MERGE-master-patchset-edits
[linux-2.6/openmoko-kernel.git] / arch / x86 / kernel / ftrace.c
blob1b43086b097a8489a85adcd41a3336fb0cde4f88
1 /*
2 * Code for replacing ftrace calls with jumps.
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6 * Thanks goes to Ingo Molnar, for suggesting the idea.
7 * Mathieu Desnoyers, for suggesting postponing the modifications.
8 * Arjan van de Ven, for keeping me straight, and explaining to me
9 * the dangers of modifying code on the run.
12 #include <linux/spinlock.h>
13 #include <linux/hardirq.h>
14 #include <linux/uaccess.h>
15 #include <linux/ftrace.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
21 #include <asm/ftrace.h>
22 #include <linux/ftrace.h>
23 #include <asm/nops.h>
24 #include <asm/nmi.h>
27 #ifdef CONFIG_DYNAMIC_FTRACE
29 union ftrace_code_union {
30 char code[MCOUNT_INSN_SIZE];
31 struct {
32 char e8;
33 int offset;
34 } __attribute__((packed));
37 static int ftrace_calc_offset(long ip, long addr)
39 return (int)(addr - ip);
42 static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
44 static union ftrace_code_union calc;
46 calc.e8 = 0xe8;
47 calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
50 * No locking needed, this must be called via kstop_machine
51 * which in essence is like running on a uniprocessor machine.
53 return calc.code;
57 * Modifying code must take extra care. On an SMP machine, if
58 * the code being modified is also being executed on another CPU
59 * that CPU will have undefined results and possibly take a GPF.
60 * We use kstop_machine to stop other CPUS from exectuing code.
61 * But this does not stop NMIs from happening. We still need
62 * to protect against that. We separate out the modification of
63 * the code to take care of this.
65 * Two buffers are added: An IP buffer and a "code" buffer.
67 * 1) Put the instruction pointer into the IP buffer
68 * and the new code into the "code" buffer.
69 * 2) Set a flag that says we are modifying code
70 * 3) Wait for any running NMIs to finish.
71 * 4) Write the code
72 * 5) clear the flag.
73 * 6) Wait for any running NMIs to finish.
75 * If an NMI is executed, the first thing it does is to call
76 * "ftrace_nmi_enter". This will check if the flag is set to write
77 * and if it is, it will write what is in the IP and "code" buffers.
79 * The trick is, it does not matter if everyone is writing the same
80 * content to the code location. Also, if a CPU is executing code
81 * it is OK to write to that code location if the contents being written
82 * are the same as what exists.
85 static atomic_t in_nmi = ATOMIC_INIT(0);
86 static int mod_code_status; /* holds return value of text write */
87 static int mod_code_write; /* set when NMI should do the write */
88 static void *mod_code_ip; /* holds the IP to write to */
89 static void *mod_code_newcode; /* holds the text to write to the IP */
91 static unsigned nmi_wait_count;
92 static atomic_t nmi_update_count = ATOMIC_INIT(0);
94 int ftrace_arch_read_dyn_info(char *buf, int size)
96 int r;
98 r = snprintf(buf, size, "%u %u",
99 nmi_wait_count,
100 atomic_read(&nmi_update_count));
101 return r;
104 static void ftrace_mod_code(void)
107 * Yes, more than one CPU process can be writing to mod_code_status.
108 * (and the code itself)
109 * But if one were to fail, then they all should, and if one were
110 * to succeed, then they all should.
112 mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
113 MCOUNT_INSN_SIZE);
116 void ftrace_nmi_enter(void)
118 atomic_inc(&in_nmi);
119 /* Must have in_nmi seen before reading write flag */
120 smp_mb();
121 if (mod_code_write) {
122 ftrace_mod_code();
123 atomic_inc(&nmi_update_count);
127 void ftrace_nmi_exit(void)
129 /* Finish all executions before clearing in_nmi */
130 smp_wmb();
131 atomic_dec(&in_nmi);
134 static void wait_for_nmi(void)
136 int waited = 0;
138 while (atomic_read(&in_nmi)) {
139 waited = 1;
140 cpu_relax();
143 if (waited)
144 nmi_wait_count++;
147 static int
148 do_ftrace_mod_code(unsigned long ip, void *new_code)
150 mod_code_ip = (void *)ip;
151 mod_code_newcode = new_code;
153 /* The buffers need to be visible before we let NMIs write them */
154 smp_wmb();
156 mod_code_write = 1;
158 /* Make sure write bit is visible before we wait on NMIs */
159 smp_mb();
161 wait_for_nmi();
163 /* Make sure all running NMIs have finished before we write the code */
164 smp_mb();
166 ftrace_mod_code();
168 /* Make sure the write happens before clearing the bit */
169 smp_wmb();
171 mod_code_write = 0;
173 /* make sure NMIs see the cleared bit */
174 smp_mb();
176 wait_for_nmi();
178 return mod_code_status;
184 static unsigned char ftrace_nop[MCOUNT_INSN_SIZE];
186 static unsigned char *ftrace_nop_replace(void)
188 return ftrace_nop;
191 static int
192 ftrace_modify_code(unsigned long ip, unsigned char *old_code,
193 unsigned char *new_code)
195 unsigned char replaced[MCOUNT_INSN_SIZE];
198 * Note: Due to modules and __init, code can
199 * disappear and change, we need to protect against faulting
200 * as well as code changing. We do this by using the
201 * probe_kernel_* functions.
203 * No real locking needed, this code is run through
204 * kstop_machine, or before SMP starts.
207 /* read the text we want to modify */
208 if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
209 return -EFAULT;
211 /* Make sure it is what we expect it to be */
212 if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
213 return -EINVAL;
215 /* replace the text with the new text */
216 if (do_ftrace_mod_code(ip, new_code))
217 return -EPERM;
219 sync_core();
221 return 0;
224 int ftrace_make_nop(struct module *mod,
225 struct dyn_ftrace *rec, unsigned long addr)
227 unsigned char *new, *old;
228 unsigned long ip = rec->ip;
230 old = ftrace_call_replace(ip, addr);
231 new = ftrace_nop_replace();
233 return ftrace_modify_code(rec->ip, old, new);
236 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
238 unsigned char *new, *old;
239 unsigned long ip = rec->ip;
241 old = ftrace_nop_replace();
242 new = ftrace_call_replace(ip, addr);
244 return ftrace_modify_code(rec->ip, old, new);
247 int ftrace_update_ftrace_func(ftrace_func_t func)
249 unsigned long ip = (unsigned long)(&ftrace_call);
250 unsigned char old[MCOUNT_INSN_SIZE], *new;
251 int ret;
253 memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
254 new = ftrace_call_replace(ip, (unsigned long)func);
255 ret = ftrace_modify_code(ip, old, new);
257 return ret;
260 int __init ftrace_dyn_arch_init(void *data)
262 extern const unsigned char ftrace_test_p6nop[];
263 extern const unsigned char ftrace_test_nop5[];
264 extern const unsigned char ftrace_test_jmp[];
265 int faulted = 0;
268 * There is no good nop for all x86 archs.
269 * We will default to using the P6_NOP5, but first we
270 * will test to make sure that the nop will actually
271 * work on this CPU. If it faults, we will then
272 * go to a lesser efficient 5 byte nop. If that fails
273 * we then just use a jmp as our nop. This isn't the most
274 * efficient nop, but we can not use a multi part nop
275 * since we would then risk being preempted in the middle
276 * of that nop, and if we enabled tracing then, it might
277 * cause a system crash.
279 * TODO: check the cpuid to determine the best nop.
281 asm volatile (
282 "ftrace_test_jmp:"
283 "jmp ftrace_test_p6nop\n"
284 "nop\n"
285 "nop\n"
286 "nop\n" /* 2 byte jmp + 3 bytes */
287 "ftrace_test_p6nop:"
288 P6_NOP5
289 "jmp 1f\n"
290 "ftrace_test_nop5:"
291 ".byte 0x66,0x66,0x66,0x66,0x90\n"
292 "1:"
293 ".section .fixup, \"ax\"\n"
294 "2: movl $1, %0\n"
295 " jmp ftrace_test_nop5\n"
296 "3: movl $2, %0\n"
297 " jmp 1b\n"
298 ".previous\n"
299 _ASM_EXTABLE(ftrace_test_p6nop, 2b)
300 _ASM_EXTABLE(ftrace_test_nop5, 3b)
301 : "=r"(faulted) : "0" (faulted));
303 switch (faulted) {
304 case 0:
305 pr_info("ftrace: converting mcount calls to 0f 1f 44 00 00\n");
306 memcpy(ftrace_nop, ftrace_test_p6nop, MCOUNT_INSN_SIZE);
307 break;
308 case 1:
309 pr_info("ftrace: converting mcount calls to 66 66 66 66 90\n");
310 memcpy(ftrace_nop, ftrace_test_nop5, MCOUNT_INSN_SIZE);
311 break;
312 case 2:
313 pr_info("ftrace: converting mcount calls to jmp . + 5\n");
314 memcpy(ftrace_nop, ftrace_test_jmp, MCOUNT_INSN_SIZE);
315 break;
318 /* The return code is retured via data */
319 *(unsigned long *)data = 0;
321 return 0;
323 #endif
325 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
327 #ifdef CONFIG_DYNAMIC_FTRACE
328 extern void ftrace_graph_call(void);
330 static int ftrace_mod_jmp(unsigned long ip,
331 int old_offset, int new_offset)
333 unsigned char code[MCOUNT_INSN_SIZE];
335 if (probe_kernel_read(code, (void *)ip, MCOUNT_INSN_SIZE))
336 return -EFAULT;
338 if (code[0] != 0xe9 || old_offset != *(int *)(&code[1]))
339 return -EINVAL;
341 *(int *)(&code[1]) = new_offset;
343 if (do_ftrace_mod_code(ip, &code))
344 return -EPERM;
346 return 0;
349 int ftrace_enable_ftrace_graph_caller(void)
351 unsigned long ip = (unsigned long)(&ftrace_graph_call);
352 int old_offset, new_offset;
354 old_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
355 new_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
357 return ftrace_mod_jmp(ip, old_offset, new_offset);
360 int ftrace_disable_ftrace_graph_caller(void)
362 unsigned long ip = (unsigned long)(&ftrace_graph_call);
363 int old_offset, new_offset;
365 old_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
366 new_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
368 return ftrace_mod_jmp(ip, old_offset, new_offset);
371 #else /* CONFIG_DYNAMIC_FTRACE */
374 * These functions are picked from those used on
375 * this page for dynamic ftrace. They have been
376 * simplified to ignore all traces in NMI context.
378 static atomic_t in_nmi;
380 void ftrace_nmi_enter(void)
382 atomic_inc(&in_nmi);
385 void ftrace_nmi_exit(void)
387 atomic_dec(&in_nmi);
390 #endif /* !CONFIG_DYNAMIC_FTRACE */
392 /* Add a function return address to the trace stack on thread info.*/
393 static int push_return_trace(unsigned long ret, unsigned long long time,
394 unsigned long func, int *depth)
396 int index;
398 if (!current->ret_stack)
399 return -EBUSY;
401 /* The return trace stack is full */
402 if (current->curr_ret_stack == FTRACE_RETFUNC_DEPTH - 1) {
403 atomic_inc(&current->trace_overrun);
404 return -EBUSY;
407 index = ++current->curr_ret_stack;
408 barrier();
409 current->ret_stack[index].ret = ret;
410 current->ret_stack[index].func = func;
411 current->ret_stack[index].calltime = time;
412 *depth = index;
414 return 0;
417 /* Retrieve a function return address to the trace stack on thread info.*/
418 static void pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret)
420 int index;
422 index = current->curr_ret_stack;
424 if (unlikely(index < 0)) {
425 ftrace_graph_stop();
426 WARN_ON(1);
427 /* Might as well panic, otherwise we have no where to go */
428 *ret = (unsigned long)panic;
429 return;
432 *ret = current->ret_stack[index].ret;
433 trace->func = current->ret_stack[index].func;
434 trace->calltime = current->ret_stack[index].calltime;
435 trace->overrun = atomic_read(&current->trace_overrun);
436 trace->depth = index;
437 barrier();
438 current->curr_ret_stack--;
443 * Send the trace to the ring-buffer.
444 * @return the original return address.
446 unsigned long ftrace_return_to_handler(void)
448 struct ftrace_graph_ret trace;
449 unsigned long ret;
451 pop_return_trace(&trace, &ret);
452 trace.rettime = cpu_clock(raw_smp_processor_id());
453 ftrace_graph_return(&trace);
455 if (unlikely(!ret)) {
456 ftrace_graph_stop();
457 WARN_ON(1);
458 /* Might as well panic. What else to do? */
459 ret = (unsigned long)panic;
462 return ret;
466 * Hook the return address and push it in the stack of return addrs
467 * in current thread info.
469 void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr)
471 unsigned long old;
472 unsigned long long calltime;
473 int faulted;
474 struct ftrace_graph_ent trace;
475 unsigned long return_hooker = (unsigned long)
476 &return_to_handler;
478 /* Nmi's are currently unsupported */
479 if (unlikely(atomic_read(&in_nmi)))
480 return;
482 if (unlikely(atomic_read(&current->tracing_graph_pause)))
483 return;
486 * Protect against fault, even if it shouldn't
487 * happen. This tool is too much intrusive to
488 * ignore such a protection.
490 asm volatile(
491 "1: " _ASM_MOV " (%[parent_old]), %[old]\n"
492 "2: " _ASM_MOV " %[return_hooker], (%[parent_replaced])\n"
493 " movl $0, %[faulted]\n"
495 ".section .fixup, \"ax\"\n"
496 "3: movl $1, %[faulted]\n"
497 ".previous\n"
499 _ASM_EXTABLE(1b, 3b)
500 _ASM_EXTABLE(2b, 3b)
502 : [parent_replaced] "=r" (parent), [old] "=r" (old),
503 [faulted] "=r" (faulted)
504 : [parent_old] "0" (parent), [return_hooker] "r" (return_hooker)
505 : "memory"
508 if (unlikely(faulted)) {
509 ftrace_graph_stop();
510 WARN_ON(1);
511 return;
514 if (unlikely(!__kernel_text_address(old))) {
515 ftrace_graph_stop();
516 *parent = old;
517 WARN_ON(1);
518 return;
521 calltime = cpu_clock(raw_smp_processor_id());
523 if (push_return_trace(old, calltime,
524 self_addr, &trace.depth) == -EBUSY) {
525 *parent = old;
526 return;
529 trace.func = self_addr;
531 /* Only trace if the calling function expects to */
532 if (!ftrace_graph_entry(&trace)) {
533 current->curr_ret_stack--;
534 *parent = old;
537 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */