USB: make usbdevices export their device nodes instead of using a separate class
[linux-2.6/openmoko-kernel.git] / drivers / usb / core / message.c
blobda4ee07e0094c59d17e96166abe1ff346f23ea6b
1 /*
2 * message.c - synchronous message handling
3 */
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/usb/quirks.h>
15 #include <asm/byteorder.h>
16 #include <asm/scatterlist.h>
18 #include "hcd.h" /* for usbcore internals */
19 #include "usb.h"
21 static void usb_api_blocking_completion(struct urb *urb)
23 complete((struct completion *)urb->context);
28 * Starts urb and waits for completion or timeout. Note that this call
29 * is NOT interruptible. Many device driver i/o requests should be
30 * interruptible and therefore these drivers should implement their
31 * own interruptible routines.
33 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
35 struct completion done;
36 unsigned long expire;
37 int status;
39 init_completion(&done);
40 urb->context = &done;
41 urb->actual_length = 0;
42 status = usb_submit_urb(urb, GFP_NOIO);
43 if (unlikely(status))
44 goto out;
46 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
47 if (!wait_for_completion_timeout(&done, expire)) {
49 dev_dbg(&urb->dev->dev,
50 "%s timed out on ep%d%s len=%d/%d\n",
51 current->comm,
52 usb_pipeendpoint(urb->pipe),
53 usb_pipein(urb->pipe) ? "in" : "out",
54 urb->actual_length,
55 urb->transfer_buffer_length);
57 usb_kill_urb(urb);
58 status = urb->status == -ENOENT ? -ETIMEDOUT : urb->status;
59 } else
60 status = urb->status;
61 out:
62 if (actual_length)
63 *actual_length = urb->actual_length;
65 usb_free_urb(urb);
66 return status;
69 /*-------------------------------------------------------------------*/
70 // returns status (negative) or length (positive)
71 static int usb_internal_control_msg(struct usb_device *usb_dev,
72 unsigned int pipe,
73 struct usb_ctrlrequest *cmd,
74 void *data, int len, int timeout)
76 struct urb *urb;
77 int retv;
78 int length;
80 urb = usb_alloc_urb(0, GFP_NOIO);
81 if (!urb)
82 return -ENOMEM;
84 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
85 len, usb_api_blocking_completion, NULL);
87 retv = usb_start_wait_urb(urb, timeout, &length);
88 if (retv < 0)
89 return retv;
90 else
91 return length;
94 /**
95 * usb_control_msg - Builds a control urb, sends it off and waits for completion
96 * @dev: pointer to the usb device to send the message to
97 * @pipe: endpoint "pipe" to send the message to
98 * @request: USB message request value
99 * @requesttype: USB message request type value
100 * @value: USB message value
101 * @index: USB message index value
102 * @data: pointer to the data to send
103 * @size: length in bytes of the data to send
104 * @timeout: time in msecs to wait for the message to complete before
105 * timing out (if 0 the wait is forever)
106 * Context: !in_interrupt ()
108 * This function sends a simple control message to a specified endpoint
109 * and waits for the message to complete, or timeout.
111 * If successful, it returns the number of bytes transferred, otherwise a negative error number.
113 * Don't use this function from within an interrupt context, like a
114 * bottom half handler. If you need an asynchronous message, or need to send
115 * a message from within interrupt context, use usb_submit_urb()
116 * If a thread in your driver uses this call, make sure your disconnect()
117 * method can wait for it to complete. Since you don't have a handle on
118 * the URB used, you can't cancel the request.
120 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
121 __u16 value, __u16 index, void *data, __u16 size, int timeout)
123 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
124 int ret;
126 if (!dr)
127 return -ENOMEM;
129 dr->bRequestType= requesttype;
130 dr->bRequest = request;
131 dr->wValue = cpu_to_le16p(&value);
132 dr->wIndex = cpu_to_le16p(&index);
133 dr->wLength = cpu_to_le16p(&size);
135 //dbg("usb_control_msg");
137 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
139 kfree(dr);
141 return ret;
146 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
147 * @usb_dev: pointer to the usb device to send the message to
148 * @pipe: endpoint "pipe" to send the message to
149 * @data: pointer to the data to send
150 * @len: length in bytes of the data to send
151 * @actual_length: pointer to a location to put the actual length transferred in bytes
152 * @timeout: time in msecs to wait for the message to complete before
153 * timing out (if 0 the wait is forever)
154 * Context: !in_interrupt ()
156 * This function sends a simple interrupt message to a specified endpoint and
157 * waits for the message to complete, or timeout.
159 * If successful, it returns 0, otherwise a negative error number. The number
160 * of actual bytes transferred will be stored in the actual_length paramater.
162 * Don't use this function from within an interrupt context, like a bottom half
163 * handler. If you need an asynchronous message, or need to send a message
164 * from within interrupt context, use usb_submit_urb() If a thread in your
165 * driver uses this call, make sure your disconnect() method can wait for it to
166 * complete. Since you don't have a handle on the URB used, you can't cancel
167 * the request.
169 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
170 void *data, int len, int *actual_length, int timeout)
172 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
174 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
177 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
178 * @usb_dev: pointer to the usb device to send the message to
179 * @pipe: endpoint "pipe" to send the message to
180 * @data: pointer to the data to send
181 * @len: length in bytes of the data to send
182 * @actual_length: pointer to a location to put the actual length transferred in bytes
183 * @timeout: time in msecs to wait for the message to complete before
184 * timing out (if 0 the wait is forever)
185 * Context: !in_interrupt ()
187 * This function sends a simple bulk message to a specified endpoint
188 * and waits for the message to complete, or timeout.
190 * If successful, it returns 0, otherwise a negative error number.
191 * The number of actual bytes transferred will be stored in the
192 * actual_length paramater.
194 * Don't use this function from within an interrupt context, like a
195 * bottom half handler. If you need an asynchronous message, or need to
196 * send a message from within interrupt context, use usb_submit_urb()
197 * If a thread in your driver uses this call, make sure your disconnect()
198 * method can wait for it to complete. Since you don't have a handle on
199 * the URB used, you can't cancel the request.
201 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
202 * ioctl, users are forced to abuse this routine by using it to submit
203 * URBs for interrupt endpoints. We will take the liberty of creating
204 * an interrupt URB (with the default interval) if the target is an
205 * interrupt endpoint.
207 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
208 void *data, int len, int *actual_length, int timeout)
210 struct urb *urb;
211 struct usb_host_endpoint *ep;
213 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
214 [usb_pipeendpoint(pipe)];
215 if (!ep || len < 0)
216 return -EINVAL;
218 urb = usb_alloc_urb(0, GFP_KERNEL);
219 if (!urb)
220 return -ENOMEM;
222 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
223 USB_ENDPOINT_XFER_INT) {
224 int interval;
226 if (usb_dev->speed == USB_SPEED_HIGH)
227 interval = 1 << min(15, ep->desc.bInterval - 1);
228 else
229 interval = ep->desc.bInterval;
230 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
231 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
232 usb_api_blocking_completion, NULL, interval);
233 } else
234 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
235 usb_api_blocking_completion, NULL);
237 return usb_start_wait_urb(urb, timeout, actual_length);
240 /*-------------------------------------------------------------------*/
242 static void sg_clean (struct usb_sg_request *io)
244 if (io->urbs) {
245 while (io->entries--)
246 usb_free_urb (io->urbs [io->entries]);
247 kfree (io->urbs);
248 io->urbs = NULL;
250 if (io->dev->dev.dma_mask != NULL)
251 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
252 io->dev = NULL;
255 static void sg_complete (struct urb *urb)
257 struct usb_sg_request *io = urb->context;
259 spin_lock (&io->lock);
261 /* In 2.5 we require hcds' endpoint queues not to progress after fault
262 * reports, until the completion callback (this!) returns. That lets
263 * device driver code (like this routine) unlink queued urbs first,
264 * if it needs to, since the HC won't work on them at all. So it's
265 * not possible for page N+1 to overwrite page N, and so on.
267 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
268 * complete before the HCD can get requests away from hardware,
269 * though never during cleanup after a hard fault.
271 if (io->status
272 && (io->status != -ECONNRESET
273 || urb->status != -ECONNRESET)
274 && urb->actual_length) {
275 dev_err (io->dev->bus->controller,
276 "dev %s ep%d%s scatterlist error %d/%d\n",
277 io->dev->devpath,
278 usb_pipeendpoint (urb->pipe),
279 usb_pipein (urb->pipe) ? "in" : "out",
280 urb->status, io->status);
281 // BUG ();
284 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
285 int i, found, status;
287 io->status = urb->status;
289 /* the previous urbs, and this one, completed already.
290 * unlink pending urbs so they won't rx/tx bad data.
291 * careful: unlink can sometimes be synchronous...
293 spin_unlock (&io->lock);
294 for (i = 0, found = 0; i < io->entries; i++) {
295 if (!io->urbs [i] || !io->urbs [i]->dev)
296 continue;
297 if (found) {
298 status = usb_unlink_urb (io->urbs [i]);
299 if (status != -EINPROGRESS
300 && status != -ENODEV
301 && status != -EBUSY)
302 dev_err (&io->dev->dev,
303 "%s, unlink --> %d\n",
304 __FUNCTION__, status);
305 } else if (urb == io->urbs [i])
306 found = 1;
308 spin_lock (&io->lock);
310 urb->dev = NULL;
312 /* on the last completion, signal usb_sg_wait() */
313 io->bytes += urb->actual_length;
314 io->count--;
315 if (!io->count)
316 complete (&io->complete);
318 spin_unlock (&io->lock);
323 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
324 * @io: request block being initialized. until usb_sg_wait() returns,
325 * treat this as a pointer to an opaque block of memory,
326 * @dev: the usb device that will send or receive the data
327 * @pipe: endpoint "pipe" used to transfer the data
328 * @period: polling rate for interrupt endpoints, in frames or
329 * (for high speed endpoints) microframes; ignored for bulk
330 * @sg: scatterlist entries
331 * @nents: how many entries in the scatterlist
332 * @length: how many bytes to send from the scatterlist, or zero to
333 * send every byte identified in the list.
334 * @mem_flags: SLAB_* flags affecting memory allocations in this call
336 * Returns zero for success, else a negative errno value. This initializes a
337 * scatter/gather request, allocating resources such as I/O mappings and urb
338 * memory (except maybe memory used by USB controller drivers).
340 * The request must be issued using usb_sg_wait(), which waits for the I/O to
341 * complete (or to be canceled) and then cleans up all resources allocated by
342 * usb_sg_init().
344 * The request may be canceled with usb_sg_cancel(), either before or after
345 * usb_sg_wait() is called.
347 int usb_sg_init (
348 struct usb_sg_request *io,
349 struct usb_device *dev,
350 unsigned pipe,
351 unsigned period,
352 struct scatterlist *sg,
353 int nents,
354 size_t length,
355 gfp_t mem_flags
358 int i;
359 int urb_flags;
360 int dma;
362 if (!io || !dev || !sg
363 || usb_pipecontrol (pipe)
364 || usb_pipeisoc (pipe)
365 || nents <= 0)
366 return -EINVAL;
368 spin_lock_init (&io->lock);
369 io->dev = dev;
370 io->pipe = pipe;
371 io->sg = sg;
372 io->nents = nents;
374 /* not all host controllers use DMA (like the mainstream pci ones);
375 * they can use PIO (sl811) or be software over another transport.
377 dma = (dev->dev.dma_mask != NULL);
378 if (dma)
379 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
380 else
381 io->entries = nents;
383 /* initialize all the urbs we'll use */
384 if (io->entries <= 0)
385 return io->entries;
387 io->count = io->entries;
388 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
389 if (!io->urbs)
390 goto nomem;
392 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
393 if (usb_pipein (pipe))
394 urb_flags |= URB_SHORT_NOT_OK;
396 for (i = 0; i < io->entries; i++) {
397 unsigned len;
399 io->urbs [i] = usb_alloc_urb (0, mem_flags);
400 if (!io->urbs [i]) {
401 io->entries = i;
402 goto nomem;
405 io->urbs [i]->dev = NULL;
406 io->urbs [i]->pipe = pipe;
407 io->urbs [i]->interval = period;
408 io->urbs [i]->transfer_flags = urb_flags;
410 io->urbs [i]->complete = sg_complete;
411 io->urbs [i]->context = io;
412 io->urbs [i]->status = -EINPROGRESS;
413 io->urbs [i]->actual_length = 0;
415 if (dma) {
416 /* hc may use _only_ transfer_dma */
417 io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
418 len = sg_dma_len (sg + i);
419 } else {
420 /* hc may use _only_ transfer_buffer */
421 io->urbs [i]->transfer_buffer =
422 page_address (sg [i].page) + sg [i].offset;
423 len = sg [i].length;
426 if (length) {
427 len = min_t (unsigned, len, length);
428 length -= len;
429 if (length == 0)
430 io->entries = i + 1;
432 io->urbs [i]->transfer_buffer_length = len;
434 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
436 /* transaction state */
437 io->status = 0;
438 io->bytes = 0;
439 init_completion (&io->complete);
440 return 0;
442 nomem:
443 sg_clean (io);
444 return -ENOMEM;
449 * usb_sg_wait - synchronously execute scatter/gather request
450 * @io: request block handle, as initialized with usb_sg_init().
451 * some fields become accessible when this call returns.
452 * Context: !in_interrupt ()
454 * This function blocks until the specified I/O operation completes. It
455 * leverages the grouping of the related I/O requests to get good transfer
456 * rates, by queueing the requests. At higher speeds, such queuing can
457 * significantly improve USB throughput.
459 * There are three kinds of completion for this function.
460 * (1) success, where io->status is zero. The number of io->bytes
461 * transferred is as requested.
462 * (2) error, where io->status is a negative errno value. The number
463 * of io->bytes transferred before the error is usually less
464 * than requested, and can be nonzero.
465 * (3) cancellation, a type of error with status -ECONNRESET that
466 * is initiated by usb_sg_cancel().
468 * When this function returns, all memory allocated through usb_sg_init() or
469 * this call will have been freed. The request block parameter may still be
470 * passed to usb_sg_cancel(), or it may be freed. It could also be
471 * reinitialized and then reused.
473 * Data Transfer Rates:
475 * Bulk transfers are valid for full or high speed endpoints.
476 * The best full speed data rate is 19 packets of 64 bytes each
477 * per frame, or 1216 bytes per millisecond.
478 * The best high speed data rate is 13 packets of 512 bytes each
479 * per microframe, or 52 KBytes per millisecond.
481 * The reason to use interrupt transfers through this API would most likely
482 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
483 * could be transferred. That capability is less useful for low or full
484 * speed interrupt endpoints, which allow at most one packet per millisecond,
485 * of at most 8 or 64 bytes (respectively).
487 void usb_sg_wait (struct usb_sg_request *io)
489 int i, entries = io->entries;
491 /* queue the urbs. */
492 spin_lock_irq (&io->lock);
493 for (i = 0; i < entries && !io->status; i++) {
494 int retval;
496 io->urbs [i]->dev = io->dev;
497 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC);
499 /* after we submit, let completions or cancelations fire;
500 * we handshake using io->status.
502 spin_unlock_irq (&io->lock);
503 switch (retval) {
504 /* maybe we retrying will recover */
505 case -ENXIO: // hc didn't queue this one
506 case -EAGAIN:
507 case -ENOMEM:
508 io->urbs[i]->dev = NULL;
509 retval = 0;
510 i--;
511 yield ();
512 break;
514 /* no error? continue immediately.
516 * NOTE: to work better with UHCI (4K I/O buffer may
517 * need 3K of TDs) it may be good to limit how many
518 * URBs are queued at once; N milliseconds?
520 case 0:
521 cpu_relax ();
522 break;
524 /* fail any uncompleted urbs */
525 default:
526 io->urbs [i]->dev = NULL;
527 io->urbs [i]->status = retval;
528 dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
529 __FUNCTION__, retval);
530 usb_sg_cancel (io);
532 spin_lock_irq (&io->lock);
533 if (retval && (io->status == 0 || io->status == -ECONNRESET))
534 io->status = retval;
536 io->count -= entries - i;
537 if (io->count == 0)
538 complete (&io->complete);
539 spin_unlock_irq (&io->lock);
541 /* OK, yes, this could be packaged as non-blocking.
542 * So could the submit loop above ... but it's easier to
543 * solve neither problem than to solve both!
545 wait_for_completion (&io->complete);
547 sg_clean (io);
551 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
552 * @io: request block, initialized with usb_sg_init()
554 * This stops a request after it has been started by usb_sg_wait().
555 * It can also prevents one initialized by usb_sg_init() from starting,
556 * so that call just frees resources allocated to the request.
558 void usb_sg_cancel (struct usb_sg_request *io)
560 unsigned long flags;
562 spin_lock_irqsave (&io->lock, flags);
564 /* shut everything down, if it didn't already */
565 if (!io->status) {
566 int i;
568 io->status = -ECONNRESET;
569 spin_unlock (&io->lock);
570 for (i = 0; i < io->entries; i++) {
571 int retval;
573 if (!io->urbs [i]->dev)
574 continue;
575 retval = usb_unlink_urb (io->urbs [i]);
576 if (retval != -EINPROGRESS && retval != -EBUSY)
577 dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
578 __FUNCTION__, retval);
580 spin_lock (&io->lock);
582 spin_unlock_irqrestore (&io->lock, flags);
585 /*-------------------------------------------------------------------*/
588 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
589 * @dev: the device whose descriptor is being retrieved
590 * @type: the descriptor type (USB_DT_*)
591 * @index: the number of the descriptor
592 * @buf: where to put the descriptor
593 * @size: how big is "buf"?
594 * Context: !in_interrupt ()
596 * Gets a USB descriptor. Convenience functions exist to simplify
597 * getting some types of descriptors. Use
598 * usb_get_string() or usb_string() for USB_DT_STRING.
599 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
600 * are part of the device structure.
601 * In addition to a number of USB-standard descriptors, some
602 * devices also use class-specific or vendor-specific descriptors.
604 * This call is synchronous, and may not be used in an interrupt context.
606 * Returns the number of bytes received on success, or else the status code
607 * returned by the underlying usb_control_msg() call.
609 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
611 int i;
612 int result;
614 memset(buf,0,size); // Make sure we parse really received data
616 for (i = 0; i < 3; ++i) {
617 /* retry on length 0 or stall; some devices are flakey */
618 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
619 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
620 (type << 8) + index, 0, buf, size,
621 USB_CTRL_GET_TIMEOUT);
622 if (result == 0 || result == -EPIPE)
623 continue;
624 if (result > 1 && ((u8 *)buf)[1] != type) {
625 result = -EPROTO;
626 continue;
628 break;
630 return result;
634 * usb_get_string - gets a string descriptor
635 * @dev: the device whose string descriptor is being retrieved
636 * @langid: code for language chosen (from string descriptor zero)
637 * @index: the number of the descriptor
638 * @buf: where to put the string
639 * @size: how big is "buf"?
640 * Context: !in_interrupt ()
642 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
643 * in little-endian byte order).
644 * The usb_string() function will often be a convenient way to turn
645 * these strings into kernel-printable form.
647 * Strings may be referenced in device, configuration, interface, or other
648 * descriptors, and could also be used in vendor-specific ways.
650 * This call is synchronous, and may not be used in an interrupt context.
652 * Returns the number of bytes received on success, or else the status code
653 * returned by the underlying usb_control_msg() call.
655 static int usb_get_string(struct usb_device *dev, unsigned short langid,
656 unsigned char index, void *buf, int size)
658 int i;
659 int result;
661 for (i = 0; i < 3; ++i) {
662 /* retry on length 0 or stall; some devices are flakey */
663 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
664 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
665 (USB_DT_STRING << 8) + index, langid, buf, size,
666 USB_CTRL_GET_TIMEOUT);
667 if (!(result == 0 || result == -EPIPE))
668 break;
670 return result;
673 static void usb_try_string_workarounds(unsigned char *buf, int *length)
675 int newlength, oldlength = *length;
677 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
678 if (!isprint(buf[newlength]) || buf[newlength + 1])
679 break;
681 if (newlength > 2) {
682 buf[0] = newlength;
683 *length = newlength;
687 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
688 unsigned int index, unsigned char *buf)
690 int rc;
692 /* Try to read the string descriptor by asking for the maximum
693 * possible number of bytes */
694 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
695 rc = -EIO;
696 else
697 rc = usb_get_string(dev, langid, index, buf, 255);
699 /* If that failed try to read the descriptor length, then
700 * ask for just that many bytes */
701 if (rc < 2) {
702 rc = usb_get_string(dev, langid, index, buf, 2);
703 if (rc == 2)
704 rc = usb_get_string(dev, langid, index, buf, buf[0]);
707 if (rc >= 2) {
708 if (!buf[0] && !buf[1])
709 usb_try_string_workarounds(buf, &rc);
711 /* There might be extra junk at the end of the descriptor */
712 if (buf[0] < rc)
713 rc = buf[0];
715 rc = rc - (rc & 1); /* force a multiple of two */
718 if (rc < 2)
719 rc = (rc < 0 ? rc : -EINVAL);
721 return rc;
725 * usb_string - returns ISO 8859-1 version of a string descriptor
726 * @dev: the device whose string descriptor is being retrieved
727 * @index: the number of the descriptor
728 * @buf: where to put the string
729 * @size: how big is "buf"?
730 * Context: !in_interrupt ()
732 * This converts the UTF-16LE encoded strings returned by devices, from
733 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
734 * that are more usable in most kernel contexts. Note that all characters
735 * in the chosen descriptor that can't be encoded using ISO-8859-1
736 * are converted to the question mark ("?") character, and this function
737 * chooses strings in the first language supported by the device.
739 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
740 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
741 * and is appropriate for use many uses of English and several other
742 * Western European languages. (But it doesn't include the "Euro" symbol.)
744 * This call is synchronous, and may not be used in an interrupt context.
746 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
748 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
750 unsigned char *tbuf;
751 int err;
752 unsigned int u, idx;
754 if (dev->state == USB_STATE_SUSPENDED)
755 return -EHOSTUNREACH;
756 if (size <= 0 || !buf || !index)
757 return -EINVAL;
758 buf[0] = 0;
759 tbuf = kmalloc(256, GFP_KERNEL);
760 if (!tbuf)
761 return -ENOMEM;
763 /* get langid for strings if it's not yet known */
764 if (!dev->have_langid) {
765 err = usb_string_sub(dev, 0, 0, tbuf);
766 if (err < 0) {
767 dev_err (&dev->dev,
768 "string descriptor 0 read error: %d\n",
769 err);
770 goto errout;
771 } else if (err < 4) {
772 dev_err (&dev->dev, "string descriptor 0 too short\n");
773 err = -EINVAL;
774 goto errout;
775 } else {
776 dev->have_langid = 1;
777 dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
778 /* always use the first langid listed */
779 dev_dbg (&dev->dev, "default language 0x%04x\n",
780 dev->string_langid);
784 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
785 if (err < 0)
786 goto errout;
788 size--; /* leave room for trailing NULL char in output buffer */
789 for (idx = 0, u = 2; u < err; u += 2) {
790 if (idx >= size)
791 break;
792 if (tbuf[u+1]) /* high byte */
793 buf[idx++] = '?'; /* non ISO-8859-1 character */
794 else
795 buf[idx++] = tbuf[u];
797 buf[idx] = 0;
798 err = idx;
800 if (tbuf[1] != USB_DT_STRING)
801 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
803 errout:
804 kfree(tbuf);
805 return err;
809 * usb_cache_string - read a string descriptor and cache it for later use
810 * @udev: the device whose string descriptor is being read
811 * @index: the descriptor index
813 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
814 * or NULL if the index is 0 or the string could not be read.
816 char *usb_cache_string(struct usb_device *udev, int index)
818 char *buf;
819 char *smallbuf = NULL;
820 int len;
822 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
823 if ((len = usb_string(udev, index, buf, 256)) > 0) {
824 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
825 return buf;
826 memcpy(smallbuf, buf, len);
828 kfree(buf);
830 return smallbuf;
834 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
835 * @dev: the device whose device descriptor is being updated
836 * @size: how much of the descriptor to read
837 * Context: !in_interrupt ()
839 * Updates the copy of the device descriptor stored in the device structure,
840 * which dedicates space for this purpose.
842 * Not exported, only for use by the core. If drivers really want to read
843 * the device descriptor directly, they can call usb_get_descriptor() with
844 * type = USB_DT_DEVICE and index = 0.
846 * This call is synchronous, and may not be used in an interrupt context.
848 * Returns the number of bytes received on success, or else the status code
849 * returned by the underlying usb_control_msg() call.
851 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
853 struct usb_device_descriptor *desc;
854 int ret;
856 if (size > sizeof(*desc))
857 return -EINVAL;
858 desc = kmalloc(sizeof(*desc), GFP_NOIO);
859 if (!desc)
860 return -ENOMEM;
862 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
863 if (ret >= 0)
864 memcpy(&dev->descriptor, desc, size);
865 kfree(desc);
866 return ret;
870 * usb_get_status - issues a GET_STATUS call
871 * @dev: the device whose status is being checked
872 * @type: USB_RECIP_*; for device, interface, or endpoint
873 * @target: zero (for device), else interface or endpoint number
874 * @data: pointer to two bytes of bitmap data
875 * Context: !in_interrupt ()
877 * Returns device, interface, or endpoint status. Normally only of
878 * interest to see if the device is self powered, or has enabled the
879 * remote wakeup facility; or whether a bulk or interrupt endpoint
880 * is halted ("stalled").
882 * Bits in these status bitmaps are set using the SET_FEATURE request,
883 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
884 * function should be used to clear halt ("stall") status.
886 * This call is synchronous, and may not be used in an interrupt context.
888 * Returns the number of bytes received on success, or else the status code
889 * returned by the underlying usb_control_msg() call.
891 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
893 int ret;
894 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
896 if (!status)
897 return -ENOMEM;
899 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
900 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
901 sizeof(*status), USB_CTRL_GET_TIMEOUT);
903 *(u16 *)data = *status;
904 kfree(status);
905 return ret;
909 * usb_clear_halt - tells device to clear endpoint halt/stall condition
910 * @dev: device whose endpoint is halted
911 * @pipe: endpoint "pipe" being cleared
912 * Context: !in_interrupt ()
914 * This is used to clear halt conditions for bulk and interrupt endpoints,
915 * as reported by URB completion status. Endpoints that are halted are
916 * sometimes referred to as being "stalled". Such endpoints are unable
917 * to transmit or receive data until the halt status is cleared. Any URBs
918 * queued for such an endpoint should normally be unlinked by the driver
919 * before clearing the halt condition, as described in sections 5.7.5
920 * and 5.8.5 of the USB 2.0 spec.
922 * Note that control and isochronous endpoints don't halt, although control
923 * endpoints report "protocol stall" (for unsupported requests) using the
924 * same status code used to report a true stall.
926 * This call is synchronous, and may not be used in an interrupt context.
928 * Returns zero on success, or else the status code returned by the
929 * underlying usb_control_msg() call.
931 int usb_clear_halt(struct usb_device *dev, int pipe)
933 int result;
934 int endp = usb_pipeendpoint(pipe);
936 if (usb_pipein (pipe))
937 endp |= USB_DIR_IN;
939 /* we don't care if it wasn't halted first. in fact some devices
940 * (like some ibmcam model 1 units) seem to expect hosts to make
941 * this request for iso endpoints, which can't halt!
943 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
944 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
945 USB_ENDPOINT_HALT, endp, NULL, 0,
946 USB_CTRL_SET_TIMEOUT);
948 /* don't un-halt or force to DATA0 except on success */
949 if (result < 0)
950 return result;
952 /* NOTE: seems like Microsoft and Apple don't bother verifying
953 * the clear "took", so some devices could lock up if you check...
954 * such as the Hagiwara FlashGate DUAL. So we won't bother.
956 * NOTE: make sure the logic here doesn't diverge much from
957 * the copy in usb-storage, for as long as we need two copies.
960 /* toggle was reset by the clear */
961 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
963 return 0;
967 * usb_disable_endpoint -- Disable an endpoint by address
968 * @dev: the device whose endpoint is being disabled
969 * @epaddr: the endpoint's address. Endpoint number for output,
970 * endpoint number + USB_DIR_IN for input
972 * Deallocates hcd/hardware state for this endpoint ... and nukes all
973 * pending urbs.
975 * If the HCD hasn't registered a disable() function, this sets the
976 * endpoint's maxpacket size to 0 to prevent further submissions.
978 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
980 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
981 struct usb_host_endpoint *ep;
983 if (!dev)
984 return;
986 if (usb_endpoint_out(epaddr)) {
987 ep = dev->ep_out[epnum];
988 dev->ep_out[epnum] = NULL;
989 } else {
990 ep = dev->ep_in[epnum];
991 dev->ep_in[epnum] = NULL;
993 if (ep && dev->bus)
994 usb_hcd_endpoint_disable(dev, ep);
998 * usb_disable_interface -- Disable all endpoints for an interface
999 * @dev: the device whose interface is being disabled
1000 * @intf: pointer to the interface descriptor
1002 * Disables all the endpoints for the interface's current altsetting.
1004 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1006 struct usb_host_interface *alt = intf->cur_altsetting;
1007 int i;
1009 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1010 usb_disable_endpoint(dev,
1011 alt->endpoint[i].desc.bEndpointAddress);
1016 * usb_disable_device - Disable all the endpoints for a USB device
1017 * @dev: the device whose endpoints are being disabled
1018 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1020 * Disables all the device's endpoints, potentially including endpoint 0.
1021 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1022 * pending urbs) and usbcore state for the interfaces, so that usbcore
1023 * must usb_set_configuration() before any interfaces could be used.
1025 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1027 int i;
1029 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1030 skip_ep0 ? "non-ep0" : "all");
1031 for (i = skip_ep0; i < 16; ++i) {
1032 usb_disable_endpoint(dev, i);
1033 usb_disable_endpoint(dev, i + USB_DIR_IN);
1035 dev->toggle[0] = dev->toggle[1] = 0;
1037 /* getting rid of interfaces will disconnect
1038 * any drivers bound to them (a key side effect)
1040 if (dev->actconfig) {
1041 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1042 struct usb_interface *interface;
1044 /* remove this interface if it has been registered */
1045 interface = dev->actconfig->interface[i];
1046 if (!device_is_registered(&interface->dev))
1047 continue;
1048 dev_dbg (&dev->dev, "unregistering interface %s\n",
1049 interface->dev.bus_id);
1050 usb_remove_sysfs_intf_files(interface);
1051 device_del (&interface->dev);
1054 /* Now that the interfaces are unbound, nobody should
1055 * try to access them.
1057 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1058 put_device (&dev->actconfig->interface[i]->dev);
1059 dev->actconfig->interface[i] = NULL;
1061 dev->actconfig = NULL;
1062 if (dev->state == USB_STATE_CONFIGURED)
1063 usb_set_device_state(dev, USB_STATE_ADDRESS);
1069 * usb_enable_endpoint - Enable an endpoint for USB communications
1070 * @dev: the device whose interface is being enabled
1071 * @ep: the endpoint
1073 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1074 * For control endpoints, both the input and output sides are handled.
1076 static void
1077 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1079 unsigned int epaddr = ep->desc.bEndpointAddress;
1080 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1081 int is_control;
1083 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1084 == USB_ENDPOINT_XFER_CONTROL);
1085 if (usb_endpoint_out(epaddr) || is_control) {
1086 usb_settoggle(dev, epnum, 1, 0);
1087 dev->ep_out[epnum] = ep;
1089 if (!usb_endpoint_out(epaddr) || is_control) {
1090 usb_settoggle(dev, epnum, 0, 0);
1091 dev->ep_in[epnum] = ep;
1096 * usb_enable_interface - Enable all the endpoints for an interface
1097 * @dev: the device whose interface is being enabled
1098 * @intf: pointer to the interface descriptor
1100 * Enables all the endpoints for the interface's current altsetting.
1102 static void usb_enable_interface(struct usb_device *dev,
1103 struct usb_interface *intf)
1105 struct usb_host_interface *alt = intf->cur_altsetting;
1106 int i;
1108 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1109 usb_enable_endpoint(dev, &alt->endpoint[i]);
1113 * usb_set_interface - Makes a particular alternate setting be current
1114 * @dev: the device whose interface is being updated
1115 * @interface: the interface being updated
1116 * @alternate: the setting being chosen.
1117 * Context: !in_interrupt ()
1119 * This is used to enable data transfers on interfaces that may not
1120 * be enabled by default. Not all devices support such configurability.
1121 * Only the driver bound to an interface may change its setting.
1123 * Within any given configuration, each interface may have several
1124 * alternative settings. These are often used to control levels of
1125 * bandwidth consumption. For example, the default setting for a high
1126 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1127 * while interrupt transfers of up to 3KBytes per microframe are legal.
1128 * Also, isochronous endpoints may never be part of an
1129 * interface's default setting. To access such bandwidth, alternate
1130 * interface settings must be made current.
1132 * Note that in the Linux USB subsystem, bandwidth associated with
1133 * an endpoint in a given alternate setting is not reserved until an URB
1134 * is submitted that needs that bandwidth. Some other operating systems
1135 * allocate bandwidth early, when a configuration is chosen.
1137 * This call is synchronous, and may not be used in an interrupt context.
1138 * Also, drivers must not change altsettings while urbs are scheduled for
1139 * endpoints in that interface; all such urbs must first be completed
1140 * (perhaps forced by unlinking).
1142 * Returns zero on success, or else the status code returned by the
1143 * underlying usb_control_msg() call.
1145 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1147 struct usb_interface *iface;
1148 struct usb_host_interface *alt;
1149 int ret;
1150 int manual = 0;
1152 if (dev->state == USB_STATE_SUSPENDED)
1153 return -EHOSTUNREACH;
1155 iface = usb_ifnum_to_if(dev, interface);
1156 if (!iface) {
1157 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1158 interface);
1159 return -EINVAL;
1162 alt = usb_altnum_to_altsetting(iface, alternate);
1163 if (!alt) {
1164 warn("selecting invalid altsetting %d", alternate);
1165 return -EINVAL;
1168 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1169 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1170 alternate, interface, NULL, 0, 5000);
1172 /* 9.4.10 says devices don't need this and are free to STALL the
1173 * request if the interface only has one alternate setting.
1175 if (ret == -EPIPE && iface->num_altsetting == 1) {
1176 dev_dbg(&dev->dev,
1177 "manual set_interface for iface %d, alt %d\n",
1178 interface, alternate);
1179 manual = 1;
1180 } else if (ret < 0)
1181 return ret;
1183 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1184 * when they implement async or easily-killable versions of this or
1185 * other "should-be-internal" functions (like clear_halt).
1186 * should hcd+usbcore postprocess control requests?
1189 /* prevent submissions using previous endpoint settings */
1190 if (device_is_registered(&iface->dev))
1191 usb_remove_sysfs_intf_files(iface);
1192 usb_disable_interface(dev, iface);
1194 iface->cur_altsetting = alt;
1196 /* If the interface only has one altsetting and the device didn't
1197 * accept the request, we attempt to carry out the equivalent action
1198 * by manually clearing the HALT feature for each endpoint in the
1199 * new altsetting.
1201 if (manual) {
1202 int i;
1204 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1205 unsigned int epaddr =
1206 alt->endpoint[i].desc.bEndpointAddress;
1207 unsigned int pipe =
1208 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1209 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1211 usb_clear_halt(dev, pipe);
1215 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1217 * Note:
1218 * Despite EP0 is always present in all interfaces/AS, the list of
1219 * endpoints from the descriptor does not contain EP0. Due to its
1220 * omnipresence one might expect EP0 being considered "affected" by
1221 * any SetInterface request and hence assume toggles need to be reset.
1222 * However, EP0 toggles are re-synced for every individual transfer
1223 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1224 * (Likewise, EP0 never "halts" on well designed devices.)
1226 usb_enable_interface(dev, iface);
1227 if (device_is_registered(&iface->dev))
1228 usb_create_sysfs_intf_files(iface);
1230 return 0;
1234 * usb_reset_configuration - lightweight device reset
1235 * @dev: the device whose configuration is being reset
1237 * This issues a standard SET_CONFIGURATION request to the device using
1238 * the current configuration. The effect is to reset most USB-related
1239 * state in the device, including interface altsettings (reset to zero),
1240 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1241 * endpoints). Other usbcore state is unchanged, including bindings of
1242 * usb device drivers to interfaces.
1244 * Because this affects multiple interfaces, avoid using this with composite
1245 * (multi-interface) devices. Instead, the driver for each interface may
1246 * use usb_set_interface() on the interfaces it claims. Be careful though;
1247 * some devices don't support the SET_INTERFACE request, and others won't
1248 * reset all the interface state (notably data toggles). Resetting the whole
1249 * configuration would affect other drivers' interfaces.
1251 * The caller must own the device lock.
1253 * Returns zero on success, else a negative error code.
1255 int usb_reset_configuration(struct usb_device *dev)
1257 int i, retval;
1258 struct usb_host_config *config;
1260 if (dev->state == USB_STATE_SUSPENDED)
1261 return -EHOSTUNREACH;
1263 /* caller must have locked the device and must own
1264 * the usb bus readlock (so driver bindings are stable);
1265 * calls during probe() are fine
1268 for (i = 1; i < 16; ++i) {
1269 usb_disable_endpoint(dev, i);
1270 usb_disable_endpoint(dev, i + USB_DIR_IN);
1273 config = dev->actconfig;
1274 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1275 USB_REQ_SET_CONFIGURATION, 0,
1276 config->desc.bConfigurationValue, 0,
1277 NULL, 0, USB_CTRL_SET_TIMEOUT);
1278 if (retval < 0)
1279 return retval;
1281 dev->toggle[0] = dev->toggle[1] = 0;
1283 /* re-init hc/hcd interface/endpoint state */
1284 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1285 struct usb_interface *intf = config->interface[i];
1286 struct usb_host_interface *alt;
1288 if (device_is_registered(&intf->dev))
1289 usb_remove_sysfs_intf_files(intf);
1290 alt = usb_altnum_to_altsetting(intf, 0);
1292 /* No altsetting 0? We'll assume the first altsetting.
1293 * We could use a GetInterface call, but if a device is
1294 * so non-compliant that it doesn't have altsetting 0
1295 * then I wouldn't trust its reply anyway.
1297 if (!alt)
1298 alt = &intf->altsetting[0];
1300 intf->cur_altsetting = alt;
1301 usb_enable_interface(dev, intf);
1302 if (device_is_registered(&intf->dev))
1303 usb_create_sysfs_intf_files(intf);
1305 return 0;
1308 void usb_release_interface(struct device *dev)
1310 struct usb_interface *intf = to_usb_interface(dev);
1311 struct usb_interface_cache *intfc =
1312 altsetting_to_usb_interface_cache(intf->altsetting);
1314 kref_put(&intfc->ref, usb_release_interface_cache);
1315 kfree(intf);
1318 #ifdef CONFIG_HOTPLUG
1319 static int usb_if_uevent(struct device *dev, char **envp, int num_envp,
1320 char *buffer, int buffer_size)
1322 struct usb_device *usb_dev;
1323 struct usb_interface *intf;
1324 struct usb_host_interface *alt;
1325 int i = 0;
1326 int length = 0;
1328 if (!dev)
1329 return -ENODEV;
1331 /* driver is often null here; dev_dbg() would oops */
1332 pr_debug ("usb %s: uevent\n", dev->bus_id);
1334 intf = to_usb_interface(dev);
1335 usb_dev = interface_to_usbdev(intf);
1336 alt = intf->cur_altsetting;
1338 if (add_uevent_var(envp, num_envp, &i,
1339 buffer, buffer_size, &length,
1340 "INTERFACE=%d/%d/%d",
1341 alt->desc.bInterfaceClass,
1342 alt->desc.bInterfaceSubClass,
1343 alt->desc.bInterfaceProtocol))
1344 return -ENOMEM;
1346 if (add_uevent_var(envp, num_envp, &i,
1347 buffer, buffer_size, &length,
1348 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1349 le16_to_cpu(usb_dev->descriptor.idVendor),
1350 le16_to_cpu(usb_dev->descriptor.idProduct),
1351 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1352 usb_dev->descriptor.bDeviceClass,
1353 usb_dev->descriptor.bDeviceSubClass,
1354 usb_dev->descriptor.bDeviceProtocol,
1355 alt->desc.bInterfaceClass,
1356 alt->desc.bInterfaceSubClass,
1357 alt->desc.bInterfaceProtocol))
1358 return -ENOMEM;
1360 envp[i] = NULL;
1361 return 0;
1364 #else
1366 static int usb_if_uevent(struct device *dev, char **envp,
1367 int num_envp, char *buffer, int buffer_size)
1369 return -ENODEV;
1371 #endif /* CONFIG_HOTPLUG */
1373 struct device_type usb_if_device_type = {
1374 .name = "usb_interface",
1375 .release = usb_release_interface,
1376 .uevent = usb_if_uevent,
1380 * usb_set_configuration - Makes a particular device setting be current
1381 * @dev: the device whose configuration is being updated
1382 * @configuration: the configuration being chosen.
1383 * Context: !in_interrupt(), caller owns the device lock
1385 * This is used to enable non-default device modes. Not all devices
1386 * use this kind of configurability; many devices only have one
1387 * configuration.
1389 * @configuration is the value of the configuration to be installed.
1390 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1391 * must be non-zero; a value of zero indicates that the device in
1392 * unconfigured. However some devices erroneously use 0 as one of their
1393 * configuration values. To help manage such devices, this routine will
1394 * accept @configuration = -1 as indicating the device should be put in
1395 * an unconfigured state.
1397 * USB device configurations may affect Linux interoperability,
1398 * power consumption and the functionality available. For example,
1399 * the default configuration is limited to using 100mA of bus power,
1400 * so that when certain device functionality requires more power,
1401 * and the device is bus powered, that functionality should be in some
1402 * non-default device configuration. Other device modes may also be
1403 * reflected as configuration options, such as whether two ISDN
1404 * channels are available independently; and choosing between open
1405 * standard device protocols (like CDC) or proprietary ones.
1407 * Note that USB has an additional level of device configurability,
1408 * associated with interfaces. That configurability is accessed using
1409 * usb_set_interface().
1411 * This call is synchronous. The calling context must be able to sleep,
1412 * must own the device lock, and must not hold the driver model's USB
1413 * bus mutex; usb device driver probe() methods cannot use this routine.
1415 * Returns zero on success, or else the status code returned by the
1416 * underlying call that failed. On successful completion, each interface
1417 * in the original device configuration has been destroyed, and each one
1418 * in the new configuration has been probed by all relevant usb device
1419 * drivers currently known to the kernel.
1421 int usb_set_configuration(struct usb_device *dev, int configuration)
1423 int i, ret;
1424 struct usb_host_config *cp = NULL;
1425 struct usb_interface **new_interfaces = NULL;
1426 int n, nintf;
1428 if (configuration == -1)
1429 configuration = 0;
1430 else {
1431 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1432 if (dev->config[i].desc.bConfigurationValue ==
1433 configuration) {
1434 cp = &dev->config[i];
1435 break;
1439 if ((!cp && configuration != 0))
1440 return -EINVAL;
1442 /* The USB spec says configuration 0 means unconfigured.
1443 * But if a device includes a configuration numbered 0,
1444 * we will accept it as a correctly configured state.
1445 * Use -1 if you really want to unconfigure the device.
1447 if (cp && configuration == 0)
1448 dev_warn(&dev->dev, "config 0 descriptor??\n");
1450 /* Allocate memory for new interfaces before doing anything else,
1451 * so that if we run out then nothing will have changed. */
1452 n = nintf = 0;
1453 if (cp) {
1454 nintf = cp->desc.bNumInterfaces;
1455 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1456 GFP_KERNEL);
1457 if (!new_interfaces) {
1458 dev_err(&dev->dev, "Out of memory");
1459 return -ENOMEM;
1462 for (; n < nintf; ++n) {
1463 new_interfaces[n] = kzalloc(
1464 sizeof(struct usb_interface),
1465 GFP_KERNEL);
1466 if (!new_interfaces[n]) {
1467 dev_err(&dev->dev, "Out of memory");
1468 ret = -ENOMEM;
1469 free_interfaces:
1470 while (--n >= 0)
1471 kfree(new_interfaces[n]);
1472 kfree(new_interfaces);
1473 return ret;
1477 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1478 if (i < 0)
1479 dev_warn(&dev->dev, "new config #%d exceeds power "
1480 "limit by %dmA\n",
1481 configuration, -i);
1484 /* Wake up the device so we can send it the Set-Config request */
1485 ret = usb_autoresume_device(dev);
1486 if (ret)
1487 goto free_interfaces;
1489 /* if it's already configured, clear out old state first.
1490 * getting rid of old interfaces means unbinding their drivers.
1492 if (dev->state != USB_STATE_ADDRESS)
1493 usb_disable_device (dev, 1); // Skip ep0
1495 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1496 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1497 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1499 /* All the old state is gone, so what else can we do?
1500 * The device is probably useless now anyway.
1502 cp = NULL;
1505 dev->actconfig = cp;
1506 if (!cp) {
1507 usb_set_device_state(dev, USB_STATE_ADDRESS);
1508 usb_autosuspend_device(dev);
1509 goto free_interfaces;
1511 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1513 /* Initialize the new interface structures and the
1514 * hc/hcd/usbcore interface/endpoint state.
1516 for (i = 0; i < nintf; ++i) {
1517 struct usb_interface_cache *intfc;
1518 struct usb_interface *intf;
1519 struct usb_host_interface *alt;
1521 cp->interface[i] = intf = new_interfaces[i];
1522 intfc = cp->intf_cache[i];
1523 intf->altsetting = intfc->altsetting;
1524 intf->num_altsetting = intfc->num_altsetting;
1525 kref_get(&intfc->ref);
1527 alt = usb_altnum_to_altsetting(intf, 0);
1529 /* No altsetting 0? We'll assume the first altsetting.
1530 * We could use a GetInterface call, but if a device is
1531 * so non-compliant that it doesn't have altsetting 0
1532 * then I wouldn't trust its reply anyway.
1534 if (!alt)
1535 alt = &intf->altsetting[0];
1537 intf->cur_altsetting = alt;
1538 usb_enable_interface(dev, intf);
1539 intf->dev.parent = &dev->dev;
1540 intf->dev.driver = NULL;
1541 intf->dev.bus = &usb_bus_type;
1542 intf->dev.type = &usb_if_device_type;
1543 intf->dev.dma_mask = dev->dev.dma_mask;
1544 device_initialize (&intf->dev);
1545 mark_quiesced(intf);
1546 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1547 dev->bus->busnum, dev->devpath,
1548 configuration, alt->desc.bInterfaceNumber);
1550 kfree(new_interfaces);
1552 if (cp->string == NULL)
1553 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1555 /* Now that all the interfaces are set up, register them
1556 * to trigger binding of drivers to interfaces. probe()
1557 * routines may install different altsettings and may
1558 * claim() any interfaces not yet bound. Many class drivers
1559 * need that: CDC, audio, video, etc.
1561 for (i = 0; i < nintf; ++i) {
1562 struct usb_interface *intf = cp->interface[i];
1564 dev_dbg (&dev->dev,
1565 "adding %s (config #%d, interface %d)\n",
1566 intf->dev.bus_id, configuration,
1567 intf->cur_altsetting->desc.bInterfaceNumber);
1568 ret = device_add (&intf->dev);
1569 if (ret != 0) {
1570 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1571 intf->dev.bus_id, ret);
1572 continue;
1574 usb_create_sysfs_intf_files (intf);
1577 usb_autosuspend_device(dev);
1578 return 0;
1581 struct set_config_request {
1582 struct usb_device *udev;
1583 int config;
1584 struct work_struct work;
1587 /* Worker routine for usb_driver_set_configuration() */
1588 static void driver_set_config_work(struct work_struct *work)
1590 struct set_config_request *req =
1591 container_of(work, struct set_config_request, work);
1593 usb_lock_device(req->udev);
1594 usb_set_configuration(req->udev, req->config);
1595 usb_unlock_device(req->udev);
1596 usb_put_dev(req->udev);
1597 kfree(req);
1601 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1602 * @udev: the device whose configuration is being updated
1603 * @config: the configuration being chosen.
1604 * Context: In process context, must be able to sleep
1606 * Device interface drivers are not allowed to change device configurations.
1607 * This is because changing configurations will destroy the interface the
1608 * driver is bound to and create new ones; it would be like a floppy-disk
1609 * driver telling the computer to replace the floppy-disk drive with a
1610 * tape drive!
1612 * Still, in certain specialized circumstances the need may arise. This
1613 * routine gets around the normal restrictions by using a work thread to
1614 * submit the change-config request.
1616 * Returns 0 if the request was succesfully queued, error code otherwise.
1617 * The caller has no way to know whether the queued request will eventually
1618 * succeed.
1620 int usb_driver_set_configuration(struct usb_device *udev, int config)
1622 struct set_config_request *req;
1624 req = kmalloc(sizeof(*req), GFP_KERNEL);
1625 if (!req)
1626 return -ENOMEM;
1627 req->udev = udev;
1628 req->config = config;
1629 INIT_WORK(&req->work, driver_set_config_work);
1631 usb_get_dev(udev);
1632 schedule_work(&req->work);
1633 return 0;
1635 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1637 // synchronous request completion model
1638 EXPORT_SYMBOL(usb_control_msg);
1639 EXPORT_SYMBOL(usb_bulk_msg);
1641 EXPORT_SYMBOL(usb_sg_init);
1642 EXPORT_SYMBOL(usb_sg_cancel);
1643 EXPORT_SYMBOL(usb_sg_wait);
1645 // synchronous control message convenience routines
1646 EXPORT_SYMBOL(usb_get_descriptor);
1647 EXPORT_SYMBOL(usb_get_status);
1648 EXPORT_SYMBOL(usb_string);
1650 // synchronous calls that also maintain usbcore state
1651 EXPORT_SYMBOL(usb_clear_halt);
1652 EXPORT_SYMBOL(usb_reset_configuration);
1653 EXPORT_SYMBOL(usb_set_interface);