MERGE-master-patchset-edits
[linux-2.6/openmoko-kernel.git] / drivers / net / ppp_async.c
blob6567fabd2e132a4ab4296a8283d32632b299c9d0
1 /*
2 * PPP async serial channel driver for Linux.
4 * Copyright 1999 Paul Mackerras.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * This driver provides the encapsulation and framing for sending
12 * and receiving PPP frames over async serial lines. It relies on
13 * the generic PPP layer to give it frames to send and to process
14 * received frames. It implements the PPP line discipline.
16 * Part of the code in this driver was inspired by the old async-only
17 * PPP driver, written by Michael Callahan and Al Longyear, and
18 * subsequently hacked by Paul Mackerras.
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/skbuff.h>
24 #include <linux/tty.h>
25 #include <linux/netdevice.h>
26 #include <linux/poll.h>
27 #include <linux/crc-ccitt.h>
28 #include <linux/ppp_defs.h>
29 #include <linux/if_ppp.h>
30 #include <linux/ppp_channel.h>
31 #include <linux/spinlock.h>
32 #include <linux/init.h>
33 #include <linux/jiffies.h>
34 #include <asm/uaccess.h>
35 #include <asm/string.h>
37 #define PPP_VERSION "2.4.2"
39 #define OBUFSIZE 256
41 /* Structure for storing local state. */
42 struct asyncppp {
43 struct tty_struct *tty;
44 unsigned int flags;
45 unsigned int state;
46 unsigned int rbits;
47 int mru;
48 spinlock_t xmit_lock;
49 spinlock_t recv_lock;
50 unsigned long xmit_flags;
51 u32 xaccm[8];
52 u32 raccm;
53 unsigned int bytes_sent;
54 unsigned int bytes_rcvd;
56 struct sk_buff *tpkt;
57 int tpkt_pos;
58 u16 tfcs;
59 unsigned char *optr;
60 unsigned char *olim;
61 unsigned long last_xmit;
63 struct sk_buff *rpkt;
64 int lcp_fcs;
65 struct sk_buff_head rqueue;
67 struct tasklet_struct tsk;
69 atomic_t refcnt;
70 struct semaphore dead_sem;
71 struct ppp_channel chan; /* interface to generic ppp layer */
72 unsigned char obuf[OBUFSIZE];
75 /* Bit numbers in xmit_flags */
76 #define XMIT_WAKEUP 0
77 #define XMIT_FULL 1
78 #define XMIT_BUSY 2
80 /* State bits */
81 #define SC_TOSS 1
82 #define SC_ESCAPE 2
83 #define SC_PREV_ERROR 4
85 /* Bits in rbits */
86 #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
88 static int flag_time = HZ;
89 module_param(flag_time, int, 0);
90 MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
91 MODULE_LICENSE("GPL");
92 MODULE_ALIAS_LDISC(N_PPP);
95 * Prototypes.
97 static int ppp_async_encode(struct asyncppp *ap);
98 static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
99 static int ppp_async_push(struct asyncppp *ap);
100 static void ppp_async_flush_output(struct asyncppp *ap);
101 static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
102 char *flags, int count);
103 static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
104 unsigned long arg);
105 static void ppp_async_process(unsigned long arg);
107 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
108 int len, int inbound);
110 static struct ppp_channel_ops async_ops = {
111 ppp_async_send,
112 ppp_async_ioctl
116 * Routines implementing the PPP line discipline.
120 * We have a potential race on dereferencing tty->disc_data,
121 * because the tty layer provides no locking at all - thus one
122 * cpu could be running ppp_asynctty_receive while another
123 * calls ppp_asynctty_close, which zeroes tty->disc_data and
124 * frees the memory that ppp_asynctty_receive is using. The best
125 * way to fix this is to use a rwlock in the tty struct, but for now
126 * we use a single global rwlock for all ttys in ppp line discipline.
128 * FIXME: this is no longer true. The _close path for the ldisc is
129 * now guaranteed to be sane.
131 static DEFINE_RWLOCK(disc_data_lock);
133 static struct asyncppp *ap_get(struct tty_struct *tty)
135 struct asyncppp *ap;
137 read_lock(&disc_data_lock);
138 ap = tty->disc_data;
139 if (ap != NULL)
140 atomic_inc(&ap->refcnt);
141 read_unlock(&disc_data_lock);
142 return ap;
145 static void ap_put(struct asyncppp *ap)
147 if (atomic_dec_and_test(&ap->refcnt))
148 up(&ap->dead_sem);
152 * Called when a tty is put into PPP line discipline. Called in process
153 * context.
155 static int
156 ppp_asynctty_open(struct tty_struct *tty)
158 struct asyncppp *ap;
159 int err;
161 if (tty->ops->write == NULL)
162 return -EOPNOTSUPP;
164 err = -ENOMEM;
165 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
166 if (!ap)
167 goto out;
169 /* initialize the asyncppp structure */
170 ap->tty = tty;
171 ap->mru = PPP_MRU;
172 spin_lock_init(&ap->xmit_lock);
173 spin_lock_init(&ap->recv_lock);
174 ap->xaccm[0] = ~0U;
175 ap->xaccm[3] = 0x60000000U;
176 ap->raccm = ~0U;
177 ap->optr = ap->obuf;
178 ap->olim = ap->obuf;
179 ap->lcp_fcs = -1;
181 skb_queue_head_init(&ap->rqueue);
182 tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap);
184 atomic_set(&ap->refcnt, 1);
185 init_MUTEX_LOCKED(&ap->dead_sem);
187 ap->chan.private = ap;
188 ap->chan.ops = &async_ops;
189 ap->chan.mtu = PPP_MRU;
190 err = ppp_register_channel(&ap->chan);
191 if (err)
192 goto out_free;
194 tty->disc_data = ap;
195 tty->receive_room = 65536;
196 return 0;
198 out_free:
199 kfree(ap);
200 out:
201 return err;
205 * Called when the tty is put into another line discipline
206 * or it hangs up. We have to wait for any cpu currently
207 * executing in any of the other ppp_asynctty_* routines to
208 * finish before we can call ppp_unregister_channel and free
209 * the asyncppp struct. This routine must be called from
210 * process context, not interrupt or softirq context.
212 static void
213 ppp_asynctty_close(struct tty_struct *tty)
215 struct asyncppp *ap;
217 write_lock_irq(&disc_data_lock);
218 ap = tty->disc_data;
219 tty->disc_data = NULL;
220 write_unlock_irq(&disc_data_lock);
221 if (!ap)
222 return;
225 * We have now ensured that nobody can start using ap from now
226 * on, but we have to wait for all existing users to finish.
227 * Note that ppp_unregister_channel ensures that no calls to
228 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
229 * by the time it returns.
231 if (!atomic_dec_and_test(&ap->refcnt))
232 down(&ap->dead_sem);
233 tasklet_kill(&ap->tsk);
235 ppp_unregister_channel(&ap->chan);
236 if (ap->rpkt)
237 kfree_skb(ap->rpkt);
238 skb_queue_purge(&ap->rqueue);
239 if (ap->tpkt)
240 kfree_skb(ap->tpkt);
241 kfree(ap);
245 * Called on tty hangup in process context.
247 * Wait for I/O to driver to complete and unregister PPP channel.
248 * This is already done by the close routine, so just call that.
250 static int ppp_asynctty_hangup(struct tty_struct *tty)
252 ppp_asynctty_close(tty);
253 return 0;
257 * Read does nothing - no data is ever available this way.
258 * Pppd reads and writes packets via /dev/ppp instead.
260 static ssize_t
261 ppp_asynctty_read(struct tty_struct *tty, struct file *file,
262 unsigned char __user *buf, size_t count)
264 return -EAGAIN;
268 * Write on the tty does nothing, the packets all come in
269 * from the ppp generic stuff.
271 static ssize_t
272 ppp_asynctty_write(struct tty_struct *tty, struct file *file,
273 const unsigned char *buf, size_t count)
275 return -EAGAIN;
279 * Called in process context only. May be re-entered by multiple
280 * ioctl calling threads.
283 static int
284 ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file,
285 unsigned int cmd, unsigned long arg)
287 struct asyncppp *ap = ap_get(tty);
288 int err, val;
289 int __user *p = (int __user *)arg;
291 if (!ap)
292 return -ENXIO;
293 err = -EFAULT;
294 switch (cmd) {
295 case PPPIOCGCHAN:
296 err = -EFAULT;
297 if (put_user(ppp_channel_index(&ap->chan), p))
298 break;
299 err = 0;
300 break;
302 case PPPIOCGUNIT:
303 err = -EFAULT;
304 if (put_user(ppp_unit_number(&ap->chan), p))
305 break;
306 err = 0;
307 break;
309 case TCFLSH:
310 /* flush our buffers and the serial port's buffer */
311 if (arg == TCIOFLUSH || arg == TCOFLUSH)
312 ppp_async_flush_output(ap);
313 err = tty_perform_flush(tty, arg);
314 break;
316 case FIONREAD:
317 val = 0;
318 if (put_user(val, p))
319 break;
320 err = 0;
321 break;
323 default:
324 /* Try the various mode ioctls */
325 err = tty_mode_ioctl(tty, file, cmd, arg);
328 ap_put(ap);
329 return err;
332 /* No kernel lock - fine */
333 static unsigned int
334 ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait)
336 return 0;
340 * This can now be called from hard interrupt level as well
341 * as soft interrupt level or mainline.
343 static void
344 ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
345 char *cflags, int count)
347 struct asyncppp *ap = ap_get(tty);
348 unsigned long flags;
350 if (!ap)
351 return;
352 spin_lock_irqsave(&ap->recv_lock, flags);
353 ppp_async_input(ap, buf, cflags, count);
354 spin_unlock_irqrestore(&ap->recv_lock, flags);
355 if (!skb_queue_empty(&ap->rqueue))
356 tasklet_schedule(&ap->tsk);
357 ap_put(ap);
358 tty_unthrottle(tty);
361 static void
362 ppp_asynctty_wakeup(struct tty_struct *tty)
364 struct asyncppp *ap = ap_get(tty);
366 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
367 if (!ap)
368 return;
369 set_bit(XMIT_WAKEUP, &ap->xmit_flags);
370 tasklet_schedule(&ap->tsk);
371 ap_put(ap);
375 static struct tty_ldisc_ops ppp_ldisc = {
376 .owner = THIS_MODULE,
377 .magic = TTY_LDISC_MAGIC,
378 .name = "ppp",
379 .open = ppp_asynctty_open,
380 .close = ppp_asynctty_close,
381 .hangup = ppp_asynctty_hangup,
382 .read = ppp_asynctty_read,
383 .write = ppp_asynctty_write,
384 .ioctl = ppp_asynctty_ioctl,
385 .poll = ppp_asynctty_poll,
386 .receive_buf = ppp_asynctty_receive,
387 .write_wakeup = ppp_asynctty_wakeup,
390 static int __init
391 ppp_async_init(void)
393 int err;
395 err = tty_register_ldisc(N_PPP, &ppp_ldisc);
396 if (err != 0)
397 printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
398 err);
399 return err;
403 * The following routines provide the PPP channel interface.
405 static int
406 ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
408 struct asyncppp *ap = chan->private;
409 void __user *argp = (void __user *)arg;
410 int __user *p = argp;
411 int err, val;
412 u32 accm[8];
414 err = -EFAULT;
415 switch (cmd) {
416 case PPPIOCGFLAGS:
417 val = ap->flags | ap->rbits;
418 if (put_user(val, p))
419 break;
420 err = 0;
421 break;
422 case PPPIOCSFLAGS:
423 if (get_user(val, p))
424 break;
425 ap->flags = val & ~SC_RCV_BITS;
426 spin_lock_irq(&ap->recv_lock);
427 ap->rbits = val & SC_RCV_BITS;
428 spin_unlock_irq(&ap->recv_lock);
429 err = 0;
430 break;
432 case PPPIOCGASYNCMAP:
433 if (put_user(ap->xaccm[0], (u32 __user *)argp))
434 break;
435 err = 0;
436 break;
437 case PPPIOCSASYNCMAP:
438 if (get_user(ap->xaccm[0], (u32 __user *)argp))
439 break;
440 err = 0;
441 break;
443 case PPPIOCGRASYNCMAP:
444 if (put_user(ap->raccm, (u32 __user *)argp))
445 break;
446 err = 0;
447 break;
448 case PPPIOCSRASYNCMAP:
449 if (get_user(ap->raccm, (u32 __user *)argp))
450 break;
451 err = 0;
452 break;
454 case PPPIOCGXASYNCMAP:
455 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
456 break;
457 err = 0;
458 break;
459 case PPPIOCSXASYNCMAP:
460 if (copy_from_user(accm, argp, sizeof(accm)))
461 break;
462 accm[2] &= ~0x40000000U; /* can't escape 0x5e */
463 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */
464 memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
465 err = 0;
466 break;
468 case PPPIOCGMRU:
469 if (put_user(ap->mru, p))
470 break;
471 err = 0;
472 break;
473 case PPPIOCSMRU:
474 if (get_user(val, p))
475 break;
476 if (val < PPP_MRU)
477 val = PPP_MRU;
478 ap->mru = val;
479 err = 0;
480 break;
482 default:
483 err = -ENOTTY;
486 return err;
490 * This is called at softirq level to deliver received packets
491 * to the ppp_generic code, and to tell the ppp_generic code
492 * if we can accept more output now.
494 static void ppp_async_process(unsigned long arg)
496 struct asyncppp *ap = (struct asyncppp *) arg;
497 struct sk_buff *skb;
499 /* process received packets */
500 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
501 if (skb->cb[0])
502 ppp_input_error(&ap->chan, 0);
503 ppp_input(&ap->chan, skb);
506 /* try to push more stuff out */
507 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
508 ppp_output_wakeup(&ap->chan);
512 * Procedures for encapsulation and framing.
516 * Procedure to encode the data for async serial transmission.
517 * Does octet stuffing (escaping), puts the address/control bytes
518 * on if A/C compression is disabled, and does protocol compression.
519 * Assumes ap->tpkt != 0 on entry.
520 * Returns 1 if we finished the current frame, 0 otherwise.
523 #define PUT_BYTE(ap, buf, c, islcp) do { \
524 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
525 *buf++ = PPP_ESCAPE; \
526 *buf++ = c ^ 0x20; \
527 } else \
528 *buf++ = c; \
529 } while (0)
531 static int
532 ppp_async_encode(struct asyncppp *ap)
534 int fcs, i, count, c, proto;
535 unsigned char *buf, *buflim;
536 unsigned char *data;
537 int islcp;
539 buf = ap->obuf;
540 ap->olim = buf;
541 ap->optr = buf;
542 i = ap->tpkt_pos;
543 data = ap->tpkt->data;
544 count = ap->tpkt->len;
545 fcs = ap->tfcs;
546 proto = (data[0] << 8) + data[1];
549 * LCP packets with code values between 1 (configure-reqest)
550 * and 7 (code-reject) must be sent as though no options
551 * had been negotiated.
553 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
555 if (i == 0) {
556 if (islcp)
557 async_lcp_peek(ap, data, count, 0);
560 * Start of a new packet - insert the leading FLAG
561 * character if necessary.
563 if (islcp || flag_time == 0
564 || time_after_eq(jiffies, ap->last_xmit + flag_time))
565 *buf++ = PPP_FLAG;
566 ap->last_xmit = jiffies;
567 fcs = PPP_INITFCS;
570 * Put in the address/control bytes if necessary
572 if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
573 PUT_BYTE(ap, buf, 0xff, islcp);
574 fcs = PPP_FCS(fcs, 0xff);
575 PUT_BYTE(ap, buf, 0x03, islcp);
576 fcs = PPP_FCS(fcs, 0x03);
581 * Once we put in the last byte, we need to put in the FCS
582 * and closing flag, so make sure there is at least 7 bytes
583 * of free space in the output buffer.
585 buflim = ap->obuf + OBUFSIZE - 6;
586 while (i < count && buf < buflim) {
587 c = data[i++];
588 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
589 continue; /* compress protocol field */
590 fcs = PPP_FCS(fcs, c);
591 PUT_BYTE(ap, buf, c, islcp);
594 if (i < count) {
596 * Remember where we are up to in this packet.
598 ap->olim = buf;
599 ap->tpkt_pos = i;
600 ap->tfcs = fcs;
601 return 0;
605 * We have finished the packet. Add the FCS and flag.
607 fcs = ~fcs;
608 c = fcs & 0xff;
609 PUT_BYTE(ap, buf, c, islcp);
610 c = (fcs >> 8) & 0xff;
611 PUT_BYTE(ap, buf, c, islcp);
612 *buf++ = PPP_FLAG;
613 ap->olim = buf;
615 kfree_skb(ap->tpkt);
616 ap->tpkt = NULL;
617 return 1;
621 * Transmit-side routines.
625 * Send a packet to the peer over an async tty line.
626 * Returns 1 iff the packet was accepted.
627 * If the packet was not accepted, we will call ppp_output_wakeup
628 * at some later time.
630 static int
631 ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
633 struct asyncppp *ap = chan->private;
635 ppp_async_push(ap);
637 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
638 return 0; /* already full */
639 ap->tpkt = skb;
640 ap->tpkt_pos = 0;
642 ppp_async_push(ap);
643 return 1;
647 * Push as much data as possible out to the tty.
649 static int
650 ppp_async_push(struct asyncppp *ap)
652 int avail, sent, done = 0;
653 struct tty_struct *tty = ap->tty;
654 int tty_stuffed = 0;
657 * We can get called recursively here if the tty write
658 * function calls our wakeup function. This can happen
659 * for example on a pty with both the master and slave
660 * set to PPP line discipline.
661 * We use the XMIT_BUSY bit to detect this and get out,
662 * leaving the XMIT_WAKEUP bit set to tell the other
663 * instance that it may now be able to write more now.
665 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
666 return 0;
667 spin_lock_bh(&ap->xmit_lock);
668 for (;;) {
669 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
670 tty_stuffed = 0;
671 if (!tty_stuffed && ap->optr < ap->olim) {
672 avail = ap->olim - ap->optr;
673 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
674 sent = tty->ops->write(tty, ap->optr, avail);
675 if (sent < 0)
676 goto flush; /* error, e.g. loss of CD */
677 ap->optr += sent;
678 if (sent < avail)
679 tty_stuffed = 1;
680 continue;
682 if (ap->optr >= ap->olim && ap->tpkt) {
683 if (ppp_async_encode(ap)) {
684 /* finished processing ap->tpkt */
685 clear_bit(XMIT_FULL, &ap->xmit_flags);
686 done = 1;
688 continue;
691 * We haven't made any progress this time around.
692 * Clear XMIT_BUSY to let other callers in, but
693 * after doing so we have to check if anyone set
694 * XMIT_WAKEUP since we last checked it. If they
695 * did, we should try again to set XMIT_BUSY and go
696 * around again in case XMIT_BUSY was still set when
697 * the other caller tried.
699 clear_bit(XMIT_BUSY, &ap->xmit_flags);
700 /* any more work to do? if not, exit the loop */
701 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags)
702 || (!tty_stuffed && ap->tpkt)))
703 break;
704 /* more work to do, see if we can do it now */
705 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
706 break;
708 spin_unlock_bh(&ap->xmit_lock);
709 return done;
711 flush:
712 clear_bit(XMIT_BUSY, &ap->xmit_flags);
713 if (ap->tpkt) {
714 kfree_skb(ap->tpkt);
715 ap->tpkt = NULL;
716 clear_bit(XMIT_FULL, &ap->xmit_flags);
717 done = 1;
719 ap->optr = ap->olim;
720 spin_unlock_bh(&ap->xmit_lock);
721 return done;
725 * Flush output from our internal buffers.
726 * Called for the TCFLSH ioctl. Can be entered in parallel
727 * but this is covered by the xmit_lock.
729 static void
730 ppp_async_flush_output(struct asyncppp *ap)
732 int done = 0;
734 spin_lock_bh(&ap->xmit_lock);
735 ap->optr = ap->olim;
736 if (ap->tpkt != NULL) {
737 kfree_skb(ap->tpkt);
738 ap->tpkt = NULL;
739 clear_bit(XMIT_FULL, &ap->xmit_flags);
740 done = 1;
742 spin_unlock_bh(&ap->xmit_lock);
743 if (done)
744 ppp_output_wakeup(&ap->chan);
748 * Receive-side routines.
751 /* see how many ordinary chars there are at the start of buf */
752 static inline int
753 scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
755 int i, c;
757 for (i = 0; i < count; ++i) {
758 c = buf[i];
759 if (c == PPP_ESCAPE || c == PPP_FLAG
760 || (c < 0x20 && (ap->raccm & (1 << c)) != 0))
761 break;
763 return i;
766 /* called when a flag is seen - do end-of-packet processing */
767 static void
768 process_input_packet(struct asyncppp *ap)
770 struct sk_buff *skb;
771 unsigned char *p;
772 unsigned int len, fcs, proto;
774 skb = ap->rpkt;
775 if (ap->state & (SC_TOSS | SC_ESCAPE))
776 goto err;
778 if (skb == NULL)
779 return; /* 0-length packet */
781 /* check the FCS */
782 p = skb->data;
783 len = skb->len;
784 if (len < 3)
785 goto err; /* too short */
786 fcs = PPP_INITFCS;
787 for (; len > 0; --len)
788 fcs = PPP_FCS(fcs, *p++);
789 if (fcs != PPP_GOODFCS)
790 goto err; /* bad FCS */
791 skb_trim(skb, skb->len - 2);
793 /* check for address/control and protocol compression */
794 p = skb->data;
795 if (p[0] == PPP_ALLSTATIONS) {
796 /* chop off address/control */
797 if (p[1] != PPP_UI || skb->len < 3)
798 goto err;
799 p = skb_pull(skb, 2);
801 proto = p[0];
802 if (proto & 1) {
803 /* protocol is compressed */
804 skb_push(skb, 1)[0] = 0;
805 } else {
806 if (skb->len < 2)
807 goto err;
808 proto = (proto << 8) + p[1];
809 if (proto == PPP_LCP)
810 async_lcp_peek(ap, p, skb->len, 1);
813 /* queue the frame to be processed */
814 skb->cb[0] = ap->state;
815 skb_queue_tail(&ap->rqueue, skb);
816 ap->rpkt = NULL;
817 ap->state = 0;
818 return;
820 err:
821 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
822 ap->state = SC_PREV_ERROR;
823 if (skb) {
824 /* make skb appear as freshly allocated */
825 skb_trim(skb, 0);
826 skb_reserve(skb, - skb_headroom(skb));
830 /* Called when the tty driver has data for us. Runs parallel with the
831 other ldisc functions but will not be re-entered */
833 static void
834 ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
835 char *flags, int count)
837 struct sk_buff *skb;
838 int c, i, j, n, s, f;
839 unsigned char *sp;
841 /* update bits used for 8-bit cleanness detection */
842 if (~ap->rbits & SC_RCV_BITS) {
843 s = 0;
844 for (i = 0; i < count; ++i) {
845 c = buf[i];
846 if (flags && flags[i] != 0)
847 continue;
848 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
849 c = ((c >> 4) ^ c) & 0xf;
850 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
852 ap->rbits |= s;
855 while (count > 0) {
856 /* scan through and see how many chars we can do in bulk */
857 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
858 n = 1;
859 else
860 n = scan_ordinary(ap, buf, count);
862 f = 0;
863 if (flags && (ap->state & SC_TOSS) == 0) {
864 /* check the flags to see if any char had an error */
865 for (j = 0; j < n; ++j)
866 if ((f = flags[j]) != 0)
867 break;
869 if (f != 0) {
870 /* start tossing */
871 ap->state |= SC_TOSS;
873 } else if (n > 0 && (ap->state & SC_TOSS) == 0) {
874 /* stuff the chars in the skb */
875 skb = ap->rpkt;
876 if (!skb) {
877 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
878 if (!skb)
879 goto nomem;
880 ap->rpkt = skb;
882 if (skb->len == 0) {
883 /* Try to get the payload 4-byte aligned.
884 * This should match the
885 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
886 * process_input_packet, but we do not have
887 * enough chars here to test buf[1] and buf[2].
889 if (buf[0] != PPP_ALLSTATIONS)
890 skb_reserve(skb, 2 + (buf[0] & 1));
892 if (n > skb_tailroom(skb)) {
893 /* packet overflowed MRU */
894 ap->state |= SC_TOSS;
895 } else {
896 sp = skb_put(skb, n);
897 memcpy(sp, buf, n);
898 if (ap->state & SC_ESCAPE) {
899 sp[0] ^= 0x20;
900 ap->state &= ~SC_ESCAPE;
905 if (n >= count)
906 break;
908 c = buf[n];
909 if (flags != NULL && flags[n] != 0) {
910 ap->state |= SC_TOSS;
911 } else if (c == PPP_FLAG) {
912 process_input_packet(ap);
913 } else if (c == PPP_ESCAPE) {
914 ap->state |= SC_ESCAPE;
915 } else if (I_IXON(ap->tty)) {
916 if (c == START_CHAR(ap->tty))
917 start_tty(ap->tty);
918 else if (c == STOP_CHAR(ap->tty))
919 stop_tty(ap->tty);
921 /* otherwise it's a char in the recv ACCM */
922 ++n;
924 buf += n;
925 if (flags)
926 flags += n;
927 count -= n;
929 return;
931 nomem:
932 printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
933 ap->state |= SC_TOSS;
937 * We look at LCP frames going past so that we can notice
938 * and react to the LCP configure-ack from the peer.
939 * In the situation where the peer has been sent a configure-ack
940 * already, LCP is up once it has sent its configure-ack
941 * so the immediately following packet can be sent with the
942 * configured LCP options. This allows us to process the following
943 * packet correctly without pppd needing to respond quickly.
945 * We only respond to the received configure-ack if we have just
946 * sent a configure-request, and the configure-ack contains the
947 * same data (this is checked using a 16-bit crc of the data).
949 #define CONFREQ 1 /* LCP code field values */
950 #define CONFACK 2
951 #define LCP_MRU 1 /* LCP option numbers */
952 #define LCP_ASYNCMAP 2
954 static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
955 int len, int inbound)
957 int dlen, fcs, i, code;
958 u32 val;
960 data += 2; /* skip protocol bytes */
961 len -= 2;
962 if (len < 4) /* 4 = code, ID, length */
963 return;
964 code = data[0];
965 if (code != CONFACK && code != CONFREQ)
966 return;
967 dlen = (data[2] << 8) + data[3];
968 if (len < dlen)
969 return; /* packet got truncated or length is bogus */
971 if (code == (inbound? CONFACK: CONFREQ)) {
973 * sent confreq or received confack:
974 * calculate the crc of the data from the ID field on.
976 fcs = PPP_INITFCS;
977 for (i = 1; i < dlen; ++i)
978 fcs = PPP_FCS(fcs, data[i]);
980 if (!inbound) {
981 /* outbound confreq - remember the crc for later */
982 ap->lcp_fcs = fcs;
983 return;
986 /* received confack, check the crc */
987 fcs ^= ap->lcp_fcs;
988 ap->lcp_fcs = -1;
989 if (fcs != 0)
990 return;
991 } else if (inbound)
992 return; /* not interested in received confreq */
994 /* process the options in the confack */
995 data += 4;
996 dlen -= 4;
997 /* data[0] is code, data[1] is length */
998 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
999 switch (data[0]) {
1000 case LCP_MRU:
1001 val = (data[2] << 8) + data[3];
1002 if (inbound)
1003 ap->mru = val;
1004 else
1005 ap->chan.mtu = val;
1006 break;
1007 case LCP_ASYNCMAP:
1008 val = (data[2] << 24) + (data[3] << 16)
1009 + (data[4] << 8) + data[5];
1010 if (inbound)
1011 ap->raccm = val;
1012 else
1013 ap->xaccm[0] = val;
1014 break;
1016 dlen -= data[1];
1017 data += data[1];
1021 static void __exit ppp_async_cleanup(void)
1023 if (tty_unregister_ldisc(N_PPP) != 0)
1024 printk(KERN_ERR "failed to unregister PPP line discipline\n");
1027 module_init(ppp_async_init);
1028 module_exit(ppp_async_cleanup);