Input: unified force feedback support for memoryless devices
[linux-2.6/openmoko-kernel.git] / net / ieee80211 / ieee80211_crypt_wep.c
blobc5a87724aabeaf5f16e74bdc66ace2098d68b857
1 /*
2 * Host AP crypt: host-based WEP encryption implementation for Host AP driver
4 * Copyright (c) 2002-2004, Jouni Malinen <jkmaline@cc.hut.fi>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation. See README and COPYING for
9 * more details.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/skbuff.h>
17 #include <asm/string.h>
19 #include <net/ieee80211.h>
21 #include <linux/crypto.h>
22 #include <asm/scatterlist.h>
23 #include <linux/crc32.h>
25 MODULE_AUTHOR("Jouni Malinen");
26 MODULE_DESCRIPTION("Host AP crypt: WEP");
27 MODULE_LICENSE("GPL");
29 struct prism2_wep_data {
30 u32 iv;
31 #define WEP_KEY_LEN 13
32 u8 key[WEP_KEY_LEN + 1];
33 u8 key_len;
34 u8 key_idx;
35 struct crypto_tfm *tfm;
38 static void *prism2_wep_init(int keyidx)
40 struct prism2_wep_data *priv;
42 priv = kmalloc(sizeof(*priv), GFP_ATOMIC);
43 if (priv == NULL)
44 goto fail;
45 memset(priv, 0, sizeof(*priv));
46 priv->key_idx = keyidx;
48 priv->tfm = crypto_alloc_tfm("arc4", 0);
49 if (priv->tfm == NULL) {
50 printk(KERN_DEBUG "ieee80211_crypt_wep: could not allocate "
51 "crypto API arc4\n");
52 goto fail;
55 /* start WEP IV from a random value */
56 get_random_bytes(&priv->iv, 4);
58 return priv;
60 fail:
61 if (priv) {
62 if (priv->tfm)
63 crypto_free_tfm(priv->tfm);
64 kfree(priv);
66 return NULL;
69 static void prism2_wep_deinit(void *priv)
71 struct prism2_wep_data *_priv = priv;
72 if (_priv && _priv->tfm)
73 crypto_free_tfm(_priv->tfm);
74 kfree(priv);
77 /* Add WEP IV/key info to a frame that has at least 4 bytes of headroom */
78 static int prism2_wep_build_iv(struct sk_buff *skb, int hdr_len,
79 u8 *key, int keylen, void *priv)
81 struct prism2_wep_data *wep = priv;
82 u32 klen, len;
83 u8 *pos;
85 if (skb_headroom(skb) < 4 || skb->len < hdr_len)
86 return -1;
88 len = skb->len - hdr_len;
89 pos = skb_push(skb, 4);
90 memmove(pos, pos + 4, hdr_len);
91 pos += hdr_len;
93 klen = 3 + wep->key_len;
95 wep->iv++;
97 /* Fluhrer, Mantin, and Shamir have reported weaknesses in the key
98 * scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N)
99 * can be used to speedup attacks, so avoid using them. */
100 if ((wep->iv & 0xff00) == 0xff00) {
101 u8 B = (wep->iv >> 16) & 0xff;
102 if (B >= 3 && B < klen)
103 wep->iv += 0x0100;
106 /* Prepend 24-bit IV to RC4 key and TX frame */
107 *pos++ = (wep->iv >> 16) & 0xff;
108 *pos++ = (wep->iv >> 8) & 0xff;
109 *pos++ = wep->iv & 0xff;
110 *pos++ = wep->key_idx << 6;
112 return 0;
115 /* Perform WEP encryption on given skb that has at least 4 bytes of headroom
116 * for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted,
117 * so the payload length increases with 8 bytes.
119 * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
121 static int prism2_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
123 struct prism2_wep_data *wep = priv;
124 u32 crc, klen, len;
125 u8 *pos, *icv;
126 struct scatterlist sg;
127 u8 key[WEP_KEY_LEN + 3];
129 /* other checks are in prism2_wep_build_iv */
130 if (skb_tailroom(skb) < 4)
131 return -1;
133 /* add the IV to the frame */
134 if (prism2_wep_build_iv(skb, hdr_len, NULL, 0, priv))
135 return -1;
137 /* Copy the IV into the first 3 bytes of the key */
138 memcpy(key, skb->data + hdr_len, 3);
140 /* Copy rest of the WEP key (the secret part) */
141 memcpy(key + 3, wep->key, wep->key_len);
143 len = skb->len - hdr_len - 4;
144 pos = skb->data + hdr_len + 4;
145 klen = 3 + wep->key_len;
147 /* Append little-endian CRC32 over only the data and encrypt it to produce ICV */
148 crc = ~crc32_le(~0, pos, len);
149 icv = skb_put(skb, 4);
150 icv[0] = crc;
151 icv[1] = crc >> 8;
152 icv[2] = crc >> 16;
153 icv[3] = crc >> 24;
155 crypto_cipher_setkey(wep->tfm, key, klen);
156 sg.page = virt_to_page(pos);
157 sg.offset = offset_in_page(pos);
158 sg.length = len + 4;
159 crypto_cipher_encrypt(wep->tfm, &sg, &sg, len + 4);
161 return 0;
164 /* Perform WEP decryption on given buffer. Buffer includes whole WEP part of
165 * the frame: IV (4 bytes), encrypted payload (including SNAP header),
166 * ICV (4 bytes). len includes both IV and ICV.
168 * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
169 * failure. If frame is OK, IV and ICV will be removed.
171 static int prism2_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
173 struct prism2_wep_data *wep = priv;
174 u32 crc, klen, plen;
175 u8 key[WEP_KEY_LEN + 3];
176 u8 keyidx, *pos, icv[4];
177 struct scatterlist sg;
179 if (skb->len < hdr_len + 8)
180 return -1;
182 pos = skb->data + hdr_len;
183 key[0] = *pos++;
184 key[1] = *pos++;
185 key[2] = *pos++;
186 keyidx = *pos++ >> 6;
187 if (keyidx != wep->key_idx)
188 return -1;
190 klen = 3 + wep->key_len;
192 /* Copy rest of the WEP key (the secret part) */
193 memcpy(key + 3, wep->key, wep->key_len);
195 /* Apply RC4 to data and compute CRC32 over decrypted data */
196 plen = skb->len - hdr_len - 8;
198 crypto_cipher_setkey(wep->tfm, key, klen);
199 sg.page = virt_to_page(pos);
200 sg.offset = offset_in_page(pos);
201 sg.length = plen + 4;
202 crypto_cipher_decrypt(wep->tfm, &sg, &sg, plen + 4);
204 crc = ~crc32_le(~0, pos, plen);
205 icv[0] = crc;
206 icv[1] = crc >> 8;
207 icv[2] = crc >> 16;
208 icv[3] = crc >> 24;
209 if (memcmp(icv, pos + plen, 4) != 0) {
210 /* ICV mismatch - drop frame */
211 return -2;
214 /* Remove IV and ICV */
215 memmove(skb->data + 4, skb->data, hdr_len);
216 skb_pull(skb, 4);
217 skb_trim(skb, skb->len - 4);
219 return 0;
222 static int prism2_wep_set_key(void *key, int len, u8 * seq, void *priv)
224 struct prism2_wep_data *wep = priv;
226 if (len < 0 || len > WEP_KEY_LEN)
227 return -1;
229 memcpy(wep->key, key, len);
230 wep->key_len = len;
232 return 0;
235 static int prism2_wep_get_key(void *key, int len, u8 * seq, void *priv)
237 struct prism2_wep_data *wep = priv;
239 if (len < wep->key_len)
240 return -1;
242 memcpy(key, wep->key, wep->key_len);
244 return wep->key_len;
247 static char *prism2_wep_print_stats(char *p, void *priv)
249 struct prism2_wep_data *wep = priv;
250 p += sprintf(p, "key[%d] alg=WEP len=%d\n", wep->key_idx, wep->key_len);
251 return p;
254 static struct ieee80211_crypto_ops ieee80211_crypt_wep = {
255 .name = "WEP",
256 .init = prism2_wep_init,
257 .deinit = prism2_wep_deinit,
258 .build_iv = prism2_wep_build_iv,
259 .encrypt_mpdu = prism2_wep_encrypt,
260 .decrypt_mpdu = prism2_wep_decrypt,
261 .encrypt_msdu = NULL,
262 .decrypt_msdu = NULL,
263 .set_key = prism2_wep_set_key,
264 .get_key = prism2_wep_get_key,
265 .print_stats = prism2_wep_print_stats,
266 .extra_mpdu_prefix_len = 4, /* IV */
267 .extra_mpdu_postfix_len = 4, /* ICV */
268 .owner = THIS_MODULE,
271 static int __init ieee80211_crypto_wep_init(void)
273 return ieee80211_register_crypto_ops(&ieee80211_crypt_wep);
276 static void __exit ieee80211_crypto_wep_exit(void)
278 ieee80211_unregister_crypto_ops(&ieee80211_crypt_wep);
281 module_init(ieee80211_crypto_wep_init);
282 module_exit(ieee80211_crypto_wep_exit);