2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2006 Macq Electronique SA.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/ptrace.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
47 #include <asm/uaccess.h>
49 #include <asm/pgtable.h>
51 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
52 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
53 defined(CONFIG_M520x) || defined(CONFIG_M532x)
54 #include <asm/coldfire.h>
55 #include <asm/mcfsim.h>
58 #include <asm/8xx_immap.h>
59 #include <asm/mpc8xx.h>
63 #if defined(CONFIG_FEC2)
64 #define FEC_MAX_PORTS 2
66 #define FEC_MAX_PORTS 1
70 * Define the fixed address of the FEC hardware.
72 static unsigned int fec_hw
[] = {
73 #if defined(CONFIG_M5272)
75 #elif defined(CONFIG_M527x)
78 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
80 #elif defined(CONFIG_M520x)
82 #elif defined(CONFIG_M532x)
83 (MCF_MBAR
+0xfc030000),
85 &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
),
89 static unsigned char fec_mac_default
[] = {
90 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
94 * Some hardware gets it MAC address out of local flash memory.
95 * if this is non-zero then assume it is the address to get MAC from.
97 #if defined(CONFIG_NETtel)
98 #define FEC_FLASHMAC 0xf0006006
99 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
100 #define FEC_FLASHMAC 0xf0006000
101 #elif defined (CONFIG_MTD_KeyTechnology)
102 #define FEC_FLASHMAC 0xffe04000
103 #elif defined(CONFIG_CANCam)
104 #define FEC_FLASHMAC 0xf0020000
105 #elif defined (CONFIG_M5272C3)
106 #define FEC_FLASHMAC (0xffe04000 + 4)
107 #elif defined(CONFIG_MOD5272)
108 #define FEC_FLASHMAC 0xffc0406b
110 #define FEC_FLASHMAC 0
113 /* Forward declarations of some structures to support different PHYs
118 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
125 const phy_cmd_t
*config
;
126 const phy_cmd_t
*startup
;
127 const phy_cmd_t
*ack_int
;
128 const phy_cmd_t
*shutdown
;
131 /* The number of Tx and Rx buffers. These are allocated from the page
132 * pool. The code may assume these are power of two, so it it best
133 * to keep them that size.
134 * We don't need to allocate pages for the transmitter. We just use
135 * the skbuffer directly.
137 #define FEC_ENET_RX_PAGES 8
138 #define FEC_ENET_RX_FRSIZE 2048
139 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
140 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
141 #define FEC_ENET_TX_FRSIZE 2048
142 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
143 #define TX_RING_SIZE 16 /* Must be power of two */
144 #define TX_RING_MOD_MASK 15 /* for this to work */
146 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
147 #error "FEC: descriptor ring size constants too large"
150 /* Interrupt events/masks.
152 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
153 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
154 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
155 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
156 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
157 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
158 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
159 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
160 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
161 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
163 /* The FEC stores dest/src/type, data, and checksum for receive packets.
165 #define PKT_MAXBUF_SIZE 1518
166 #define PKT_MINBUF_SIZE 64
167 #define PKT_MAXBLR_SIZE 1520
171 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172 * size bits. Other FEC hardware does not, so we need to take that into
173 * account when setting it.
175 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176 defined(CONFIG_M520x) || defined(CONFIG_M532x)
177 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
179 #define OPT_FRAME_SIZE 0
182 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
183 * tx_bd_base always point to the base of the buffer descriptors. The
184 * cur_rx and cur_tx point to the currently available buffer.
185 * The dirty_tx tracks the current buffer that is being sent by the
186 * controller. The cur_tx and dirty_tx are equal under both completely
187 * empty and completely full conditions. The empty/ready indicator in
188 * the buffer descriptor determines the actual condition.
190 struct fec_enet_private
{
191 /* Hardware registers of the FEC device */
194 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
195 unsigned char *tx_bounce
[TX_RING_SIZE
];
196 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
200 /* CPM dual port RAM relative addresses.
202 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
204 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
205 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
206 struct net_device_stats stats
;
214 phy_info_t
const *phy
;
215 struct work_struct phy_task
;
218 uint mii_phy_task_queued
;
229 static int fec_enet_open(struct net_device
*dev
);
230 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
231 static void fec_enet_mii(struct net_device
*dev
);
232 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
);
233 static void fec_enet_tx(struct net_device
*dev
);
234 static void fec_enet_rx(struct net_device
*dev
);
235 static int fec_enet_close(struct net_device
*dev
);
236 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
);
237 static void set_multicast_list(struct net_device
*dev
);
238 static void fec_restart(struct net_device
*dev
, int duplex
);
239 static void fec_stop(struct net_device
*dev
);
240 static void fec_set_mac_address(struct net_device
*dev
);
243 /* MII processing. We keep this as simple as possible. Requests are
244 * placed on the list (if there is room). When the request is finished
245 * by the MII, an optional function may be called.
247 typedef struct mii_list
{
249 void (*mii_func
)(uint val
, struct net_device
*dev
);
250 struct mii_list
*mii_next
;
254 static mii_list_t mii_cmds
[NMII
];
255 static mii_list_t
*mii_free
;
256 static mii_list_t
*mii_head
;
257 static mii_list_t
*mii_tail
;
259 static int mii_queue(struct net_device
*dev
, int request
,
260 void (*func
)(uint
, struct net_device
*));
262 /* Make MII read/write commands for the FEC.
264 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
265 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
269 /* Transmitter timeout.
271 #define TX_TIMEOUT (2*HZ)
273 /* Register definitions for the PHY.
276 #define MII_REG_CR 0 /* Control Register */
277 #define MII_REG_SR 1 /* Status Register */
278 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
279 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
280 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
281 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
282 #define MII_REG_ANER 6 /* A-N Expansion Register */
283 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
284 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
286 /* values for phy_status */
288 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
289 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
290 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
291 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
292 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
293 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
294 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
296 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
297 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
298 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
299 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
300 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
301 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
302 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
303 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
307 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
309 struct fec_enet_private
*fep
;
310 volatile fec_t
*fecp
;
312 unsigned short status
;
314 fep
= netdev_priv(dev
);
315 fecp
= (volatile fec_t
*)dev
->base_addr
;
318 /* Link is down or autonegotiation is in progress. */
322 /* Fill in a Tx ring entry */
325 status
= bdp
->cbd_sc
;
326 #ifndef final_version
327 if (status
& BD_ENET_TX_READY
) {
328 /* Ooops. All transmit buffers are full. Bail out.
329 * This should not happen, since dev->tbusy should be set.
331 printk("%s: tx queue full!.\n", dev
->name
);
336 /* Clear all of the status flags.
338 status
&= ~BD_ENET_TX_STATS
;
340 /* Set buffer length and buffer pointer.
342 bdp
->cbd_bufaddr
= __pa(skb
->data
);
343 bdp
->cbd_datlen
= skb
->len
;
346 * On some FEC implementations data must be aligned on
347 * 4-byte boundaries. Use bounce buffers to copy data
348 * and get it aligned. Ugh.
350 if (bdp
->cbd_bufaddr
& 0x3) {
352 index
= bdp
- fep
->tx_bd_base
;
353 memcpy(fep
->tx_bounce
[index
], (void *) bdp
->cbd_bufaddr
, bdp
->cbd_datlen
);
354 bdp
->cbd_bufaddr
= __pa(fep
->tx_bounce
[index
]);
359 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
361 fep
->stats
.tx_bytes
+= skb
->len
;
362 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
364 /* Push the data cache so the CPM does not get stale memory
367 flush_dcache_range((unsigned long)skb
->data
,
368 (unsigned long)skb
->data
+ skb
->len
);
370 spin_lock_irq(&fep
->lock
);
372 /* Send it on its way. Tell FEC it's ready, interrupt when done,
373 * it's the last BD of the frame, and to put the CRC on the end.
376 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
377 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
378 bdp
->cbd_sc
= status
;
380 dev
->trans_start
= jiffies
;
382 /* Trigger transmission start */
383 fecp
->fec_x_des_active
= 0;
385 /* If this was the last BD in the ring, start at the beginning again.
387 if (status
& BD_ENET_TX_WRAP
) {
388 bdp
= fep
->tx_bd_base
;
393 if (bdp
== fep
->dirty_tx
) {
395 netif_stop_queue(dev
);
398 fep
->cur_tx
= (cbd_t
*)bdp
;
400 spin_unlock_irq(&fep
->lock
);
406 fec_timeout(struct net_device
*dev
)
408 struct fec_enet_private
*fep
= netdev_priv(dev
);
410 printk("%s: transmit timed out.\n", dev
->name
);
411 fep
->stats
.tx_errors
++;
412 #ifndef final_version
417 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
418 (unsigned long)fep
->cur_tx
, fep
->tx_full
? " (full)" : "",
419 (unsigned long)fep
->dirty_tx
,
420 (unsigned long)fep
->cur_rx
);
422 bdp
= fep
->tx_bd_base
;
423 printk(" tx: %u buffers\n", TX_RING_SIZE
);
424 for (i
= 0 ; i
< TX_RING_SIZE
; i
++) {
425 printk(" %08x: %04x %04x %08x\n",
429 (int) bdp
->cbd_bufaddr
);
433 bdp
= fep
->rx_bd_base
;
434 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE
);
435 for (i
= 0 ; i
< RX_RING_SIZE
; i
++) {
436 printk(" %08x: %04x %04x %08x\n",
440 (int) bdp
->cbd_bufaddr
);
445 fec_restart(dev
, fep
->full_duplex
);
446 netif_wake_queue(dev
);
449 /* The interrupt handler.
450 * This is called from the MPC core interrupt.
453 fec_enet_interrupt(int irq
, void * dev_id
)
455 struct net_device
*dev
= dev_id
;
456 volatile fec_t
*fecp
;
460 fecp
= (volatile fec_t
*)dev
->base_addr
;
462 /* Get the interrupt events that caused us to be here.
464 while ((int_events
= fecp
->fec_ievent
) != 0) {
465 fecp
->fec_ievent
= int_events
;
467 /* Handle receive event in its own function.
469 if (int_events
& FEC_ENET_RXF
) {
474 /* Transmit OK, or non-fatal error. Update the buffer
475 descriptors. FEC handles all errors, we just discover
476 them as part of the transmit process.
478 if (int_events
& FEC_ENET_TXF
) {
483 if (int_events
& FEC_ENET_MII
) {
489 return IRQ_RETVAL(handled
);
494 fec_enet_tx(struct net_device
*dev
)
496 struct fec_enet_private
*fep
;
498 unsigned short status
;
501 fep
= netdev_priv(dev
);
502 spin_lock(&fep
->lock
);
505 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
506 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0) break;
508 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
509 /* Check for errors. */
510 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
511 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
513 fep
->stats
.tx_errors
++;
514 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
515 fep
->stats
.tx_heartbeat_errors
++;
516 if (status
& BD_ENET_TX_LC
) /* Late collision */
517 fep
->stats
.tx_window_errors
++;
518 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
519 fep
->stats
.tx_aborted_errors
++;
520 if (status
& BD_ENET_TX_UN
) /* Underrun */
521 fep
->stats
.tx_fifo_errors
++;
522 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
523 fep
->stats
.tx_carrier_errors
++;
525 fep
->stats
.tx_packets
++;
528 #ifndef final_version
529 if (status
& BD_ENET_TX_READY
)
530 printk("HEY! Enet xmit interrupt and TX_READY.\n");
532 /* Deferred means some collisions occurred during transmit,
533 * but we eventually sent the packet OK.
535 if (status
& BD_ENET_TX_DEF
)
536 fep
->stats
.collisions
++;
538 /* Free the sk buffer associated with this last transmit.
540 dev_kfree_skb_any(skb
);
541 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
542 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
544 /* Update pointer to next buffer descriptor to be transmitted.
546 if (status
& BD_ENET_TX_WRAP
)
547 bdp
= fep
->tx_bd_base
;
551 /* Since we have freed up a buffer, the ring is no longer
556 if (netif_queue_stopped(dev
))
557 netif_wake_queue(dev
);
560 fep
->dirty_tx
= (cbd_t
*)bdp
;
561 spin_unlock(&fep
->lock
);
565 /* During a receive, the cur_rx points to the current incoming buffer.
566 * When we update through the ring, if the next incoming buffer has
567 * not been given to the system, we just set the empty indicator,
568 * effectively tossing the packet.
571 fec_enet_rx(struct net_device
*dev
)
573 struct fec_enet_private
*fep
;
574 volatile fec_t
*fecp
;
576 unsigned short status
;
585 fep
= netdev_priv(dev
);
586 fecp
= (volatile fec_t
*)dev
->base_addr
;
588 /* First, grab all of the stats for the incoming packet.
589 * These get messed up if we get called due to a busy condition.
593 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
595 #ifndef final_version
596 /* Since we have allocated space to hold a complete frame,
597 * the last indicator should be set.
599 if ((status
& BD_ENET_RX_LAST
) == 0)
600 printk("FEC ENET: rcv is not +last\n");
604 goto rx_processing_done
;
606 /* Check for errors. */
607 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
608 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
609 fep
->stats
.rx_errors
++;
610 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
611 /* Frame too long or too short. */
612 fep
->stats
.rx_length_errors
++;
614 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
615 fep
->stats
.rx_frame_errors
++;
616 if (status
& BD_ENET_RX_CR
) /* CRC Error */
617 fep
->stats
.rx_crc_errors
++;
618 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
619 fep
->stats
.rx_fifo_errors
++;
622 /* Report late collisions as a frame error.
623 * On this error, the BD is closed, but we don't know what we
624 * have in the buffer. So, just drop this frame on the floor.
626 if (status
& BD_ENET_RX_CL
) {
627 fep
->stats
.rx_errors
++;
628 fep
->stats
.rx_frame_errors
++;
629 goto rx_processing_done
;
632 /* Process the incoming frame.
634 fep
->stats
.rx_packets
++;
635 pkt_len
= bdp
->cbd_datlen
;
636 fep
->stats
.rx_bytes
+= pkt_len
;
637 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
639 /* This does 16 byte alignment, exactly what we need.
640 * The packet length includes FCS, but we don't want to
641 * include that when passing upstream as it messes up
642 * bridging applications.
644 skb
= dev_alloc_skb(pkt_len
-4);
647 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
648 fep
->stats
.rx_dropped
++;
651 skb_put(skb
,pkt_len
-4); /* Make room */
652 eth_copy_and_sum(skb
, data
, pkt_len
-4, 0);
653 skb
->protocol
=eth_type_trans(skb
,dev
);
658 /* Clear the status flags for this buffer.
660 status
&= ~BD_ENET_RX_STATS
;
662 /* Mark the buffer empty.
664 status
|= BD_ENET_RX_EMPTY
;
665 bdp
->cbd_sc
= status
;
667 /* Update BD pointer to next entry.
669 if (status
& BD_ENET_RX_WRAP
)
670 bdp
= fep
->rx_bd_base
;
675 /* Doing this here will keep the FEC running while we process
676 * incoming frames. On a heavily loaded network, we should be
677 * able to keep up at the expense of system resources.
679 fecp
->fec_r_des_active
= 0;
681 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
682 fep
->cur_rx
= (cbd_t
*)bdp
;
685 /* Doing this here will allow us to process all frames in the
686 * ring before the FEC is allowed to put more there. On a heavily
687 * loaded network, some frames may be lost. Unfortunately, this
688 * increases the interrupt overhead since we can potentially work
689 * our way back to the interrupt return only to come right back
692 fecp
->fec_r_des_active
= 0;
697 /* called from interrupt context */
699 fec_enet_mii(struct net_device
*dev
)
701 struct fec_enet_private
*fep
;
706 fep
= netdev_priv(dev
);
708 mii_reg
= ep
->fec_mii_data
;
710 spin_lock(&fep
->lock
);
712 if ((mip
= mii_head
) == NULL
) {
713 printk("MII and no head!\n");
717 if (mip
->mii_func
!= NULL
)
718 (*(mip
->mii_func
))(mii_reg
, dev
);
720 mii_head
= mip
->mii_next
;
721 mip
->mii_next
= mii_free
;
724 if ((mip
= mii_head
) != NULL
)
725 ep
->fec_mii_data
= mip
->mii_regval
;
728 spin_unlock(&fep
->lock
);
732 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
734 struct fec_enet_private
*fep
;
739 /* Add PHY address to register command.
741 fep
= netdev_priv(dev
);
742 regval
|= fep
->phy_addr
<< 23;
746 spin_lock_irqsave(&fep
->lock
,flags
);
748 if ((mip
= mii_free
) != NULL
) {
749 mii_free
= mip
->mii_next
;
750 mip
->mii_regval
= regval
;
751 mip
->mii_func
= func
;
752 mip
->mii_next
= NULL
;
754 mii_tail
->mii_next
= mip
;
758 mii_head
= mii_tail
= mip
;
759 fep
->hwp
->fec_mii_data
= regval
;
766 spin_unlock_irqrestore(&fep
->lock
,flags
);
771 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
778 for(k
= 0; (c
+k
)->mii_data
!= mk_mii_end
; k
++) {
779 mii_queue(dev
, (c
+k
)->mii_data
, (c
+k
)->funct
);
783 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
785 struct fec_enet_private
*fep
= netdev_priv(dev
);
786 volatile uint
*s
= &(fep
->phy_status
);
789 status
= *s
& ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
791 if (mii_reg
& 0x0004)
792 status
|= PHY_STAT_LINK
;
793 if (mii_reg
& 0x0010)
794 status
|= PHY_STAT_FAULT
;
795 if (mii_reg
& 0x0020)
796 status
|= PHY_STAT_ANC
;
801 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
803 struct fec_enet_private
*fep
= netdev_priv(dev
);
804 volatile uint
*s
= &(fep
->phy_status
);
807 status
= *s
& ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
809 if (mii_reg
& 0x1000)
810 status
|= PHY_CONF_ANE
;
811 if (mii_reg
& 0x4000)
812 status
|= PHY_CONF_LOOP
;
816 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
818 struct fec_enet_private
*fep
= netdev_priv(dev
);
819 volatile uint
*s
= &(fep
->phy_status
);
822 status
= *s
& ~(PHY_CONF_SPMASK
);
824 if (mii_reg
& 0x0020)
825 status
|= PHY_CONF_10HDX
;
826 if (mii_reg
& 0x0040)
827 status
|= PHY_CONF_10FDX
;
828 if (mii_reg
& 0x0080)
829 status
|= PHY_CONF_100HDX
;
830 if (mii_reg
& 0x00100)
831 status
|= PHY_CONF_100FDX
;
835 /* ------------------------------------------------------------------------- */
836 /* The Level one LXT970 is used by many boards */
838 #define MII_LXT970_MIRROR 16 /* Mirror register */
839 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
840 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
841 #define MII_LXT970_CONFIG 19 /* Configuration Register */
842 #define MII_LXT970_CSR 20 /* Chip Status Register */
844 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
846 struct fec_enet_private
*fep
= netdev_priv(dev
);
847 volatile uint
*s
= &(fep
->phy_status
);
850 status
= *s
& ~(PHY_STAT_SPMASK
);
851 if (mii_reg
& 0x0800) {
852 if (mii_reg
& 0x1000)
853 status
|= PHY_STAT_100FDX
;
855 status
|= PHY_STAT_100HDX
;
857 if (mii_reg
& 0x1000)
858 status
|= PHY_STAT_10FDX
;
860 status
|= PHY_STAT_10HDX
;
865 static phy_cmd_t
const phy_cmd_lxt970_config
[] = {
866 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
867 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
870 static phy_cmd_t
const phy_cmd_lxt970_startup
[] = { /* enable interrupts */
871 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
872 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
875 static phy_cmd_t
const phy_cmd_lxt970_ack_int
[] = {
876 /* read SR and ISR to acknowledge */
877 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
878 { mk_mii_read(MII_LXT970_ISR
), NULL
},
880 /* find out the current status */
881 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
884 static phy_cmd_t
const phy_cmd_lxt970_shutdown
[] = { /* disable interrupts */
885 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
888 static phy_info_t
const phy_info_lxt970
= {
891 .config
= phy_cmd_lxt970_config
,
892 .startup
= phy_cmd_lxt970_startup
,
893 .ack_int
= phy_cmd_lxt970_ack_int
,
894 .shutdown
= phy_cmd_lxt970_shutdown
897 /* ------------------------------------------------------------------------- */
898 /* The Level one LXT971 is used on some of my custom boards */
900 /* register definitions for the 971 */
902 #define MII_LXT971_PCR 16 /* Port Control Register */
903 #define MII_LXT971_SR2 17 /* Status Register 2 */
904 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
905 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
906 #define MII_LXT971_LCR 20 /* LED Control Register */
907 #define MII_LXT971_TCR 30 /* Transmit Control Register */
910 * I had some nice ideas of running the MDIO faster...
911 * The 971 should support 8MHz and I tried it, but things acted really
912 * weird, so 2.5 MHz ought to be enough for anyone...
915 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
917 struct fec_enet_private
*fep
= netdev_priv(dev
);
918 volatile uint
*s
= &(fep
->phy_status
);
921 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
923 if (mii_reg
& 0x0400) {
925 status
|= PHY_STAT_LINK
;
929 if (mii_reg
& 0x0080)
930 status
|= PHY_STAT_ANC
;
931 if (mii_reg
& 0x4000) {
932 if (mii_reg
& 0x0200)
933 status
|= PHY_STAT_100FDX
;
935 status
|= PHY_STAT_100HDX
;
937 if (mii_reg
& 0x0200)
938 status
|= PHY_STAT_10FDX
;
940 status
|= PHY_STAT_10HDX
;
942 if (mii_reg
& 0x0008)
943 status
|= PHY_STAT_FAULT
;
948 static phy_cmd_t
const phy_cmd_lxt971_config
[] = {
949 /* limit to 10MBit because my prototype board
950 * doesn't work with 100. */
951 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
952 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
953 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
956 static phy_cmd_t
const phy_cmd_lxt971_startup
[] = { /* enable interrupts */
957 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
958 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
959 { mk_mii_write(MII_LXT971_LCR
, 0xd422), NULL
}, /* LED config */
960 /* Somehow does the 971 tell me that the link is down
961 * the first read after power-up.
962 * read here to get a valid value in ack_int */
963 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
966 static phy_cmd_t
const phy_cmd_lxt971_ack_int
[] = {
967 /* acknowledge the int before reading status ! */
968 { mk_mii_read(MII_LXT971_ISR
), NULL
},
969 /* find out the current status */
970 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
971 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
974 static phy_cmd_t
const phy_cmd_lxt971_shutdown
[] = { /* disable interrupts */
975 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
978 static phy_info_t
const phy_info_lxt971
= {
981 .config
= phy_cmd_lxt971_config
,
982 .startup
= phy_cmd_lxt971_startup
,
983 .ack_int
= phy_cmd_lxt971_ack_int
,
984 .shutdown
= phy_cmd_lxt971_shutdown
987 /* ------------------------------------------------------------------------- */
988 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
990 /* register definitions */
992 #define MII_QS6612_MCR 17 /* Mode Control Register */
993 #define MII_QS6612_FTR 27 /* Factory Test Register */
994 #define MII_QS6612_MCO 28 /* Misc. Control Register */
995 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
996 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
997 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
999 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
1001 struct fec_enet_private
*fep
= netdev_priv(dev
);
1002 volatile uint
*s
= &(fep
->phy_status
);
1005 status
= *s
& ~(PHY_STAT_SPMASK
);
1007 switch((mii_reg
>> 2) & 7) {
1008 case 1: status
|= PHY_STAT_10HDX
; break;
1009 case 2: status
|= PHY_STAT_100HDX
; break;
1010 case 5: status
|= PHY_STAT_10FDX
; break;
1011 case 6: status
|= PHY_STAT_100FDX
; break;
1017 static phy_cmd_t
const phy_cmd_qs6612_config
[] = {
1018 /* The PHY powers up isolated on the RPX,
1019 * so send a command to allow operation.
1021 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1023 /* parse cr and anar to get some info */
1024 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1025 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1028 static phy_cmd_t
const phy_cmd_qs6612_startup
[] = { /* enable interrupts */
1029 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1030 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1033 static phy_cmd_t
const phy_cmd_qs6612_ack_int
[] = {
1034 /* we need to read ISR, SR and ANER to acknowledge */
1035 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1036 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1037 { mk_mii_read(MII_REG_ANER
), NULL
},
1039 /* read pcr to get info */
1040 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1043 static phy_cmd_t
const phy_cmd_qs6612_shutdown
[] = { /* disable interrupts */
1044 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1047 static phy_info_t
const phy_info_qs6612
= {
1050 .config
= phy_cmd_qs6612_config
,
1051 .startup
= phy_cmd_qs6612_startup
,
1052 .ack_int
= phy_cmd_qs6612_ack_int
,
1053 .shutdown
= phy_cmd_qs6612_shutdown
1056 /* ------------------------------------------------------------------------- */
1057 /* AMD AM79C874 phy */
1059 /* register definitions for the 874 */
1061 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1062 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1063 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1064 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1065 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1066 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1067 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1069 static void mii_parse_am79c874_dr(uint mii_reg
, struct net_device
*dev
)
1071 struct fec_enet_private
*fep
= netdev_priv(dev
);
1072 volatile uint
*s
= &(fep
->phy_status
);
1075 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_ANC
);
1077 if (mii_reg
& 0x0080)
1078 status
|= PHY_STAT_ANC
;
1079 if (mii_reg
& 0x0400)
1080 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_100FDX
: PHY_STAT_100HDX
);
1082 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_10FDX
: PHY_STAT_10HDX
);
1087 static phy_cmd_t
const phy_cmd_am79c874_config
[] = {
1088 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1089 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1090 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1093 static phy_cmd_t
const phy_cmd_am79c874_startup
[] = { /* enable interrupts */
1094 { mk_mii_write(MII_AM79C874_ICSR
, 0xff00), NULL
},
1095 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1096 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1099 static phy_cmd_t
const phy_cmd_am79c874_ack_int
[] = {
1100 /* find out the current status */
1101 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1102 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1103 /* we only need to read ISR to acknowledge */
1104 { mk_mii_read(MII_AM79C874_ICSR
), NULL
},
1107 static phy_cmd_t
const phy_cmd_am79c874_shutdown
[] = { /* disable interrupts */
1108 { mk_mii_write(MII_AM79C874_ICSR
, 0x0000), NULL
},
1111 static phy_info_t
const phy_info_am79c874
= {
1114 .config
= phy_cmd_am79c874_config
,
1115 .startup
= phy_cmd_am79c874_startup
,
1116 .ack_int
= phy_cmd_am79c874_ack_int
,
1117 .shutdown
= phy_cmd_am79c874_shutdown
1121 /* ------------------------------------------------------------------------- */
1122 /* Kendin KS8721BL phy */
1124 /* register definitions for the 8721 */
1126 #define MII_KS8721BL_RXERCR 21
1127 #define MII_KS8721BL_ICSR 22
1128 #define MII_KS8721BL_PHYCR 31
1130 static phy_cmd_t
const phy_cmd_ks8721bl_config
[] = {
1131 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1132 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1135 static phy_cmd_t
const phy_cmd_ks8721bl_startup
[] = { /* enable interrupts */
1136 { mk_mii_write(MII_KS8721BL_ICSR
, 0xff00), NULL
},
1137 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1138 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1141 static phy_cmd_t
const phy_cmd_ks8721bl_ack_int
[] = {
1142 /* find out the current status */
1143 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1144 /* we only need to read ISR to acknowledge */
1145 { mk_mii_read(MII_KS8721BL_ICSR
), NULL
},
1148 static phy_cmd_t
const phy_cmd_ks8721bl_shutdown
[] = { /* disable interrupts */
1149 { mk_mii_write(MII_KS8721BL_ICSR
, 0x0000), NULL
},
1152 static phy_info_t
const phy_info_ks8721bl
= {
1155 .config
= phy_cmd_ks8721bl_config
,
1156 .startup
= phy_cmd_ks8721bl_startup
,
1157 .ack_int
= phy_cmd_ks8721bl_ack_int
,
1158 .shutdown
= phy_cmd_ks8721bl_shutdown
1161 /* ------------------------------------------------------------------------- */
1162 /* register definitions for the DP83848 */
1164 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1166 static void mii_parse_dp8384x_sr2(uint mii_reg
, struct net_device
*dev
)
1168 struct fec_enet_private
*fep
= dev
->priv
;
1169 volatile uint
*s
= &(fep
->phy_status
);
1171 *s
&= ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
1174 if (mii_reg
& 0x0001) {
1176 *s
|= PHY_STAT_LINK
;
1179 /* Status of link */
1180 if (mii_reg
& 0x0010) /* Autonegotioation complete */
1182 if (mii_reg
& 0x0002) { /* 10MBps? */
1183 if (mii_reg
& 0x0004) /* Full Duplex? */
1184 *s
|= PHY_STAT_10FDX
;
1186 *s
|= PHY_STAT_10HDX
;
1187 } else { /* 100 Mbps? */
1188 if (mii_reg
& 0x0004) /* Full Duplex? */
1189 *s
|= PHY_STAT_100FDX
;
1191 *s
|= PHY_STAT_100HDX
;
1193 if (mii_reg
& 0x0008)
1194 *s
|= PHY_STAT_FAULT
;
1197 static phy_info_t phy_info_dp83848
= {
1201 (const phy_cmd_t
[]) { /* config */
1202 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1203 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1204 { mk_mii_read(MII_DP8384X_PHYSTST
), mii_parse_dp8384x_sr2
},
1207 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1208 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1209 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1212 (const phy_cmd_t
[]) { /* ack_int - never happens, no interrupt */
1215 (const phy_cmd_t
[]) { /* shutdown */
1220 /* ------------------------------------------------------------------------- */
1222 static phy_info_t
const * const phy_info
[] = {
1232 /* ------------------------------------------------------------------------- */
1233 #if !defined(CONFIG_M532x)
1234 #ifdef CONFIG_RPXCLASSIC
1236 mii_link_interrupt(void *dev_id
);
1239 mii_link_interrupt(int irq
, void * dev_id
);
1243 #if defined(CONFIG_M5272)
1246 * Code specific to Coldfire 5272 setup.
1248 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1250 volatile unsigned long *icrp
;
1251 static const struct idesc
{
1254 irq_handler_t handler
;
1256 { "fec(RX)", 86, fec_enet_interrupt
},
1257 { "fec(TX)", 87, fec_enet_interrupt
},
1258 { "fec(OTHER)", 88, fec_enet_interrupt
},
1259 { "fec(MII)", 66, mii_link_interrupt
},
1263 /* Setup interrupt handlers. */
1264 for (idp
= id
; idp
->name
; idp
++) {
1265 if (request_irq(idp
->irq
, idp
->handler
, 0, idp
->name
, dev
) != 0)
1266 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, idp
->irq
);
1269 /* Unmask interrupt at ColdFire 5272 SIM */
1270 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR3
);
1272 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1273 *icrp
= (*icrp
& 0x70777777) | 0x0d000000;
1276 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1278 volatile fec_t
*fecp
;
1281 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1282 fecp
->fec_x_cntrl
= 0x00;
1285 * Set MII speed to 2.5 MHz
1286 * See 5272 manual section 11.5.8: MSCR
1288 fep
->phy_speed
= ((((MCF_CLK
/ 4) / (2500000 / 10)) + 5) / 10) * 2;
1289 fecp
->fec_mii_speed
= fep
->phy_speed
;
1291 fec_restart(dev
, 0);
1294 static void __inline__
fec_get_mac(struct net_device
*dev
)
1296 struct fec_enet_private
*fep
= netdev_priv(dev
);
1297 volatile fec_t
*fecp
;
1298 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1304 * Get MAC address from FLASH.
1305 * If it is all 1's or 0's, use the default.
1307 iap
= (unsigned char *)FEC_FLASHMAC
;
1308 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1309 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1310 iap
= fec_mac_default
;
1311 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1312 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1313 iap
= fec_mac_default
;
1315 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1316 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1320 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1322 /* Adjust MAC if using default MAC address */
1323 if (iap
== fec_mac_default
)
1324 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1327 static void __inline__
fec_enable_phy_intr(void)
1331 static void __inline__
fec_disable_phy_intr(void)
1333 volatile unsigned long *icrp
;
1334 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1335 *icrp
= (*icrp
& 0x70777777) | 0x08000000;
1338 static void __inline__
fec_phy_ack_intr(void)
1340 volatile unsigned long *icrp
;
1341 /* Acknowledge the interrupt */
1342 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1343 *icrp
= (*icrp
& 0x77777777) | 0x08000000;
1346 static void __inline__
fec_localhw_setup(void)
1351 * Do not need to make region uncached on 5272.
1353 static void __inline__
fec_uncache(unsigned long addr
)
1357 /* ------------------------------------------------------------------------- */
1359 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1362 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1363 * the 5270/5271/5274/5275 and 5280/5282 setups.
1365 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1367 struct fec_enet_private
*fep
;
1369 static const struct idesc
{
1375 { "fec(TXFIFO)", 25 },
1376 { "fec(TXCR)", 26 },
1381 { "fec(HBERR)", 31 },
1383 { "fec(EBERR)", 33 },
1384 { "fec(BABT)", 34 },
1385 { "fec(BABR)", 35 },
1389 fep
= netdev_priv(dev
);
1390 b
= (fep
->index
) ? 128 : 64;
1392 /* Setup interrupt handlers. */
1393 for (idp
= id
; idp
->name
; idp
++) {
1394 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, 0, idp
->name
, dev
) != 0)
1395 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1398 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1400 volatile unsigned char *icrp
;
1401 volatile unsigned long *imrp
;
1404 b
= (fep
->index
) ? MCFICM_INTC1
: MCFICM_INTC0
;
1405 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ b
+
1407 for (i
= 23, ilip
= 0x28; (i
< 36); i
++)
1410 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1412 *imrp
&= ~0x0000000f;
1413 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1415 *imrp
&= ~0xff800001;
1418 #if defined(CONFIG_M528x)
1419 /* Set up gpio outputs for MII lines */
1421 volatile u16
*gpio_paspar
;
1422 volatile u8
*gpio_pehlpar
;
1424 gpio_paspar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100056);
1425 gpio_pehlpar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100058);
1426 *gpio_paspar
|= 0x0f00;
1427 *gpio_pehlpar
= 0xc0;
1432 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1434 volatile fec_t
*fecp
;
1437 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1438 fecp
->fec_x_cntrl
= 0x00;
1441 * Set MII speed to 2.5 MHz
1442 * See 5282 manual section 17.5.4.7: MSCR
1444 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1445 fecp
->fec_mii_speed
= fep
->phy_speed
;
1447 fec_restart(dev
, 0);
1450 static void __inline__
fec_get_mac(struct net_device
*dev
)
1452 struct fec_enet_private
*fep
= netdev_priv(dev
);
1453 volatile fec_t
*fecp
;
1454 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1460 * Get MAC address from FLASH.
1461 * If it is all 1's or 0's, use the default.
1464 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1465 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1466 iap
= fec_mac_default
;
1467 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1468 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1469 iap
= fec_mac_default
;
1471 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1472 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1476 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1478 /* Adjust MAC if using default MAC address */
1479 if (iap
== fec_mac_default
)
1480 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1483 static void __inline__
fec_enable_phy_intr(void)
1487 static void __inline__
fec_disable_phy_intr(void)
1491 static void __inline__
fec_phy_ack_intr(void)
1495 static void __inline__
fec_localhw_setup(void)
1500 * Do not need to make region uncached on 5272.
1502 static void __inline__
fec_uncache(unsigned long addr
)
1506 /* ------------------------------------------------------------------------- */
1508 #elif defined(CONFIG_M520x)
1511 * Code specific to Coldfire 520x
1513 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1515 struct fec_enet_private
*fep
;
1517 static const struct idesc
{
1523 { "fec(TXFIFO)", 25 },
1524 { "fec(TXCR)", 26 },
1529 { "fec(HBERR)", 31 },
1531 { "fec(EBERR)", 33 },
1532 { "fec(BABT)", 34 },
1533 { "fec(BABR)", 35 },
1537 fep
= netdev_priv(dev
);
1540 /* Setup interrupt handlers. */
1541 for (idp
= id
; idp
->name
; idp
++) {
1542 if (request_irq(b
+idp
->irq
,fec_enet_interrupt
,0,idp
->name
,dev
)!=0)
1543 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1546 /* Unmask interrupts at ColdFire interrupt controller */
1548 volatile unsigned char *icrp
;
1549 volatile unsigned long *imrp
;
1551 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1553 for (b
= 36; (b
< 49); b
++)
1555 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1557 *imrp
&= ~0x0001FFF0;
1559 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FEC
) |= 0xf0;
1560 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FECI2C
) |= 0x0f;
1563 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1565 volatile fec_t
*fecp
;
1568 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1569 fecp
->fec_x_cntrl
= 0x00;
1572 * Set MII speed to 2.5 MHz
1573 * See 5282 manual section 17.5.4.7: MSCR
1575 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1576 fecp
->fec_mii_speed
= fep
->phy_speed
;
1578 fec_restart(dev
, 0);
1581 static void __inline__
fec_get_mac(struct net_device
*dev
)
1583 struct fec_enet_private
*fep
= netdev_priv(dev
);
1584 volatile fec_t
*fecp
;
1585 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1591 * Get MAC address from FLASH.
1592 * If it is all 1's or 0's, use the default.
1595 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1596 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1597 iap
= fec_mac_default
;
1598 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1599 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1600 iap
= fec_mac_default
;
1602 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1603 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1607 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1609 /* Adjust MAC if using default MAC address */
1610 if (iap
== fec_mac_default
)
1611 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1614 static void __inline__
fec_enable_phy_intr(void)
1618 static void __inline__
fec_disable_phy_intr(void)
1622 static void __inline__
fec_phy_ack_intr(void)
1626 static void __inline__
fec_localhw_setup(void)
1630 static void __inline__
fec_uncache(unsigned long addr
)
1634 /* ------------------------------------------------------------------------- */
1636 #elif defined(CONFIG_M532x)
1638 * Code specific for M532x
1640 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1642 struct fec_enet_private
*fep
;
1644 static const struct idesc
{
1650 { "fec(TXFIFO)", 38 },
1651 { "fec(TXCR)", 39 },
1656 { "fec(HBERR)", 44 },
1658 { "fec(EBERR)", 46 },
1659 { "fec(BABT)", 47 },
1660 { "fec(BABR)", 48 },
1664 fep
= netdev_priv(dev
);
1665 b
= (fep
->index
) ? 128 : 64;
1667 /* Setup interrupt handlers. */
1668 for (idp
= id
; idp
->name
; idp
++) {
1669 if (request_irq(b
+idp
->irq
,fec_enet_interrupt
,0,idp
->name
,dev
)!=0)
1670 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1671 idp
->name
, b
+idp
->irq
);
1674 /* Unmask interrupts */
1675 MCF_INTC0_ICR36
= 0x2;
1676 MCF_INTC0_ICR37
= 0x2;
1677 MCF_INTC0_ICR38
= 0x2;
1678 MCF_INTC0_ICR39
= 0x2;
1679 MCF_INTC0_ICR40
= 0x2;
1680 MCF_INTC0_ICR41
= 0x2;
1681 MCF_INTC0_ICR42
= 0x2;
1682 MCF_INTC0_ICR43
= 0x2;
1683 MCF_INTC0_ICR44
= 0x2;
1684 MCF_INTC0_ICR45
= 0x2;
1685 MCF_INTC0_ICR46
= 0x2;
1686 MCF_INTC0_ICR47
= 0x2;
1687 MCF_INTC0_ICR48
= 0x2;
1689 MCF_INTC0_IMRH
&= ~(
1690 MCF_INTC_IMRH_INT_MASK36
|
1691 MCF_INTC_IMRH_INT_MASK37
|
1692 MCF_INTC_IMRH_INT_MASK38
|
1693 MCF_INTC_IMRH_INT_MASK39
|
1694 MCF_INTC_IMRH_INT_MASK40
|
1695 MCF_INTC_IMRH_INT_MASK41
|
1696 MCF_INTC_IMRH_INT_MASK42
|
1697 MCF_INTC_IMRH_INT_MASK43
|
1698 MCF_INTC_IMRH_INT_MASK44
|
1699 MCF_INTC_IMRH_INT_MASK45
|
1700 MCF_INTC_IMRH_INT_MASK46
|
1701 MCF_INTC_IMRH_INT_MASK47
|
1702 MCF_INTC_IMRH_INT_MASK48
);
1704 /* Set up gpio outputs for MII lines */
1705 MCF_GPIO_PAR_FECI2C
|= (0 |
1706 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC
|
1707 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO
);
1708 MCF_GPIO_PAR_FEC
= (0 |
1709 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC
|
1710 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC
);
1713 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1715 volatile fec_t
*fecp
;
1718 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1719 fecp
->fec_x_cntrl
= 0x00;
1722 * Set MII speed to 2.5 MHz
1724 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1725 fecp
->fec_mii_speed
= fep
->phy_speed
;
1727 fec_restart(dev
, 0);
1730 static void __inline__
fec_get_mac(struct net_device
*dev
)
1732 struct fec_enet_private
*fep
= netdev_priv(dev
);
1733 volatile fec_t
*fecp
;
1734 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1740 * Get MAC address from FLASH.
1741 * If it is all 1's or 0's, use the default.
1744 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1745 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1746 iap
= fec_mac_default
;
1747 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1748 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1749 iap
= fec_mac_default
;
1751 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1752 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1756 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1758 /* Adjust MAC if using default MAC address */
1759 if (iap
== fec_mac_default
)
1760 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1763 static void __inline__
fec_enable_phy_intr(void)
1767 static void __inline__
fec_disable_phy_intr(void)
1771 static void __inline__
fec_phy_ack_intr(void)
1775 static void __inline__
fec_localhw_setup(void)
1780 * Do not need to make region uncached on 532x.
1782 static void __inline__
fec_uncache(unsigned long addr
)
1786 /* ------------------------------------------------------------------------- */
1792 * Code specific to the MPC860T setup.
1794 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1796 volatile immap_t
*immap
;
1798 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1800 if (request_8xxirq(FEC_INTERRUPT
, fec_enet_interrupt
, 0, "fec", dev
) != 0)
1801 panic("Could not allocate FEC IRQ!");
1803 #ifdef CONFIG_RPXCLASSIC
1804 /* Make Port C, bit 15 an input that causes interrupts.
1806 immap
->im_ioport
.iop_pcpar
&= ~0x0001;
1807 immap
->im_ioport
.iop_pcdir
&= ~0x0001;
1808 immap
->im_ioport
.iop_pcso
&= ~0x0001;
1809 immap
->im_ioport
.iop_pcint
|= 0x0001;
1810 cpm_install_handler(CPMVEC_PIO_PC15
, mii_link_interrupt
, dev
);
1812 /* Make LEDS reflect Link status.
1814 *((uint
*) RPX_CSR_ADDR
) &= ~BCSR2_FETHLEDMODE
;
1817 if (request_8xxirq(SIU_IRQ2
, mii_link_interrupt
, 0, "mii", dev
) != 0)
1818 panic("Could not allocate MII IRQ!");
1822 static void __inline__
fec_get_mac(struct net_device
*dev
)
1827 memcpy(dev
->dev_addr
, bd
->bi_enetaddr
, ETH_ALEN
);
1829 #ifdef CONFIG_RPXCLASSIC
1830 /* The Embedded Planet boards have only one MAC address in
1831 * the EEPROM, but can have two Ethernet ports. For the
1832 * FEC port, we create another address by setting one of
1833 * the address bits above something that would have (up to
1834 * now) been allocated.
1836 dev
->dev_adrd
[3] |= 0x80;
1840 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1842 extern uint
_get_IMMR(void);
1843 volatile immap_t
*immap
;
1844 volatile fec_t
*fecp
;
1847 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1849 /* Configure all of port D for MII.
1851 immap
->im_ioport
.iop_pdpar
= 0x1fff;
1853 /* Bits moved from Rev. D onward.
1855 if ((_get_IMMR() & 0xffff) < 0x0501)
1856 immap
->im_ioport
.iop_pddir
= 0x1c58; /* Pre rev. D */
1858 immap
->im_ioport
.iop_pddir
= 0x1fff; /* Rev. D and later */
1860 /* Set MII speed to 2.5 MHz
1862 fecp
->fec_mii_speed
= fep
->phy_speed
=
1863 ((bd
->bi_busfreq
* 1000000) / 2500000) & 0x7e;
1866 static void __inline__
fec_enable_phy_intr(void)
1868 volatile fec_t
*fecp
;
1872 /* Enable MII command finished interrupt
1874 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1877 static void __inline__
fec_disable_phy_intr(void)
1881 static void __inline__
fec_phy_ack_intr(void)
1885 static void __inline__
fec_localhw_setup(void)
1887 volatile fec_t
*fecp
;
1890 fecp
->fec_r_hash
= PKT_MAXBUF_SIZE
;
1891 /* Enable big endian and don't care about SDMA FC.
1893 fecp
->fec_fun_code
= 0x78000000;
1896 static void __inline__
fec_uncache(unsigned long addr
)
1899 pte
= va_to_pte(mem_addr
);
1900 pte_val(*pte
) |= _PAGE_NO_CACHE
;
1901 flush_tlb_page(init_mm
.mmap
, mem_addr
);
1906 /* ------------------------------------------------------------------------- */
1908 static void mii_display_status(struct net_device
*dev
)
1910 struct fec_enet_private
*fep
= netdev_priv(dev
);
1911 volatile uint
*s
= &(fep
->phy_status
);
1913 if (!fep
->link
&& !fep
->old_link
) {
1914 /* Link is still down - don't print anything */
1918 printk("%s: status: ", dev
->name
);
1921 printk("link down");
1925 switch(*s
& PHY_STAT_SPMASK
) {
1926 case PHY_STAT_100FDX
: printk(", 100MBit Full Duplex"); break;
1927 case PHY_STAT_100HDX
: printk(", 100MBit Half Duplex"); break;
1928 case PHY_STAT_10FDX
: printk(", 10MBit Full Duplex"); break;
1929 case PHY_STAT_10HDX
: printk(", 10MBit Half Duplex"); break;
1931 printk(", Unknown speed/duplex");
1934 if (*s
& PHY_STAT_ANC
)
1935 printk(", auto-negotiation complete");
1938 if (*s
& PHY_STAT_FAULT
)
1939 printk(", remote fault");
1944 static void mii_display_config(struct net_device
*dev
)
1946 struct fec_enet_private
*fep
= netdev_priv(dev
);
1947 uint status
= fep
->phy_status
;
1950 ** When we get here, phy_task is already removed from
1951 ** the workqueue. It is thus safe to allow to reuse it.
1953 fep
->mii_phy_task_queued
= 0;
1954 printk("%s: config: auto-negotiation ", dev
->name
);
1956 if (status
& PHY_CONF_ANE
)
1961 if (status
& PHY_CONF_100FDX
)
1963 if (status
& PHY_CONF_100HDX
)
1965 if (status
& PHY_CONF_10FDX
)
1967 if (status
& PHY_CONF_10HDX
)
1969 if (!(status
& PHY_CONF_SPMASK
))
1970 printk(", No speed/duplex selected?");
1972 if (status
& PHY_CONF_LOOP
)
1973 printk(", loopback enabled");
1977 fep
->sequence_done
= 1;
1980 static void mii_relink(struct net_device
*dev
)
1982 struct fec_enet_private
*fep
= netdev_priv(dev
);
1986 ** When we get here, phy_task is already removed from
1987 ** the workqueue. It is thus safe to allow to reuse it.
1989 fep
->mii_phy_task_queued
= 0;
1990 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1991 mii_display_status(dev
);
1992 fep
->old_link
= fep
->link
;
1997 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1999 fec_restart(dev
, duplex
);
2005 enable_irq(fep
->mii_irq
);
2010 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2011 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
2013 struct fec_enet_private
*fep
= netdev_priv(dev
);
2016 ** We cannot queue phy_task twice in the workqueue. It
2017 ** would cause an endless loop in the workqueue.
2018 ** Fortunately, if the last mii_relink entry has not yet been
2019 ** executed now, it will do the job for the current interrupt,
2020 ** which is just what we want.
2022 if (fep
->mii_phy_task_queued
)
2025 fep
->mii_phy_task_queued
= 1;
2026 INIT_WORK(&fep
->phy_task
, (void*)mii_relink
, dev
);
2027 schedule_work(&fep
->phy_task
);
2030 /* mii_queue_config is called in interrupt context from fec_enet_mii */
2031 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
2033 struct fec_enet_private
*fep
= netdev_priv(dev
);
2035 if (fep
->mii_phy_task_queued
)
2038 fep
->mii_phy_task_queued
= 1;
2039 INIT_WORK(&fep
->phy_task
, (void*)mii_display_config
, dev
);
2040 schedule_work(&fep
->phy_task
);
2043 phy_cmd_t
const phy_cmd_relink
[] = {
2044 { mk_mii_read(MII_REG_CR
), mii_queue_relink
},
2047 phy_cmd_t
const phy_cmd_config
[] = {
2048 { mk_mii_read(MII_REG_CR
), mii_queue_config
},
2052 /* Read remainder of PHY ID.
2055 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
2057 struct fec_enet_private
*fep
;
2060 fep
= netdev_priv(dev
);
2061 fep
->phy_id
|= (mii_reg
& 0xffff);
2062 printk("fec: PHY @ 0x%x, ID 0x%08x", fep
->phy_addr
, fep
->phy_id
);
2064 for(i
= 0; phy_info
[i
]; i
++) {
2065 if(phy_info
[i
]->id
== (fep
->phy_id
>> 4))
2070 printk(" -- %s\n", phy_info
[i
]->name
);
2072 printk(" -- unknown PHY!\n");
2074 fep
->phy
= phy_info
[i
];
2075 fep
->phy_id_done
= 1;
2078 /* Scan all of the MII PHY addresses looking for someone to respond
2079 * with a valid ID. This usually happens quickly.
2082 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
2084 struct fec_enet_private
*fep
;
2085 volatile fec_t
*fecp
;
2088 fep
= netdev_priv(dev
);
2091 if (fep
->phy_addr
< 32) {
2092 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff && phytype
!= 0) {
2094 /* Got first part of ID, now get remainder.
2096 fep
->phy_id
= phytype
<< 16;
2097 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR2
),
2102 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
),
2106 printk("FEC: No PHY device found.\n");
2107 /* Disable external MII interface */
2108 fecp
->fec_mii_speed
= fep
->phy_speed
= 0;
2109 fec_disable_phy_intr();
2113 /* This interrupt occurs when the PHY detects a link change.
2115 #ifdef CONFIG_RPXCLASSIC
2117 mii_link_interrupt(void *dev_id
)
2120 mii_link_interrupt(int irq
, void * dev_id
)
2123 struct net_device
*dev
= dev_id
;
2124 struct fec_enet_private
*fep
= netdev_priv(dev
);
2129 disable_irq(fep
->mii_irq
); /* disable now, enable later */
2132 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2133 mii_do_cmd(dev
, phy_cmd_relink
); /* restart and display status */
2139 fec_enet_open(struct net_device
*dev
)
2141 struct fec_enet_private
*fep
= netdev_priv(dev
);
2143 /* I should reset the ring buffers here, but I don't yet know
2144 * a simple way to do that.
2146 fec_set_mac_address(dev
);
2148 fep
->sequence_done
= 0;
2152 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2153 mii_do_cmd(dev
, fep
->phy
->config
);
2154 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
2156 /* Poll until the PHY tells us its configuration
2158 * Request is initiated by mii_do_cmd above, but answer
2159 * comes by interrupt.
2160 * This should take about 25 usec per register at 2.5 MHz,
2161 * and we read approximately 5 registers.
2163 while(!fep
->sequence_done
)
2166 mii_do_cmd(dev
, fep
->phy
->startup
);
2168 /* Set the initial link state to true. A lot of hardware
2169 * based on this device does not implement a PHY interrupt,
2170 * so we are never notified of link change.
2174 fep
->link
= 1; /* lets just try it and see */
2175 /* no phy, go full duplex, it's most likely a hub chip */
2176 fec_restart(dev
, 1);
2179 netif_start_queue(dev
);
2181 return 0; /* Success */
2185 fec_enet_close(struct net_device
*dev
)
2187 struct fec_enet_private
*fep
= netdev_priv(dev
);
2189 /* Don't know what to do yet.
2192 netif_stop_queue(dev
);
2198 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
)
2200 struct fec_enet_private
*fep
= netdev_priv(dev
);
2205 /* Set or clear the multicast filter for this adaptor.
2206 * Skeleton taken from sunlance driver.
2207 * The CPM Ethernet implementation allows Multicast as well as individual
2208 * MAC address filtering. Some of the drivers check to make sure it is
2209 * a group multicast address, and discard those that are not. I guess I
2210 * will do the same for now, but just remove the test if you want
2211 * individual filtering as well (do the upper net layers want or support
2212 * this kind of feature?).
2215 #define HASH_BITS 6 /* #bits in hash */
2216 #define CRC32_POLY 0xEDB88320
2218 static void set_multicast_list(struct net_device
*dev
)
2220 struct fec_enet_private
*fep
;
2222 struct dev_mc_list
*dmi
;
2223 unsigned int i
, j
, bit
, data
, crc
;
2226 fep
= netdev_priv(dev
);
2229 if (dev
->flags
&IFF_PROMISC
) {
2230 ep
->fec_r_cntrl
|= 0x0008;
2233 ep
->fec_r_cntrl
&= ~0x0008;
2235 if (dev
->flags
& IFF_ALLMULTI
) {
2236 /* Catch all multicast addresses, so set the
2237 * filter to all 1's.
2239 ep
->fec_hash_table_high
= 0xffffffff;
2240 ep
->fec_hash_table_low
= 0xffffffff;
2242 /* Clear filter and add the addresses in hash register.
2244 ep
->fec_hash_table_high
= 0;
2245 ep
->fec_hash_table_low
= 0;
2249 for (j
= 0; j
< dev
->mc_count
; j
++, dmi
= dmi
->next
)
2251 /* Only support group multicast for now.
2253 if (!(dmi
->dmi_addr
[0] & 1))
2256 /* calculate crc32 value of mac address
2260 for (i
= 0; i
< dmi
->dmi_addrlen
; i
++)
2262 data
= dmi
->dmi_addr
[i
];
2263 for (bit
= 0; bit
< 8; bit
++, data
>>= 1)
2266 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
2270 /* only upper 6 bits (HASH_BITS) are used
2271 which point to specific bit in he hash registers
2273 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
2276 ep
->fec_hash_table_high
|= 1 << (hash
- 32);
2278 ep
->fec_hash_table_low
|= 1 << hash
;
2284 /* Set a MAC change in hardware.
2287 fec_set_mac_address(struct net_device
*dev
)
2289 volatile fec_t
*fecp
;
2291 fecp
= ((struct fec_enet_private
*)netdev_priv(dev
))->hwp
;
2293 /* Set station address. */
2294 fecp
->fec_addr_low
= dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
2295 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24);
2296 fecp
->fec_addr_high
= (dev
->dev_addr
[5] << 16) |
2297 (dev
->dev_addr
[4] << 24);
2301 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2304 * XXX: We need to clean up on failure exits here.
2306 int __init
fec_enet_init(struct net_device
*dev
)
2308 struct fec_enet_private
*fep
= netdev_priv(dev
);
2309 unsigned long mem_addr
;
2310 volatile cbd_t
*bdp
;
2312 volatile fec_t
*fecp
;
2314 static int index
= 0;
2316 /* Only allow us to be probed once. */
2317 if (index
>= FEC_MAX_PORTS
)
2320 /* Allocate memory for buffer descriptors.
2322 mem_addr
= __get_free_page(GFP_KERNEL
);
2323 if (mem_addr
== 0) {
2324 printk("FEC: allocate descriptor memory failed?\n");
2328 /* Create an Ethernet device instance.
2330 fecp
= (volatile fec_t
*) fec_hw
[index
];
2335 /* Whack a reset. We should wait for this.
2337 fecp
->fec_ecntrl
= 1;
2340 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2341 * this needs some work to get unique addresses.
2343 * This is our default MAC address unless the user changes
2344 * it via eth_mac_addr (our dev->set_mac_addr handler).
2348 cbd_base
= (cbd_t
*)mem_addr
;
2349 /* XXX: missing check for allocation failure */
2351 fec_uncache(mem_addr
);
2353 /* Set receive and transmit descriptor base.
2355 fep
->rx_bd_base
= cbd_base
;
2356 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
2358 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2359 fep
->cur_rx
= fep
->rx_bd_base
;
2361 fep
->skb_cur
= fep
->skb_dirty
= 0;
2363 /* Initialize the receive buffer descriptors.
2365 bdp
= fep
->rx_bd_base
;
2366 for (i
=0; i
<FEC_ENET_RX_PAGES
; i
++) {
2370 mem_addr
= __get_free_page(GFP_KERNEL
);
2371 /* XXX: missing check for allocation failure */
2373 fec_uncache(mem_addr
);
2375 /* Initialize the BD for every fragment in the page.
2377 for (j
=0; j
<FEC_ENET_RX_FRPPG
; j
++) {
2378 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2379 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2380 mem_addr
+= FEC_ENET_RX_FRSIZE
;
2385 /* Set the last buffer to wrap.
2388 bdp
->cbd_sc
|= BD_SC_WRAP
;
2390 /* ...and the same for transmmit.
2392 bdp
= fep
->tx_bd_base
;
2393 for (i
=0, j
=FEC_ENET_TX_FRPPG
; i
<TX_RING_SIZE
; i
++) {
2394 if (j
>= FEC_ENET_TX_FRPPG
) {
2395 mem_addr
= __get_free_page(GFP_KERNEL
);
2398 mem_addr
+= FEC_ENET_TX_FRSIZE
;
2401 fep
->tx_bounce
[i
] = (unsigned char *) mem_addr
;
2403 /* Initialize the BD for every fragment in the page.
2406 bdp
->cbd_bufaddr
= 0;
2410 /* Set the last buffer to wrap.
2413 bdp
->cbd_sc
|= BD_SC_WRAP
;
2415 /* Set receive and transmit descriptor base.
2417 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2418 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2420 /* Install our interrupt handlers. This varies depending on
2423 fec_request_intrs(dev
);
2425 fecp
->fec_hash_table_high
= 0;
2426 fecp
->fec_hash_table_low
= 0;
2427 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2428 fecp
->fec_ecntrl
= 2;
2429 fecp
->fec_r_des_active
= 0;
2431 dev
->base_addr
= (unsigned long)fecp
;
2433 /* The FEC Ethernet specific entries in the device structure. */
2434 dev
->open
= fec_enet_open
;
2435 dev
->hard_start_xmit
= fec_enet_start_xmit
;
2436 dev
->tx_timeout
= fec_timeout
;
2437 dev
->watchdog_timeo
= TX_TIMEOUT
;
2438 dev
->stop
= fec_enet_close
;
2439 dev
->get_stats
= fec_enet_get_stats
;
2440 dev
->set_multicast_list
= set_multicast_list
;
2442 for (i
=0; i
<NMII
-1; i
++)
2443 mii_cmds
[i
].mii_next
= &mii_cmds
[i
+1];
2444 mii_free
= mii_cmds
;
2446 /* setup MII interface */
2447 fec_set_mii(dev
, fep
);
2449 /* Clear and enable interrupts */
2450 fecp
->fec_ievent
= 0xffc00000;
2451 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
2452 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
2454 /* Queue up command to detect the PHY and initialize the
2455 * remainder of the interface.
2457 fep
->phy_id_done
= 0;
2459 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
), mii_discover_phy
);
2465 /* This function is called to start or restart the FEC during a link
2466 * change. This only happens when switching between half and full
2470 fec_restart(struct net_device
*dev
, int duplex
)
2472 struct fec_enet_private
*fep
;
2473 volatile cbd_t
*bdp
;
2474 volatile fec_t
*fecp
;
2477 fep
= netdev_priv(dev
);
2480 /* Whack a reset. We should wait for this.
2482 fecp
->fec_ecntrl
= 1;
2485 /* Clear any outstanding interrupt.
2487 fecp
->fec_ievent
= 0xffc00000;
2488 fec_enable_phy_intr();
2490 /* Set station address.
2492 fec_set_mac_address(dev
);
2494 /* Reset all multicast.
2496 fecp
->fec_hash_table_high
= 0;
2497 fecp
->fec_hash_table_low
= 0;
2499 /* Set maximum receive buffer size.
2501 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2503 fec_localhw_setup();
2505 /* Set receive and transmit descriptor base.
2507 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2508 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2510 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2511 fep
->cur_rx
= fep
->rx_bd_base
;
2513 /* Reset SKB transmit buffers.
2515 fep
->skb_cur
= fep
->skb_dirty
= 0;
2516 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2517 if (fep
->tx_skbuff
[i
] != NULL
) {
2518 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
2519 fep
->tx_skbuff
[i
] = NULL
;
2523 /* Initialize the receive buffer descriptors.
2525 bdp
= fep
->rx_bd_base
;
2526 for (i
=0; i
<RX_RING_SIZE
; i
++) {
2528 /* Initialize the BD for every fragment in the page.
2530 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2534 /* Set the last buffer to wrap.
2537 bdp
->cbd_sc
|= BD_SC_WRAP
;
2539 /* ...and the same for transmmit.
2541 bdp
= fep
->tx_bd_base
;
2542 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2544 /* Initialize the BD for every fragment in the page.
2547 bdp
->cbd_bufaddr
= 0;
2551 /* Set the last buffer to wrap.
2554 bdp
->cbd_sc
|= BD_SC_WRAP
;
2559 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;/* MII enable */
2560 fecp
->fec_x_cntrl
= 0x04; /* FD enable */
2563 /* MII enable|No Rcv on Xmit */
2564 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x06;
2565 fecp
->fec_x_cntrl
= 0x00;
2567 fep
->full_duplex
= duplex
;
2571 fecp
->fec_mii_speed
= fep
->phy_speed
;
2573 /* And last, enable the transmit and receive processing.
2575 fecp
->fec_ecntrl
= 2;
2576 fecp
->fec_r_des_active
= 0;
2578 /* Enable interrupts we wish to service.
2580 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
2581 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
2585 fec_stop(struct net_device
*dev
)
2587 volatile fec_t
*fecp
;
2588 struct fec_enet_private
*fep
;
2590 fep
= netdev_priv(dev
);
2594 ** We cannot expect a graceful transmit stop without link !!!
2598 fecp
->fec_x_cntrl
= 0x01; /* Graceful transmit stop */
2600 if (!(fecp
->fec_ievent
& FEC_ENET_GRA
))
2601 printk("fec_stop : Graceful transmit stop did not complete !\n");
2604 /* Whack a reset. We should wait for this.
2606 fecp
->fec_ecntrl
= 1;
2609 /* Clear outstanding MII command interrupts.
2611 fecp
->fec_ievent
= FEC_ENET_MII
;
2612 fec_enable_phy_intr();
2614 fecp
->fec_imask
= FEC_ENET_MII
;
2615 fecp
->fec_mii_speed
= fep
->phy_speed
;
2618 static int __init
fec_enet_module_init(void)
2620 struct net_device
*dev
;
2623 printk("FEC ENET Version 0.2\n");
2625 for (i
= 0; (i
< FEC_MAX_PORTS
); i
++) {
2626 dev
= alloc_etherdev(sizeof(struct fec_enet_private
));
2629 err
= fec_enet_init(dev
);
2634 if (register_netdev(dev
) != 0) {
2635 /* XXX: missing cleanup here */
2640 printk("%s: ethernet ", dev
->name
);
2641 for (j
= 0; (j
< 5); j
++)
2642 printk("%02x:", dev
->dev_addr
[j
]);
2643 printk("%02x\n", dev
->dev_addr
[5]);
2648 module_init(fec_enet_module_init
);
2650 MODULE_LICENSE("GPL");