_b_ex
.fe_start
);
3360 ac
->ac_b_ex
.fe_len
= len
;
3361 ac
->ac_status
= AC_STATUS_FOUND
;
3364 BUG_ON(start
< pa
->pa_pstart
);
3365 BUG_ON(start
+ len
> pa
->pa_pstart
+ pa
->pa_len
);
3366 BUG_ON(pa
->pa_free
< len
);
3369 mb_debug("use %llu/%u from inode pa %p\n", start
, len
, pa
);
3373 * use blocks preallocated to locality group
3375 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3376 struct ext4_prealloc_space
*pa
)
3378 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3380 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3381 &ac
->ac_b_ex
.fe_group
,
3382 &ac
->ac_b_ex
.fe_start
);
3383 ac
->ac_b_ex
.fe_len
= len
;
3384 ac
->ac_status
= AC_STATUS_FOUND
;
3387 /* we don't correct pa_pstart or pa_plen here to avoid
3388 * possible race when the group is being loaded concurrently
3389 * instead we correct pa later, after blocks are marked
3390 * in on-disk bitmap -- see ext4_mb_release_context()
3391 * Other CPUs are prevented from allocating from this pa by lg_mutex
3393 mb_debug("use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3397 * Return the prealloc space that have minimal distance
3398 * from the goal block. @cpa is the prealloc
3399 * space that is having currently known minimal distance
3400 * from the goal block.
3402 static struct ext4_prealloc_space
*
3403 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3404 struct ext4_prealloc_space
*pa
,
3405 struct ext4_prealloc_space
*cpa
)
3407 ext4_fsblk_t cur_distance
, new_distance
;
3410 atomic_inc(&pa
->pa_count
);
3413 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3414 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3416 if (cur_distance
< new_distance
)
3419 /* drop the previous reference */
3420 atomic_dec(&cpa
->pa_count
);
3421 atomic_inc(&pa
->pa_count
);
3426 * search goal blocks in preallocated space
3428 static noinline_for_stack
int
3429 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3432 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3433 struct ext4_locality_group
*lg
;
3434 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3435 ext4_fsblk_t goal_block
;
3437 /* only data can be preallocated */
3438 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3441 /* first, try per-file preallocation */
3443 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3445 /* all fields in this condition don't change,
3446 * so we can skip locking for them */
3447 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3448 ac
->ac_o_ex
.fe_logical
>= pa
->pa_lstart
+ pa
->pa_len
)
3451 /* found preallocated blocks, use them */
3452 spin_lock(&pa
->pa_lock
);
3453 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3454 atomic_inc(&pa
->pa_count
);
3455 ext4_mb_use_inode_pa(ac
, pa
);
3456 spin_unlock(&pa
->pa_lock
);
3457 ac
->ac_criteria
= 10;
3461 spin_unlock(&pa
->pa_lock
);
3465 /* can we use group allocation? */
3466 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3469 /* inode may have no locality group for some reason */
3473 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3474 if (order
> PREALLOC_TB_SIZE
- 1)
3475 /* The max size of hash table is PREALLOC_TB_SIZE */
3476 order
= PREALLOC_TB_SIZE
- 1;
3478 goal_block
= ac
->ac_g_ex
.fe_group
* EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
) +
3479 ac
->ac_g_ex
.fe_start
+
3480 le32_to_cpu(EXT4_SB(ac
->ac_sb
)->s_es
->s_first_data_block
);
3482 * search for the prealloc space that is having
3483 * minimal distance from the goal block.
3485 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3487 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3489 spin_lock(&pa
->pa_lock
);
3490 if (pa
->pa_deleted
== 0 &&
3491 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3493 cpa
= ext4_mb_check_group_pa(goal_block
,
3496 spin_unlock(&pa
->pa_lock
);
3501 ext4_mb_use_group_pa(ac
, cpa
);
3502 ac
->ac_criteria
= 20;
3509 * the function goes through all block freed in the group
3510 * but not yet committed and marks them used in in-core bitmap.
3511 * buddy must be generated from this bitmap
3512 * Need to be called with ext4 group lock (ext4_lock_group)
3514 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3518 struct ext4_group_info
*grp
;
3519 struct ext4_free_data
*entry
;
3521 grp
= ext4_get_group_info(sb
, group
);
3522 n
= rb_first(&(grp
->bb_free_root
));
3525 entry
= rb_entry(n
, struct ext4_free_data
, node
);
3526 mb_set_bits(sb_bgl_lock(EXT4_SB(sb
), group
),
3527 bitmap
, entry
->start_blk
,
3535 * the function goes through all preallocation in this group and marks them
3536 * used in in-core bitmap. buddy must be generated from this bitmap
3537 * Need to be called with ext4 group lock (ext4_lock_group)
3539 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3542 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3543 struct ext4_prealloc_space
*pa
;
3544 struct list_head
*cur
;
3545 ext4_group_t groupnr
;
3546 ext4_grpblk_t start
;
3547 int preallocated
= 0;
3551 /* all form of preallocation discards first load group,
3552 * so the only competing code is preallocation use.
3553 * we don't need any locking here
3554 * notice we do NOT ignore preallocations with pa_deleted
3555 * otherwise we could leave used blocks available for
3556 * allocation in buddy when concurrent ext4_mb_put_pa()
3557 * is dropping preallocation
3559 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3560 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3561 spin_lock(&pa
->pa_lock
);
3562 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3565 spin_unlock(&pa
->pa_lock
);
3566 if (unlikely(len
== 0))
3568 BUG_ON(groupnr
!= group
);
3569 mb_set_bits(sb_bgl_lock(EXT4_SB(sb
), group
),
3570 bitmap
, start
, len
);
3571 preallocated
+= len
;
3574 mb_debug("prellocated %u for group %u\n", preallocated
, group
);
3577 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3579 struct ext4_prealloc_space
*pa
;
3580 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3581 kmem_cache_free(ext4_pspace_cachep
, pa
);
3585 * drops a reference to preallocated space descriptor
3586 * if this was the last reference and the space is consumed
3588 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3589 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3593 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0)
3596 /* in this short window concurrent discard can set pa_deleted */
3597 spin_lock(&pa
->pa_lock
);
3598 if (pa
->pa_deleted
== 1) {
3599 spin_unlock(&pa
->pa_lock
);
3604 spin_unlock(&pa
->pa_lock
);
3606 /* -1 is to protect from crossing allocation group */
3607 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
- 1, &grp
, NULL
);
3612 * P1 (buddy init) P2 (regular allocation)
3613 * find block B in PA
3614 * copy on-disk bitmap to buddy
3615 * mark B in on-disk bitmap
3616 * drop PA from group
3617 * mark all PAs in buddy
3619 * thus, P1 initializes buddy with B available. to prevent this
3620 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3623 ext4_lock_group(sb
, grp
);
3624 list_del(&pa
->pa_group_list
);
3625 ext4_unlock_group(sb
, grp
);
3627 spin_lock(pa
->pa_obj_lock
);
3628 list_del_rcu(&pa
->pa_inode_list
);
3629 spin_unlock(pa
->pa_obj_lock
);
3631 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3635 * creates new preallocated space for given inode
3637 static noinline_for_stack
int
3638 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3640 struct super_block
*sb
= ac
->ac_sb
;
3641 struct ext4_prealloc_space
*pa
;
3642 struct ext4_group_info
*grp
;
3643 struct ext4_inode_info
*ei
;
3645 /* preallocate only when found space is larger then requested */
3646 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3647 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3648 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3650 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3654 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3660 /* we can't allocate as much as normalizer wants.
3661 * so, found space must get proper lstart
3662 * to cover original request */
3663 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3664 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3666 /* we're limited by original request in that
3667 * logical block must be covered any way
3668 * winl is window we can move our chunk within */
3669 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3671 /* also, we should cover whole original request */
3672 wins
= ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
;
3674 /* the smallest one defines real window */
3675 win
= min(winl
, wins
);
3677 offs
= ac
->ac_o_ex
.fe_logical
% ac
->ac_b_ex
.fe_len
;
3678 if (offs
&& offs
< win
)
3681 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
- win
;
3682 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3683 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3686 /* preallocation can change ac_b_ex, thus we store actually
3687 * allocated blocks for history */
3688 ac
->ac_f_ex
= ac
->ac_b_ex
;
3690 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3691 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3692 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3693 pa
->pa_free
= pa
->pa_len
;
3694 atomic_set(&pa
->pa_count
, 1);
3695 spin_lock_init(&pa
->pa_lock
);
3699 mb_debug("new inode pa %p: %llu/%u for %u\n", pa
,
3700 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3701 trace_mark(ext4_mb_new_inode_pa
,
3702 "dev %s ino %lu pstart %llu len %u lstart %u",
3703 sb
->s_id
, ac
->ac_inode
->i_ino
,
3704 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3706 ext4_mb_use_inode_pa(ac
, pa
);
3707 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3709 ei
= EXT4_I(ac
->ac_inode
);
3710 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3712 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3713 pa
->pa_inode
= ac
->ac_inode
;
3715 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3716 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3717 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3719 spin_lock(pa
->pa_obj_lock
);
3720 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3721 spin_unlock(pa
->pa_obj_lock
);
3727 * creates new preallocated space for locality group inodes belongs to
3729 static noinline_for_stack
int
3730 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3732 struct super_block
*sb
= ac
->ac_sb
;
3733 struct ext4_locality_group
*lg
;
3734 struct ext4_prealloc_space
*pa
;
3735 struct ext4_group_info
*grp
;
3737 /* preallocate only when found space is larger then requested */
3738 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3739 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3740 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3742 BUG_ON(ext4_pspace_cachep
== NULL
);
3743 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3747 /* preallocation can change ac_b_ex, thus we store actually
3748 * allocated blocks for history */
3749 ac
->ac_f_ex
= ac
->ac_b_ex
;
3751 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3752 pa
->pa_lstart
= pa
->pa_pstart
;
3753 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3754 pa
->pa_free
= pa
->pa_len
;
3755 atomic_set(&pa
->pa_count
, 1);
3756 spin_lock_init(&pa
->pa_lock
);
3757 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3761 mb_debug("new group pa %p: %llu/%u for %u\n", pa
,
3762 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3763 trace_mark(ext4_mb_new_group_pa
, "dev %s pstart %llu len %u lstart %u",
3764 sb
->s_id
, pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3766 ext4_mb_use_group_pa(ac
, pa
);
3767 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3769 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3773 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3774 pa
->pa_inode
= NULL
;
3776 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3777 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3778 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3781 * We will later add the new pa to the right bucket
3782 * after updating the pa_free in ext4_mb_release_context
3787 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3791 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3792 err
= ext4_mb_new_group_pa(ac
);
3794 err
= ext4_mb_new_inode_pa(ac
);
3799 * finds all unused blocks in on-disk bitmap, frees them in
3800 * in-core bitmap and buddy.
3801 * @pa must be unlinked from inode and group lists, so that
3802 * nobody else can find/use it.
3803 * the caller MUST hold group/inode locks.
3804 * TODO: optimize the case when there are no in-core structures yet
3806 static noinline_for_stack
int
3807 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3808 struct ext4_prealloc_space
*pa
,
3809 struct ext4_allocation_context
*ac
)
3811 struct super_block
*sb
= e4b
->bd_sb
;
3812 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3817 unsigned long long grp_blk_start
;
3822 BUG_ON(pa
->pa_deleted
== 0);
3823 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3824 grp_blk_start
= pa
->pa_pstart
- bit
;
3825 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3826 end
= bit
+ pa
->pa_len
;
3830 ac
->ac_inode
= pa
->pa_inode
;
3831 ac
->ac_op
= EXT4_MB_HISTORY_DISCARD
;
3835 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3838 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3839 start
= group
* EXT4_BLOCKS_PER_GROUP(sb
) + bit
+
3840 le32_to_cpu(sbi
->s_es
->s_first_data_block
);
3841 mb_debug(" free preallocated %u/%u in group %u\n",
3842 (unsigned) start
, (unsigned) next
- bit
,
3847 ac
->ac_b_ex
.fe_group
= group
;
3848 ac
->ac_b_ex
.fe_start
= bit
;
3849 ac
->ac_b_ex
.fe_len
= next
- bit
;
3850 ac
->ac_b_ex
.fe_logical
= 0;
3851 ext4_mb_store_history(ac
);
3854 trace_mark(ext4_mb_release_inode_pa
,
3855 "dev %s ino %lu block %llu count %u",
3856 sb
->s_id
, pa
->pa_inode
->i_ino
, grp_blk_start
+ bit
,
3858 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3861 if (free
!= pa
->pa_free
) {
3862 printk(KERN_CRIT
"pa %p: logic %lu, phys. %lu, len %lu\n",
3863 pa
, (unsigned long) pa
->pa_lstart
,
3864 (unsigned long) pa
->pa_pstart
,
3865 (unsigned long) pa
->pa_len
);
3866 ext4_grp_locked_error(sb
, group
,
3867 __func__
, "free %u, pa_free %u",
3870 * pa is already deleted so we use the value obtained
3871 * from the bitmap and continue.
3874 atomic_add(free
, &sbi
->s_mb_discarded
);
3879 static noinline_for_stack
int
3880 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3881 struct ext4_prealloc_space
*pa
,
3882 struct ext4_allocation_context
*ac
)
3884 struct super_block
*sb
= e4b
->bd_sb
;
3889 ac
->ac_op
= EXT4_MB_HISTORY_DISCARD
;
3891 trace_mark(ext4_mb_release_group_pa
, "dev %s pstart %llu len %d",
3892 sb
->s_id
, pa
->pa_pstart
, pa
->pa_len
);
3893 BUG_ON(pa
->pa_deleted
== 0);
3894 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3895 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3896 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3897 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3901 ac
->ac_inode
= NULL
;
3902 ac
->ac_b_ex
.fe_group
= group
;
3903 ac
->ac_b_ex
.fe_start
= bit
;
3904 ac
->ac_b_ex
.fe_len
= pa
->pa_len
;
3905 ac
->ac_b_ex
.fe_logical
= 0;
3906 ext4_mb_store_history(ac
);
3913 * releases all preallocations in given group
3915 * first, we need to decide discard policy:
3916 * - when do we discard
3918 * - how many do we discard
3919 * 1) how many requested
3921 static noinline_for_stack
int
3922 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3923 ext4_group_t group
, int needed
)
3925 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3926 struct buffer_head
*bitmap_bh
= NULL
;
3927 struct ext4_prealloc_space
*pa
, *tmp
;
3928 struct ext4_allocation_context
*ac
;
3929 struct list_head list
;
3930 struct ext4_buddy e4b
;
3935 mb_debug("discard preallocation for group %u\n", group
);
3937 if (list_empty(&grp
->bb_prealloc_list
))
3940 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3941 if (bitmap_bh
== NULL
) {
3942 ext4_error(sb
, __func__
, "Error in reading block "
3943 "bitmap for %u", group
);
3947 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3949 ext4_error(sb
, __func__
, "Error in loading buddy "
3950 "information for %u", group
);
3956 needed
= EXT4_BLOCKS_PER_GROUP(sb
) + 1;
3958 INIT_LIST_HEAD(&list
);
3959 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
3961 ext4_lock_group(sb
, group
);
3962 list_for_each_entry_safe(pa
, tmp
,
3963 &grp
->bb_prealloc_list
, pa_group_list
) {
3964 spin_lock(&pa
->pa_lock
);
3965 if (atomic_read(&pa
->pa_count
)) {
3966 spin_unlock(&pa
->pa_lock
);
3970 if (pa
->pa_deleted
) {
3971 spin_unlock(&pa
->pa_lock
);
3975 /* seems this one can be freed ... */
3978 /* we can trust pa_free ... */
3979 free
+= pa
->pa_free
;
3981 spin_unlock(&pa
->pa_lock
);
3983 list_del(&pa
->pa_group_list
);
3984 list_add(&pa
->u
.pa_tmp_list
, &list
);
3987 /* if we still need more blocks and some PAs were used, try again */
3988 if (free
< needed
&& busy
) {
3990 ext4_unlock_group(sb
, group
);
3992 * Yield the CPU here so that we don't get soft lockup
3993 * in non preempt case.
3999 /* found anything to free? */
4000 if (list_empty(&list
)) {
4005 /* now free all selected PAs */
4006 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
4008 /* remove from object (inode or locality group) */
4009 spin_lock(pa
->pa_obj_lock
);
4010 list_del_rcu(&pa
->pa_inode_list
);
4011 spin_unlock(pa
->pa_obj_lock
);
4014 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
4016 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
4018 list_del(&pa
->u
.pa_tmp_list
);
4019 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4023 ext4_unlock_group(sb
, group
);
4025 kmem_cache_free(ext4_ac_cachep
, ac
);
4026 ext4_mb_release_desc(&e4b
);
4032 * releases all non-used preallocated blocks for given inode
4034 * It's important to discard preallocations under i_data_sem
4035 * We don't want another block to be served from the prealloc
4036 * space when we are discarding the inode prealloc space.
4038 * FIXME!! Make sure it is valid at all the call sites
4040 void ext4_discard_preallocations(struct inode
*inode
)
4042 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4043 struct super_block
*sb
= inode
->i_sb
;
4044 struct buffer_head
*bitmap_bh
= NULL
;
4045 struct ext4_prealloc_space
*pa
, *tmp
;
4046 struct ext4_allocation_context
*ac
;
4047 ext4_group_t group
= 0;
4048 struct list_head list
;
4049 struct ext4_buddy e4b
;
4052 if (!S_ISREG(inode
->i_mode
)) {
4053 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4057 mb_debug("discard preallocation for inode %lu\n", inode
->i_ino
);
4058 trace_mark(ext4_discard_preallocations
, "dev %s ino %lu", sb
->s_id
,
4061 INIT_LIST_HEAD(&list
);
4063 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4065 /* first, collect all pa's in the inode */
4066 spin_lock(&ei
->i_prealloc_lock
);
4067 while (!list_empty(&ei
->i_prealloc_list
)) {
4068 pa
= list_entry(ei
->i_prealloc_list
.next
,
4069 struct ext4_prealloc_space
, pa_inode_list
);
4070 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
4071 spin_lock(&pa
->pa_lock
);
4072 if (atomic_read(&pa
->pa_count
)) {
4073 /* this shouldn't happen often - nobody should
4074 * use preallocation while we're discarding it */
4075 spin_unlock(&pa
->pa_lock
);
4076 spin_unlock(&ei
->i_prealloc_lock
);
4077 printk(KERN_ERR
"uh-oh! used pa while discarding\n");
4079 schedule_timeout_uninterruptible(HZ
);
4083 if (pa
->pa_deleted
== 0) {
4085 spin_unlock(&pa
->pa_lock
);
4086 list_del_rcu(&pa
->pa_inode_list
);
4087 list_add(&pa
->u
.pa_tmp_list
, &list
);
4091 /* someone is deleting pa right now */
4092 spin_unlock(&pa
->pa_lock
);
4093 spin_unlock(&ei
->i_prealloc_lock
);
4095 /* we have to wait here because pa_deleted
4096 * doesn't mean pa is already unlinked from
4097 * the list. as we might be called from
4098 * ->clear_inode() the inode will get freed
4099 * and concurrent thread which is unlinking
4100 * pa from inode's list may access already
4101 * freed memory, bad-bad-bad */
4103 /* XXX: if this happens too often, we can
4104 * add a flag to force wait only in case
4105 * of ->clear_inode(), but not in case of
4106 * regular truncate */
4107 schedule_timeout_uninterruptible(HZ
);
4110 spin_unlock(&ei
->i_prealloc_lock
);
4112 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
4113 BUG_ON(pa
->pa_linear
!= 0);
4114 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
4116 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
4118 ext4_error(sb
, __func__
, "Error in loading buddy "
4119 "information for %u", group
);
4123 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
4124 if (bitmap_bh
== NULL
) {
4125 ext4_error(sb
, __func__
, "Error in reading block "
4126 "bitmap for %u", group
);
4127 ext4_mb_release_desc(&e4b
);
4131 ext4_lock_group(sb
, group
);
4132 list_del(&pa
->pa_group_list
);
4133 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
4134 ext4_unlock_group(sb
, group
);
4136 ext4_mb_release_desc(&e4b
);
4139 list_del(&pa
->u
.pa_tmp_list
);
4140 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4143 kmem_cache_free(ext4_ac_cachep
, ac
);
4147 * finds all preallocated spaces and return blocks being freed to them
4148 * if preallocated space becomes full (no block is used from the space)
4149 * then the function frees space in buddy
4150 * XXX: at the moment, truncate (which is the only way to free blocks)
4151 * discards all preallocations
4153 static void ext4_mb_return_to_preallocation(struct inode
*inode
,
4154 struct ext4_buddy
*e4b
,
4155 sector_t block
, int count
)
4157 BUG_ON(!list_empty(&EXT4_I(inode
)->i_prealloc_list
));
4160 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4162 struct super_block
*sb
= ac
->ac_sb
;
4165 printk(KERN_ERR
"EXT4-fs: Can't allocate:"
4166 " Allocation context details:\n");
4167 printk(KERN_ERR
"EXT4-fs: status %d flags %d\n",
4168 ac
->ac_status
, ac
->ac_flags
);
4169 printk(KERN_ERR
"EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4170 "best %lu/%lu/%lu@%lu cr %d\n",
4171 (unsigned long)ac
->ac_o_ex
.fe_group
,
4172 (unsigned long)ac
->ac_o_ex
.fe_start
,
4173 (unsigned long)ac
->ac_o_ex
.fe_len
,
4174 (unsigned long)ac
->ac_o_ex
.fe_logical
,
4175 (unsigned long)ac
->ac_g_ex
.fe_group
,
4176 (unsigned long)ac
->ac_g_ex
.fe_start
,
4177 (unsigned long)ac
->ac_g_ex
.fe_len
,
4178 (unsigned long)ac
->ac_g_ex
.fe_logical
,
4179 (unsigned long)ac
->ac_b_ex
.fe_group
,
4180 (unsigned long)ac
->ac_b_ex
.fe_start
,
4181 (unsigned long)ac
->ac_b_ex
.fe_len
,
4182 (unsigned long)ac
->ac_b_ex
.fe_logical
,
4183 (int)ac
->ac_criteria
);
4184 printk(KERN_ERR
"EXT4-fs: %lu scanned, %d found\n", ac
->ac_ex_scanned
,
4186 printk(KERN_ERR
"EXT4-fs: groups: \n");
4187 for (i
= 0; i
< EXT4_SB(sb
)->s_groups_count
; i
++) {
4188 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
4189 struct ext4_prealloc_space
*pa
;
4190 ext4_grpblk_t start
;
4191 struct list_head
*cur
;
4192 ext4_lock_group(sb
, i
);
4193 list_for_each(cur
, &grp
->bb_prealloc_list
) {
4194 pa
= list_entry(cur
, struct ext4_prealloc_space
,
4196 spin_lock(&pa
->pa_lock
);
4197 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
4199 spin_unlock(&pa
->pa_lock
);
4200 printk(KERN_ERR
"PA:%lu:%d:%u \n", i
,
4203 ext4_unlock_group(sb
, i
);
4205 if (grp
->bb_free
== 0)
4207 printk(KERN_ERR
"%lu: %d/%d \n",
4208 i
, grp
->bb_free
, grp
->bb_fragments
);
4210 printk(KERN_ERR
"\n");
4213 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4220 * We use locality group preallocation for small size file. The size of the
4221 * file is determined by the current size or the resulting size after
4222 * allocation which ever is larger
4224 * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4226 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
4228 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4229 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
4232 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
4235 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
4236 isize
= i_size_read(ac
->ac_inode
) >> bsbits
;
4237 size
= max(size
, isize
);
4239 /* don't use group allocation for large files */
4240 if (size
>= sbi
->s_mb_stream_request
)
4243 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
4246 BUG_ON(ac
->ac_lg
!= NULL
);
4248 * locality group prealloc space are per cpu. The reason for having
4249 * per cpu locality group is to reduce the contention between block
4250 * request from multiple CPUs.
4252 ac
->ac_lg
= per_cpu_ptr(sbi
->s_locality_groups
, raw_smp_processor_id());
4254 /* we're going to use group allocation */
4255 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4257 /* serialize all allocations in the group */
4258 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4261 static noinline_for_stack
int
4262 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4263 struct ext4_allocation_request
*ar
)
4265 struct super_block
*sb
= ar
->inode
->i_sb
;
4266 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4267 struct ext4_super_block
*es
= sbi
->s_es
;
4271 ext4_grpblk_t block
;
4273 /* we can't allocate > group size */
4276 /* just a dirty hack to filter too big requests */
4277 if (len
>= EXT4_BLOCKS_PER_GROUP(sb
) - 10)
4278 len
= EXT4_BLOCKS_PER_GROUP(sb
) - 10;
4280 /* start searching from the goal */
4282 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4283 goal
>= ext4_blocks_count(es
))
4284 goal
= le32_to_cpu(es
->s_first_data_block
);
4285 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4287 /* set up allocation goals */
4288 ac
->ac_b_ex
.fe_logical
= ar
->logical
;
4289 ac
->ac_b_ex
.fe_group
= 0;
4290 ac
->ac_b_ex
.fe_start
= 0;
4291 ac
->ac_b_ex
.fe_len
= 0;
4292 ac
->ac_status
= AC_STATUS_CONTINUE
;
4293 ac
->ac_groups_scanned
= 0;
4294 ac
->ac_ex_scanned
= 0;
4297 ac
->ac_inode
= ar
->inode
;
4298 ac
->ac_o_ex
.fe_logical
= ar
->logical
;
4299 ac
->ac_o_ex
.fe_group
= group
;
4300 ac
->ac_o_ex
.fe_start
= block
;
4301 ac
->ac_o_ex
.fe_len
= len
;
4302 ac
->ac_g_ex
.fe_logical
= ar
->logical
;
4303 ac
->ac_g_ex
.fe_group
= group
;
4304 ac
->ac_g_ex
.fe_start
= block
;
4305 ac
->ac_g_ex
.fe_len
= len
;
4306 ac
->ac_f_ex
.fe_len
= 0;
4307 ac
->ac_flags
= ar
->flags
;
4309 ac
->ac_criteria
= 0;
4311 ac
->ac_bitmap_page
= NULL
;
4312 ac
->ac_buddy_page
= NULL
;
4313 ac
->alloc_semp
= NULL
;
4316 /* we have to define context: we'll we work with a file or
4317 * locality group. this is a policy, actually */
4318 ext4_mb_group_or_file(ac
);
4320 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4321 "left: %u/%u, right %u/%u to %swritable\n",
4322 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4323 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4324 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4325 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4326 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4331 static noinline_for_stack
void
4332 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4333 struct ext4_locality_group
*lg
,
4334 int order
, int total_entries
)
4336 ext4_group_t group
= 0;
4337 struct ext4_buddy e4b
;
4338 struct list_head discard_list
;
4339 struct ext4_prealloc_space
*pa
, *tmp
;
4340 struct ext4_allocation_context
*ac
;
4342 mb_debug("discard locality group preallocation\n");
4344 INIT_LIST_HEAD(&discard_list
);
4345 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4347 spin_lock(&lg
->lg_prealloc_lock
);
4348 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4350 spin_lock(&pa
->pa_lock
);
4351 if (atomic_read(&pa
->pa_count
)) {
4353 * This is the pa that we just used
4354 * for block allocation. So don't
4357 spin_unlock(&pa
->pa_lock
);
4360 if (pa
->pa_deleted
) {
4361 spin_unlock(&pa
->pa_lock
);
4364 /* only lg prealloc space */
4365 BUG_ON(!pa
->pa_linear
);
4367 /* seems this one can be freed ... */
4369 spin_unlock(&pa
->pa_lock
);
4371 list_del_rcu(&pa
->pa_inode_list
);
4372 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4375 if (total_entries
<= 5) {
4377 * we want to keep only 5 entries
4378 * allowing it to grow to 8. This
4379 * mak sure we don't call discard
4380 * soon for this list.
4385 spin_unlock(&lg
->lg_prealloc_lock
);
4387 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4389 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
4390 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4391 ext4_error(sb
, __func__
, "Error in loading buddy "
4392 "information for %u", group
);
4395 ext4_lock_group(sb
, group
);
4396 list_del(&pa
->pa_group_list
);
4397 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
4398 ext4_unlock_group(sb
, group
);
4400 ext4_mb_release_desc(&e4b
);
4401 list_del(&pa
->u
.pa_tmp_list
);
4402 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4405 kmem_cache_free(ext4_ac_cachep
, ac
);
4409 * We have incremented pa_count. So it cannot be freed at this
4410 * point. Also we hold lg_mutex. So no parallel allocation is
4411 * possible from this lg. That means pa_free cannot be updated.
4413 * A parallel ext4_mb_discard_group_preallocations is possible.
4414 * which can cause the lg_prealloc_list to be updated.
4417 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4419 int order
, added
= 0, lg_prealloc_count
= 1;
4420 struct super_block
*sb
= ac
->ac_sb
;
4421 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4422 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4424 order
= fls(pa
->pa_free
) - 1;
4425 if (order
> PREALLOC_TB_SIZE
- 1)
4426 /* The max size of hash table is PREALLOC_TB_SIZE */
4427 order
= PREALLOC_TB_SIZE
- 1;
4428 /* Add the prealloc space to lg */
4430 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4432 spin_lock(&tmp_pa
->pa_lock
);
4433 if (tmp_pa
->pa_deleted
) {
4434 spin_unlock(&pa
->pa_lock
);
4437 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4438 /* Add to the tail of the previous entry */
4439 list_add_tail_rcu(&pa
->pa_inode_list
,
4440 &tmp_pa
->pa_inode_list
);
4443 * we want to count the total
4444 * number of entries in the list
4447 spin_unlock(&tmp_pa
->pa_lock
);
4448 lg_prealloc_count
++;
4451 list_add_tail_rcu(&pa
->pa_inode_list
,
4452 &lg
->lg_prealloc_list
[order
]);
4455 /* Now trim the list to be not more than 8 elements */
4456 if (lg_prealloc_count
> 8) {
4457 ext4_mb_discard_lg_preallocations(sb
, lg
,
4458 order
, lg_prealloc_count
);
4465 * release all resource we used in allocation
4467 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4469 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4471 if (pa
->pa_linear
) {
4472 /* see comment in ext4_mb_use_group_pa() */
4473 spin_lock(&pa
->pa_lock
);
4474 pa
->pa_pstart
+= ac
->ac_b_ex
.fe_len
;
4475 pa
->pa_lstart
+= ac
->ac_b_ex
.fe_len
;
4476 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4477 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4478 spin_unlock(&pa
->pa_lock
);
4480 * We want to add the pa to the right bucket.
4481 * Remove it from the list and while adding
4482 * make sure the list to which we are adding
4485 if (likely(pa
->pa_free
)) {
4486 spin_lock(pa
->pa_obj_lock
);
4487 list_del_rcu(&pa
->pa_inode_list
);
4488 spin_unlock(pa
->pa_obj_lock
);
4489 ext4_mb_add_n_trim(ac
);
4492 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4495 up_read(ac
->alloc_semp
);
4496 if (ac
->ac_bitmap_page
)
4497 page_cache_release(ac
->ac_bitmap_page
);
4498 if (ac
->ac_buddy_page
)
4499 page_cache_release(ac
->ac_buddy_page
);
4500 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4501 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4502 ext4_mb_collect_stats(ac
);
4506 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4512 trace_mark(ext4_mb_discard_preallocations
, "dev %s needed %d",
4514 for (i
= 0; i
< EXT4_SB(sb
)->s_groups_count
&& needed
> 0; i
++) {
4515 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4524 * Main entry point into mballoc to allocate blocks
4525 * it tries to use preallocation first, then falls back
4526 * to usual allocation
4528 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4529 struct ext4_allocation_request
*ar
, int *errp
)
4532 struct ext4_allocation_context
*ac
= NULL
;
4533 struct ext4_sb_info
*sbi
;
4534 struct super_block
*sb
;
4535 ext4_fsblk_t block
= 0;
4536 unsigned int inquota
;
4537 unsigned int reserv_blks
= 0;
4539 sb
= ar
->inode
->i_sb
;
4542 trace_mark(ext4_request_blocks
, "dev %s flags %u len %u ino %lu "
4543 "lblk %llu goal %llu lleft %llu lright %llu "
4544 "pleft %llu pright %llu ",
4545 sb
->s_id
, ar
->flags
, ar
->len
,
4546 ar
->inode
? ar
->inode
->i_ino
: 0,
4547 (unsigned long long) ar
->logical
,
4548 (unsigned long long) ar
->goal
,
4549 (unsigned long long) ar
->lleft
,
4550 (unsigned long long) ar
->lright
,
4551 (unsigned long long) ar
->pleft
,
4552 (unsigned long long) ar
->pright
);
4554 if (!EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
) {
4556 * With delalloc we already reserved the blocks
4558 while (ar
->len
&& ext4_claim_free_blocks(sbi
, ar
->len
)) {
4559 /* let others to free the space */
4561 ar
->len
= ar
->len
>> 1;
4567 reserv_blks
= ar
->len
;
4569 while (ar
->len
&& DQUOT_ALLOC_BLOCK(ar
->inode
, ar
->len
)) {
4570 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4579 if (EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4580 ar
->flags
|= EXT4_MB_DELALLOC_RESERVED
;
4582 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4589 *errp
= ext4_mb_initialize_context(ac
, ar
);
4595 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4596 if (!ext4_mb_use_preallocated(ac
)) {
4597 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4598 ext4_mb_normalize_request(ac
, ar
);
4600 /* allocate space in core */
4601 ext4_mb_regular_allocator(ac
);
4603 /* as we've just preallocated more space than
4604 * user requested orinally, we store allocated
4605 * space in a special descriptor */
4606 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4607 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4608 ext4_mb_new_preallocation(ac
);
4610 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4611 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_blks
);
4612 if (*errp
== -EAGAIN
) {
4614 * drop the reference that we took
4615 * in ext4_mb_use_best_found
4617 ext4_mb_release_context(ac
);
4618 ac
->ac_b_ex
.fe_group
= 0;
4619 ac
->ac_b_ex
.fe_start
= 0;
4620 ac
->ac_b_ex
.fe_len
= 0;
4621 ac
->ac_status
= AC_STATUS_CONTINUE
;
4624 ac
->ac_b_ex
.fe_len
= 0;
4626 ext4_mb_show_ac(ac
);
4628 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4629 ar
->len
= ac
->ac_b_ex
.fe_len
;
4632 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4636 ac
->ac_b_ex
.fe_len
= 0;
4638 ext4_mb_show_ac(ac
);
4641 ext4_mb_release_context(ac
);
4644 kmem_cache_free(ext4_ac_cachep
, ac
);
4646 if (ar
->len
< inquota
)
4647 DQUOT_FREE_BLOCK(ar
->inode
, inquota
- ar
->len
);
4650 if (!EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4651 /* release all the reserved blocks if non delalloc */
4652 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
4656 trace_mark(ext4_allocate_blocks
,
4657 "dev %s block %llu flags %u len %u ino %lu "
4658 "logical %llu goal %llu lleft %llu lright %llu "
4659 "pleft %llu pright %llu ",
4660 sb
->s_id
, (unsigned long long) block
,
4661 ar
->flags
, ar
->len
, ar
->inode
? ar
->inode
->i_ino
: 0,
4662 (unsigned long long) ar
->logical
,
4663 (unsigned long long) ar
->goal
,
4664 (unsigned long long) ar
->lleft
,
4665 (unsigned long long) ar
->lright
,
4666 (unsigned long long) ar
->pleft
,
4667 (unsigned long long) ar
->pright
);
4673 * We can merge two free data extents only if the physical blocks
4674 * are contiguous, AND the extents were freed by the same transaction,
4675 * AND the blocks are associated with the same group.
4677 static int can_merge(struct ext4_free_data
*entry1
,
4678 struct ext4_free_data
*entry2
)
4680 if ((entry1
->t_tid
== entry2
->t_tid
) &&
4681 (entry1
->group
== entry2
->group
) &&
4682 ((entry1
->start_blk
+ entry1
->count
) == entry2
->start_blk
))
4687 static noinline_for_stack
int
4688 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4689 struct ext4_free_data
*new_entry
)
4691 ext4_grpblk_t block
;
4692 struct ext4_free_data
*entry
;
4693 struct ext4_group_info
*db
= e4b
->bd_info
;
4694 struct super_block
*sb
= e4b
->bd_sb
;
4695 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4696 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4697 struct rb_node
*parent
= NULL
, *new_node
;
4699 BUG_ON(!ext4_handle_valid(handle
));
4700 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4701 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4703 new_node
= &new_entry
->node
;
4704 block
= new_entry
->start_blk
;
4707 /* first free block exent. We need to
4708 protect buddy cache from being freed,
4709 * otherwise we'll refresh it from
4710 * on-disk bitmap and lose not-yet-available
4712 page_cache_get(e4b
->bd_buddy_page
);
4713 page_cache_get(e4b
->bd_bitmap_page
);
4717 entry
= rb_entry(parent
, struct ext4_free_data
, node
);
4718 if (block
< entry
->start_blk
)
4720 else if (block
>= (entry
->start_blk
+ entry
->count
))
4721 n
= &(*n
)->rb_right
;
4723 ext4_grp_locked_error(sb
, e4b
->bd_group
, __func__
,
4724 "Double free of blocks %d (%d %d)",
4725 block
, entry
->start_blk
, entry
->count
);
4730 rb_link_node(new_node
, parent
, n
);
4731 rb_insert_color(new_node
, &db
->bb_free_root
);
4733 /* Now try to see the extent can be merged to left and right */
4734 node
= rb_prev(new_node
);
4736 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4737 if (can_merge(entry
, new_entry
)) {
4738 new_entry
->start_blk
= entry
->start_blk
;
4739 new_entry
->count
+= entry
->count
;
4740 rb_erase(node
, &(db
->bb_free_root
));
4741 spin_lock(&sbi
->s_md_lock
);
4742 list_del(&entry
->list
);
4743 spin_unlock(&sbi
->s_md_lock
);
4744 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4748 node
= rb_next(new_node
);
4750 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4751 if (can_merge(new_entry
, entry
)) {
4752 new_entry
->count
+= entry
->count
;
4753 rb_erase(node
, &(db
->bb_free_root
));
4754 spin_lock(&sbi
->s_md_lock
);
4755 list_del(&entry
->list
);
4756 spin_unlock(&sbi
->s_md_lock
);
4757 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4760 /* Add the extent to transaction's private list */
4761 spin_lock(&sbi
->s_md_lock
);
4762 list_add(&new_entry
->list
, &handle
->h_transaction
->t_private_list
);
4763 spin_unlock(&sbi
->s_md_lock
);
4768 * Main entry point into mballoc to free blocks
4770 void ext4_mb_free_blocks(handle_t
*handle
, struct inode
*inode
,
4771 unsigned long block
, unsigned long count
,
4772 int metadata
, unsigned long *freed
)
4774 struct buffer_head
*bitmap_bh
= NULL
;
4775 struct super_block
*sb
= inode
->i_sb
;
4776 struct ext4_allocation_context
*ac
= NULL
;
4777 struct ext4_group_desc
*gdp
;
4778 struct ext4_super_block
*es
;
4779 unsigned int overflow
;
4781 struct buffer_head
*gd_bh
;
4782 ext4_group_t block_group
;
4783 struct ext4_sb_info
*sbi
;
4784 struct ext4_buddy e4b
;
4791 es
= EXT4_SB(sb
)->s_es
;
4792 if (block
< le32_to_cpu(es
->s_first_data_block
) ||
4793 block
+ count
< block
||
4794 block
+ count
> ext4_blocks_count(es
)) {
4795 ext4_error(sb
, __func__
,
4796 "Freeing blocks not in datazone - "
4797 "block = %lu, count = %lu", block
, count
);
4801 ext4_debug("freeing block %lu\n", block
);
4802 trace_mark(ext4_free_blocks
,
4803 "dev %s block %llu count %lu metadata %d ino %lu",
4804 sb
->s_id
, (unsigned long long) block
, count
, metadata
,
4805 inode
? inode
->i_ino
: 0);
4807 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4809 ac
->ac_op
= EXT4_MB_HISTORY_FREE
;
4810 ac
->ac_inode
= inode
;
4816 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4819 * Check to see if we are freeing blocks across a group
4822 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4823 overflow
= bit
+ count
- EXT4_BLOCKS_PER_GROUP(sb
);
4826 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4831 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4837 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4838 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4839 in_range(block
, ext4_inode_table(sb
, gdp
),
4840 EXT4_SB(sb
)->s_itb_per_group
) ||
4841 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4842 EXT4_SB(sb
)->s_itb_per_group
)) {
4844 ext4_error(sb
, __func__
,
4845 "Freeing blocks in system zone - "
4846 "Block = %lu, count = %lu", block
, count
);
4847 /* err = 0. ext4_std_error should be a no op */
4851 BUFFER_TRACE(bitmap_bh
, "getting write access");
4852 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4857 * We are about to modify some metadata. Call the journal APIs
4858 * to unshare ->b_data if a currently-committing transaction is
4861 BUFFER_TRACE(gd_bh
, "get_write_access");
4862 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4865 #ifdef AGGRESSIVE_CHECK
4868 for (i
= 0; i
< count
; i
++)
4869 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4873 ac
->ac_b_ex
.fe_group
= block_group
;
4874 ac
->ac_b_ex
.fe_start
= bit
;
4875 ac
->ac_b_ex
.fe_len
= count
;
4876 ext4_mb_store_history(ac
);
4879 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4882 if (metadata
&& ext4_handle_valid(handle
)) {
4883 struct ext4_free_data
*new_entry
;
4885 * blocks being freed are metadata. these blocks shouldn't
4886 * be used until this transaction is committed
4888 new_entry
= kmem_cache_alloc(ext4_free_ext_cachep
, GFP_NOFS
);
4889 new_entry
->start_blk
= bit
;
4890 new_entry
->group
= block_group
;
4891 new_entry
->count
= count
;
4892 new_entry
->t_tid
= handle
->h_transaction
->t_tid
;
4893 ext4_lock_group(sb
, block_group
);
4894 mb_clear_bits(sb_bgl_lock(sbi
, block_group
), bitmap_bh
->b_data
,
4896 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4897 ext4_unlock_group(sb
, block_group
);
4899 ext4_lock_group(sb
, block_group
);
4900 /* need to update group_info->bb_free and bitmap
4901 * with group lock held. generate_buddy look at
4902 * them with group lock_held
4904 mb_clear_bits(sb_bgl_lock(sbi
, block_group
), bitmap_bh
->b_data
,
4906 mb_free_blocks(inode
, &e4b
, bit
, count
);
4907 ext4_mb_return_to_preallocation(inode
, &e4b
, block
, count
);
4908 ext4_unlock_group(sb
, block_group
);
4911 spin_lock(sb_bgl_lock(sbi
, block_group
));
4912 ret
= ext4_free_blks_count(sb
, gdp
) + count
;
4913 ext4_free_blks_set(sb
, gdp
, ret
);
4914 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, gdp
);
4915 spin_unlock(sb_bgl_lock(sbi
, block_group
));
4916 percpu_counter_add(&sbi
->s_freeblocks_counter
, count
);
4918 if (sbi
->s_log_groups_per_flex
) {
4919 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4920 spin_lock(sb_bgl_lock(sbi
, flex_group
));
4921 sbi
->s_flex_groups
[flex_group
].free_blocks
+= count
;
4922 spin_unlock(sb_bgl_lock(sbi
, flex_group
));
4925 ext4_mb_release_desc(&e4b
);
4929 /* We dirtied the bitmap block */
4930 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4931 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4933 /* And the group descriptor block */
4934 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4935 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4939 if (overflow
&& !err
) {
4948 ext4_std_error(sb
, err
);
4950 kmem_cache_free(ext4_ac_cachep
, ac
);