add filesystem subtype support
[linux-2.6/openmoko-kernel.git] / fs / jffs2 / wbuf.c
blobc556e85a565cea44fbceca308514fa51e5c80c3e
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
10 * For licensing information, see the file 'LICENCE' in this directory.
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/crc32.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/jiffies.h>
20 #include <linux/sched.h>
22 #include "nodelist.h"
24 /* For testing write failures */
25 #undef BREAKME
26 #undef BREAKMEHEADER
28 #ifdef BREAKME
29 static unsigned char *brokenbuf;
30 #endif
32 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
33 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
35 /* max. erase failures before we mark a block bad */
36 #define MAX_ERASE_FAILURES 2
38 struct jffs2_inodirty {
39 uint32_t ino;
40 struct jffs2_inodirty *next;
43 static struct jffs2_inodirty inodirty_nomem;
45 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
47 struct jffs2_inodirty *this = c->wbuf_inodes;
49 /* If a malloc failed, consider _everything_ dirty */
50 if (this == &inodirty_nomem)
51 return 1;
53 /* If ino == 0, _any_ non-GC writes mean 'yes' */
54 if (this && !ino)
55 return 1;
57 /* Look to see if the inode in question is pending in the wbuf */
58 while (this) {
59 if (this->ino == ino)
60 return 1;
61 this = this->next;
63 return 0;
66 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
68 struct jffs2_inodirty *this;
70 this = c->wbuf_inodes;
72 if (this != &inodirty_nomem) {
73 while (this) {
74 struct jffs2_inodirty *next = this->next;
75 kfree(this);
76 this = next;
79 c->wbuf_inodes = NULL;
82 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
84 struct jffs2_inodirty *new;
86 /* Mark the superblock dirty so that kupdated will flush... */
87 jffs2_erase_pending_trigger(c);
89 if (jffs2_wbuf_pending_for_ino(c, ino))
90 return;
92 new = kmalloc(sizeof(*new), GFP_KERNEL);
93 if (!new) {
94 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
95 jffs2_clear_wbuf_ino_list(c);
96 c->wbuf_inodes = &inodirty_nomem;
97 return;
99 new->ino = ino;
100 new->next = c->wbuf_inodes;
101 c->wbuf_inodes = new;
102 return;
105 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
107 struct list_head *this, *next;
108 static int n;
110 if (list_empty(&c->erasable_pending_wbuf_list))
111 return;
113 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
114 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
116 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
117 list_del(this);
118 if ((jiffies + (n++)) & 127) {
119 /* Most of the time, we just erase it immediately. Otherwise we
120 spend ages scanning it on mount, etc. */
121 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
122 list_add_tail(&jeb->list, &c->erase_pending_list);
123 c->nr_erasing_blocks++;
124 jffs2_erase_pending_trigger(c);
125 } else {
126 /* Sometimes, however, we leave it elsewhere so it doesn't get
127 immediately reused, and we spread the load a bit. */
128 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
129 list_add_tail(&jeb->list, &c->erasable_list);
134 #define REFILE_NOTEMPTY 0
135 #define REFILE_ANYWAY 1
137 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
139 D1(printk("About to refile bad block at %08x\n", jeb->offset));
141 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb)
143 c->nextblock = NULL;
144 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list);
146 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 list_add(&jeb->list, &c->bad_used_list);
149 } else {
150 BUG_ON(allow_empty == REFILE_NOTEMPTY);
151 /* It has to have had some nodes or we couldn't be here */
152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 list_add(&jeb->list, &c->erase_pending_list);
154 c->nr_erasing_blocks++;
155 jffs2_erase_pending_trigger(c);
158 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
159 uint32_t oldfree = jeb->free_size;
161 jffs2_link_node_ref(c, jeb,
162 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
163 oldfree, NULL);
164 /* convert to wasted */
165 c->wasted_size += oldfree;
166 jeb->wasted_size += oldfree;
167 c->dirty_size -= oldfree;
168 jeb->dirty_size -= oldfree;
171 jffs2_dbg_dump_block_lists_nolock(c);
172 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
173 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
176 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
177 struct jffs2_inode_info *f,
178 struct jffs2_raw_node_ref *raw,
179 union jffs2_node_union *node)
181 struct jffs2_node_frag *frag;
182 struct jffs2_full_dirent *fd;
184 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
185 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
187 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
188 je16_to_cpu(node->u.magic) != 0);
190 switch (je16_to_cpu(node->u.nodetype)) {
191 case JFFS2_NODETYPE_INODE:
192 if (f->metadata && f->metadata->raw == raw) {
193 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
194 return &f->metadata->raw;
196 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
197 BUG_ON(!frag);
198 /* Find a frag which refers to the full_dnode we want to modify */
199 while (!frag->node || frag->node->raw != raw) {
200 frag = frag_next(frag);
201 BUG_ON(!frag);
203 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
204 return &frag->node->raw;
206 case JFFS2_NODETYPE_DIRENT:
207 for (fd = f->dents; fd; fd = fd->next) {
208 if (fd->raw == raw) {
209 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
210 return &fd->raw;
213 BUG();
215 default:
216 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
217 je16_to_cpu(node->u.nodetype));
218 break;
220 return NULL;
223 /* Recover from failure to write wbuf. Recover the nodes up to the
224 * wbuf, not the one which we were starting to try to write. */
226 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
228 struct jffs2_eraseblock *jeb, *new_jeb;
229 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
230 size_t retlen;
231 int ret;
232 int nr_refile = 0;
233 unsigned char *buf;
234 uint32_t start, end, ofs, len;
236 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
238 spin_lock(&c->erase_completion_lock);
239 if (c->wbuf_ofs % c->mtd->erasesize)
240 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
241 else
242 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
243 spin_unlock(&c->erase_completion_lock);
245 BUG_ON(!ref_obsolete(jeb->last_node));
247 /* Find the first node to be recovered, by skipping over every
248 node which ends before the wbuf starts, or which is obsolete. */
249 for (next = raw = jeb->first_node; next; raw = next) {
250 next = ref_next(raw);
252 if (ref_obsolete(raw) ||
253 (next && ref_offset(next) <= c->wbuf_ofs)) {
254 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
255 ref_offset(raw), ref_flags(raw),
256 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
257 c->wbuf_ofs);
258 continue;
260 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
261 ref_offset(raw), ref_flags(raw),
262 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
264 first_raw = raw;
265 break;
268 if (!first_raw) {
269 /* All nodes were obsolete. Nothing to recover. */
270 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
271 c->wbuf_len = 0;
272 return;
275 start = ref_offset(first_raw);
276 end = ref_offset(jeb->last_node);
277 nr_refile = 1;
279 /* Count the number of refs which need to be copied */
280 while ((raw = ref_next(raw)) != jeb->last_node)
281 nr_refile++;
283 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
284 start, end, end - start, nr_refile);
286 buf = NULL;
287 if (start < c->wbuf_ofs) {
288 /* First affected node was already partially written.
289 * Attempt to reread the old data into our buffer. */
291 buf = kmalloc(end - start, GFP_KERNEL);
292 if (!buf) {
293 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
295 goto read_failed;
298 /* Do the read... */
299 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
301 /* ECC recovered ? */
302 if ((ret == -EUCLEAN || ret == -EBADMSG) &&
303 (retlen == c->wbuf_ofs - start))
304 ret = 0;
306 if (ret || retlen != c->wbuf_ofs - start) {
307 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
309 kfree(buf);
310 buf = NULL;
311 read_failed:
312 first_raw = ref_next(first_raw);
313 nr_refile--;
314 while (first_raw && ref_obsolete(first_raw)) {
315 first_raw = ref_next(first_raw);
316 nr_refile--;
319 /* If this was the only node to be recovered, give up */
320 if (!first_raw) {
321 c->wbuf_len = 0;
322 return;
325 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
326 start = ref_offset(first_raw);
327 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
328 start, end, end - start, nr_refile);
330 } else {
331 /* Read succeeded. Copy the remaining data from the wbuf */
332 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
335 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
336 Either 'buf' contains the data, or we find it in the wbuf */
338 /* ... and get an allocation of space from a shiny new block instead */
339 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
340 if (ret) {
341 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
342 kfree(buf);
343 return;
346 /* The summary is not recovered, so it must be disabled for this erase block */
347 jffs2_sum_disable_collecting(c->summary);
349 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
350 if (ret) {
351 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
352 kfree(buf);
353 return;
356 ofs = write_ofs(c);
358 if (end-start >= c->wbuf_pagesize) {
359 /* Need to do another write immediately, but it's possible
360 that this is just because the wbuf itself is completely
361 full, and there's nothing earlier read back from the
362 flash. Hence 'buf' isn't necessarily what we're writing
363 from. */
364 unsigned char *rewrite_buf = buf?:c->wbuf;
365 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
367 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
368 towrite, ofs));
370 #ifdef BREAKMEHEADER
371 static int breakme;
372 if (breakme++ == 20) {
373 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
374 breakme = 0;
375 c->mtd->write(c->mtd, ofs, towrite, &retlen,
376 brokenbuf);
377 ret = -EIO;
378 } else
379 #endif
380 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
381 rewrite_buf);
383 if (ret || retlen != towrite) {
384 /* Argh. We tried. Really we did. */
385 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
386 kfree(buf);
388 if (retlen)
389 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
391 return;
393 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
395 c->wbuf_len = (end - start) - towrite;
396 c->wbuf_ofs = ofs + towrite;
397 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
398 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
399 } else {
400 /* OK, now we're left with the dregs in whichever buffer we're using */
401 if (buf) {
402 memcpy(c->wbuf, buf, end-start);
403 } else {
404 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
406 c->wbuf_ofs = ofs;
407 c->wbuf_len = end - start;
410 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
411 new_jeb = &c->blocks[ofs / c->sector_size];
413 spin_lock(&c->erase_completion_lock);
414 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
415 uint32_t rawlen = ref_totlen(c, jeb, raw);
416 struct jffs2_inode_cache *ic;
417 struct jffs2_raw_node_ref *new_ref;
418 struct jffs2_raw_node_ref **adjust_ref = NULL;
419 struct jffs2_inode_info *f = NULL;
421 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
422 rawlen, ref_offset(raw), ref_flags(raw), ofs));
424 ic = jffs2_raw_ref_to_ic(raw);
426 /* Ick. This XATTR mess should be fixed shortly... */
427 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
428 struct jffs2_xattr_datum *xd = (void *)ic;
429 BUG_ON(xd->node != raw);
430 adjust_ref = &xd->node;
431 raw->next_in_ino = NULL;
432 ic = NULL;
433 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
434 struct jffs2_xattr_datum *xr = (void *)ic;
435 BUG_ON(xr->node != raw);
436 adjust_ref = &xr->node;
437 raw->next_in_ino = NULL;
438 ic = NULL;
439 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
440 struct jffs2_raw_node_ref **p = &ic->nodes;
442 /* Remove the old node from the per-inode list */
443 while (*p && *p != (void *)ic) {
444 if (*p == raw) {
445 (*p) = (raw->next_in_ino);
446 raw->next_in_ino = NULL;
447 break;
449 p = &((*p)->next_in_ino);
452 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
453 /* If it's an in-core inode, then we have to adjust any
454 full_dirent or full_dnode structure to point to the
455 new version instead of the old */
456 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
457 if (IS_ERR(f)) {
458 /* Should never happen; it _must_ be present */
459 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
460 ic->ino, PTR_ERR(f));
461 BUG();
463 /* We don't lock f->sem. There's a number of ways we could
464 end up in here with it already being locked, and nobody's
465 going to modify it on us anyway because we hold the
466 alloc_sem. We're only changing one ->raw pointer too,
467 which we can get away with without upsetting readers. */
468 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
469 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
470 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
471 ic->state != INO_STATE_CHECKEDABSENT &&
472 ic->state != INO_STATE_GC)) {
473 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
474 BUG();
478 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
480 if (adjust_ref) {
481 BUG_ON(*adjust_ref != raw);
482 *adjust_ref = new_ref;
484 if (f)
485 jffs2_gc_release_inode(c, f);
487 if (!ref_obsolete(raw)) {
488 jeb->dirty_size += rawlen;
489 jeb->used_size -= rawlen;
490 c->dirty_size += rawlen;
491 c->used_size -= rawlen;
492 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
493 BUG_ON(raw->next_in_ino);
495 ofs += rawlen;
498 kfree(buf);
500 /* Fix up the original jeb now it's on the bad_list */
501 if (first_raw == jeb->first_node) {
502 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
503 list_move(&jeb->list, &c->erase_pending_list);
504 c->nr_erasing_blocks++;
505 jffs2_erase_pending_trigger(c);
508 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
509 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
511 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
512 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
514 spin_unlock(&c->erase_completion_lock);
516 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
520 /* Meaning of pad argument:
521 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
522 1: Pad, do not adjust nextblock free_size
523 2: Pad, adjust nextblock free_size
525 #define NOPAD 0
526 #define PAD_NOACCOUNT 1
527 #define PAD_ACCOUNTING 2
529 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
531 struct jffs2_eraseblock *wbuf_jeb;
532 int ret;
533 size_t retlen;
535 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
536 del_timer() the timer we never initialised. */
537 if (!jffs2_is_writebuffered(c))
538 return 0;
540 if (!down_trylock(&c->alloc_sem)) {
541 up(&c->alloc_sem);
542 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
543 BUG();
546 if (!c->wbuf_len) /* already checked c->wbuf above */
547 return 0;
549 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
550 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
551 return -ENOMEM;
553 /* claim remaining space on the page
554 this happens, if we have a change to a new block,
555 or if fsync forces us to flush the writebuffer.
556 if we have a switch to next page, we will not have
557 enough remaining space for this.
559 if (pad ) {
560 c->wbuf_len = PAD(c->wbuf_len);
562 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
563 with 8 byte page size */
564 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
566 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
567 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
568 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
569 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
570 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
571 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
574 /* else jffs2_flash_writev has actually filled in the rest of the
575 buffer for us, and will deal with the node refs etc. later. */
577 #ifdef BREAKME
578 static int breakme;
579 if (breakme++ == 20) {
580 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
581 breakme = 0;
582 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
583 brokenbuf);
584 ret = -EIO;
585 } else
586 #endif
588 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
590 if (ret || retlen != c->wbuf_pagesize) {
591 if (ret)
592 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
593 else {
594 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
595 retlen, c->wbuf_pagesize);
596 ret = -EIO;
599 jffs2_wbuf_recover(c);
601 return ret;
604 /* Adjust free size of the block if we padded. */
605 if (pad) {
606 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
608 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
609 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
611 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
612 padded. If there is less free space in the block than that,
613 something screwed up */
614 if (wbuf_jeb->free_size < waste) {
615 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
616 c->wbuf_ofs, c->wbuf_len, waste);
617 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
618 wbuf_jeb->offset, wbuf_jeb->free_size);
619 BUG();
622 spin_lock(&c->erase_completion_lock);
624 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
625 /* FIXME: that made it count as dirty. Convert to wasted */
626 wbuf_jeb->dirty_size -= waste;
627 c->dirty_size -= waste;
628 wbuf_jeb->wasted_size += waste;
629 c->wasted_size += waste;
630 } else
631 spin_lock(&c->erase_completion_lock);
633 /* Stick any now-obsoleted blocks on the erase_pending_list */
634 jffs2_refile_wbuf_blocks(c);
635 jffs2_clear_wbuf_ino_list(c);
636 spin_unlock(&c->erase_completion_lock);
638 memset(c->wbuf,0xff,c->wbuf_pagesize);
639 /* adjust write buffer offset, else we get a non contiguous write bug */
640 c->wbuf_ofs += c->wbuf_pagesize;
641 c->wbuf_len = 0;
642 return 0;
645 /* Trigger garbage collection to flush the write-buffer.
646 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
647 outstanding. If ino arg non-zero, do it only if a write for the
648 given inode is outstanding. */
649 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
651 uint32_t old_wbuf_ofs;
652 uint32_t old_wbuf_len;
653 int ret = 0;
655 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
657 if (!c->wbuf)
658 return 0;
660 down(&c->alloc_sem);
661 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
662 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
663 up(&c->alloc_sem);
664 return 0;
667 old_wbuf_ofs = c->wbuf_ofs;
668 old_wbuf_len = c->wbuf_len;
670 if (c->unchecked_size) {
671 /* GC won't make any progress for a while */
672 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
673 down_write(&c->wbuf_sem);
674 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
675 /* retry flushing wbuf in case jffs2_wbuf_recover
676 left some data in the wbuf */
677 if (ret)
678 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
679 up_write(&c->wbuf_sem);
680 } else while (old_wbuf_len &&
681 old_wbuf_ofs == c->wbuf_ofs) {
683 up(&c->alloc_sem);
685 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
687 ret = jffs2_garbage_collect_pass(c);
688 if (ret) {
689 /* GC failed. Flush it with padding instead */
690 down(&c->alloc_sem);
691 down_write(&c->wbuf_sem);
692 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
693 /* retry flushing wbuf in case jffs2_wbuf_recover
694 left some data in the wbuf */
695 if (ret)
696 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
697 up_write(&c->wbuf_sem);
698 break;
700 down(&c->alloc_sem);
703 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
705 up(&c->alloc_sem);
706 return ret;
709 /* Pad write-buffer to end and write it, wasting space. */
710 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
712 int ret;
714 if (!c->wbuf)
715 return 0;
717 down_write(&c->wbuf_sem);
718 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
719 /* retry - maybe wbuf recover left some data in wbuf. */
720 if (ret)
721 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
722 up_write(&c->wbuf_sem);
724 return ret;
727 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
728 size_t len)
730 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
731 return 0;
733 if (len > (c->wbuf_pagesize - c->wbuf_len))
734 len = c->wbuf_pagesize - c->wbuf_len;
735 memcpy(c->wbuf + c->wbuf_len, buf, len);
736 c->wbuf_len += (uint32_t) len;
737 return len;
740 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
741 unsigned long count, loff_t to, size_t *retlen,
742 uint32_t ino)
744 struct jffs2_eraseblock *jeb;
745 size_t wbuf_retlen, donelen = 0;
746 uint32_t outvec_to = to;
747 int ret, invec;
749 /* If not writebuffered flash, don't bother */
750 if (!jffs2_is_writebuffered(c))
751 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
753 down_write(&c->wbuf_sem);
755 /* If wbuf_ofs is not initialized, set it to target address */
756 if (c->wbuf_ofs == 0xFFFFFFFF) {
757 c->wbuf_ofs = PAGE_DIV(to);
758 c->wbuf_len = PAGE_MOD(to);
759 memset(c->wbuf,0xff,c->wbuf_pagesize);
763 * Sanity checks on target address. It's permitted to write
764 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
765 * write at the beginning of a new erase block. Anything else,
766 * and you die. New block starts at xxx000c (0-b = block
767 * header)
769 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
770 /* It's a write to a new block */
771 if (c->wbuf_len) {
772 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
773 "causes flush of wbuf at 0x%08x\n",
774 (unsigned long)to, c->wbuf_ofs));
775 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
776 if (ret)
777 goto outerr;
779 /* set pointer to new block */
780 c->wbuf_ofs = PAGE_DIV(to);
781 c->wbuf_len = PAGE_MOD(to);
784 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
785 /* We're not writing immediately after the writebuffer. Bad. */
786 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
787 "to %08lx\n", (unsigned long)to);
788 if (c->wbuf_len)
789 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
790 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
791 BUG();
794 /* adjust alignment offset */
795 if (c->wbuf_len != PAGE_MOD(to)) {
796 c->wbuf_len = PAGE_MOD(to);
797 /* take care of alignment to next page */
798 if (!c->wbuf_len) {
799 c->wbuf_len = c->wbuf_pagesize;
800 ret = __jffs2_flush_wbuf(c, NOPAD);
801 if (ret)
802 goto outerr;
806 for (invec = 0; invec < count; invec++) {
807 int vlen = invecs[invec].iov_len;
808 uint8_t *v = invecs[invec].iov_base;
810 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
812 if (c->wbuf_len == c->wbuf_pagesize) {
813 ret = __jffs2_flush_wbuf(c, NOPAD);
814 if (ret)
815 goto outerr;
817 vlen -= wbuf_retlen;
818 outvec_to += wbuf_retlen;
819 donelen += wbuf_retlen;
820 v += wbuf_retlen;
822 if (vlen >= c->wbuf_pagesize) {
823 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
824 &wbuf_retlen, v);
825 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
826 goto outfile;
828 vlen -= wbuf_retlen;
829 outvec_to += wbuf_retlen;
830 c->wbuf_ofs = outvec_to;
831 donelen += wbuf_retlen;
832 v += wbuf_retlen;
835 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
836 if (c->wbuf_len == c->wbuf_pagesize) {
837 ret = __jffs2_flush_wbuf(c, NOPAD);
838 if (ret)
839 goto outerr;
842 outvec_to += wbuf_retlen;
843 donelen += wbuf_retlen;
847 * If there's a remainder in the wbuf and it's a non-GC write,
848 * remember that the wbuf affects this ino
850 *retlen = donelen;
852 if (jffs2_sum_active()) {
853 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
854 if (res)
855 return res;
858 if (c->wbuf_len && ino)
859 jffs2_wbuf_dirties_inode(c, ino);
861 ret = 0;
862 up_write(&c->wbuf_sem);
863 return ret;
865 outfile:
867 * At this point we have no problem, c->wbuf is empty. However
868 * refile nextblock to avoid writing again to same address.
871 spin_lock(&c->erase_completion_lock);
873 jeb = &c->blocks[outvec_to / c->sector_size];
874 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
876 spin_unlock(&c->erase_completion_lock);
878 outerr:
879 *retlen = 0;
880 up_write(&c->wbuf_sem);
881 return ret;
885 * This is the entry for flash write.
886 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
888 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
889 size_t *retlen, const u_char *buf)
891 struct kvec vecs[1];
893 if (!jffs2_is_writebuffered(c))
894 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
896 vecs[0].iov_base = (unsigned char *) buf;
897 vecs[0].iov_len = len;
898 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
902 Handle readback from writebuffer and ECC failure return
904 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
906 loff_t orbf = 0, owbf = 0, lwbf = 0;
907 int ret;
909 if (!jffs2_is_writebuffered(c))
910 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
912 /* Read flash */
913 down_read(&c->wbuf_sem);
914 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
916 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
917 if (ret == -EBADMSG)
918 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
919 " returned ECC error\n", len, ofs);
921 * We have the raw data without ECC correction in the buffer,
922 * maybe we are lucky and all data or parts are correct. We
923 * check the node. If data are corrupted node check will sort
924 * it out. We keep this block, it will fail on write or erase
925 * and the we mark it bad. Or should we do that now? But we
926 * should give him a chance. Maybe we had a system crash or
927 * power loss before the ecc write or a erase was completed.
928 * So we return success. :)
930 ret = 0;
933 /* if no writebuffer available or write buffer empty, return */
934 if (!c->wbuf_pagesize || !c->wbuf_len)
935 goto exit;
937 /* if we read in a different block, return */
938 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
939 goto exit;
941 if (ofs >= c->wbuf_ofs) {
942 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
943 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
944 goto exit;
945 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
946 if (lwbf > len)
947 lwbf = len;
948 } else {
949 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
950 if (orbf > len) /* is write beyond write buffer ? */
951 goto exit;
952 lwbf = len - orbf; /* number of bytes to copy */
953 if (lwbf > c->wbuf_len)
954 lwbf = c->wbuf_len;
956 if (lwbf > 0)
957 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
959 exit:
960 up_read(&c->wbuf_sem);
961 return ret;
964 #define NR_OOB_SCAN_PAGES 4
966 /* For historical reasons we use only 12 bytes for OOB clean marker */
967 #define OOB_CM_SIZE 12
969 static const struct jffs2_unknown_node oob_cleanmarker =
971 .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
972 .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
973 .totlen = constant_cpu_to_je32(8)
977 * Check, if the out of band area is empty. This function knows about the clean
978 * marker and if it is present in OOB, treats the OOB as empty anyway.
980 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
981 struct jffs2_eraseblock *jeb, int mode)
983 int i, ret;
984 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
985 struct mtd_oob_ops ops;
987 ops.mode = MTD_OOB_AUTO;
988 ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
989 ops.oobbuf = c->oobbuf;
990 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
991 ops.datbuf = NULL;
993 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
994 if (ret || ops.oobretlen != ops.ooblen) {
995 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
996 " bytes, read %zd bytes, error %d\n",
997 jeb->offset, ops.ooblen, ops.oobretlen, ret);
998 if (!ret)
999 ret = -EIO;
1000 return ret;
1003 for(i = 0; i < ops.ooblen; i++) {
1004 if (mode && i < cmlen)
1005 /* Yeah, we know about the cleanmarker */
1006 continue;
1008 if (ops.oobbuf[i] != 0xFF) {
1009 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1010 "%08x\n", ops.oobbuf[i], i, jeb->offset));
1011 return 1;
1015 return 0;
1019 * Check for a valid cleanmarker.
1020 * Returns: 0 if a valid cleanmarker was found
1021 * 1 if no cleanmarker was found
1022 * negative error code if an error occurred
1024 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1025 struct jffs2_eraseblock *jeb)
1027 struct mtd_oob_ops ops;
1028 int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1030 ops.mode = MTD_OOB_AUTO;
1031 ops.ooblen = cmlen;
1032 ops.oobbuf = c->oobbuf;
1033 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1034 ops.datbuf = NULL;
1036 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1037 if (ret || ops.oobretlen != ops.ooblen) {
1038 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1039 " bytes, read %zd bytes, error %d\n",
1040 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1041 if (!ret)
1042 ret = -EIO;
1043 return ret;
1046 return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1049 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1050 struct jffs2_eraseblock *jeb)
1052 int ret;
1053 struct mtd_oob_ops ops;
1054 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1056 ops.mode = MTD_OOB_AUTO;
1057 ops.ooblen = cmlen;
1058 ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1059 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1060 ops.datbuf = NULL;
1062 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1063 if (ret || ops.oobretlen != ops.ooblen) {
1064 printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1065 " bytes, read %zd bytes, error %d\n",
1066 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1067 if (!ret)
1068 ret = -EIO;
1069 return ret;
1072 return 0;
1076 * On NAND we try to mark this block bad. If the block was erased more
1077 * than MAX_ERASE_FAILURES we mark it finaly bad.
1078 * Don't care about failures. This block remains on the erase-pending
1079 * or badblock list as long as nobody manipulates the flash with
1080 * a bootloader or something like that.
1083 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1085 int ret;
1087 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1088 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1089 return 0;
1091 if (!c->mtd->block_markbad)
1092 return 1; // What else can we do?
1094 printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
1095 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1097 if (ret) {
1098 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1099 return ret;
1101 return 1;
1104 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1106 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1108 if (!c->mtd->oobsize)
1109 return 0;
1111 /* Cleanmarker is out-of-band, so inline size zero */
1112 c->cleanmarker_size = 0;
1114 if (!oinfo || oinfo->oobavail == 0) {
1115 printk(KERN_ERR "inconsistent device description\n");
1116 return -EINVAL;
1119 D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
1121 c->oobavail = oinfo->oobavail;
1123 /* Initialise write buffer */
1124 init_rwsem(&c->wbuf_sem);
1125 c->wbuf_pagesize = c->mtd->writesize;
1126 c->wbuf_ofs = 0xFFFFFFFF;
1128 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1129 if (!c->wbuf)
1130 return -ENOMEM;
1132 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1133 if (!c->oobbuf) {
1134 kfree(c->wbuf);
1135 return -ENOMEM;
1138 return 0;
1141 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1143 kfree(c->wbuf);
1144 kfree(c->oobbuf);
1147 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1148 c->cleanmarker_size = 0; /* No cleanmarkers needed */
1150 /* Initialize write buffer */
1151 init_rwsem(&c->wbuf_sem);
1154 c->wbuf_pagesize = c->mtd->erasesize;
1156 /* Find a suitable c->sector_size
1157 * - Not too much sectors
1158 * - Sectors have to be at least 4 K + some bytes
1159 * - All known dataflashes have erase sizes of 528 or 1056
1160 * - we take at least 8 eraseblocks and want to have at least 8K size
1161 * - The concatenation should be a power of 2
1164 c->sector_size = 8 * c->mtd->erasesize;
1166 while (c->sector_size < 8192) {
1167 c->sector_size *= 2;
1170 /* It may be necessary to adjust the flash size */
1171 c->flash_size = c->mtd->size;
1173 if ((c->flash_size % c->sector_size) != 0) {
1174 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1175 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1178 c->wbuf_ofs = 0xFFFFFFFF;
1179 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1180 if (!c->wbuf)
1181 return -ENOMEM;
1183 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1185 return 0;
1188 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1189 kfree(c->wbuf);
1192 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1193 /* Cleanmarker currently occupies whole programming regions,
1194 * either one or 2 for 8Byte STMicro flashes. */
1195 c->cleanmarker_size = max(16u, c->mtd->writesize);
1197 /* Initialize write buffer */
1198 init_rwsem(&c->wbuf_sem);
1199 c->wbuf_pagesize = c->mtd->writesize;
1200 c->wbuf_ofs = 0xFFFFFFFF;
1202 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1203 if (!c->wbuf)
1204 return -ENOMEM;
1206 return 0;
1209 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1210 kfree(c->wbuf);
1213 int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1214 c->cleanmarker_size = 0;
1216 if (c->mtd->writesize == 1)
1217 /* We do not need write-buffer */
1218 return 0;
1220 init_rwsem(&c->wbuf_sem);
1222 c->wbuf_pagesize = c->mtd->writesize;
1223 c->wbuf_ofs = 0xFFFFFFFF;
1224 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1225 if (!c->wbuf)
1226 return -ENOMEM;
1228 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1230 return 0;
1233 void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1234 kfree(c->wbuf);