[ARM] S3C: Fix scaler1 clock rate information
[linux-2.6/openmoko-kernel.git] / drivers / acpi / processor_idle.c
blob81b40ed5379e76edcd02553aaa4881f1107a1422
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
62 #define ACPI_PROCESSOR_COMPONENT 0x01000000
63 #define ACPI_PROCESSOR_CLASS "processor"
64 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER "power"
67 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
68 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
69 #ifndef CONFIG_CPU_IDLE
70 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
72 static void (*pm_idle_save) (void) __read_mostly;
73 #else
74 #define C2_OVERHEAD 1 /* 1us */
75 #define C3_OVERHEAD 1 /* 1us */
76 #endif
77 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
79 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
80 #ifdef CONFIG_CPU_IDLE
81 module_param(max_cstate, uint, 0000);
82 #else
83 module_param(max_cstate, uint, 0644);
84 #endif
85 static unsigned int nocst __read_mostly;
86 module_param(nocst, uint, 0000);
88 #ifndef CONFIG_CPU_IDLE
90 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
91 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
92 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
93 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
94 * reduce history for more aggressive entry into C3
96 static unsigned int bm_history __read_mostly =
97 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
98 module_param(bm_history, uint, 0644);
100 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
102 #else /* CONFIG_CPU_IDLE */
103 static unsigned int latency_factor __read_mostly = 2;
104 module_param(latency_factor, uint, 0644);
105 #endif
108 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
109 * For now disable this. Probably a bug somewhere else.
111 * To skip this limit, boot/load with a large max_cstate limit.
113 static int set_max_cstate(const struct dmi_system_id *id)
115 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
116 return 0;
118 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
119 " Override with \"processor.max_cstate=%d\"\n", id->ident,
120 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
122 max_cstate = (long)id->driver_data;
124 return 0;
127 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
128 callers to only run once -AK */
129 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
130 { set_max_cstate, "IBM ThinkPad R40e", {
131 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
133 { set_max_cstate, "IBM ThinkPad R40e", {
134 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
136 { set_max_cstate, "IBM ThinkPad R40e", {
137 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
139 { set_max_cstate, "IBM ThinkPad R40e", {
140 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
142 { set_max_cstate, "IBM ThinkPad R40e", {
143 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
145 { set_max_cstate, "IBM ThinkPad R40e", {
146 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
147 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
148 { set_max_cstate, "IBM ThinkPad R40e", {
149 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
150 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
151 { set_max_cstate, "IBM ThinkPad R40e", {
152 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
153 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
154 { set_max_cstate, "IBM ThinkPad R40e", {
155 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
156 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
157 { set_max_cstate, "IBM ThinkPad R40e", {
158 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
159 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
160 { set_max_cstate, "IBM ThinkPad R40e", {
161 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
162 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
163 { set_max_cstate, "IBM ThinkPad R40e", {
164 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
165 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
166 { set_max_cstate, "IBM ThinkPad R40e", {
167 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
168 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
169 { set_max_cstate, "IBM ThinkPad R40e", {
170 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
171 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
172 { set_max_cstate, "IBM ThinkPad R40e", {
173 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
174 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
175 { set_max_cstate, "IBM ThinkPad R40e", {
176 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
177 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
178 { set_max_cstate, "Medion 41700", {
179 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
180 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
181 { set_max_cstate, "Clevo 5600D", {
182 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
183 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
184 (void *)2},
188 static inline u32 ticks_elapsed(u32 t1, u32 t2)
190 if (t2 >= t1)
191 return (t2 - t1);
192 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
193 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
194 else
195 return ((0xFFFFFFFF - t1) + t2);
198 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
200 if (t2 >= t1)
201 return PM_TIMER_TICKS_TO_US(t2 - t1);
202 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
203 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
204 else
205 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
209 * Callers should disable interrupts before the call and enable
210 * interrupts after return.
212 static void acpi_safe_halt(void)
214 current_thread_info()->status &= ~TS_POLLING;
216 * TS_POLLING-cleared state must be visible before we
217 * test NEED_RESCHED:
219 smp_mb();
220 if (!need_resched()) {
221 safe_halt();
222 local_irq_disable();
224 current_thread_info()->status |= TS_POLLING;
227 #ifndef CONFIG_CPU_IDLE
229 static void
230 acpi_processor_power_activate(struct acpi_processor *pr,
231 struct acpi_processor_cx *new)
233 struct acpi_processor_cx *old;
235 if (!pr || !new)
236 return;
238 old = pr->power.state;
240 if (old)
241 old->promotion.count = 0;
242 new->demotion.count = 0;
244 /* Cleanup from old state. */
245 if (old) {
246 switch (old->type) {
247 case ACPI_STATE_C3:
248 /* Disable bus master reload */
249 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
250 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
251 break;
255 /* Prepare to use new state. */
256 switch (new->type) {
257 case ACPI_STATE_C3:
258 /* Enable bus master reload */
259 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
260 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
261 break;
264 pr->power.state = new;
266 return;
269 static atomic_t c3_cpu_count;
271 /* Common C-state entry for C2, C3, .. */
272 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
274 /* Don't trace irqs off for idle */
275 stop_critical_timings();
276 if (cstate->entry_method == ACPI_CSTATE_FFH) {
277 /* Call into architectural FFH based C-state */
278 acpi_processor_ffh_cstate_enter(cstate);
279 } else {
280 int unused;
281 /* IO port based C-state */
282 inb(cstate->address);
283 /* Dummy wait op - must do something useless after P_LVL2 read
284 because chipsets cannot guarantee that STPCLK# signal
285 gets asserted in time to freeze execution properly. */
286 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
288 start_critical_timings();
290 #endif /* !CONFIG_CPU_IDLE */
292 #ifdef ARCH_APICTIMER_STOPS_ON_C3
295 * Some BIOS implementations switch to C3 in the published C2 state.
296 * This seems to be a common problem on AMD boxen, but other vendors
297 * are affected too. We pick the most conservative approach: we assume
298 * that the local APIC stops in both C2 and C3.
300 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
301 struct acpi_processor_cx *cx)
303 struct acpi_processor_power *pwr = &pr->power;
304 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
307 * Check, if one of the previous states already marked the lapic
308 * unstable
310 if (pwr->timer_broadcast_on_state < state)
311 return;
313 if (cx->type >= type)
314 pr->power.timer_broadcast_on_state = state;
317 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
319 unsigned long reason;
321 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
322 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
324 clockevents_notify(reason, &pr->id);
327 /* Power(C) State timer broadcast control */
328 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
329 struct acpi_processor_cx *cx,
330 int broadcast)
332 int state = cx - pr->power.states;
334 if (state >= pr->power.timer_broadcast_on_state) {
335 unsigned long reason;
337 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
338 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
339 clockevents_notify(reason, &pr->id);
343 #else
345 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
346 struct acpi_processor_cx *cstate) { }
347 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
348 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
349 struct acpi_processor_cx *cx,
350 int broadcast)
354 #endif
357 * Suspend / resume control
359 static int acpi_idle_suspend;
361 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
363 acpi_idle_suspend = 1;
364 return 0;
367 int acpi_processor_resume(struct acpi_device * device)
369 acpi_idle_suspend = 0;
370 return 0;
373 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
374 static int tsc_halts_in_c(int state)
376 switch (boot_cpu_data.x86_vendor) {
377 case X86_VENDOR_AMD:
379 * AMD Fam10h TSC will tick in all
380 * C/P/S0/S1 states when this bit is set.
382 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
383 return 0;
384 /*FALL THROUGH*/
385 case X86_VENDOR_INTEL:
386 /* Several cases known where TSC halts in C2 too */
387 default:
388 return state > ACPI_STATE_C1;
391 #endif
393 #ifndef CONFIG_CPU_IDLE
394 static void acpi_processor_idle(void)
396 struct acpi_processor *pr = NULL;
397 struct acpi_processor_cx *cx = NULL;
398 struct acpi_processor_cx *next_state = NULL;
399 int sleep_ticks = 0;
400 u32 t1, t2 = 0;
403 * Interrupts must be disabled during bus mastering calculations and
404 * for C2/C3 transitions.
406 local_irq_disable();
408 pr = __get_cpu_var(processors);
409 if (!pr) {
410 local_irq_enable();
411 return;
415 * Check whether we truly need to go idle, or should
416 * reschedule:
418 if (unlikely(need_resched())) {
419 local_irq_enable();
420 return;
423 cx = pr->power.state;
424 if (!cx || acpi_idle_suspend) {
425 if (pm_idle_save) {
426 pm_idle_save(); /* enables IRQs */
427 } else {
428 acpi_safe_halt();
429 local_irq_enable();
432 return;
436 * Check BM Activity
437 * -----------------
438 * Check for bus mastering activity (if required), record, and check
439 * for demotion.
441 if (pr->flags.bm_check) {
442 u32 bm_status = 0;
443 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
445 if (diff > 31)
446 diff = 31;
448 pr->power.bm_activity <<= diff;
450 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
451 if (bm_status) {
452 pr->power.bm_activity |= 0x1;
453 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
456 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
457 * the true state of bus mastering activity; forcing us to
458 * manually check the BMIDEA bit of each IDE channel.
460 else if (errata.piix4.bmisx) {
461 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
462 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
463 pr->power.bm_activity |= 0x1;
466 pr->power.bm_check_timestamp = jiffies;
469 * If bus mastering is or was active this jiffy, demote
470 * to avoid a faulty transition. Note that the processor
471 * won't enter a low-power state during this call (to this
472 * function) but should upon the next.
474 * TBD: A better policy might be to fallback to the demotion
475 * state (use it for this quantum only) istead of
476 * demoting -- and rely on duration as our sole demotion
477 * qualification. This may, however, introduce DMA
478 * issues (e.g. floppy DMA transfer overrun/underrun).
480 if ((pr->power.bm_activity & 0x1) &&
481 cx->demotion.threshold.bm) {
482 local_irq_enable();
483 next_state = cx->demotion.state;
484 goto end;
488 #ifdef CONFIG_HOTPLUG_CPU
490 * Check for P_LVL2_UP flag before entering C2 and above on
491 * an SMP system. We do it here instead of doing it at _CST/P_LVL
492 * detection phase, to work cleanly with logical CPU hotplug.
494 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
495 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
496 cx = &pr->power.states[ACPI_STATE_C1];
497 #endif
500 * Sleep:
501 * ------
502 * Invoke the current Cx state to put the processor to sleep.
504 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
505 current_thread_info()->status &= ~TS_POLLING;
507 * TS_POLLING-cleared state must be visible before we
508 * test NEED_RESCHED:
510 smp_mb();
511 if (need_resched()) {
512 current_thread_info()->status |= TS_POLLING;
513 local_irq_enable();
514 return;
518 switch (cx->type) {
520 case ACPI_STATE_C1:
522 * Invoke C1.
523 * Use the appropriate idle routine, the one that would
524 * be used without acpi C-states.
526 if (pm_idle_save) {
527 pm_idle_save(); /* enables IRQs */
528 } else {
529 acpi_safe_halt();
530 local_irq_enable();
534 * TBD: Can't get time duration while in C1, as resumes
535 * go to an ISR rather than here. Need to instrument
536 * base interrupt handler.
538 * Note: the TSC better not stop in C1, sched_clock() will
539 * skew otherwise.
541 sleep_ticks = 0xFFFFFFFF;
543 break;
545 case ACPI_STATE_C2:
546 /* Get start time (ticks) */
547 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
548 /* Tell the scheduler that we are going deep-idle: */
549 sched_clock_idle_sleep_event();
550 /* Invoke C2 */
551 acpi_state_timer_broadcast(pr, cx, 1);
552 acpi_cstate_enter(cx);
553 /* Get end time (ticks) */
554 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
556 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
557 /* TSC halts in C2, so notify users */
558 if (tsc_halts_in_c(ACPI_STATE_C2))
559 mark_tsc_unstable("possible TSC halt in C2");
560 #endif
561 /* Compute time (ticks) that we were actually asleep */
562 sleep_ticks = ticks_elapsed(t1, t2);
564 /* Tell the scheduler how much we idled: */
565 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
567 /* Re-enable interrupts */
568 local_irq_enable();
569 /* Do not account our idle-switching overhead: */
570 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
572 current_thread_info()->status |= TS_POLLING;
573 acpi_state_timer_broadcast(pr, cx, 0);
574 break;
576 case ACPI_STATE_C3:
577 acpi_unlazy_tlb(smp_processor_id());
579 * Must be done before busmaster disable as we might
580 * need to access HPET !
582 acpi_state_timer_broadcast(pr, cx, 1);
584 * disable bus master
585 * bm_check implies we need ARB_DIS
586 * !bm_check implies we need cache flush
587 * bm_control implies whether we can do ARB_DIS
589 * That leaves a case where bm_check is set and bm_control is
590 * not set. In that case we cannot do much, we enter C3
591 * without doing anything.
593 if (pr->flags.bm_check && pr->flags.bm_control) {
594 if (atomic_inc_return(&c3_cpu_count) ==
595 num_online_cpus()) {
597 * All CPUs are trying to go to C3
598 * Disable bus master arbitration
600 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
602 } else if (!pr->flags.bm_check) {
603 /* SMP with no shared cache... Invalidate cache */
604 ACPI_FLUSH_CPU_CACHE();
607 /* Get start time (ticks) */
608 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
609 /* Invoke C3 */
610 /* Tell the scheduler that we are going deep-idle: */
611 sched_clock_idle_sleep_event();
612 acpi_cstate_enter(cx);
613 /* Get end time (ticks) */
614 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
615 if (pr->flags.bm_check && pr->flags.bm_control) {
616 /* Enable bus master arbitration */
617 atomic_dec(&c3_cpu_count);
618 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
621 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
622 /* TSC halts in C3, so notify users */
623 if (tsc_halts_in_c(ACPI_STATE_C3))
624 mark_tsc_unstable("TSC halts in C3");
625 #endif
626 /* Compute time (ticks) that we were actually asleep */
627 sleep_ticks = ticks_elapsed(t1, t2);
628 /* Tell the scheduler how much we idled: */
629 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
631 /* Re-enable interrupts */
632 local_irq_enable();
633 /* Do not account our idle-switching overhead: */
634 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
636 current_thread_info()->status |= TS_POLLING;
637 acpi_state_timer_broadcast(pr, cx, 0);
638 break;
640 default:
641 local_irq_enable();
642 return;
644 cx->usage++;
645 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
646 cx->time += sleep_ticks;
648 next_state = pr->power.state;
650 #ifdef CONFIG_HOTPLUG_CPU
651 /* Don't do promotion/demotion */
652 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
653 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
654 next_state = cx;
655 goto end;
657 #endif
660 * Promotion?
661 * ----------
662 * Track the number of longs (time asleep is greater than threshold)
663 * and promote when the count threshold is reached. Note that bus
664 * mastering activity may prevent promotions.
665 * Do not promote above max_cstate.
667 if (cx->promotion.state &&
668 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
669 if (sleep_ticks > cx->promotion.threshold.ticks &&
670 cx->promotion.state->latency <=
671 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
672 cx->promotion.count++;
673 cx->demotion.count = 0;
674 if (cx->promotion.count >=
675 cx->promotion.threshold.count) {
676 if (pr->flags.bm_check) {
677 if (!
678 (pr->power.bm_activity & cx->
679 promotion.threshold.bm)) {
680 next_state =
681 cx->promotion.state;
682 goto end;
684 } else {
685 next_state = cx->promotion.state;
686 goto end;
693 * Demotion?
694 * ---------
695 * Track the number of shorts (time asleep is less than time threshold)
696 * and demote when the usage threshold is reached.
698 if (cx->demotion.state) {
699 if (sleep_ticks < cx->demotion.threshold.ticks) {
700 cx->demotion.count++;
701 cx->promotion.count = 0;
702 if (cx->demotion.count >= cx->demotion.threshold.count) {
703 next_state = cx->demotion.state;
704 goto end;
709 end:
711 * Demote if current state exceeds max_cstate
712 * or if the latency of the current state is unacceptable
714 if ((pr->power.state - pr->power.states) > max_cstate ||
715 pr->power.state->latency >
716 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
717 if (cx->demotion.state)
718 next_state = cx->demotion.state;
722 * New Cx State?
723 * -------------
724 * If we're going to start using a new Cx state we must clean up
725 * from the previous and prepare to use the new.
727 if (next_state != pr->power.state)
728 acpi_processor_power_activate(pr, next_state);
731 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
733 unsigned int i;
734 unsigned int state_is_set = 0;
735 struct acpi_processor_cx *lower = NULL;
736 struct acpi_processor_cx *higher = NULL;
737 struct acpi_processor_cx *cx;
740 if (!pr)
741 return -EINVAL;
744 * This function sets the default Cx state policy (OS idle handler).
745 * Our scheme is to promote quickly to C2 but more conservatively
746 * to C3. We're favoring C2 for its characteristics of low latency
747 * (quick response), good power savings, and ability to allow bus
748 * mastering activity. Note that the Cx state policy is completely
749 * customizable and can be altered dynamically.
752 /* startup state */
753 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
754 cx = &pr->power.states[i];
755 if (!cx->valid)
756 continue;
758 if (!state_is_set)
759 pr->power.state = cx;
760 state_is_set++;
761 break;
764 if (!state_is_set)
765 return -ENODEV;
767 /* demotion */
768 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
769 cx = &pr->power.states[i];
770 if (!cx->valid)
771 continue;
773 if (lower) {
774 cx->demotion.state = lower;
775 cx->demotion.threshold.ticks = cx->latency_ticks;
776 cx->demotion.threshold.count = 1;
777 if (cx->type == ACPI_STATE_C3)
778 cx->demotion.threshold.bm = bm_history;
781 lower = cx;
784 /* promotion */
785 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
786 cx = &pr->power.states[i];
787 if (!cx->valid)
788 continue;
790 if (higher) {
791 cx->promotion.state = higher;
792 cx->promotion.threshold.ticks = cx->latency_ticks;
793 if (cx->type >= ACPI_STATE_C2)
794 cx->promotion.threshold.count = 4;
795 else
796 cx->promotion.threshold.count = 10;
797 if (higher->type == ACPI_STATE_C3)
798 cx->promotion.threshold.bm = bm_history;
801 higher = cx;
804 return 0;
806 #endif /* !CONFIG_CPU_IDLE */
808 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
811 if (!pr)
812 return -EINVAL;
814 if (!pr->pblk)
815 return -ENODEV;
817 /* if info is obtained from pblk/fadt, type equals state */
818 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
819 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
821 #ifndef CONFIG_HOTPLUG_CPU
823 * Check for P_LVL2_UP flag before entering C2 and above on
824 * an SMP system.
826 if ((num_online_cpus() > 1) &&
827 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
828 return -ENODEV;
829 #endif
831 /* determine C2 and C3 address from pblk */
832 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
833 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
835 /* determine latencies from FADT */
836 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
837 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
839 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
840 "lvl2[0x%08x] lvl3[0x%08x]\n",
841 pr->power.states[ACPI_STATE_C2].address,
842 pr->power.states[ACPI_STATE_C3].address));
844 return 0;
847 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
849 if (!pr->power.states[ACPI_STATE_C1].valid) {
850 /* set the first C-State to C1 */
851 /* all processors need to support C1 */
852 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
853 pr->power.states[ACPI_STATE_C1].valid = 1;
854 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
856 /* the C0 state only exists as a filler in our array */
857 pr->power.states[ACPI_STATE_C0].valid = 1;
858 return 0;
861 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
863 acpi_status status = 0;
864 acpi_integer count;
865 int current_count;
866 int i;
867 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
868 union acpi_object *cst;
871 if (nocst)
872 return -ENODEV;
874 current_count = 0;
876 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
877 if (ACPI_FAILURE(status)) {
878 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
879 return -ENODEV;
882 cst = buffer.pointer;
884 /* There must be at least 2 elements */
885 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
886 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
887 status = -EFAULT;
888 goto end;
891 count = cst->package.elements[0].integer.value;
893 /* Validate number of power states. */
894 if (count < 1 || count != cst->package.count - 1) {
895 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
896 status = -EFAULT;
897 goto end;
900 /* Tell driver that at least _CST is supported. */
901 pr->flags.has_cst = 1;
903 for (i = 1; i <= count; i++) {
904 union acpi_object *element;
905 union acpi_object *obj;
906 struct acpi_power_register *reg;
907 struct acpi_processor_cx cx;
909 memset(&cx, 0, sizeof(cx));
911 element = &(cst->package.elements[i]);
912 if (element->type != ACPI_TYPE_PACKAGE)
913 continue;
915 if (element->package.count != 4)
916 continue;
918 obj = &(element->package.elements[0]);
920 if (obj->type != ACPI_TYPE_BUFFER)
921 continue;
923 reg = (struct acpi_power_register *)obj->buffer.pointer;
925 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
926 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
927 continue;
929 /* There should be an easy way to extract an integer... */
930 obj = &(element->package.elements[1]);
931 if (obj->type != ACPI_TYPE_INTEGER)
932 continue;
934 cx.type = obj->integer.value;
936 * Some buggy BIOSes won't list C1 in _CST -
937 * Let acpi_processor_get_power_info_default() handle them later
939 if (i == 1 && cx.type != ACPI_STATE_C1)
940 current_count++;
942 cx.address = reg->address;
943 cx.index = current_count + 1;
945 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
946 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
947 if (acpi_processor_ffh_cstate_probe
948 (pr->id, &cx, reg) == 0) {
949 cx.entry_method = ACPI_CSTATE_FFH;
950 } else if (cx.type == ACPI_STATE_C1) {
952 * C1 is a special case where FIXED_HARDWARE
953 * can be handled in non-MWAIT way as well.
954 * In that case, save this _CST entry info.
955 * Otherwise, ignore this info and continue.
957 cx.entry_method = ACPI_CSTATE_HALT;
958 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
959 } else {
960 continue;
962 if (cx.type == ACPI_STATE_C1 &&
963 (idle_halt || idle_nomwait)) {
965 * In most cases the C1 space_id obtained from
966 * _CST object is FIXED_HARDWARE access mode.
967 * But when the option of idle=halt is added,
968 * the entry_method type should be changed from
969 * CSTATE_FFH to CSTATE_HALT.
970 * When the option of idle=nomwait is added,
971 * the C1 entry_method type should be
972 * CSTATE_HALT.
974 cx.entry_method = ACPI_CSTATE_HALT;
975 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
977 } else {
978 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
979 cx.address);
982 if (cx.type == ACPI_STATE_C1) {
983 cx.valid = 1;
986 obj = &(element->package.elements[2]);
987 if (obj->type != ACPI_TYPE_INTEGER)
988 continue;
990 cx.latency = obj->integer.value;
992 obj = &(element->package.elements[3]);
993 if (obj->type != ACPI_TYPE_INTEGER)
994 continue;
996 cx.power = obj->integer.value;
998 current_count++;
999 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
1002 * We support total ACPI_PROCESSOR_MAX_POWER - 1
1003 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
1005 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
1006 printk(KERN_WARNING
1007 "Limiting number of power states to max (%d)\n",
1008 ACPI_PROCESSOR_MAX_POWER);
1009 printk(KERN_WARNING
1010 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1011 break;
1015 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
1016 current_count));
1018 /* Validate number of power states discovered */
1019 if (current_count < 2)
1020 status = -EFAULT;
1022 end:
1023 kfree(buffer.pointer);
1025 return status;
1028 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1031 if (!cx->address)
1032 return;
1035 * C2 latency must be less than or equal to 100
1036 * microseconds.
1038 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1039 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1040 "latency too large [%d]\n", cx->latency));
1041 return;
1045 * Otherwise we've met all of our C2 requirements.
1046 * Normalize the C2 latency to expidite policy
1048 cx->valid = 1;
1050 #ifndef CONFIG_CPU_IDLE
1051 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1052 #else
1053 cx->latency_ticks = cx->latency;
1054 #endif
1056 return;
1059 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1060 struct acpi_processor_cx *cx)
1062 static int bm_check_flag;
1065 if (!cx->address)
1066 return;
1069 * C3 latency must be less than or equal to 1000
1070 * microseconds.
1072 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1073 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1074 "latency too large [%d]\n", cx->latency));
1075 return;
1079 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1080 * DMA transfers are used by any ISA device to avoid livelock.
1081 * Note that we could disable Type-F DMA (as recommended by
1082 * the erratum), but this is known to disrupt certain ISA
1083 * devices thus we take the conservative approach.
1085 else if (errata.piix4.fdma) {
1086 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1087 "C3 not supported on PIIX4 with Type-F DMA\n"));
1088 return;
1091 /* All the logic here assumes flags.bm_check is same across all CPUs */
1092 if (!bm_check_flag) {
1093 /* Determine whether bm_check is needed based on CPU */
1094 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1095 bm_check_flag = pr->flags.bm_check;
1096 } else {
1097 pr->flags.bm_check = bm_check_flag;
1100 if (pr->flags.bm_check) {
1101 if (!pr->flags.bm_control) {
1102 if (pr->flags.has_cst != 1) {
1103 /* bus mastering control is necessary */
1104 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1105 "C3 support requires BM control\n"));
1106 return;
1107 } else {
1108 /* Here we enter C3 without bus mastering */
1109 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1110 "C3 support without BM control\n"));
1113 } else {
1115 * WBINVD should be set in fadt, for C3 state to be
1116 * supported on when bm_check is not required.
1118 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1119 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1120 "Cache invalidation should work properly"
1121 " for C3 to be enabled on SMP systems\n"));
1122 return;
1124 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1128 * Otherwise we've met all of our C3 requirements.
1129 * Normalize the C3 latency to expidite policy. Enable
1130 * checking of bus mastering status (bm_check) so we can
1131 * use this in our C3 policy
1133 cx->valid = 1;
1135 #ifndef CONFIG_CPU_IDLE
1136 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1137 #else
1138 cx->latency_ticks = cx->latency;
1139 #endif
1141 return;
1144 static int acpi_processor_power_verify(struct acpi_processor *pr)
1146 unsigned int i;
1147 unsigned int working = 0;
1149 pr->power.timer_broadcast_on_state = INT_MAX;
1151 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1152 struct acpi_processor_cx *cx = &pr->power.states[i];
1154 switch (cx->type) {
1155 case ACPI_STATE_C1:
1156 cx->valid = 1;
1157 break;
1159 case ACPI_STATE_C2:
1160 acpi_processor_power_verify_c2(cx);
1161 if (cx->valid)
1162 acpi_timer_check_state(i, pr, cx);
1163 break;
1165 case ACPI_STATE_C3:
1166 acpi_processor_power_verify_c3(pr, cx);
1167 if (cx->valid)
1168 acpi_timer_check_state(i, pr, cx);
1169 break;
1172 if (cx->valid)
1173 working++;
1176 acpi_propagate_timer_broadcast(pr);
1178 return (working);
1181 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1183 unsigned int i;
1184 int result;
1187 /* NOTE: the idle thread may not be running while calling
1188 * this function */
1190 /* Zero initialize all the C-states info. */
1191 memset(pr->power.states, 0, sizeof(pr->power.states));
1193 result = acpi_processor_get_power_info_cst(pr);
1194 if (result == -ENODEV)
1195 result = acpi_processor_get_power_info_fadt(pr);
1197 if (result)
1198 return result;
1200 acpi_processor_get_power_info_default(pr);
1202 pr->power.count = acpi_processor_power_verify(pr);
1204 #ifndef CONFIG_CPU_IDLE
1206 * Set Default Policy
1207 * ------------------
1208 * Now that we know which states are supported, set the default
1209 * policy. Note that this policy can be changed dynamically
1210 * (e.g. encourage deeper sleeps to conserve battery life when
1211 * not on AC).
1213 result = acpi_processor_set_power_policy(pr);
1214 if (result)
1215 return result;
1216 #endif
1219 * if one state of type C2 or C3 is available, mark this
1220 * CPU as being "idle manageable"
1222 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1223 if (pr->power.states[i].valid) {
1224 pr->power.count = i;
1225 if (pr->power.states[i].type >= ACPI_STATE_C2)
1226 pr->flags.power = 1;
1230 return 0;
1233 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1235 struct acpi_processor *pr = seq->private;
1236 unsigned int i;
1239 if (!pr)
1240 goto end;
1242 seq_printf(seq, "active state: C%zd\n"
1243 "max_cstate: C%d\n"
1244 "bus master activity: %08x\n"
1245 "maximum allowed latency: %d usec\n",
1246 pr->power.state ? pr->power.state - pr->power.states : 0,
1247 max_cstate, (unsigned)pr->power.bm_activity,
1248 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1250 seq_puts(seq, "states:\n");
1252 for (i = 1; i <= pr->power.count; i++) {
1253 seq_printf(seq, " %cC%d: ",
1254 (&pr->power.states[i] ==
1255 pr->power.state ? '*' : ' '), i);
1257 if (!pr->power.states[i].valid) {
1258 seq_puts(seq, "<not supported>\n");
1259 continue;
1262 switch (pr->power.states[i].type) {
1263 case ACPI_STATE_C1:
1264 seq_printf(seq, "type[C1] ");
1265 break;
1266 case ACPI_STATE_C2:
1267 seq_printf(seq, "type[C2] ");
1268 break;
1269 case ACPI_STATE_C3:
1270 seq_printf(seq, "type[C3] ");
1271 break;
1272 default:
1273 seq_printf(seq, "type[--] ");
1274 break;
1277 if (pr->power.states[i].promotion.state)
1278 seq_printf(seq, "promotion[C%zd] ",
1279 (pr->power.states[i].promotion.state -
1280 pr->power.states));
1281 else
1282 seq_puts(seq, "promotion[--] ");
1284 if (pr->power.states[i].demotion.state)
1285 seq_printf(seq, "demotion[C%zd] ",
1286 (pr->power.states[i].demotion.state -
1287 pr->power.states));
1288 else
1289 seq_puts(seq, "demotion[--] ");
1291 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1292 pr->power.states[i].latency,
1293 pr->power.states[i].usage,
1294 (unsigned long long)pr->power.states[i].time);
1297 end:
1298 return 0;
1301 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1303 return single_open(file, acpi_processor_power_seq_show,
1304 PDE(inode)->data);
1307 static const struct file_operations acpi_processor_power_fops = {
1308 .owner = THIS_MODULE,
1309 .open = acpi_processor_power_open_fs,
1310 .read = seq_read,
1311 .llseek = seq_lseek,
1312 .release = single_release,
1315 #ifndef CONFIG_CPU_IDLE
1317 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1319 int result = 0;
1321 if (boot_option_idle_override)
1322 return 0;
1324 if (!pr)
1325 return -EINVAL;
1327 if (nocst) {
1328 return -ENODEV;
1331 if (!pr->flags.power_setup_done)
1332 return -ENODEV;
1335 * Fall back to the default idle loop, when pm_idle_save had
1336 * been initialized.
1338 if (pm_idle_save) {
1339 pm_idle = pm_idle_save;
1340 /* Relies on interrupts forcing exit from idle. */
1341 synchronize_sched();
1344 pr->flags.power = 0;
1345 result = acpi_processor_get_power_info(pr);
1346 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1347 pm_idle = acpi_processor_idle;
1349 return result;
1352 #ifdef CONFIG_SMP
1353 static void smp_callback(void *v)
1355 /* we already woke the CPU up, nothing more to do */
1359 * This function gets called when a part of the kernel has a new latency
1360 * requirement. This means we need to get all processors out of their C-state,
1361 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1362 * wakes them all right up.
1364 static int acpi_processor_latency_notify(struct notifier_block *b,
1365 unsigned long l, void *v)
1367 smp_call_function(smp_callback, NULL, 1);
1368 return NOTIFY_OK;
1371 static struct notifier_block acpi_processor_latency_notifier = {
1372 .notifier_call = acpi_processor_latency_notify,
1375 #endif
1377 #else /* CONFIG_CPU_IDLE */
1380 * acpi_idle_bm_check - checks if bus master activity was detected
1382 static int acpi_idle_bm_check(void)
1384 u32 bm_status = 0;
1386 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1387 if (bm_status)
1388 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1390 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1391 * the true state of bus mastering activity; forcing us to
1392 * manually check the BMIDEA bit of each IDE channel.
1394 else if (errata.piix4.bmisx) {
1395 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1396 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1397 bm_status = 1;
1399 return bm_status;
1403 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1404 * @pr: the processor
1405 * @target: the new target state
1407 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1408 struct acpi_processor_cx *target)
1410 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1411 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1412 pr->flags.bm_rld_set = 0;
1415 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1416 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1417 pr->flags.bm_rld_set = 1;
1422 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1423 * @cx: cstate data
1425 * Caller disables interrupt before call and enables interrupt after return.
1427 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1429 /* Don't trace irqs off for idle */
1430 stop_critical_timings();
1431 if (cx->entry_method == ACPI_CSTATE_FFH) {
1432 /* Call into architectural FFH based C-state */
1433 acpi_processor_ffh_cstate_enter(cx);
1434 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
1435 acpi_safe_halt();
1436 } else {
1437 int unused;
1438 /* IO port based C-state */
1439 inb(cx->address);
1440 /* Dummy wait op - must do something useless after P_LVL2 read
1441 because chipsets cannot guarantee that STPCLK# signal
1442 gets asserted in time to freeze execution properly. */
1443 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1445 start_critical_timings();
1449 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1450 * @dev: the target CPU
1451 * @state: the state data
1453 * This is equivalent to the HALT instruction.
1455 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1456 struct cpuidle_state *state)
1458 u32 t1, t2;
1459 struct acpi_processor *pr;
1460 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1462 pr = __get_cpu_var(processors);
1464 if (unlikely(!pr))
1465 return 0;
1467 local_irq_disable();
1469 /* Do not access any ACPI IO ports in suspend path */
1470 if (acpi_idle_suspend) {
1471 acpi_safe_halt();
1472 local_irq_enable();
1473 return 0;
1476 if (pr->flags.bm_check)
1477 acpi_idle_update_bm_rld(pr, cx);
1479 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1480 acpi_idle_do_entry(cx);
1481 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1483 local_irq_enable();
1484 cx->usage++;
1486 return ticks_elapsed_in_us(t1, t2);
1490 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1491 * @dev: the target CPU
1492 * @state: the state data
1494 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1495 struct cpuidle_state *state)
1497 struct acpi_processor *pr;
1498 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1499 u32 t1, t2;
1500 int sleep_ticks = 0;
1502 pr = __get_cpu_var(processors);
1504 if (unlikely(!pr))
1505 return 0;
1507 if (acpi_idle_suspend)
1508 return(acpi_idle_enter_c1(dev, state));
1510 local_irq_disable();
1511 current_thread_info()->status &= ~TS_POLLING;
1513 * TS_POLLING-cleared state must be visible before we test
1514 * NEED_RESCHED:
1516 smp_mb();
1518 if (unlikely(need_resched())) {
1519 current_thread_info()->status |= TS_POLLING;
1520 local_irq_enable();
1521 return 0;
1525 * Must be done before busmaster disable as we might need to
1526 * access HPET !
1528 acpi_state_timer_broadcast(pr, cx, 1);
1530 if (pr->flags.bm_check)
1531 acpi_idle_update_bm_rld(pr, cx);
1533 if (cx->type == ACPI_STATE_C3)
1534 ACPI_FLUSH_CPU_CACHE();
1536 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1537 /* Tell the scheduler that we are going deep-idle: */
1538 sched_clock_idle_sleep_event();
1539 acpi_idle_do_entry(cx);
1540 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1542 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1543 /* TSC could halt in idle, so notify users */
1544 if (tsc_halts_in_c(cx->type))
1545 mark_tsc_unstable("TSC halts in idle");;
1546 #endif
1547 sleep_ticks = ticks_elapsed(t1, t2);
1549 /* Tell the scheduler how much we idled: */
1550 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1552 local_irq_enable();
1553 current_thread_info()->status |= TS_POLLING;
1555 cx->usage++;
1557 acpi_state_timer_broadcast(pr, cx, 0);
1558 cx->time += sleep_ticks;
1559 return ticks_elapsed_in_us(t1, t2);
1562 static int c3_cpu_count;
1563 static DEFINE_SPINLOCK(c3_lock);
1566 * acpi_idle_enter_bm - enters C3 with proper BM handling
1567 * @dev: the target CPU
1568 * @state: the state data
1570 * If BM is detected, the deepest non-C3 idle state is entered instead.
1572 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1573 struct cpuidle_state *state)
1575 struct acpi_processor *pr;
1576 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1577 u32 t1, t2;
1578 int sleep_ticks = 0;
1580 pr = __get_cpu_var(processors);
1582 if (unlikely(!pr))
1583 return 0;
1585 if (acpi_idle_suspend)
1586 return(acpi_idle_enter_c1(dev, state));
1588 if (acpi_idle_bm_check()) {
1589 if (dev->safe_state) {
1590 dev->last_state = dev->safe_state;
1591 return dev->safe_state->enter(dev, dev->safe_state);
1592 } else {
1593 local_irq_disable();
1594 acpi_safe_halt();
1595 local_irq_enable();
1596 return 0;
1600 local_irq_disable();
1601 current_thread_info()->status &= ~TS_POLLING;
1603 * TS_POLLING-cleared state must be visible before we test
1604 * NEED_RESCHED:
1606 smp_mb();
1608 if (unlikely(need_resched())) {
1609 current_thread_info()->status |= TS_POLLING;
1610 local_irq_enable();
1611 return 0;
1614 acpi_unlazy_tlb(smp_processor_id());
1616 /* Tell the scheduler that we are going deep-idle: */
1617 sched_clock_idle_sleep_event();
1619 * Must be done before busmaster disable as we might need to
1620 * access HPET !
1622 acpi_state_timer_broadcast(pr, cx, 1);
1624 acpi_idle_update_bm_rld(pr, cx);
1627 * disable bus master
1628 * bm_check implies we need ARB_DIS
1629 * !bm_check implies we need cache flush
1630 * bm_control implies whether we can do ARB_DIS
1632 * That leaves a case where bm_check is set and bm_control is
1633 * not set. In that case we cannot do much, we enter C3
1634 * without doing anything.
1636 if (pr->flags.bm_check && pr->flags.bm_control) {
1637 spin_lock(&c3_lock);
1638 c3_cpu_count++;
1639 /* Disable bus master arbitration when all CPUs are in C3 */
1640 if (c3_cpu_count == num_online_cpus())
1641 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1642 spin_unlock(&c3_lock);
1643 } else if (!pr->flags.bm_check) {
1644 ACPI_FLUSH_CPU_CACHE();
1647 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1648 acpi_idle_do_entry(cx);
1649 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1651 /* Re-enable bus master arbitration */
1652 if (pr->flags.bm_check && pr->flags.bm_control) {
1653 spin_lock(&c3_lock);
1654 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1655 c3_cpu_count--;
1656 spin_unlock(&c3_lock);
1659 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1660 /* TSC could halt in idle, so notify users */
1661 if (tsc_halts_in_c(ACPI_STATE_C3))
1662 mark_tsc_unstable("TSC halts in idle");
1663 #endif
1664 sleep_ticks = ticks_elapsed(t1, t2);
1665 /* Tell the scheduler how much we idled: */
1666 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1668 local_irq_enable();
1669 current_thread_info()->status |= TS_POLLING;
1671 cx->usage++;
1673 acpi_state_timer_broadcast(pr, cx, 0);
1674 cx->time += sleep_ticks;
1675 return ticks_elapsed_in_us(t1, t2);
1678 struct cpuidle_driver acpi_idle_driver = {
1679 .name = "acpi_idle",
1680 .owner = THIS_MODULE,
1684 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1685 * @pr: the ACPI processor
1687 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1689 int i, count = CPUIDLE_DRIVER_STATE_START;
1690 struct acpi_processor_cx *cx;
1691 struct cpuidle_state *state;
1692 struct cpuidle_device *dev = &pr->power.dev;
1694 if (!pr->flags.power_setup_done)
1695 return -EINVAL;
1697 if (pr->flags.power == 0) {
1698 return -EINVAL;
1701 dev->cpu = pr->id;
1702 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1703 dev->states[i].name[0] = '\0';
1704 dev->states[i].desc[0] = '\0';
1707 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1708 cx = &pr->power.states[i];
1709 state = &dev->states[count];
1711 if (!cx->valid)
1712 continue;
1714 #ifdef CONFIG_HOTPLUG_CPU
1715 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1716 !pr->flags.has_cst &&
1717 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1718 continue;
1719 #endif
1720 cpuidle_set_statedata(state, cx);
1722 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1723 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1724 state->exit_latency = cx->latency;
1725 state->target_residency = cx->latency * latency_factor;
1726 state->power_usage = cx->power;
1728 state->flags = 0;
1729 switch (cx->type) {
1730 case ACPI_STATE_C1:
1731 state->flags |= CPUIDLE_FLAG_SHALLOW;
1732 if (cx->entry_method == ACPI_CSTATE_FFH)
1733 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1735 state->enter = acpi_idle_enter_c1;
1736 dev->safe_state = state;
1737 break;
1739 case ACPI_STATE_C2:
1740 state->flags |= CPUIDLE_FLAG_BALANCED;
1741 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1742 state->enter = acpi_idle_enter_simple;
1743 dev->safe_state = state;
1744 break;
1746 case ACPI_STATE_C3:
1747 state->flags |= CPUIDLE_FLAG_DEEP;
1748 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1749 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1750 state->enter = pr->flags.bm_check ?
1751 acpi_idle_enter_bm :
1752 acpi_idle_enter_simple;
1753 break;
1756 count++;
1757 if (count == CPUIDLE_STATE_MAX)
1758 break;
1761 dev->state_count = count;
1763 if (!count)
1764 return -EINVAL;
1766 return 0;
1769 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1771 int ret = 0;
1773 if (boot_option_idle_override)
1774 return 0;
1776 if (!pr)
1777 return -EINVAL;
1779 if (nocst) {
1780 return -ENODEV;
1783 if (!pr->flags.power_setup_done)
1784 return -ENODEV;
1786 cpuidle_pause_and_lock();
1787 cpuidle_disable_device(&pr->power.dev);
1788 acpi_processor_get_power_info(pr);
1789 if (pr->flags.power) {
1790 acpi_processor_setup_cpuidle(pr);
1791 ret = cpuidle_enable_device(&pr->power.dev);
1793 cpuidle_resume_and_unlock();
1795 return ret;
1798 #endif /* CONFIG_CPU_IDLE */
1800 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1801 struct acpi_device *device)
1803 acpi_status status = 0;
1804 static int first_run;
1805 struct proc_dir_entry *entry = NULL;
1806 unsigned int i;
1808 if (boot_option_idle_override)
1809 return 0;
1811 if (!first_run) {
1812 if (idle_halt) {
1814 * When the boot option of "idle=halt" is added, halt
1815 * is used for CPU IDLE.
1816 * In such case C2/C3 is meaningless. So the max_cstate
1817 * is set to one.
1819 max_cstate = 1;
1821 dmi_check_system(processor_power_dmi_table);
1822 max_cstate = acpi_processor_cstate_check(max_cstate);
1823 if (max_cstate < ACPI_C_STATES_MAX)
1824 printk(KERN_NOTICE
1825 "ACPI: processor limited to max C-state %d\n",
1826 max_cstate);
1827 first_run++;
1828 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1829 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1830 &acpi_processor_latency_notifier);
1831 #endif
1834 if (!pr)
1835 return -EINVAL;
1837 if (acpi_gbl_FADT.cst_control && !nocst) {
1838 status =
1839 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1840 if (ACPI_FAILURE(status)) {
1841 ACPI_EXCEPTION((AE_INFO, status,
1842 "Notifying BIOS of _CST ability failed"));
1846 acpi_processor_get_power_info(pr);
1847 pr->flags.power_setup_done = 1;
1850 * Install the idle handler if processor power management is supported.
1851 * Note that we use previously set idle handler will be used on
1852 * platforms that only support C1.
1854 if (pr->flags.power) {
1855 #ifdef CONFIG_CPU_IDLE
1856 acpi_processor_setup_cpuidle(pr);
1857 if (cpuidle_register_device(&pr->power.dev))
1858 return -EIO;
1859 #endif
1861 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1862 for (i = 1; i <= pr->power.count; i++)
1863 if (pr->power.states[i].valid)
1864 printk(" C%d[C%d]", i,
1865 pr->power.states[i].type);
1866 printk(")\n");
1868 #ifndef CONFIG_CPU_IDLE
1869 if (pr->id == 0) {
1870 pm_idle_save = pm_idle;
1871 pm_idle = acpi_processor_idle;
1873 #endif
1876 /* 'power' [R] */
1877 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1878 S_IRUGO, acpi_device_dir(device),
1879 &acpi_processor_power_fops,
1880 acpi_driver_data(device));
1881 if (!entry)
1882 return -EIO;
1883 return 0;
1886 int acpi_processor_power_exit(struct acpi_processor *pr,
1887 struct acpi_device *device)
1889 if (boot_option_idle_override)
1890 return 0;
1892 #ifdef CONFIG_CPU_IDLE
1893 cpuidle_unregister_device(&pr->power.dev);
1894 #endif
1895 pr->flags.power_setup_done = 0;
1897 if (acpi_device_dir(device))
1898 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1899 acpi_device_dir(device));
1901 #ifndef CONFIG_CPU_IDLE
1903 /* Unregister the idle handler when processor #0 is removed. */
1904 if (pr->id == 0) {
1905 if (pm_idle_save)
1906 pm_idle = pm_idle_save;
1909 * We are about to unload the current idle thread pm callback
1910 * (pm_idle), Wait for all processors to update cached/local
1911 * copies of pm_idle before proceeding.
1913 cpu_idle_wait();
1914 #ifdef CONFIG_SMP
1915 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1916 &acpi_processor_latency_notifier);
1917 #endif
1919 #endif
1921 return 0;