[ARM] 4210/1: base for new machine type "NetSilicon NS9360"
[linux-2.6/openmoko-kernel.git] / drivers / net / fec.c
blob6764281b4531b713c291d0c3e3ce158be8d28ed6
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2006 Macq Electronique SA.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/ptrace.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49 #include <asm/pgtable.h>
51 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
52 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
53 defined(CONFIG_M520x) || defined(CONFIG_M532x)
54 #include <asm/coldfire.h>
55 #include <asm/mcfsim.h>
56 #include "fec.h"
57 #else
58 #include <asm/8xx_immap.h>
59 #include <asm/mpc8xx.h>
60 #include "commproc.h"
61 #endif
63 #if defined(CONFIG_FEC2)
64 #define FEC_MAX_PORTS 2
65 #else
66 #define FEC_MAX_PORTS 1
67 #endif
70 * Define the fixed address of the FEC hardware.
72 static unsigned int fec_hw[] = {
73 #if defined(CONFIG_M5272)
74 (MCF_MBAR + 0x840),
75 #elif defined(CONFIG_M527x)
76 (MCF_MBAR + 0x1000),
77 (MCF_MBAR + 0x1800),
78 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
79 (MCF_MBAR + 0x1000),
80 #elif defined(CONFIG_M520x)
81 (MCF_MBAR+0x30000),
82 #elif defined(CONFIG_M532x)
83 (MCF_MBAR+0xfc030000),
84 #else
85 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
86 #endif
89 static unsigned char fec_mac_default[] = {
90 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
94 * Some hardware gets it MAC address out of local flash memory.
95 * if this is non-zero then assume it is the address to get MAC from.
97 #if defined(CONFIG_NETtel)
98 #define FEC_FLASHMAC 0xf0006006
99 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
100 #define FEC_FLASHMAC 0xf0006000
101 #elif defined (CONFIG_MTD_KeyTechnology)
102 #define FEC_FLASHMAC 0xffe04000
103 #elif defined(CONFIG_CANCam)
104 #define FEC_FLASHMAC 0xf0020000
105 #elif defined (CONFIG_M5272C3)
106 #define FEC_FLASHMAC (0xffe04000 + 4)
107 #elif defined(CONFIG_MOD5272)
108 #define FEC_FLASHMAC 0xffc0406b
109 #else
110 #define FEC_FLASHMAC 0
111 #endif
113 /* Forward declarations of some structures to support different PHYs
116 typedef struct {
117 uint mii_data;
118 void (*funct)(uint mii_reg, struct net_device *dev);
119 } phy_cmd_t;
121 typedef struct {
122 uint id;
123 char *name;
125 const phy_cmd_t *config;
126 const phy_cmd_t *startup;
127 const phy_cmd_t *ack_int;
128 const phy_cmd_t *shutdown;
129 } phy_info_t;
131 /* The number of Tx and Rx buffers. These are allocated from the page
132 * pool. The code may assume these are power of two, so it it best
133 * to keep them that size.
134 * We don't need to allocate pages for the transmitter. We just use
135 * the skbuffer directly.
137 #define FEC_ENET_RX_PAGES 8
138 #define FEC_ENET_RX_FRSIZE 2048
139 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
140 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
141 #define FEC_ENET_TX_FRSIZE 2048
142 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
143 #define TX_RING_SIZE 16 /* Must be power of two */
144 #define TX_RING_MOD_MASK 15 /* for this to work */
146 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
147 #error "FEC: descriptor ring size constants too large"
148 #endif
150 /* Interrupt events/masks.
152 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
153 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
154 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
155 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
156 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
157 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
158 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
159 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
160 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
161 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
163 /* The FEC stores dest/src/type, data, and checksum for receive packets.
165 #define PKT_MAXBUF_SIZE 1518
166 #define PKT_MINBUF_SIZE 64
167 #define PKT_MAXBLR_SIZE 1520
171 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172 * size bits. Other FEC hardware does not, so we need to take that into
173 * account when setting it.
175 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176 defined(CONFIG_M520x) || defined(CONFIG_M532x)
177 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
178 #else
179 #define OPT_FRAME_SIZE 0
180 #endif
182 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
183 * tx_bd_base always point to the base of the buffer descriptors. The
184 * cur_rx and cur_tx point to the currently available buffer.
185 * The dirty_tx tracks the current buffer that is being sent by the
186 * controller. The cur_tx and dirty_tx are equal under both completely
187 * empty and completely full conditions. The empty/ready indicator in
188 * the buffer descriptor determines the actual condition.
190 struct fec_enet_private {
191 /* Hardware registers of the FEC device */
192 volatile fec_t *hwp;
194 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
195 unsigned char *tx_bounce[TX_RING_SIZE];
196 struct sk_buff* tx_skbuff[TX_RING_SIZE];
197 ushort skb_cur;
198 ushort skb_dirty;
200 /* CPM dual port RAM relative addresses.
202 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
203 cbd_t *tx_bd_base;
204 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
205 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
206 struct net_device_stats stats;
207 uint tx_full;
208 spinlock_t lock;
210 uint phy_id;
211 uint phy_id_done;
212 uint phy_status;
213 uint phy_speed;
214 phy_info_t const *phy;
215 struct work_struct phy_task;
217 uint sequence_done;
218 uint mii_phy_task_queued;
220 uint phy_addr;
222 int index;
223 int opened;
224 int link;
225 int old_link;
226 int full_duplex;
229 static int fec_enet_open(struct net_device *dev);
230 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
231 static void fec_enet_mii(struct net_device *dev);
232 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
233 static void fec_enet_tx(struct net_device *dev);
234 static void fec_enet_rx(struct net_device *dev);
235 static int fec_enet_close(struct net_device *dev);
236 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
237 static void set_multicast_list(struct net_device *dev);
238 static void fec_restart(struct net_device *dev, int duplex);
239 static void fec_stop(struct net_device *dev);
240 static void fec_set_mac_address(struct net_device *dev);
243 /* MII processing. We keep this as simple as possible. Requests are
244 * placed on the list (if there is room). When the request is finished
245 * by the MII, an optional function may be called.
247 typedef struct mii_list {
248 uint mii_regval;
249 void (*mii_func)(uint val, struct net_device *dev);
250 struct mii_list *mii_next;
251 } mii_list_t;
253 #define NMII 20
254 static mii_list_t mii_cmds[NMII];
255 static mii_list_t *mii_free;
256 static mii_list_t *mii_head;
257 static mii_list_t *mii_tail;
259 static int mii_queue(struct net_device *dev, int request,
260 void (*func)(uint, struct net_device *));
262 /* Make MII read/write commands for the FEC.
264 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
265 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
266 (VAL & 0xffff))
267 #define mk_mii_end 0
269 /* Transmitter timeout.
271 #define TX_TIMEOUT (2*HZ)
273 /* Register definitions for the PHY.
276 #define MII_REG_CR 0 /* Control Register */
277 #define MII_REG_SR 1 /* Status Register */
278 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
279 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
280 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
281 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
282 #define MII_REG_ANER 6 /* A-N Expansion Register */
283 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
284 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
286 /* values for phy_status */
288 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
289 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
290 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
291 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
292 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
293 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
294 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
296 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
297 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
298 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
299 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
300 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
301 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
302 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
303 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
306 static int
307 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
309 struct fec_enet_private *fep;
310 volatile fec_t *fecp;
311 volatile cbd_t *bdp;
312 unsigned short status;
314 fep = netdev_priv(dev);
315 fecp = (volatile fec_t*)dev->base_addr;
317 if (!fep->link) {
318 /* Link is down or autonegotiation is in progress. */
319 return 1;
322 /* Fill in a Tx ring entry */
323 bdp = fep->cur_tx;
325 status = bdp->cbd_sc;
326 #ifndef final_version
327 if (status & BD_ENET_TX_READY) {
328 /* Ooops. All transmit buffers are full. Bail out.
329 * This should not happen, since dev->tbusy should be set.
331 printk("%s: tx queue full!.\n", dev->name);
332 return 1;
334 #endif
336 /* Clear all of the status flags.
338 status &= ~BD_ENET_TX_STATS;
340 /* Set buffer length and buffer pointer.
342 bdp->cbd_bufaddr = __pa(skb->data);
343 bdp->cbd_datlen = skb->len;
346 * On some FEC implementations data must be aligned on
347 * 4-byte boundaries. Use bounce buffers to copy data
348 * and get it aligned. Ugh.
350 if (bdp->cbd_bufaddr & 0x3) {
351 unsigned int index;
352 index = bdp - fep->tx_bd_base;
353 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
354 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
357 /* Save skb pointer.
359 fep->tx_skbuff[fep->skb_cur] = skb;
361 fep->stats.tx_bytes += skb->len;
362 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
364 /* Push the data cache so the CPM does not get stale memory
365 * data.
367 flush_dcache_range((unsigned long)skb->data,
368 (unsigned long)skb->data + skb->len);
370 spin_lock_irq(&fep->lock);
372 /* Send it on its way. Tell FEC it's ready, interrupt when done,
373 * it's the last BD of the frame, and to put the CRC on the end.
376 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
377 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
378 bdp->cbd_sc = status;
380 dev->trans_start = jiffies;
382 /* Trigger transmission start */
383 fecp->fec_x_des_active = 0;
385 /* If this was the last BD in the ring, start at the beginning again.
387 if (status & BD_ENET_TX_WRAP) {
388 bdp = fep->tx_bd_base;
389 } else {
390 bdp++;
393 if (bdp == fep->dirty_tx) {
394 fep->tx_full = 1;
395 netif_stop_queue(dev);
398 fep->cur_tx = (cbd_t *)bdp;
400 spin_unlock_irq(&fep->lock);
402 return 0;
405 static void
406 fec_timeout(struct net_device *dev)
408 struct fec_enet_private *fep = netdev_priv(dev);
410 printk("%s: transmit timed out.\n", dev->name);
411 fep->stats.tx_errors++;
412 #ifndef final_version
414 int i;
415 cbd_t *bdp;
417 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
418 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
419 (unsigned long)fep->dirty_tx,
420 (unsigned long)fep->cur_rx);
422 bdp = fep->tx_bd_base;
423 printk(" tx: %u buffers\n", TX_RING_SIZE);
424 for (i = 0 ; i < TX_RING_SIZE; i++) {
425 printk(" %08x: %04x %04x %08x\n",
426 (uint) bdp,
427 bdp->cbd_sc,
428 bdp->cbd_datlen,
429 (int) bdp->cbd_bufaddr);
430 bdp++;
433 bdp = fep->rx_bd_base;
434 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
435 for (i = 0 ; i < RX_RING_SIZE; i++) {
436 printk(" %08x: %04x %04x %08x\n",
437 (uint) bdp,
438 bdp->cbd_sc,
439 bdp->cbd_datlen,
440 (int) bdp->cbd_bufaddr);
441 bdp++;
444 #endif
445 fec_restart(dev, fep->full_duplex);
446 netif_wake_queue(dev);
449 /* The interrupt handler.
450 * This is called from the MPC core interrupt.
452 static irqreturn_t
453 fec_enet_interrupt(int irq, void * dev_id)
455 struct net_device *dev = dev_id;
456 volatile fec_t *fecp;
457 uint int_events;
458 int handled = 0;
460 fecp = (volatile fec_t*)dev->base_addr;
462 /* Get the interrupt events that caused us to be here.
464 while ((int_events = fecp->fec_ievent) != 0) {
465 fecp->fec_ievent = int_events;
467 /* Handle receive event in its own function.
469 if (int_events & FEC_ENET_RXF) {
470 handled = 1;
471 fec_enet_rx(dev);
474 /* Transmit OK, or non-fatal error. Update the buffer
475 descriptors. FEC handles all errors, we just discover
476 them as part of the transmit process.
478 if (int_events & FEC_ENET_TXF) {
479 handled = 1;
480 fec_enet_tx(dev);
483 if (int_events & FEC_ENET_MII) {
484 handled = 1;
485 fec_enet_mii(dev);
489 return IRQ_RETVAL(handled);
493 static void
494 fec_enet_tx(struct net_device *dev)
496 struct fec_enet_private *fep;
497 volatile cbd_t *bdp;
498 unsigned short status;
499 struct sk_buff *skb;
501 fep = netdev_priv(dev);
502 spin_lock(&fep->lock);
503 bdp = fep->dirty_tx;
505 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
506 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
508 skb = fep->tx_skbuff[fep->skb_dirty];
509 /* Check for errors. */
510 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
511 BD_ENET_TX_RL | BD_ENET_TX_UN |
512 BD_ENET_TX_CSL)) {
513 fep->stats.tx_errors++;
514 if (status & BD_ENET_TX_HB) /* No heartbeat */
515 fep->stats.tx_heartbeat_errors++;
516 if (status & BD_ENET_TX_LC) /* Late collision */
517 fep->stats.tx_window_errors++;
518 if (status & BD_ENET_TX_RL) /* Retrans limit */
519 fep->stats.tx_aborted_errors++;
520 if (status & BD_ENET_TX_UN) /* Underrun */
521 fep->stats.tx_fifo_errors++;
522 if (status & BD_ENET_TX_CSL) /* Carrier lost */
523 fep->stats.tx_carrier_errors++;
524 } else {
525 fep->stats.tx_packets++;
528 #ifndef final_version
529 if (status & BD_ENET_TX_READY)
530 printk("HEY! Enet xmit interrupt and TX_READY.\n");
531 #endif
532 /* Deferred means some collisions occurred during transmit,
533 * but we eventually sent the packet OK.
535 if (status & BD_ENET_TX_DEF)
536 fep->stats.collisions++;
538 /* Free the sk buffer associated with this last transmit.
540 dev_kfree_skb_any(skb);
541 fep->tx_skbuff[fep->skb_dirty] = NULL;
542 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
544 /* Update pointer to next buffer descriptor to be transmitted.
546 if (status & BD_ENET_TX_WRAP)
547 bdp = fep->tx_bd_base;
548 else
549 bdp++;
551 /* Since we have freed up a buffer, the ring is no longer
552 * full.
554 if (fep->tx_full) {
555 fep->tx_full = 0;
556 if (netif_queue_stopped(dev))
557 netif_wake_queue(dev);
560 fep->dirty_tx = (cbd_t *)bdp;
561 spin_unlock(&fep->lock);
565 /* During a receive, the cur_rx points to the current incoming buffer.
566 * When we update through the ring, if the next incoming buffer has
567 * not been given to the system, we just set the empty indicator,
568 * effectively tossing the packet.
570 static void
571 fec_enet_rx(struct net_device *dev)
573 struct fec_enet_private *fep;
574 volatile fec_t *fecp;
575 volatile cbd_t *bdp;
576 unsigned short status;
577 struct sk_buff *skb;
578 ushort pkt_len;
579 __u8 *data;
581 #ifdef CONFIG_M532x
582 flush_cache_all();
583 #endif
585 fep = netdev_priv(dev);
586 fecp = (volatile fec_t*)dev->base_addr;
588 /* First, grab all of the stats for the incoming packet.
589 * These get messed up if we get called due to a busy condition.
591 bdp = fep->cur_rx;
593 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
595 #ifndef final_version
596 /* Since we have allocated space to hold a complete frame,
597 * the last indicator should be set.
599 if ((status & BD_ENET_RX_LAST) == 0)
600 printk("FEC ENET: rcv is not +last\n");
601 #endif
603 if (!fep->opened)
604 goto rx_processing_done;
606 /* Check for errors. */
607 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
608 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
609 fep->stats.rx_errors++;
610 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
611 /* Frame too long or too short. */
612 fep->stats.rx_length_errors++;
614 if (status & BD_ENET_RX_NO) /* Frame alignment */
615 fep->stats.rx_frame_errors++;
616 if (status & BD_ENET_RX_CR) /* CRC Error */
617 fep->stats.rx_crc_errors++;
618 if (status & BD_ENET_RX_OV) /* FIFO overrun */
619 fep->stats.rx_fifo_errors++;
622 /* Report late collisions as a frame error.
623 * On this error, the BD is closed, but we don't know what we
624 * have in the buffer. So, just drop this frame on the floor.
626 if (status & BD_ENET_RX_CL) {
627 fep->stats.rx_errors++;
628 fep->stats.rx_frame_errors++;
629 goto rx_processing_done;
632 /* Process the incoming frame.
634 fep->stats.rx_packets++;
635 pkt_len = bdp->cbd_datlen;
636 fep->stats.rx_bytes += pkt_len;
637 data = (__u8*)__va(bdp->cbd_bufaddr);
639 /* This does 16 byte alignment, exactly what we need.
640 * The packet length includes FCS, but we don't want to
641 * include that when passing upstream as it messes up
642 * bridging applications.
644 skb = dev_alloc_skb(pkt_len-4);
646 if (skb == NULL) {
647 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
648 fep->stats.rx_dropped++;
649 } else {
650 skb->dev = dev;
651 skb_put(skb,pkt_len-4); /* Make room */
652 eth_copy_and_sum(skb, data, pkt_len-4, 0);
653 skb->protocol=eth_type_trans(skb,dev);
654 netif_rx(skb);
656 rx_processing_done:
658 /* Clear the status flags for this buffer.
660 status &= ~BD_ENET_RX_STATS;
662 /* Mark the buffer empty.
664 status |= BD_ENET_RX_EMPTY;
665 bdp->cbd_sc = status;
667 /* Update BD pointer to next entry.
669 if (status & BD_ENET_RX_WRAP)
670 bdp = fep->rx_bd_base;
671 else
672 bdp++;
674 #if 1
675 /* Doing this here will keep the FEC running while we process
676 * incoming frames. On a heavily loaded network, we should be
677 * able to keep up at the expense of system resources.
679 fecp->fec_r_des_active = 0;
680 #endif
681 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
682 fep->cur_rx = (cbd_t *)bdp;
684 #if 0
685 /* Doing this here will allow us to process all frames in the
686 * ring before the FEC is allowed to put more there. On a heavily
687 * loaded network, some frames may be lost. Unfortunately, this
688 * increases the interrupt overhead since we can potentially work
689 * our way back to the interrupt return only to come right back
690 * here.
692 fecp->fec_r_des_active = 0;
693 #endif
697 /* called from interrupt context */
698 static void
699 fec_enet_mii(struct net_device *dev)
701 struct fec_enet_private *fep;
702 volatile fec_t *ep;
703 mii_list_t *mip;
704 uint mii_reg;
706 fep = netdev_priv(dev);
707 ep = fep->hwp;
708 mii_reg = ep->fec_mii_data;
710 spin_lock(&fep->lock);
712 if ((mip = mii_head) == NULL) {
713 printk("MII and no head!\n");
714 goto unlock;
717 if (mip->mii_func != NULL)
718 (*(mip->mii_func))(mii_reg, dev);
720 mii_head = mip->mii_next;
721 mip->mii_next = mii_free;
722 mii_free = mip;
724 if ((mip = mii_head) != NULL)
725 ep->fec_mii_data = mip->mii_regval;
727 unlock:
728 spin_unlock(&fep->lock);
731 static int
732 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
734 struct fec_enet_private *fep;
735 unsigned long flags;
736 mii_list_t *mip;
737 int retval;
739 /* Add PHY address to register command.
741 fep = netdev_priv(dev);
742 regval |= fep->phy_addr << 23;
744 retval = 0;
746 spin_lock_irqsave(&fep->lock,flags);
748 if ((mip = mii_free) != NULL) {
749 mii_free = mip->mii_next;
750 mip->mii_regval = regval;
751 mip->mii_func = func;
752 mip->mii_next = NULL;
753 if (mii_head) {
754 mii_tail->mii_next = mip;
755 mii_tail = mip;
757 else {
758 mii_head = mii_tail = mip;
759 fep->hwp->fec_mii_data = regval;
762 else {
763 retval = 1;
766 spin_unlock_irqrestore(&fep->lock,flags);
768 return(retval);
771 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
773 int k;
775 if(!c)
776 return;
778 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
779 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
783 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
785 struct fec_enet_private *fep = netdev_priv(dev);
786 volatile uint *s = &(fep->phy_status);
787 uint status;
789 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
791 if (mii_reg & 0x0004)
792 status |= PHY_STAT_LINK;
793 if (mii_reg & 0x0010)
794 status |= PHY_STAT_FAULT;
795 if (mii_reg & 0x0020)
796 status |= PHY_STAT_ANC;
798 *s = status;
801 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
803 struct fec_enet_private *fep = netdev_priv(dev);
804 volatile uint *s = &(fep->phy_status);
805 uint status;
807 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
809 if (mii_reg & 0x1000)
810 status |= PHY_CONF_ANE;
811 if (mii_reg & 0x4000)
812 status |= PHY_CONF_LOOP;
813 *s = status;
816 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
818 struct fec_enet_private *fep = netdev_priv(dev);
819 volatile uint *s = &(fep->phy_status);
820 uint status;
822 status = *s & ~(PHY_CONF_SPMASK);
824 if (mii_reg & 0x0020)
825 status |= PHY_CONF_10HDX;
826 if (mii_reg & 0x0040)
827 status |= PHY_CONF_10FDX;
828 if (mii_reg & 0x0080)
829 status |= PHY_CONF_100HDX;
830 if (mii_reg & 0x00100)
831 status |= PHY_CONF_100FDX;
832 *s = status;
835 /* ------------------------------------------------------------------------- */
836 /* The Level one LXT970 is used by many boards */
838 #define MII_LXT970_MIRROR 16 /* Mirror register */
839 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
840 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
841 #define MII_LXT970_CONFIG 19 /* Configuration Register */
842 #define MII_LXT970_CSR 20 /* Chip Status Register */
844 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
846 struct fec_enet_private *fep = netdev_priv(dev);
847 volatile uint *s = &(fep->phy_status);
848 uint status;
850 status = *s & ~(PHY_STAT_SPMASK);
851 if (mii_reg & 0x0800) {
852 if (mii_reg & 0x1000)
853 status |= PHY_STAT_100FDX;
854 else
855 status |= PHY_STAT_100HDX;
856 } else {
857 if (mii_reg & 0x1000)
858 status |= PHY_STAT_10FDX;
859 else
860 status |= PHY_STAT_10HDX;
862 *s = status;
865 static phy_cmd_t const phy_cmd_lxt970_config[] = {
866 { mk_mii_read(MII_REG_CR), mii_parse_cr },
867 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
868 { mk_mii_end, }
870 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
871 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
872 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
873 { mk_mii_end, }
875 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
876 /* read SR and ISR to acknowledge */
877 { mk_mii_read(MII_REG_SR), mii_parse_sr },
878 { mk_mii_read(MII_LXT970_ISR), NULL },
880 /* find out the current status */
881 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
882 { mk_mii_end, }
884 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
885 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
886 { mk_mii_end, }
888 static phy_info_t const phy_info_lxt970 = {
889 .id = 0x07810000,
890 .name = "LXT970",
891 .config = phy_cmd_lxt970_config,
892 .startup = phy_cmd_lxt970_startup,
893 .ack_int = phy_cmd_lxt970_ack_int,
894 .shutdown = phy_cmd_lxt970_shutdown
897 /* ------------------------------------------------------------------------- */
898 /* The Level one LXT971 is used on some of my custom boards */
900 /* register definitions for the 971 */
902 #define MII_LXT971_PCR 16 /* Port Control Register */
903 #define MII_LXT971_SR2 17 /* Status Register 2 */
904 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
905 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
906 #define MII_LXT971_LCR 20 /* LED Control Register */
907 #define MII_LXT971_TCR 30 /* Transmit Control Register */
910 * I had some nice ideas of running the MDIO faster...
911 * The 971 should support 8MHz and I tried it, but things acted really
912 * weird, so 2.5 MHz ought to be enough for anyone...
915 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
917 struct fec_enet_private *fep = netdev_priv(dev);
918 volatile uint *s = &(fep->phy_status);
919 uint status;
921 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
923 if (mii_reg & 0x0400) {
924 fep->link = 1;
925 status |= PHY_STAT_LINK;
926 } else {
927 fep->link = 0;
929 if (mii_reg & 0x0080)
930 status |= PHY_STAT_ANC;
931 if (mii_reg & 0x4000) {
932 if (mii_reg & 0x0200)
933 status |= PHY_STAT_100FDX;
934 else
935 status |= PHY_STAT_100HDX;
936 } else {
937 if (mii_reg & 0x0200)
938 status |= PHY_STAT_10FDX;
939 else
940 status |= PHY_STAT_10HDX;
942 if (mii_reg & 0x0008)
943 status |= PHY_STAT_FAULT;
945 *s = status;
948 static phy_cmd_t const phy_cmd_lxt971_config[] = {
949 /* limit to 10MBit because my prototype board
950 * doesn't work with 100. */
951 { mk_mii_read(MII_REG_CR), mii_parse_cr },
952 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
953 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
954 { mk_mii_end, }
956 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
957 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
958 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
959 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
960 /* Somehow does the 971 tell me that the link is down
961 * the first read after power-up.
962 * read here to get a valid value in ack_int */
963 { mk_mii_read(MII_REG_SR), mii_parse_sr },
964 { mk_mii_end, }
966 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
967 /* acknowledge the int before reading status ! */
968 { mk_mii_read(MII_LXT971_ISR), NULL },
969 /* find out the current status */
970 { mk_mii_read(MII_REG_SR), mii_parse_sr },
971 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
972 { mk_mii_end, }
974 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
975 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
976 { mk_mii_end, }
978 static phy_info_t const phy_info_lxt971 = {
979 .id = 0x0001378e,
980 .name = "LXT971",
981 .config = phy_cmd_lxt971_config,
982 .startup = phy_cmd_lxt971_startup,
983 .ack_int = phy_cmd_lxt971_ack_int,
984 .shutdown = phy_cmd_lxt971_shutdown
987 /* ------------------------------------------------------------------------- */
988 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
990 /* register definitions */
992 #define MII_QS6612_MCR 17 /* Mode Control Register */
993 #define MII_QS6612_FTR 27 /* Factory Test Register */
994 #define MII_QS6612_MCO 28 /* Misc. Control Register */
995 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
996 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
997 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
999 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1001 struct fec_enet_private *fep = netdev_priv(dev);
1002 volatile uint *s = &(fep->phy_status);
1003 uint status;
1005 status = *s & ~(PHY_STAT_SPMASK);
1007 switch((mii_reg >> 2) & 7) {
1008 case 1: status |= PHY_STAT_10HDX; break;
1009 case 2: status |= PHY_STAT_100HDX; break;
1010 case 5: status |= PHY_STAT_10FDX; break;
1011 case 6: status |= PHY_STAT_100FDX; break;
1014 *s = status;
1017 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1018 /* The PHY powers up isolated on the RPX,
1019 * so send a command to allow operation.
1021 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1023 /* parse cr and anar to get some info */
1024 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1025 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1026 { mk_mii_end, }
1028 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1029 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1030 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1031 { mk_mii_end, }
1033 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1034 /* we need to read ISR, SR and ANER to acknowledge */
1035 { mk_mii_read(MII_QS6612_ISR), NULL },
1036 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1037 { mk_mii_read(MII_REG_ANER), NULL },
1039 /* read pcr to get info */
1040 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1041 { mk_mii_end, }
1043 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1044 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1045 { mk_mii_end, }
1047 static phy_info_t const phy_info_qs6612 = {
1048 .id = 0x00181440,
1049 .name = "QS6612",
1050 .config = phy_cmd_qs6612_config,
1051 .startup = phy_cmd_qs6612_startup,
1052 .ack_int = phy_cmd_qs6612_ack_int,
1053 .shutdown = phy_cmd_qs6612_shutdown
1056 /* ------------------------------------------------------------------------- */
1057 /* AMD AM79C874 phy */
1059 /* register definitions for the 874 */
1061 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1062 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1063 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1064 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1065 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1066 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1067 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1069 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1071 struct fec_enet_private *fep = netdev_priv(dev);
1072 volatile uint *s = &(fep->phy_status);
1073 uint status;
1075 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1077 if (mii_reg & 0x0080)
1078 status |= PHY_STAT_ANC;
1079 if (mii_reg & 0x0400)
1080 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1081 else
1082 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1084 *s = status;
1087 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1088 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1089 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1090 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1091 { mk_mii_end, }
1093 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1094 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1095 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1096 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1097 { mk_mii_end, }
1099 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1100 /* find out the current status */
1101 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1102 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1103 /* we only need to read ISR to acknowledge */
1104 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1105 { mk_mii_end, }
1107 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1108 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1109 { mk_mii_end, }
1111 static phy_info_t const phy_info_am79c874 = {
1112 .id = 0x00022561,
1113 .name = "AM79C874",
1114 .config = phy_cmd_am79c874_config,
1115 .startup = phy_cmd_am79c874_startup,
1116 .ack_int = phy_cmd_am79c874_ack_int,
1117 .shutdown = phy_cmd_am79c874_shutdown
1121 /* ------------------------------------------------------------------------- */
1122 /* Kendin KS8721BL phy */
1124 /* register definitions for the 8721 */
1126 #define MII_KS8721BL_RXERCR 21
1127 #define MII_KS8721BL_ICSR 22
1128 #define MII_KS8721BL_PHYCR 31
1130 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1131 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1132 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1133 { mk_mii_end, }
1135 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1136 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1137 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1138 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1139 { mk_mii_end, }
1141 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1142 /* find out the current status */
1143 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1144 /* we only need to read ISR to acknowledge */
1145 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1146 { mk_mii_end, }
1148 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1149 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1150 { mk_mii_end, }
1152 static phy_info_t const phy_info_ks8721bl = {
1153 .id = 0x00022161,
1154 .name = "KS8721BL",
1155 .config = phy_cmd_ks8721bl_config,
1156 .startup = phy_cmd_ks8721bl_startup,
1157 .ack_int = phy_cmd_ks8721bl_ack_int,
1158 .shutdown = phy_cmd_ks8721bl_shutdown
1161 /* ------------------------------------------------------------------------- */
1162 /* register definitions for the DP83848 */
1164 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1166 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1168 struct fec_enet_private *fep = dev->priv;
1169 volatile uint *s = &(fep->phy_status);
1171 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1173 /* Link up */
1174 if (mii_reg & 0x0001) {
1175 fep->link = 1;
1176 *s |= PHY_STAT_LINK;
1177 } else
1178 fep->link = 0;
1179 /* Status of link */
1180 if (mii_reg & 0x0010) /* Autonegotioation complete */
1181 *s |= PHY_STAT_ANC;
1182 if (mii_reg & 0x0002) { /* 10MBps? */
1183 if (mii_reg & 0x0004) /* Full Duplex? */
1184 *s |= PHY_STAT_10FDX;
1185 else
1186 *s |= PHY_STAT_10HDX;
1187 } else { /* 100 Mbps? */
1188 if (mii_reg & 0x0004) /* Full Duplex? */
1189 *s |= PHY_STAT_100FDX;
1190 else
1191 *s |= PHY_STAT_100HDX;
1193 if (mii_reg & 0x0008)
1194 *s |= PHY_STAT_FAULT;
1197 static phy_info_t phy_info_dp83848= {
1198 0x020005c9,
1199 "DP83848",
1201 (const phy_cmd_t []) { /* config */
1202 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1203 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1204 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1205 { mk_mii_end, }
1207 (const phy_cmd_t []) { /* startup - enable interrupts */
1208 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1209 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1210 { mk_mii_end, }
1212 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1213 { mk_mii_end, }
1215 (const phy_cmd_t []) { /* shutdown */
1216 { mk_mii_end, }
1220 /* ------------------------------------------------------------------------- */
1222 static phy_info_t const * const phy_info[] = {
1223 &phy_info_lxt970,
1224 &phy_info_lxt971,
1225 &phy_info_qs6612,
1226 &phy_info_am79c874,
1227 &phy_info_ks8721bl,
1228 &phy_info_dp83848,
1229 NULL
1232 /* ------------------------------------------------------------------------- */
1233 #if !defined(CONFIG_M532x)
1234 #ifdef CONFIG_RPXCLASSIC
1235 static void
1236 mii_link_interrupt(void *dev_id);
1237 #else
1238 static irqreturn_t
1239 mii_link_interrupt(int irq, void * dev_id);
1240 #endif
1241 #endif
1243 #if defined(CONFIG_M5272)
1246 * Code specific to Coldfire 5272 setup.
1248 static void __inline__ fec_request_intrs(struct net_device *dev)
1250 volatile unsigned long *icrp;
1251 static const struct idesc {
1252 char *name;
1253 unsigned short irq;
1254 irq_handler_t handler;
1255 } *idp, id[] = {
1256 { "fec(RX)", 86, fec_enet_interrupt },
1257 { "fec(TX)", 87, fec_enet_interrupt },
1258 { "fec(OTHER)", 88, fec_enet_interrupt },
1259 { "fec(MII)", 66, mii_link_interrupt },
1260 { NULL },
1263 /* Setup interrupt handlers. */
1264 for (idp = id; idp->name; idp++) {
1265 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1266 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1269 /* Unmask interrupt at ColdFire 5272 SIM */
1270 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1271 *icrp = 0x00000ddd;
1272 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1273 *icrp = (*icrp & 0x70777777) | 0x0d000000;
1276 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1278 volatile fec_t *fecp;
1280 fecp = fep->hwp;
1281 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1282 fecp->fec_x_cntrl = 0x00;
1285 * Set MII speed to 2.5 MHz
1286 * See 5272 manual section 11.5.8: MSCR
1288 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1289 fecp->fec_mii_speed = fep->phy_speed;
1291 fec_restart(dev, 0);
1294 static void __inline__ fec_get_mac(struct net_device *dev)
1296 struct fec_enet_private *fep = netdev_priv(dev);
1297 volatile fec_t *fecp;
1298 unsigned char *iap, tmpaddr[ETH_ALEN];
1300 fecp = fep->hwp;
1302 if (FEC_FLASHMAC) {
1304 * Get MAC address from FLASH.
1305 * If it is all 1's or 0's, use the default.
1307 iap = (unsigned char *)FEC_FLASHMAC;
1308 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1309 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1310 iap = fec_mac_default;
1311 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1312 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1313 iap = fec_mac_default;
1314 } else {
1315 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1316 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1317 iap = &tmpaddr[0];
1320 memcpy(dev->dev_addr, iap, ETH_ALEN);
1322 /* Adjust MAC if using default MAC address */
1323 if (iap == fec_mac_default)
1324 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1327 static void __inline__ fec_enable_phy_intr(void)
1331 static void __inline__ fec_disable_phy_intr(void)
1333 volatile unsigned long *icrp;
1334 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1335 *icrp = (*icrp & 0x70777777) | 0x08000000;
1338 static void __inline__ fec_phy_ack_intr(void)
1340 volatile unsigned long *icrp;
1341 /* Acknowledge the interrupt */
1342 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1343 *icrp = (*icrp & 0x77777777) | 0x08000000;
1346 static void __inline__ fec_localhw_setup(void)
1351 * Do not need to make region uncached on 5272.
1353 static void __inline__ fec_uncache(unsigned long addr)
1357 /* ------------------------------------------------------------------------- */
1359 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1362 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1363 * the 5270/5271/5274/5275 and 5280/5282 setups.
1365 static void __inline__ fec_request_intrs(struct net_device *dev)
1367 struct fec_enet_private *fep;
1368 int b;
1369 static const struct idesc {
1370 char *name;
1371 unsigned short irq;
1372 } *idp, id[] = {
1373 { "fec(TXF)", 23 },
1374 { "fec(TXB)", 24 },
1375 { "fec(TXFIFO)", 25 },
1376 { "fec(TXCR)", 26 },
1377 { "fec(RXF)", 27 },
1378 { "fec(RXB)", 28 },
1379 { "fec(MII)", 29 },
1380 { "fec(LC)", 30 },
1381 { "fec(HBERR)", 31 },
1382 { "fec(GRA)", 32 },
1383 { "fec(EBERR)", 33 },
1384 { "fec(BABT)", 34 },
1385 { "fec(BABR)", 35 },
1386 { NULL },
1389 fep = netdev_priv(dev);
1390 b = (fep->index) ? 128 : 64;
1392 /* Setup interrupt handlers. */
1393 for (idp = id; idp->name; idp++) {
1394 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1395 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1398 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1400 volatile unsigned char *icrp;
1401 volatile unsigned long *imrp;
1402 int i, ilip;
1404 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1405 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1406 MCFINTC_ICR0);
1407 for (i = 23, ilip = 0x28; (i < 36); i++)
1408 icrp[i] = ilip--;
1410 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1411 MCFINTC_IMRH);
1412 *imrp &= ~0x0000000f;
1413 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1414 MCFINTC_IMRL);
1415 *imrp &= ~0xff800001;
1418 #if defined(CONFIG_M528x)
1419 /* Set up gpio outputs for MII lines */
1421 volatile u16 *gpio_paspar;
1422 volatile u8 *gpio_pehlpar;
1424 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1425 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1426 *gpio_paspar |= 0x0f00;
1427 *gpio_pehlpar = 0xc0;
1429 #endif
1432 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1434 volatile fec_t *fecp;
1436 fecp = fep->hwp;
1437 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1438 fecp->fec_x_cntrl = 0x00;
1441 * Set MII speed to 2.5 MHz
1442 * See 5282 manual section 17.5.4.7: MSCR
1444 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1445 fecp->fec_mii_speed = fep->phy_speed;
1447 fec_restart(dev, 0);
1450 static void __inline__ fec_get_mac(struct net_device *dev)
1452 struct fec_enet_private *fep = netdev_priv(dev);
1453 volatile fec_t *fecp;
1454 unsigned char *iap, tmpaddr[ETH_ALEN];
1456 fecp = fep->hwp;
1458 if (FEC_FLASHMAC) {
1460 * Get MAC address from FLASH.
1461 * If it is all 1's or 0's, use the default.
1463 iap = FEC_FLASHMAC;
1464 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1465 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1466 iap = fec_mac_default;
1467 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1468 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1469 iap = fec_mac_default;
1470 } else {
1471 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1472 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1473 iap = &tmpaddr[0];
1476 memcpy(dev->dev_addr, iap, ETH_ALEN);
1478 /* Adjust MAC if using default MAC address */
1479 if (iap == fec_mac_default)
1480 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1483 static void __inline__ fec_enable_phy_intr(void)
1487 static void __inline__ fec_disable_phy_intr(void)
1491 static void __inline__ fec_phy_ack_intr(void)
1495 static void __inline__ fec_localhw_setup(void)
1500 * Do not need to make region uncached on 5272.
1502 static void __inline__ fec_uncache(unsigned long addr)
1506 /* ------------------------------------------------------------------------- */
1508 #elif defined(CONFIG_M520x)
1511 * Code specific to Coldfire 520x
1513 static void __inline__ fec_request_intrs(struct net_device *dev)
1515 struct fec_enet_private *fep;
1516 int b;
1517 static const struct idesc {
1518 char *name;
1519 unsigned short irq;
1520 } *idp, id[] = {
1521 { "fec(TXF)", 23 },
1522 { "fec(TXB)", 24 },
1523 { "fec(TXFIFO)", 25 },
1524 { "fec(TXCR)", 26 },
1525 { "fec(RXF)", 27 },
1526 { "fec(RXB)", 28 },
1527 { "fec(MII)", 29 },
1528 { "fec(LC)", 30 },
1529 { "fec(HBERR)", 31 },
1530 { "fec(GRA)", 32 },
1531 { "fec(EBERR)", 33 },
1532 { "fec(BABT)", 34 },
1533 { "fec(BABR)", 35 },
1534 { NULL },
1537 fep = netdev_priv(dev);
1538 b = 64 + 13;
1540 /* Setup interrupt handlers. */
1541 for (idp = id; idp->name; idp++) {
1542 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1543 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1546 /* Unmask interrupts at ColdFire interrupt controller */
1548 volatile unsigned char *icrp;
1549 volatile unsigned long *imrp;
1551 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1552 MCFINTC_ICR0);
1553 for (b = 36; (b < 49); b++)
1554 icrp[b] = 0x04;
1555 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1556 MCFINTC_IMRH);
1557 *imrp &= ~0x0001FFF0;
1559 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1560 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1563 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1565 volatile fec_t *fecp;
1567 fecp = fep->hwp;
1568 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1569 fecp->fec_x_cntrl = 0x00;
1572 * Set MII speed to 2.5 MHz
1573 * See 5282 manual section 17.5.4.7: MSCR
1575 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1576 fecp->fec_mii_speed = fep->phy_speed;
1578 fec_restart(dev, 0);
1581 static void __inline__ fec_get_mac(struct net_device *dev)
1583 struct fec_enet_private *fep = netdev_priv(dev);
1584 volatile fec_t *fecp;
1585 unsigned char *iap, tmpaddr[ETH_ALEN];
1587 fecp = fep->hwp;
1589 if (FEC_FLASHMAC) {
1591 * Get MAC address from FLASH.
1592 * If it is all 1's or 0's, use the default.
1594 iap = FEC_FLASHMAC;
1595 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1596 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1597 iap = fec_mac_default;
1598 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1599 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1600 iap = fec_mac_default;
1601 } else {
1602 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1603 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1604 iap = &tmpaddr[0];
1607 memcpy(dev->dev_addr, iap, ETH_ALEN);
1609 /* Adjust MAC if using default MAC address */
1610 if (iap == fec_mac_default)
1611 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1614 static void __inline__ fec_enable_phy_intr(void)
1618 static void __inline__ fec_disable_phy_intr(void)
1622 static void __inline__ fec_phy_ack_intr(void)
1626 static void __inline__ fec_localhw_setup(void)
1630 static void __inline__ fec_uncache(unsigned long addr)
1634 /* ------------------------------------------------------------------------- */
1636 #elif defined(CONFIG_M532x)
1638 * Code specific for M532x
1640 static void __inline__ fec_request_intrs(struct net_device *dev)
1642 struct fec_enet_private *fep;
1643 int b;
1644 static const struct idesc {
1645 char *name;
1646 unsigned short irq;
1647 } *idp, id[] = {
1648 { "fec(TXF)", 36 },
1649 { "fec(TXB)", 37 },
1650 { "fec(TXFIFO)", 38 },
1651 { "fec(TXCR)", 39 },
1652 { "fec(RXF)", 40 },
1653 { "fec(RXB)", 41 },
1654 { "fec(MII)", 42 },
1655 { "fec(LC)", 43 },
1656 { "fec(HBERR)", 44 },
1657 { "fec(GRA)", 45 },
1658 { "fec(EBERR)", 46 },
1659 { "fec(BABT)", 47 },
1660 { "fec(BABR)", 48 },
1661 { NULL },
1664 fep = netdev_priv(dev);
1665 b = (fep->index) ? 128 : 64;
1667 /* Setup interrupt handlers. */
1668 for (idp = id; idp->name; idp++) {
1669 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1670 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1671 idp->name, b+idp->irq);
1674 /* Unmask interrupts */
1675 MCF_INTC0_ICR36 = 0x2;
1676 MCF_INTC0_ICR37 = 0x2;
1677 MCF_INTC0_ICR38 = 0x2;
1678 MCF_INTC0_ICR39 = 0x2;
1679 MCF_INTC0_ICR40 = 0x2;
1680 MCF_INTC0_ICR41 = 0x2;
1681 MCF_INTC0_ICR42 = 0x2;
1682 MCF_INTC0_ICR43 = 0x2;
1683 MCF_INTC0_ICR44 = 0x2;
1684 MCF_INTC0_ICR45 = 0x2;
1685 MCF_INTC0_ICR46 = 0x2;
1686 MCF_INTC0_ICR47 = 0x2;
1687 MCF_INTC0_ICR48 = 0x2;
1689 MCF_INTC0_IMRH &= ~(
1690 MCF_INTC_IMRH_INT_MASK36 |
1691 MCF_INTC_IMRH_INT_MASK37 |
1692 MCF_INTC_IMRH_INT_MASK38 |
1693 MCF_INTC_IMRH_INT_MASK39 |
1694 MCF_INTC_IMRH_INT_MASK40 |
1695 MCF_INTC_IMRH_INT_MASK41 |
1696 MCF_INTC_IMRH_INT_MASK42 |
1697 MCF_INTC_IMRH_INT_MASK43 |
1698 MCF_INTC_IMRH_INT_MASK44 |
1699 MCF_INTC_IMRH_INT_MASK45 |
1700 MCF_INTC_IMRH_INT_MASK46 |
1701 MCF_INTC_IMRH_INT_MASK47 |
1702 MCF_INTC_IMRH_INT_MASK48 );
1704 /* Set up gpio outputs for MII lines */
1705 MCF_GPIO_PAR_FECI2C |= (0 |
1706 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1707 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1708 MCF_GPIO_PAR_FEC = (0 |
1709 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1710 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1713 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1715 volatile fec_t *fecp;
1717 fecp = fep->hwp;
1718 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1719 fecp->fec_x_cntrl = 0x00;
1722 * Set MII speed to 2.5 MHz
1724 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1725 fecp->fec_mii_speed = fep->phy_speed;
1727 fec_restart(dev, 0);
1730 static void __inline__ fec_get_mac(struct net_device *dev)
1732 struct fec_enet_private *fep = netdev_priv(dev);
1733 volatile fec_t *fecp;
1734 unsigned char *iap, tmpaddr[ETH_ALEN];
1736 fecp = fep->hwp;
1738 if (FEC_FLASHMAC) {
1740 * Get MAC address from FLASH.
1741 * If it is all 1's or 0's, use the default.
1743 iap = FEC_FLASHMAC;
1744 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1745 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1746 iap = fec_mac_default;
1747 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1748 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1749 iap = fec_mac_default;
1750 } else {
1751 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1752 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1753 iap = &tmpaddr[0];
1756 memcpy(dev->dev_addr, iap, ETH_ALEN);
1758 /* Adjust MAC if using default MAC address */
1759 if (iap == fec_mac_default)
1760 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1763 static void __inline__ fec_enable_phy_intr(void)
1767 static void __inline__ fec_disable_phy_intr(void)
1771 static void __inline__ fec_phy_ack_intr(void)
1775 static void __inline__ fec_localhw_setup(void)
1780 * Do not need to make region uncached on 532x.
1782 static void __inline__ fec_uncache(unsigned long addr)
1786 /* ------------------------------------------------------------------------- */
1789 #else
1792 * Code specific to the MPC860T setup.
1794 static void __inline__ fec_request_intrs(struct net_device *dev)
1796 volatile immap_t *immap;
1798 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1800 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1801 panic("Could not allocate FEC IRQ!");
1803 #ifdef CONFIG_RPXCLASSIC
1804 /* Make Port C, bit 15 an input that causes interrupts.
1806 immap->im_ioport.iop_pcpar &= ~0x0001;
1807 immap->im_ioport.iop_pcdir &= ~0x0001;
1808 immap->im_ioport.iop_pcso &= ~0x0001;
1809 immap->im_ioport.iop_pcint |= 0x0001;
1810 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1812 /* Make LEDS reflect Link status.
1814 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1815 #endif
1816 #ifdef CONFIG_FADS
1817 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1818 panic("Could not allocate MII IRQ!");
1819 #endif
1822 static void __inline__ fec_get_mac(struct net_device *dev)
1824 bd_t *bd;
1826 bd = (bd_t *)__res;
1827 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1829 #ifdef CONFIG_RPXCLASSIC
1830 /* The Embedded Planet boards have only one MAC address in
1831 * the EEPROM, but can have two Ethernet ports. For the
1832 * FEC port, we create another address by setting one of
1833 * the address bits above something that would have (up to
1834 * now) been allocated.
1836 dev->dev_adrd[3] |= 0x80;
1837 #endif
1840 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1842 extern uint _get_IMMR(void);
1843 volatile immap_t *immap;
1844 volatile fec_t *fecp;
1846 fecp = fep->hwp;
1847 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1849 /* Configure all of port D for MII.
1851 immap->im_ioport.iop_pdpar = 0x1fff;
1853 /* Bits moved from Rev. D onward.
1855 if ((_get_IMMR() & 0xffff) < 0x0501)
1856 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1857 else
1858 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1860 /* Set MII speed to 2.5 MHz
1862 fecp->fec_mii_speed = fep->phy_speed =
1863 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1866 static void __inline__ fec_enable_phy_intr(void)
1868 volatile fec_t *fecp;
1870 fecp = fep->hwp;
1872 /* Enable MII command finished interrupt
1874 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1877 static void __inline__ fec_disable_phy_intr(void)
1881 static void __inline__ fec_phy_ack_intr(void)
1885 static void __inline__ fec_localhw_setup(void)
1887 volatile fec_t *fecp;
1889 fecp = fep->hwp;
1890 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1891 /* Enable big endian and don't care about SDMA FC.
1893 fecp->fec_fun_code = 0x78000000;
1896 static void __inline__ fec_uncache(unsigned long addr)
1898 pte_t *pte;
1899 pte = va_to_pte(mem_addr);
1900 pte_val(*pte) |= _PAGE_NO_CACHE;
1901 flush_tlb_page(init_mm.mmap, mem_addr);
1904 #endif
1906 /* ------------------------------------------------------------------------- */
1908 static void mii_display_status(struct net_device *dev)
1910 struct fec_enet_private *fep = netdev_priv(dev);
1911 volatile uint *s = &(fep->phy_status);
1913 if (!fep->link && !fep->old_link) {
1914 /* Link is still down - don't print anything */
1915 return;
1918 printk("%s: status: ", dev->name);
1920 if (!fep->link) {
1921 printk("link down");
1922 } else {
1923 printk("link up");
1925 switch(*s & PHY_STAT_SPMASK) {
1926 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1927 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1928 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1929 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1930 default:
1931 printk(", Unknown speed/duplex");
1934 if (*s & PHY_STAT_ANC)
1935 printk(", auto-negotiation complete");
1938 if (*s & PHY_STAT_FAULT)
1939 printk(", remote fault");
1941 printk(".\n");
1944 static void mii_display_config(struct net_device *dev)
1946 struct fec_enet_private *fep = netdev_priv(dev);
1947 uint status = fep->phy_status;
1950 ** When we get here, phy_task is already removed from
1951 ** the workqueue. It is thus safe to allow to reuse it.
1953 fep->mii_phy_task_queued = 0;
1954 printk("%s: config: auto-negotiation ", dev->name);
1956 if (status & PHY_CONF_ANE)
1957 printk("on");
1958 else
1959 printk("off");
1961 if (status & PHY_CONF_100FDX)
1962 printk(", 100FDX");
1963 if (status & PHY_CONF_100HDX)
1964 printk(", 100HDX");
1965 if (status & PHY_CONF_10FDX)
1966 printk(", 10FDX");
1967 if (status & PHY_CONF_10HDX)
1968 printk(", 10HDX");
1969 if (!(status & PHY_CONF_SPMASK))
1970 printk(", No speed/duplex selected?");
1972 if (status & PHY_CONF_LOOP)
1973 printk(", loopback enabled");
1975 printk(".\n");
1977 fep->sequence_done = 1;
1980 static void mii_relink(struct net_device *dev)
1982 struct fec_enet_private *fep = netdev_priv(dev);
1983 int duplex;
1986 ** When we get here, phy_task is already removed from
1987 ** the workqueue. It is thus safe to allow to reuse it.
1989 fep->mii_phy_task_queued = 0;
1990 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1991 mii_display_status(dev);
1992 fep->old_link = fep->link;
1994 if (fep->link) {
1995 duplex = 0;
1996 if (fep->phy_status
1997 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1998 duplex = 1;
1999 fec_restart(dev, duplex);
2001 else
2002 fec_stop(dev);
2004 #if 0
2005 enable_irq(fep->mii_irq);
2006 #endif
2010 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2011 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2013 struct fec_enet_private *fep = netdev_priv(dev);
2016 ** We cannot queue phy_task twice in the workqueue. It
2017 ** would cause an endless loop in the workqueue.
2018 ** Fortunately, if the last mii_relink entry has not yet been
2019 ** executed now, it will do the job for the current interrupt,
2020 ** which is just what we want.
2022 if (fep->mii_phy_task_queued)
2023 return;
2025 fep->mii_phy_task_queued = 1;
2026 INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
2027 schedule_work(&fep->phy_task);
2030 /* mii_queue_config is called in interrupt context from fec_enet_mii */
2031 static void mii_queue_config(uint mii_reg, struct net_device *dev)
2033 struct fec_enet_private *fep = netdev_priv(dev);
2035 if (fep->mii_phy_task_queued)
2036 return;
2038 fep->mii_phy_task_queued = 1;
2039 INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
2040 schedule_work(&fep->phy_task);
2043 phy_cmd_t const phy_cmd_relink[] = {
2044 { mk_mii_read(MII_REG_CR), mii_queue_relink },
2045 { mk_mii_end, }
2047 phy_cmd_t const phy_cmd_config[] = {
2048 { mk_mii_read(MII_REG_CR), mii_queue_config },
2049 { mk_mii_end, }
2052 /* Read remainder of PHY ID.
2054 static void
2055 mii_discover_phy3(uint mii_reg, struct net_device *dev)
2057 struct fec_enet_private *fep;
2058 int i;
2060 fep = netdev_priv(dev);
2061 fep->phy_id |= (mii_reg & 0xffff);
2062 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2064 for(i = 0; phy_info[i]; i++) {
2065 if(phy_info[i]->id == (fep->phy_id >> 4))
2066 break;
2069 if (phy_info[i])
2070 printk(" -- %s\n", phy_info[i]->name);
2071 else
2072 printk(" -- unknown PHY!\n");
2074 fep->phy = phy_info[i];
2075 fep->phy_id_done = 1;
2078 /* Scan all of the MII PHY addresses looking for someone to respond
2079 * with a valid ID. This usually happens quickly.
2081 static void
2082 mii_discover_phy(uint mii_reg, struct net_device *dev)
2084 struct fec_enet_private *fep;
2085 volatile fec_t *fecp;
2086 uint phytype;
2088 fep = netdev_priv(dev);
2089 fecp = fep->hwp;
2091 if (fep->phy_addr < 32) {
2092 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
2094 /* Got first part of ID, now get remainder.
2096 fep->phy_id = phytype << 16;
2097 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2098 mii_discover_phy3);
2100 else {
2101 fep->phy_addr++;
2102 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2103 mii_discover_phy);
2105 } else {
2106 printk("FEC: No PHY device found.\n");
2107 /* Disable external MII interface */
2108 fecp->fec_mii_speed = fep->phy_speed = 0;
2109 fec_disable_phy_intr();
2113 /* This interrupt occurs when the PHY detects a link change.
2115 #ifdef CONFIG_RPXCLASSIC
2116 static void
2117 mii_link_interrupt(void *dev_id)
2118 #else
2119 static irqreturn_t
2120 mii_link_interrupt(int irq, void * dev_id)
2121 #endif
2123 struct net_device *dev = dev_id;
2124 struct fec_enet_private *fep = netdev_priv(dev);
2126 fec_phy_ack_intr();
2128 #if 0
2129 disable_irq(fep->mii_irq); /* disable now, enable later */
2130 #endif
2132 mii_do_cmd(dev, fep->phy->ack_int);
2133 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2135 return IRQ_HANDLED;
2138 static int
2139 fec_enet_open(struct net_device *dev)
2141 struct fec_enet_private *fep = netdev_priv(dev);
2143 /* I should reset the ring buffers here, but I don't yet know
2144 * a simple way to do that.
2146 fec_set_mac_address(dev);
2148 fep->sequence_done = 0;
2149 fep->link = 0;
2151 if (fep->phy) {
2152 mii_do_cmd(dev, fep->phy->ack_int);
2153 mii_do_cmd(dev, fep->phy->config);
2154 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2156 /* Poll until the PHY tells us its configuration
2157 * (not link state).
2158 * Request is initiated by mii_do_cmd above, but answer
2159 * comes by interrupt.
2160 * This should take about 25 usec per register at 2.5 MHz,
2161 * and we read approximately 5 registers.
2163 while(!fep->sequence_done)
2164 schedule();
2166 mii_do_cmd(dev, fep->phy->startup);
2168 /* Set the initial link state to true. A lot of hardware
2169 * based on this device does not implement a PHY interrupt,
2170 * so we are never notified of link change.
2172 fep->link = 1;
2173 } else {
2174 fep->link = 1; /* lets just try it and see */
2175 /* no phy, go full duplex, it's most likely a hub chip */
2176 fec_restart(dev, 1);
2179 netif_start_queue(dev);
2180 fep->opened = 1;
2181 return 0; /* Success */
2184 static int
2185 fec_enet_close(struct net_device *dev)
2187 struct fec_enet_private *fep = netdev_priv(dev);
2189 /* Don't know what to do yet.
2191 fep->opened = 0;
2192 netif_stop_queue(dev);
2193 fec_stop(dev);
2195 return 0;
2198 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
2200 struct fec_enet_private *fep = netdev_priv(dev);
2202 return &fep->stats;
2205 /* Set or clear the multicast filter for this adaptor.
2206 * Skeleton taken from sunlance driver.
2207 * The CPM Ethernet implementation allows Multicast as well as individual
2208 * MAC address filtering. Some of the drivers check to make sure it is
2209 * a group multicast address, and discard those that are not. I guess I
2210 * will do the same for now, but just remove the test if you want
2211 * individual filtering as well (do the upper net layers want or support
2212 * this kind of feature?).
2215 #define HASH_BITS 6 /* #bits in hash */
2216 #define CRC32_POLY 0xEDB88320
2218 static void set_multicast_list(struct net_device *dev)
2220 struct fec_enet_private *fep;
2221 volatile fec_t *ep;
2222 struct dev_mc_list *dmi;
2223 unsigned int i, j, bit, data, crc;
2224 unsigned char hash;
2226 fep = netdev_priv(dev);
2227 ep = fep->hwp;
2229 if (dev->flags&IFF_PROMISC) {
2230 ep->fec_r_cntrl |= 0x0008;
2231 } else {
2233 ep->fec_r_cntrl &= ~0x0008;
2235 if (dev->flags & IFF_ALLMULTI) {
2236 /* Catch all multicast addresses, so set the
2237 * filter to all 1's.
2239 ep->fec_hash_table_high = 0xffffffff;
2240 ep->fec_hash_table_low = 0xffffffff;
2241 } else {
2242 /* Clear filter and add the addresses in hash register.
2244 ep->fec_hash_table_high = 0;
2245 ep->fec_hash_table_low = 0;
2247 dmi = dev->mc_list;
2249 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2251 /* Only support group multicast for now.
2253 if (!(dmi->dmi_addr[0] & 1))
2254 continue;
2256 /* calculate crc32 value of mac address
2258 crc = 0xffffffff;
2260 for (i = 0; i < dmi->dmi_addrlen; i++)
2262 data = dmi->dmi_addr[i];
2263 for (bit = 0; bit < 8; bit++, data >>= 1)
2265 crc = (crc >> 1) ^
2266 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2270 /* only upper 6 bits (HASH_BITS) are used
2271 which point to specific bit in he hash registers
2273 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2275 if (hash > 31)
2276 ep->fec_hash_table_high |= 1 << (hash - 32);
2277 else
2278 ep->fec_hash_table_low |= 1 << hash;
2284 /* Set a MAC change in hardware.
2286 static void
2287 fec_set_mac_address(struct net_device *dev)
2289 volatile fec_t *fecp;
2291 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2293 /* Set station address. */
2294 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2295 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2296 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2297 (dev->dev_addr[4] << 24);
2301 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2304 * XXX: We need to clean up on failure exits here.
2306 int __init fec_enet_init(struct net_device *dev)
2308 struct fec_enet_private *fep = netdev_priv(dev);
2309 unsigned long mem_addr;
2310 volatile cbd_t *bdp;
2311 cbd_t *cbd_base;
2312 volatile fec_t *fecp;
2313 int i, j;
2314 static int index = 0;
2316 /* Only allow us to be probed once. */
2317 if (index >= FEC_MAX_PORTS)
2318 return -ENXIO;
2320 /* Allocate memory for buffer descriptors.
2322 mem_addr = __get_free_page(GFP_KERNEL);
2323 if (mem_addr == 0) {
2324 printk("FEC: allocate descriptor memory failed?\n");
2325 return -ENOMEM;
2328 /* Create an Ethernet device instance.
2330 fecp = (volatile fec_t *) fec_hw[index];
2332 fep->index = index;
2333 fep->hwp = fecp;
2335 /* Whack a reset. We should wait for this.
2337 fecp->fec_ecntrl = 1;
2338 udelay(10);
2340 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2341 * this needs some work to get unique addresses.
2343 * This is our default MAC address unless the user changes
2344 * it via eth_mac_addr (our dev->set_mac_addr handler).
2346 fec_get_mac(dev);
2348 cbd_base = (cbd_t *)mem_addr;
2349 /* XXX: missing check for allocation failure */
2351 fec_uncache(mem_addr);
2353 /* Set receive and transmit descriptor base.
2355 fep->rx_bd_base = cbd_base;
2356 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2358 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2359 fep->cur_rx = fep->rx_bd_base;
2361 fep->skb_cur = fep->skb_dirty = 0;
2363 /* Initialize the receive buffer descriptors.
2365 bdp = fep->rx_bd_base;
2366 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2368 /* Allocate a page.
2370 mem_addr = __get_free_page(GFP_KERNEL);
2371 /* XXX: missing check for allocation failure */
2373 fec_uncache(mem_addr);
2375 /* Initialize the BD for every fragment in the page.
2377 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2378 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2379 bdp->cbd_bufaddr = __pa(mem_addr);
2380 mem_addr += FEC_ENET_RX_FRSIZE;
2381 bdp++;
2385 /* Set the last buffer to wrap.
2387 bdp--;
2388 bdp->cbd_sc |= BD_SC_WRAP;
2390 /* ...and the same for transmmit.
2392 bdp = fep->tx_bd_base;
2393 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2394 if (j >= FEC_ENET_TX_FRPPG) {
2395 mem_addr = __get_free_page(GFP_KERNEL);
2396 j = 1;
2397 } else {
2398 mem_addr += FEC_ENET_TX_FRSIZE;
2399 j++;
2401 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2403 /* Initialize the BD for every fragment in the page.
2405 bdp->cbd_sc = 0;
2406 bdp->cbd_bufaddr = 0;
2407 bdp++;
2410 /* Set the last buffer to wrap.
2412 bdp--;
2413 bdp->cbd_sc |= BD_SC_WRAP;
2415 /* Set receive and transmit descriptor base.
2417 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2418 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2420 /* Install our interrupt handlers. This varies depending on
2421 * the architecture.
2423 fec_request_intrs(dev);
2425 fecp->fec_hash_table_high = 0;
2426 fecp->fec_hash_table_low = 0;
2427 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2428 fecp->fec_ecntrl = 2;
2429 fecp->fec_r_des_active = 0;
2431 dev->base_addr = (unsigned long)fecp;
2433 /* The FEC Ethernet specific entries in the device structure. */
2434 dev->open = fec_enet_open;
2435 dev->hard_start_xmit = fec_enet_start_xmit;
2436 dev->tx_timeout = fec_timeout;
2437 dev->watchdog_timeo = TX_TIMEOUT;
2438 dev->stop = fec_enet_close;
2439 dev->get_stats = fec_enet_get_stats;
2440 dev->set_multicast_list = set_multicast_list;
2442 for (i=0; i<NMII-1; i++)
2443 mii_cmds[i].mii_next = &mii_cmds[i+1];
2444 mii_free = mii_cmds;
2446 /* setup MII interface */
2447 fec_set_mii(dev, fep);
2449 /* Clear and enable interrupts */
2450 fecp->fec_ievent = 0xffc00000;
2451 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2452 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2454 /* Queue up command to detect the PHY and initialize the
2455 * remainder of the interface.
2457 fep->phy_id_done = 0;
2458 fep->phy_addr = 0;
2459 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2461 index++;
2462 return 0;
2465 /* This function is called to start or restart the FEC during a link
2466 * change. This only happens when switching between half and full
2467 * duplex.
2469 static void
2470 fec_restart(struct net_device *dev, int duplex)
2472 struct fec_enet_private *fep;
2473 volatile cbd_t *bdp;
2474 volatile fec_t *fecp;
2475 int i;
2477 fep = netdev_priv(dev);
2478 fecp = fep->hwp;
2480 /* Whack a reset. We should wait for this.
2482 fecp->fec_ecntrl = 1;
2483 udelay(10);
2485 /* Clear any outstanding interrupt.
2487 fecp->fec_ievent = 0xffc00000;
2488 fec_enable_phy_intr();
2490 /* Set station address.
2492 fec_set_mac_address(dev);
2494 /* Reset all multicast.
2496 fecp->fec_hash_table_high = 0;
2497 fecp->fec_hash_table_low = 0;
2499 /* Set maximum receive buffer size.
2501 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2503 fec_localhw_setup();
2505 /* Set receive and transmit descriptor base.
2507 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2508 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2510 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2511 fep->cur_rx = fep->rx_bd_base;
2513 /* Reset SKB transmit buffers.
2515 fep->skb_cur = fep->skb_dirty = 0;
2516 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2517 if (fep->tx_skbuff[i] != NULL) {
2518 dev_kfree_skb_any(fep->tx_skbuff[i]);
2519 fep->tx_skbuff[i] = NULL;
2523 /* Initialize the receive buffer descriptors.
2525 bdp = fep->rx_bd_base;
2526 for (i=0; i<RX_RING_SIZE; i++) {
2528 /* Initialize the BD for every fragment in the page.
2530 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2531 bdp++;
2534 /* Set the last buffer to wrap.
2536 bdp--;
2537 bdp->cbd_sc |= BD_SC_WRAP;
2539 /* ...and the same for transmmit.
2541 bdp = fep->tx_bd_base;
2542 for (i=0; i<TX_RING_SIZE; i++) {
2544 /* Initialize the BD for every fragment in the page.
2546 bdp->cbd_sc = 0;
2547 bdp->cbd_bufaddr = 0;
2548 bdp++;
2551 /* Set the last buffer to wrap.
2553 bdp--;
2554 bdp->cbd_sc |= BD_SC_WRAP;
2556 /* Enable MII mode.
2558 if (duplex) {
2559 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2560 fecp->fec_x_cntrl = 0x04; /* FD enable */
2562 else {
2563 /* MII enable|No Rcv on Xmit */
2564 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2565 fecp->fec_x_cntrl = 0x00;
2567 fep->full_duplex = duplex;
2569 /* Set MII speed.
2571 fecp->fec_mii_speed = fep->phy_speed;
2573 /* And last, enable the transmit and receive processing.
2575 fecp->fec_ecntrl = 2;
2576 fecp->fec_r_des_active = 0;
2578 /* Enable interrupts we wish to service.
2580 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2581 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2584 static void
2585 fec_stop(struct net_device *dev)
2587 volatile fec_t *fecp;
2588 struct fec_enet_private *fep;
2590 fep = netdev_priv(dev);
2591 fecp = fep->hwp;
2594 ** We cannot expect a graceful transmit stop without link !!!
2596 if (fep->link)
2598 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2599 udelay(10);
2600 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2601 printk("fec_stop : Graceful transmit stop did not complete !\n");
2604 /* Whack a reset. We should wait for this.
2606 fecp->fec_ecntrl = 1;
2607 udelay(10);
2609 /* Clear outstanding MII command interrupts.
2611 fecp->fec_ievent = FEC_ENET_MII;
2612 fec_enable_phy_intr();
2614 fecp->fec_imask = FEC_ENET_MII;
2615 fecp->fec_mii_speed = fep->phy_speed;
2618 static int __init fec_enet_module_init(void)
2620 struct net_device *dev;
2621 int i, j, err;
2623 printk("FEC ENET Version 0.2\n");
2625 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2626 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2627 if (!dev)
2628 return -ENOMEM;
2629 err = fec_enet_init(dev);
2630 if (err) {
2631 free_netdev(dev);
2632 continue;
2634 if (register_netdev(dev) != 0) {
2635 /* XXX: missing cleanup here */
2636 free_netdev(dev);
2637 return -EIO;
2640 printk("%s: ethernet ", dev->name);
2641 for (j = 0; (j < 5); j++)
2642 printk("%02x:", dev->dev_addr[j]);
2643 printk("%02x\n", dev->dev_addr[5]);
2645 return 0;
2648 module_init(fec_enet_module_init);
2650 MODULE_LICENSE("GPL");