cyclades: use tty_port
[linux-2.6/openmoko-kernel.git] / kernel / posix-timers.c
blobdbd8398ddb0b41fa1f391849b82199078e72de70
1 /*
2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
69 * Lets keep our timers in a slab cache :-)
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
134 static struct k_clock posix_clocks[MAX_CLOCKS];
137 * These ones are defined below.
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
152 spin_unlock_irqrestore(&timr->it_lock, flags);
156 * Call the k_clock hook function if non-null, or the default function.
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
171 static inline int common_clock_getres(const clockid_t which_clock,
172 struct timespec *tp)
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
180 * Get real time for posix timers
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
184 ktime_get_real_ts(tp);
185 return 0;
188 static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
191 return do_sys_settimeofday(tp, NULL);
194 static int common_timer_create(struct k_itimer *new_timer)
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 return 0;
201 * Return nonzero if we know a priori this clockid_t value is bogus.
203 static inline int invalid_clockid(const clockid_t which_clock)
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
213 return 1;
217 * Get monotonic time for posix timers
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
221 ktime_get_ts(tp);
222 return 0;
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
228 static __init int init_posix_timers(void)
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
233 struct k_clock clock_monotonic = {
234 .clock_getres = hrtimer_get_res,
235 .clock_get = posix_ktime_get_ts,
236 .clock_set = do_posix_clock_nosettime,
239 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
240 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
242 posix_timers_cache = kmem_cache_create("posix_timers_cache",
243 sizeof (struct k_itimer), 0, SLAB_PANIC,
244 NULL);
245 idr_init(&posix_timers_id);
246 return 0;
249 __initcall(init_posix_timers);
251 static void schedule_next_timer(struct k_itimer *timr)
253 struct hrtimer *timer = &timr->it.real.timer;
255 if (timr->it.real.interval.tv64 == 0)
256 return;
258 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
259 timer->base->get_time(),
260 timr->it.real.interval);
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
265 hrtimer_restart(timer);
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
279 void do_schedule_next_timer(struct siginfo *info)
281 struct k_itimer *timr;
282 unsigned long flags;
284 timr = lock_timer(info->si_tid, &flags);
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
292 info->si_overrun = timr->it_overrun_last;
295 if (timr)
296 unlock_timer(timr, flags);
299 int posix_timer_event(struct k_itimer *timr,int si_private)
301 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
302 timr->sigq->info.si_sys_private = si_private;
303 /* Send signal to the process that owns this timer.*/
305 timr->sigq->info.si_signo = timr->it_sigev_signo;
306 timr->sigq->info.si_errno = 0;
307 timr->sigq->info.si_code = SI_TIMER;
308 timr->sigq->info.si_tid = timr->it_id;
309 timr->sigq->info.si_value = timr->it_sigev_value;
311 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
312 struct task_struct *leader;
313 int ret = send_sigqueue(timr->sigq, timr->it_process, 0);
315 if (likely(ret >= 0))
316 return ret;
318 timr->it_sigev_notify = SIGEV_SIGNAL;
319 leader = timr->it_process->group_leader;
320 put_task_struct(timr->it_process);
321 timr->it_process = leader;
324 return send_sigqueue(timr->sigq, timr->it_process, 1);
326 EXPORT_SYMBOL_GPL(posix_timer_event);
329 * This function gets called when a POSIX.1b interval timer expires. It
330 * is used as a callback from the kernel internal timer. The
331 * run_timer_list code ALWAYS calls with interrupts on.
333 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
335 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
337 struct k_itimer *timr;
338 unsigned long flags;
339 int si_private = 0;
340 enum hrtimer_restart ret = HRTIMER_NORESTART;
342 timr = container_of(timer, struct k_itimer, it.real.timer);
343 spin_lock_irqsave(&timr->it_lock, flags);
345 if (timr->it.real.interval.tv64 != 0)
346 si_private = ++timr->it_requeue_pending;
348 if (posix_timer_event(timr, si_private)) {
350 * signal was not sent because of sig_ignor
351 * we will not get a call back to restart it AND
352 * it should be restarted.
354 if (timr->it.real.interval.tv64 != 0) {
355 ktime_t now = hrtimer_cb_get_time(timer);
358 * FIXME: What we really want, is to stop this
359 * timer completely and restart it in case the
360 * SIG_IGN is removed. This is a non trivial
361 * change which involves sighand locking
362 * (sigh !), which we don't want to do late in
363 * the release cycle.
365 * For now we just let timers with an interval
366 * less than a jiffie expire every jiffie to
367 * avoid softirq starvation in case of SIG_IGN
368 * and a very small interval, which would put
369 * the timer right back on the softirq pending
370 * list. By moving now ahead of time we trick
371 * hrtimer_forward() to expire the timer
372 * later, while we still maintain the overrun
373 * accuracy, but have some inconsistency in
374 * the timer_gettime() case. This is at least
375 * better than a starved softirq. A more
376 * complex fix which solves also another related
377 * inconsistency is already in the pipeline.
379 #ifdef CONFIG_HIGH_RES_TIMERS
381 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
383 if (timr->it.real.interval.tv64 < kj.tv64)
384 now = ktime_add(now, kj);
386 #endif
387 timr->it_overrun += (unsigned int)
388 hrtimer_forward(timer, now,
389 timr->it.real.interval);
390 ret = HRTIMER_RESTART;
391 ++timr->it_requeue_pending;
395 unlock_timer(timr, flags);
396 return ret;
399 static struct task_struct * good_sigevent(sigevent_t * event)
401 struct task_struct *rtn = current->group_leader;
403 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
404 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
405 !same_thread_group(rtn, current) ||
406 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
407 return NULL;
409 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
410 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
411 return NULL;
413 return rtn;
416 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
418 if ((unsigned) clock_id >= MAX_CLOCKS) {
419 printk("POSIX clock register failed for clock_id %d\n",
420 clock_id);
421 return;
424 posix_clocks[clock_id] = *new_clock;
426 EXPORT_SYMBOL_GPL(register_posix_clock);
428 static struct k_itimer * alloc_posix_timer(void)
430 struct k_itimer *tmr;
431 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
432 if (!tmr)
433 return tmr;
434 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
435 kmem_cache_free(posix_timers_cache, tmr);
436 tmr = NULL;
438 return tmr;
441 #define IT_ID_SET 1
442 #define IT_ID_NOT_SET 0
443 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
445 if (it_id_set) {
446 unsigned long flags;
447 spin_lock_irqsave(&idr_lock, flags);
448 idr_remove(&posix_timers_id, tmr->it_id);
449 spin_unlock_irqrestore(&idr_lock, flags);
451 sigqueue_free(tmr->sigq);
452 if (unlikely(tmr->it_process) &&
453 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
454 put_task_struct(tmr->it_process);
455 kmem_cache_free(posix_timers_cache, tmr);
458 /* Create a POSIX.1b interval timer. */
460 asmlinkage long
461 sys_timer_create(const clockid_t which_clock,
462 struct sigevent __user *timer_event_spec,
463 timer_t __user * created_timer_id)
465 int error = 0;
466 struct k_itimer *new_timer = NULL;
467 int new_timer_id;
468 struct task_struct *process = NULL;
469 unsigned long flags;
470 sigevent_t event;
471 int it_id_set = IT_ID_NOT_SET;
473 if (invalid_clockid(which_clock))
474 return -EINVAL;
476 new_timer = alloc_posix_timer();
477 if (unlikely(!new_timer))
478 return -EAGAIN;
480 spin_lock_init(&new_timer->it_lock);
481 retry:
482 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
483 error = -EAGAIN;
484 goto out;
486 spin_lock_irq(&idr_lock);
487 error = idr_get_new(&posix_timers_id, (void *) new_timer,
488 &new_timer_id);
489 spin_unlock_irq(&idr_lock);
490 if (error == -EAGAIN)
491 goto retry;
492 else if (error) {
494 * Weird looking, but we return EAGAIN if the IDR is
495 * full (proper POSIX return value for this)
497 error = -EAGAIN;
498 goto out;
501 it_id_set = IT_ID_SET;
502 new_timer->it_id = (timer_t) new_timer_id;
503 new_timer->it_clock = which_clock;
504 new_timer->it_overrun = -1;
505 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
506 if (error)
507 goto out;
510 * return the timer_id now. The next step is hard to
511 * back out if there is an error.
513 if (copy_to_user(created_timer_id,
514 &new_timer_id, sizeof (new_timer_id))) {
515 error = -EFAULT;
516 goto out;
518 if (timer_event_spec) {
519 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
520 error = -EFAULT;
521 goto out;
523 new_timer->it_sigev_notify = event.sigev_notify;
524 new_timer->it_sigev_signo = event.sigev_signo;
525 new_timer->it_sigev_value = event.sigev_value;
527 read_lock(&tasklist_lock);
528 if ((process = good_sigevent(&event))) {
530 * We may be setting up this process for another
531 * thread. It may be exiting. To catch this
532 * case the we check the PF_EXITING flag. If
533 * the flag is not set, the siglock will catch
534 * him before it is too late (in exit_itimers).
536 * The exec case is a bit more invloved but easy
537 * to code. If the process is in our thread
538 * group (and it must be or we would not allow
539 * it here) and is doing an exec, it will cause
540 * us to be killed. In this case it will wait
541 * for us to die which means we can finish this
542 * linkage with our last gasp. I.e. no code :)
544 spin_lock_irqsave(&process->sighand->siglock, flags);
545 if (!(process->flags & PF_EXITING)) {
546 new_timer->it_process = process;
547 list_add(&new_timer->list,
548 &process->signal->posix_timers);
549 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
550 get_task_struct(process);
551 spin_unlock_irqrestore(&process->sighand->siglock, flags);
552 } else {
553 spin_unlock_irqrestore(&process->sighand->siglock, flags);
554 process = NULL;
557 read_unlock(&tasklist_lock);
558 if (!process) {
559 error = -EINVAL;
560 goto out;
562 } else {
563 new_timer->it_sigev_notify = SIGEV_SIGNAL;
564 new_timer->it_sigev_signo = SIGALRM;
565 new_timer->it_sigev_value.sival_int = new_timer->it_id;
566 process = current->group_leader;
567 spin_lock_irqsave(&process->sighand->siglock, flags);
568 new_timer->it_process = process;
569 list_add(&new_timer->list, &process->signal->posix_timers);
570 spin_unlock_irqrestore(&process->sighand->siglock, flags);
574 * In the case of the timer belonging to another task, after
575 * the task is unlocked, the timer is owned by the other task
576 * and may cease to exist at any time. Don't use or modify
577 * new_timer after the unlock call.
580 out:
581 if (error)
582 release_posix_timer(new_timer, it_id_set);
584 return error;
588 * Locking issues: We need to protect the result of the id look up until
589 * we get the timer locked down so it is not deleted under us. The
590 * removal is done under the idr spinlock so we use that here to bridge
591 * the find to the timer lock. To avoid a dead lock, the timer id MUST
592 * be release with out holding the timer lock.
594 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
596 struct k_itimer *timr;
598 * Watch out here. We do a irqsave on the idr_lock and pass the
599 * flags part over to the timer lock. Must not let interrupts in
600 * while we are moving the lock.
603 spin_lock_irqsave(&idr_lock, *flags);
604 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
605 if (timr) {
606 spin_lock(&timr->it_lock);
608 if ((timr->it_id != timer_id) || !(timr->it_process) ||
609 !same_thread_group(timr->it_process, current)) {
610 spin_unlock(&timr->it_lock);
611 spin_unlock_irqrestore(&idr_lock, *flags);
612 timr = NULL;
613 } else
614 spin_unlock(&idr_lock);
615 } else
616 spin_unlock_irqrestore(&idr_lock, *flags);
618 return timr;
622 * Get the time remaining on a POSIX.1b interval timer. This function
623 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
624 * mess with irq.
626 * We have a couple of messes to clean up here. First there is the case
627 * of a timer that has a requeue pending. These timers should appear to
628 * be in the timer list with an expiry as if we were to requeue them
629 * now.
631 * The second issue is the SIGEV_NONE timer which may be active but is
632 * not really ever put in the timer list (to save system resources).
633 * This timer may be expired, and if so, we will do it here. Otherwise
634 * it is the same as a requeue pending timer WRT to what we should
635 * report.
637 static void
638 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
640 ktime_t now, remaining, iv;
641 struct hrtimer *timer = &timr->it.real.timer;
643 memset(cur_setting, 0, sizeof(struct itimerspec));
645 iv = timr->it.real.interval;
647 /* interval timer ? */
648 if (iv.tv64)
649 cur_setting->it_interval = ktime_to_timespec(iv);
650 else if (!hrtimer_active(timer) &&
651 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
652 return;
654 now = timer->base->get_time();
657 * When a requeue is pending or this is a SIGEV_NONE
658 * timer move the expiry time forward by intervals, so
659 * expiry is > now.
661 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
662 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
663 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
665 remaining = ktime_sub(timer->expires, now);
666 /* Return 0 only, when the timer is expired and not pending */
667 if (remaining.tv64 <= 0) {
669 * A single shot SIGEV_NONE timer must return 0, when
670 * it is expired !
672 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
673 cur_setting->it_value.tv_nsec = 1;
674 } else
675 cur_setting->it_value = ktime_to_timespec(remaining);
678 /* Get the time remaining on a POSIX.1b interval timer. */
679 asmlinkage long
680 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
682 struct k_itimer *timr;
683 struct itimerspec cur_setting;
684 unsigned long flags;
686 timr = lock_timer(timer_id, &flags);
687 if (!timr)
688 return -EINVAL;
690 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
692 unlock_timer(timr, flags);
694 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
695 return -EFAULT;
697 return 0;
701 * Get the number of overruns of a POSIX.1b interval timer. This is to
702 * be the overrun of the timer last delivered. At the same time we are
703 * accumulating overruns on the next timer. The overrun is frozen when
704 * the signal is delivered, either at the notify time (if the info block
705 * is not queued) or at the actual delivery time (as we are informed by
706 * the call back to do_schedule_next_timer(). So all we need to do is
707 * to pick up the frozen overrun.
709 asmlinkage long
710 sys_timer_getoverrun(timer_t timer_id)
712 struct k_itimer *timr;
713 int overrun;
714 unsigned long flags;
716 timr = lock_timer(timer_id, &flags);
717 if (!timr)
718 return -EINVAL;
720 overrun = timr->it_overrun_last;
721 unlock_timer(timr, flags);
723 return overrun;
726 /* Set a POSIX.1b interval timer. */
727 /* timr->it_lock is taken. */
728 static int
729 common_timer_set(struct k_itimer *timr, int flags,
730 struct itimerspec *new_setting, struct itimerspec *old_setting)
732 struct hrtimer *timer = &timr->it.real.timer;
733 enum hrtimer_mode mode;
735 if (old_setting)
736 common_timer_get(timr, old_setting);
738 /* disable the timer */
739 timr->it.real.interval.tv64 = 0;
741 * careful here. If smp we could be in the "fire" routine which will
742 * be spinning as we hold the lock. But this is ONLY an SMP issue.
744 if (hrtimer_try_to_cancel(timer) < 0)
745 return TIMER_RETRY;
747 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
748 ~REQUEUE_PENDING;
749 timr->it_overrun_last = 0;
751 /* switch off the timer when it_value is zero */
752 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
753 return 0;
755 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
756 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
757 timr->it.real.timer.function = posix_timer_fn;
759 timer->expires = timespec_to_ktime(new_setting->it_value);
761 /* Convert interval */
762 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
764 /* SIGEV_NONE timers are not queued ! See common_timer_get */
765 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
766 /* Setup correct expiry time for relative timers */
767 if (mode == HRTIMER_MODE_REL) {
768 timer->expires =
769 ktime_add_safe(timer->expires,
770 timer->base->get_time());
772 return 0;
775 hrtimer_start(timer, timer->expires, mode);
776 return 0;
779 /* Set a POSIX.1b interval timer */
780 asmlinkage long
781 sys_timer_settime(timer_t timer_id, int flags,
782 const struct itimerspec __user *new_setting,
783 struct itimerspec __user *old_setting)
785 struct k_itimer *timr;
786 struct itimerspec new_spec, old_spec;
787 int error = 0;
788 unsigned long flag;
789 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
791 if (!new_setting)
792 return -EINVAL;
794 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
795 return -EFAULT;
797 if (!timespec_valid(&new_spec.it_interval) ||
798 !timespec_valid(&new_spec.it_value))
799 return -EINVAL;
800 retry:
801 timr = lock_timer(timer_id, &flag);
802 if (!timr)
803 return -EINVAL;
805 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
806 (timr, flags, &new_spec, rtn));
808 unlock_timer(timr, flag);
809 if (error == TIMER_RETRY) {
810 rtn = NULL; // We already got the old time...
811 goto retry;
814 if (old_setting && !error &&
815 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
816 error = -EFAULT;
818 return error;
821 static inline int common_timer_del(struct k_itimer *timer)
823 timer->it.real.interval.tv64 = 0;
825 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
826 return TIMER_RETRY;
827 return 0;
830 static inline int timer_delete_hook(struct k_itimer *timer)
832 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
835 /* Delete a POSIX.1b interval timer. */
836 asmlinkage long
837 sys_timer_delete(timer_t timer_id)
839 struct k_itimer *timer;
840 unsigned long flags;
842 retry_delete:
843 timer = lock_timer(timer_id, &flags);
844 if (!timer)
845 return -EINVAL;
847 if (timer_delete_hook(timer) == TIMER_RETRY) {
848 unlock_timer(timer, flags);
849 goto retry_delete;
852 spin_lock(&current->sighand->siglock);
853 list_del(&timer->list);
854 spin_unlock(&current->sighand->siglock);
856 * This keeps any tasks waiting on the spin lock from thinking
857 * they got something (see the lock code above).
859 if (timer->it_process) {
860 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
861 put_task_struct(timer->it_process);
862 timer->it_process = NULL;
864 unlock_timer(timer, flags);
865 release_posix_timer(timer, IT_ID_SET);
866 return 0;
870 * return timer owned by the process, used by exit_itimers
872 static void itimer_delete(struct k_itimer *timer)
874 unsigned long flags;
876 retry_delete:
877 spin_lock_irqsave(&timer->it_lock, flags);
879 if (timer_delete_hook(timer) == TIMER_RETRY) {
880 unlock_timer(timer, flags);
881 goto retry_delete;
883 list_del(&timer->list);
885 * This keeps any tasks waiting on the spin lock from thinking
886 * they got something (see the lock code above).
888 if (timer->it_process) {
889 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
890 put_task_struct(timer->it_process);
891 timer->it_process = NULL;
893 unlock_timer(timer, flags);
894 release_posix_timer(timer, IT_ID_SET);
898 * This is called by do_exit or de_thread, only when there are no more
899 * references to the shared signal_struct.
901 void exit_itimers(struct signal_struct *sig)
903 struct k_itimer *tmr;
905 while (!list_empty(&sig->posix_timers)) {
906 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
907 itimer_delete(tmr);
911 /* Not available / possible... functions */
912 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
914 return -EINVAL;
916 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
918 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
919 struct timespec *t, struct timespec __user *r)
921 #ifndef ENOTSUP
922 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
923 #else /* parisc does define it separately. */
924 return -ENOTSUP;
925 #endif
927 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
929 asmlinkage long sys_clock_settime(const clockid_t which_clock,
930 const struct timespec __user *tp)
932 struct timespec new_tp;
934 if (invalid_clockid(which_clock))
935 return -EINVAL;
936 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
937 return -EFAULT;
939 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
942 asmlinkage long
943 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
945 struct timespec kernel_tp;
946 int error;
948 if (invalid_clockid(which_clock))
949 return -EINVAL;
950 error = CLOCK_DISPATCH(which_clock, clock_get,
951 (which_clock, &kernel_tp));
952 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
953 error = -EFAULT;
955 return error;
959 asmlinkage long
960 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
962 struct timespec rtn_tp;
963 int error;
965 if (invalid_clockid(which_clock))
966 return -EINVAL;
968 error = CLOCK_DISPATCH(which_clock, clock_getres,
969 (which_clock, &rtn_tp));
971 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
972 error = -EFAULT;
975 return error;
979 * nanosleep for monotonic and realtime clocks
981 static int common_nsleep(const clockid_t which_clock, int flags,
982 struct timespec *tsave, struct timespec __user *rmtp)
984 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
985 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
986 which_clock);
989 asmlinkage long
990 sys_clock_nanosleep(const clockid_t which_clock, int flags,
991 const struct timespec __user *rqtp,
992 struct timespec __user *rmtp)
994 struct timespec t;
996 if (invalid_clockid(which_clock))
997 return -EINVAL;
999 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1000 return -EFAULT;
1002 if (!timespec_valid(&t))
1003 return -EINVAL;
1005 return CLOCK_DISPATCH(which_clock, nsleep,
1006 (which_clock, flags, &t, rmtp));
1010 * nanosleep_restart for monotonic and realtime clocks
1012 static int common_nsleep_restart(struct restart_block *restart_block)
1014 return hrtimer_nanosleep_restart(restart_block);
1018 * This will restart clock_nanosleep. This is required only by
1019 * compat_clock_nanosleep_restart for now.
1021 long
1022 clock_nanosleep_restart(struct restart_block *restart_block)
1024 clockid_t which_clock = restart_block->arg0;
1026 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1027 (restart_block));