2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
39 #include <asm/uaccess.h>
42 EXPORT_SYMBOL(journal_start
);
43 EXPORT_SYMBOL(journal_restart
);
44 EXPORT_SYMBOL(journal_extend
);
45 EXPORT_SYMBOL(journal_stop
);
46 EXPORT_SYMBOL(journal_lock_updates
);
47 EXPORT_SYMBOL(journal_unlock_updates
);
48 EXPORT_SYMBOL(journal_get_write_access
);
49 EXPORT_SYMBOL(journal_get_create_access
);
50 EXPORT_SYMBOL(journal_get_undo_access
);
51 EXPORT_SYMBOL(journal_dirty_data
);
52 EXPORT_SYMBOL(journal_dirty_metadata
);
53 EXPORT_SYMBOL(journal_release_buffer
);
54 EXPORT_SYMBOL(journal_forget
);
56 EXPORT_SYMBOL(journal_sync_buffer
);
58 EXPORT_SYMBOL(journal_flush
);
59 EXPORT_SYMBOL(journal_revoke
);
61 EXPORT_SYMBOL(journal_init_dev
);
62 EXPORT_SYMBOL(journal_init_inode
);
63 EXPORT_SYMBOL(journal_update_format
);
64 EXPORT_SYMBOL(journal_check_used_features
);
65 EXPORT_SYMBOL(journal_check_available_features
);
66 EXPORT_SYMBOL(journal_set_features
);
67 EXPORT_SYMBOL(journal_create
);
68 EXPORT_SYMBOL(journal_load
);
69 EXPORT_SYMBOL(journal_destroy
);
70 EXPORT_SYMBOL(journal_update_superblock
);
71 EXPORT_SYMBOL(journal_abort
);
72 EXPORT_SYMBOL(journal_errno
);
73 EXPORT_SYMBOL(journal_ack_err
);
74 EXPORT_SYMBOL(journal_clear_err
);
75 EXPORT_SYMBOL(log_wait_commit
);
76 EXPORT_SYMBOL(journal_start_commit
);
77 EXPORT_SYMBOL(journal_force_commit_nested
);
78 EXPORT_SYMBOL(journal_wipe
);
79 EXPORT_SYMBOL(journal_blocks_per_page
);
80 EXPORT_SYMBOL(journal_invalidatepage
);
81 EXPORT_SYMBOL(journal_try_to_free_buffers
);
82 EXPORT_SYMBOL(journal_force_commit
);
84 static int journal_convert_superblock_v1(journal_t
*, journal_superblock_t
*);
85 static void __journal_abort_soft (journal_t
*journal
, int errno
);
86 static int journal_create_jbd_slab(size_t slab_size
);
89 * Helper function used to manage commit timeouts
92 static void commit_timeout(unsigned long __data
)
94 struct task_struct
* p
= (struct task_struct
*) __data
;
100 * kjournald: The main thread function used to manage a logging device
103 * This kernel thread is responsible for two things:
105 * 1) COMMIT: Every so often we need to commit the current state of the
106 * filesystem to disk. The journal thread is responsible for writing
107 * all of the metadata buffers to disk.
109 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
110 * of the data in that part of the log has been rewritten elsewhere on
111 * the disk. Flushing these old buffers to reclaim space in the log is
112 * known as checkpointing, and this thread is responsible for that job.
115 static int kjournald(void *arg
)
117 journal_t
*journal
= arg
;
118 transaction_t
*transaction
;
121 * Set up an interval timer which can be used to trigger a commit wakeup
122 * after the commit interval expires
124 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
125 (unsigned long)current
);
127 /* Record that the journal thread is running */
128 journal
->j_task
= current
;
129 wake_up(&journal
->j_wait_done_commit
);
131 printk(KERN_INFO
"kjournald starting. Commit interval %ld seconds\n",
132 journal
->j_commit_interval
/ HZ
);
135 * And now, wait forever for commit wakeup events.
137 spin_lock(&journal
->j_state_lock
);
140 if (journal
->j_flags
& JFS_UNMOUNT
)
143 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144 journal
->j_commit_sequence
, journal
->j_commit_request
);
146 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
147 jbd_debug(1, "OK, requests differ\n");
148 spin_unlock(&journal
->j_state_lock
);
149 del_timer_sync(&journal
->j_commit_timer
);
150 journal_commit_transaction(journal
);
151 spin_lock(&journal
->j_state_lock
);
155 wake_up(&journal
->j_wait_done_commit
);
156 if (freezing(current
)) {
158 * The simpler the better. Flushing journal isn't a
159 * good idea, because that depends on threads that may
160 * be already stopped.
162 jbd_debug(1, "Now suspending kjournald\n");
163 spin_unlock(&journal
->j_state_lock
);
165 spin_lock(&journal
->j_state_lock
);
168 * We assume on resume that commits are already there,
172 int should_sleep
= 1;
174 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
176 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
178 transaction
= journal
->j_running_transaction
;
179 if (transaction
&& time_after_eq(jiffies
,
180 transaction
->t_expires
))
182 if (journal
->j_flags
& JFS_UNMOUNT
)
185 spin_unlock(&journal
->j_state_lock
);
187 spin_lock(&journal
->j_state_lock
);
189 finish_wait(&journal
->j_wait_commit
, &wait
);
192 jbd_debug(1, "kjournald wakes\n");
195 * Were we woken up by a commit wakeup event?
197 transaction
= journal
->j_running_transaction
;
198 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
199 journal
->j_commit_request
= transaction
->t_tid
;
200 jbd_debug(1, "woke because of timeout\n");
205 spin_unlock(&journal
->j_state_lock
);
206 del_timer_sync(&journal
->j_commit_timer
);
207 journal
->j_task
= NULL
;
208 wake_up(&journal
->j_wait_done_commit
);
209 jbd_debug(1, "Journal thread exiting.\n");
213 static int journal_start_thread(journal_t
*journal
)
215 struct task_struct
*t
;
217 t
= kthread_run(kjournald
, journal
, "kjournald");
221 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= 0);
225 static void journal_kill_thread(journal_t
*journal
)
227 spin_lock(&journal
->j_state_lock
);
228 journal
->j_flags
|= JFS_UNMOUNT
;
230 while (journal
->j_task
) {
231 wake_up(&journal
->j_wait_commit
);
232 spin_unlock(&journal
->j_state_lock
);
233 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== 0);
234 spin_lock(&journal
->j_state_lock
);
236 spin_unlock(&journal
->j_state_lock
);
240 * journal_write_metadata_buffer: write a metadata buffer to the journal.
242 * Writes a metadata buffer to a given disk block. The actual IO is not
243 * performed but a new buffer_head is constructed which labels the data
244 * to be written with the correct destination disk block.
246 * Any magic-number escaping which needs to be done will cause a
247 * copy-out here. If the buffer happens to start with the
248 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
249 * magic number is only written to the log for descripter blocks. In
250 * this case, we copy the data and replace the first word with 0, and we
251 * return a result code which indicates that this buffer needs to be
252 * marked as an escaped buffer in the corresponding log descriptor
253 * block. The missing word can then be restored when the block is read
256 * If the source buffer has already been modified by a new transaction
257 * since we took the last commit snapshot, we use the frozen copy of
258 * that data for IO. If we end up using the existing buffer_head's data
259 * for the write, then we *have* to lock the buffer to prevent anyone
260 * else from using and possibly modifying it while the IO is in
263 * The function returns a pointer to the buffer_heads to be used for IO.
265 * We assume that the journal has already been locked in this function.
272 * Bit 0 set == escape performed on the data
273 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
276 int journal_write_metadata_buffer(transaction_t
*transaction
,
277 struct journal_head
*jh_in
,
278 struct journal_head
**jh_out
,
279 unsigned long blocknr
)
281 int need_copy_out
= 0;
282 int done_copy_out
= 0;
285 struct buffer_head
*new_bh
;
286 struct journal_head
*new_jh
;
287 struct page
*new_page
;
288 unsigned int new_offset
;
289 struct buffer_head
*bh_in
= jh2bh(jh_in
);
292 * The buffer really shouldn't be locked: only the current committing
293 * transaction is allowed to write it, so nobody else is allowed
296 * akpm: except if we're journalling data, and write() output is
297 * also part of a shared mapping, and another thread has
298 * decided to launch a writepage() against this buffer.
300 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
302 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
305 * If a new transaction has already done a buffer copy-out, then
306 * we use that version of the data for the commit.
308 jbd_lock_bh_state(bh_in
);
310 if (jh_in
->b_frozen_data
) {
312 new_page
= virt_to_page(jh_in
->b_frozen_data
);
313 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
315 new_page
= jh2bh(jh_in
)->b_page
;
316 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
319 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
323 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
324 cpu_to_be32(JFS_MAGIC_NUMBER
)) {
328 kunmap_atomic(mapped_data
, KM_USER0
);
331 * Do we need to do a data copy?
333 if (need_copy_out
&& !done_copy_out
) {
336 jbd_unlock_bh_state(bh_in
);
337 tmp
= jbd_slab_alloc(bh_in
->b_size
, GFP_NOFS
);
338 jbd_lock_bh_state(bh_in
);
339 if (jh_in
->b_frozen_data
) {
340 jbd_slab_free(tmp
, bh_in
->b_size
);
344 jh_in
->b_frozen_data
= tmp
;
345 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
346 memcpy(tmp
, mapped_data
+ new_offset
, jh2bh(jh_in
)->b_size
);
347 kunmap_atomic(mapped_data
, KM_USER0
);
349 new_page
= virt_to_page(tmp
);
350 new_offset
= offset_in_page(tmp
);
355 * Did we need to do an escaping? Now we've done all the
356 * copying, we can finally do so.
359 mapped_data
= kmap_atomic(new_page
, KM_USER0
);
360 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
361 kunmap_atomic(mapped_data
, KM_USER0
);
364 /* keep subsequent assertions sane */
366 init_buffer(new_bh
, NULL
, NULL
);
367 atomic_set(&new_bh
->b_count
, 1);
368 jbd_unlock_bh_state(bh_in
);
370 new_jh
= journal_add_journal_head(new_bh
); /* This sleeps */
372 set_bh_page(new_bh
, new_page
, new_offset
);
373 new_jh
->b_transaction
= NULL
;
374 new_bh
->b_size
= jh2bh(jh_in
)->b_size
;
375 new_bh
->b_bdev
= transaction
->t_journal
->j_dev
;
376 new_bh
->b_blocknr
= blocknr
;
377 set_buffer_mapped(new_bh
);
378 set_buffer_dirty(new_bh
);
383 * The to-be-written buffer needs to get moved to the io queue,
384 * and the original buffer whose contents we are shadowing or
385 * copying is moved to the transaction's shadow queue.
387 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
388 journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
389 JBUFFER_TRACE(new_jh
, "file as BJ_IO");
390 journal_file_buffer(new_jh
, transaction
, BJ_IO
);
392 return do_escape
| (done_copy_out
<< 1);
396 * Allocation code for the journal file. Manage the space left in the
397 * journal, so that we can begin checkpointing when appropriate.
401 * __log_space_left: Return the number of free blocks left in the journal.
403 * Called with the journal already locked.
405 * Called under j_state_lock
408 int __log_space_left(journal_t
*journal
)
410 int left
= journal
->j_free
;
412 assert_spin_locked(&journal
->j_state_lock
);
415 * Be pessimistic here about the number of those free blocks which
416 * might be required for log descriptor control blocks.
419 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
421 left
-= MIN_LOG_RESERVED_BLOCKS
;
430 * Called under j_state_lock. Returns true if a transaction was started.
432 int __log_start_commit(journal_t
*journal
, tid_t target
)
435 * Are we already doing a recent enough commit?
437 if (!tid_geq(journal
->j_commit_request
, target
)) {
439 * We want a new commit: OK, mark the request and wakup the
440 * commit thread. We do _not_ do the commit ourselves.
443 journal
->j_commit_request
= target
;
444 jbd_debug(1, "JBD: requesting commit %d/%d\n",
445 journal
->j_commit_request
,
446 journal
->j_commit_sequence
);
447 wake_up(&journal
->j_wait_commit
);
453 int log_start_commit(journal_t
*journal
, tid_t tid
)
457 spin_lock(&journal
->j_state_lock
);
458 ret
= __log_start_commit(journal
, tid
);
459 spin_unlock(&journal
->j_state_lock
);
464 * Force and wait upon a commit if the calling process is not within
465 * transaction. This is used for forcing out undo-protected data which contains
466 * bitmaps, when the fs is running out of space.
468 * We can only force the running transaction if we don't have an active handle;
469 * otherwise, we will deadlock.
471 * Returns true if a transaction was started.
473 int journal_force_commit_nested(journal_t
*journal
)
475 transaction_t
*transaction
= NULL
;
478 spin_lock(&journal
->j_state_lock
);
479 if (journal
->j_running_transaction
&& !current
->journal_info
) {
480 transaction
= journal
->j_running_transaction
;
481 __log_start_commit(journal
, transaction
->t_tid
);
482 } else if (journal
->j_committing_transaction
)
483 transaction
= journal
->j_committing_transaction
;
486 spin_unlock(&journal
->j_state_lock
);
487 return 0; /* Nothing to retry */
490 tid
= transaction
->t_tid
;
491 spin_unlock(&journal
->j_state_lock
);
492 log_wait_commit(journal
, tid
);
497 * Start a commit of the current running transaction (if any). Returns true
498 * if a transaction was started, and fills its tid in at *ptid
500 int journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
504 spin_lock(&journal
->j_state_lock
);
505 if (journal
->j_running_transaction
) {
506 tid_t tid
= journal
->j_running_transaction
->t_tid
;
508 ret
= __log_start_commit(journal
, tid
);
511 } else if (journal
->j_committing_transaction
&& ptid
) {
513 * If ext3_write_super() recently started a commit, then we
514 * have to wait for completion of that transaction
516 *ptid
= journal
->j_committing_transaction
->t_tid
;
519 spin_unlock(&journal
->j_state_lock
);
524 * Wait for a specified commit to complete.
525 * The caller may not hold the journal lock.
527 int log_wait_commit(journal_t
*journal
, tid_t tid
)
531 #ifdef CONFIG_JBD_DEBUG
532 spin_lock(&journal
->j_state_lock
);
533 if (!tid_geq(journal
->j_commit_request
, tid
)) {
535 "%s: error: j_commit_request=%d, tid=%d\n",
536 __FUNCTION__
, journal
->j_commit_request
, tid
);
538 spin_unlock(&journal
->j_state_lock
);
540 spin_lock(&journal
->j_state_lock
);
541 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
542 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
543 tid
, journal
->j_commit_sequence
);
544 wake_up(&journal
->j_wait_commit
);
545 spin_unlock(&journal
->j_state_lock
);
546 wait_event(journal
->j_wait_done_commit
,
547 !tid_gt(tid
, journal
->j_commit_sequence
));
548 spin_lock(&journal
->j_state_lock
);
550 spin_unlock(&journal
->j_state_lock
);
552 if (unlikely(is_journal_aborted(journal
))) {
553 printk(KERN_EMERG
"journal commit I/O error\n");
560 * Log buffer allocation routines:
563 int journal_next_log_block(journal_t
*journal
, unsigned long *retp
)
565 unsigned long blocknr
;
567 spin_lock(&journal
->j_state_lock
);
568 J_ASSERT(journal
->j_free
> 1);
570 blocknr
= journal
->j_head
;
573 if (journal
->j_head
== journal
->j_last
)
574 journal
->j_head
= journal
->j_first
;
575 spin_unlock(&journal
->j_state_lock
);
576 return journal_bmap(journal
, blocknr
, retp
);
580 * Conversion of logical to physical block numbers for the journal
582 * On external journals the journal blocks are identity-mapped, so
583 * this is a no-op. If needed, we can use j_blk_offset - everything is
586 int journal_bmap(journal_t
*journal
, unsigned long blocknr
,
592 if (journal
->j_inode
) {
593 ret
= bmap(journal
->j_inode
, blocknr
);
597 char b
[BDEVNAME_SIZE
];
599 printk(KERN_ALERT
"%s: journal block not found "
600 "at offset %lu on %s\n",
603 bdevname(journal
->j_dev
, b
));
605 __journal_abort_soft(journal
, err
);
608 *retp
= blocknr
; /* +journal->j_blk_offset */
614 * We play buffer_head aliasing tricks to write data/metadata blocks to
615 * the journal without copying their contents, but for journal
616 * descriptor blocks we do need to generate bona fide buffers.
618 * After the caller of journal_get_descriptor_buffer() has finished modifying
619 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
620 * But we don't bother doing that, so there will be coherency problems with
621 * mmaps of blockdevs which hold live JBD-controlled filesystems.
623 struct journal_head
*journal_get_descriptor_buffer(journal_t
*journal
)
625 struct buffer_head
*bh
;
626 unsigned long blocknr
;
629 err
= journal_next_log_block(journal
, &blocknr
);
634 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
636 memset(bh
->b_data
, 0, journal
->j_blocksize
);
637 set_buffer_uptodate(bh
);
639 BUFFER_TRACE(bh
, "return this buffer");
640 return journal_add_journal_head(bh
);
644 * Management for journal control blocks: functions to create and
645 * destroy journal_t structures, and to initialise and read existing
646 * journal blocks from disk. */
648 /* First: create and setup a journal_t object in memory. We initialise
649 * very few fields yet: that has to wait until we have created the
650 * journal structures from from scratch, or loaded them from disk. */
652 static journal_t
* journal_init_common (void)
657 journal
= jbd_kmalloc(sizeof(*journal
), GFP_KERNEL
);
660 memset(journal
, 0, sizeof(*journal
));
662 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
663 init_waitqueue_head(&journal
->j_wait_logspace
);
664 init_waitqueue_head(&journal
->j_wait_done_commit
);
665 init_waitqueue_head(&journal
->j_wait_checkpoint
);
666 init_waitqueue_head(&journal
->j_wait_commit
);
667 init_waitqueue_head(&journal
->j_wait_updates
);
668 mutex_init(&journal
->j_barrier
);
669 mutex_init(&journal
->j_checkpoint_mutex
);
670 spin_lock_init(&journal
->j_revoke_lock
);
671 spin_lock_init(&journal
->j_list_lock
);
672 spin_lock_init(&journal
->j_state_lock
);
674 journal
->j_commit_interval
= (HZ
* JBD_DEFAULT_MAX_COMMIT_AGE
);
676 /* The journal is marked for error until we succeed with recovery! */
677 journal
->j_flags
= JFS_ABORT
;
679 /* Set up a default-sized revoke table for the new mount. */
680 err
= journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
690 /* journal_init_dev and journal_init_inode:
692 * Create a journal structure assigned some fixed set of disk blocks to
693 * the journal. We don't actually touch those disk blocks yet, but we
694 * need to set up all of the mapping information to tell the journaling
695 * system where the journal blocks are.
700 * journal_t * journal_init_dev() - creates an initialises a journal structure
701 * @bdev: Block device on which to create the journal
702 * @fs_dev: Device which hold journalled filesystem for this journal.
703 * @start: Block nr Start of journal.
704 * @len: Length of the journal in blocks.
705 * @blocksize: blocksize of journalling device
706 * @returns: a newly created journal_t *
708 * journal_init_dev creates a journal which maps a fixed contiguous
709 * range of blocks on an arbitrary block device.
712 journal_t
* journal_init_dev(struct block_device
*bdev
,
713 struct block_device
*fs_dev
,
714 int start
, int len
, int blocksize
)
716 journal_t
*journal
= journal_init_common();
717 struct buffer_head
*bh
;
723 /* journal descriptor can store up to n blocks -bzzz */
724 journal
->j_blocksize
= blocksize
;
725 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
726 journal
->j_wbufsize
= n
;
727 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
728 if (!journal
->j_wbuf
) {
729 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
735 journal
->j_dev
= bdev
;
736 journal
->j_fs_dev
= fs_dev
;
737 journal
->j_blk_offset
= start
;
738 journal
->j_maxlen
= len
;
740 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
741 J_ASSERT(bh
!= NULL
);
742 journal
->j_sb_buffer
= bh
;
743 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
749 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
750 * @inode: An inode to create the journal in
752 * journal_init_inode creates a journal which maps an on-disk inode as
753 * the journal. The inode must exist already, must support bmap() and
754 * must have all data blocks preallocated.
756 journal_t
* journal_init_inode (struct inode
*inode
)
758 struct buffer_head
*bh
;
759 journal_t
*journal
= journal_init_common();
762 unsigned long blocknr
;
767 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
768 journal
->j_inode
= inode
;
770 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
771 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
772 (long long) inode
->i_size
,
773 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
775 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
776 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
778 /* journal descriptor can store up to n blocks -bzzz */
779 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
780 journal
->j_wbufsize
= n
;
781 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
782 if (!journal
->j_wbuf
) {
783 printk(KERN_ERR
"%s: Cant allocate bhs for commit thread\n",
789 err
= journal_bmap(journal
, 0, &blocknr
);
790 /* If that failed, give up */
792 printk(KERN_ERR
"%s: Cannnot locate journal superblock\n",
798 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
799 J_ASSERT(bh
!= NULL
);
800 journal
->j_sb_buffer
= bh
;
801 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
807 * If the journal init or create aborts, we need to mark the journal
808 * superblock as being NULL to prevent the journal destroy from writing
809 * back a bogus superblock.
811 static void journal_fail_superblock (journal_t
*journal
)
813 struct buffer_head
*bh
= journal
->j_sb_buffer
;
815 journal
->j_sb_buffer
= NULL
;
819 * Given a journal_t structure, initialise the various fields for
820 * startup of a new journaling session. We use this both when creating
821 * a journal, and after recovering an old journal to reset it for
825 static int journal_reset(journal_t
*journal
)
827 journal_superblock_t
*sb
= journal
->j_superblock
;
828 unsigned long first
, last
;
830 first
= be32_to_cpu(sb
->s_first
);
831 last
= be32_to_cpu(sb
->s_maxlen
);
833 journal
->j_first
= first
;
834 journal
->j_last
= last
;
836 journal
->j_head
= first
;
837 journal
->j_tail
= first
;
838 journal
->j_free
= last
- first
;
840 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
841 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
842 journal
->j_commit_request
= journal
->j_commit_sequence
;
844 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
846 /* Add the dynamic fields and write it to disk. */
847 journal_update_superblock(journal
, 1);
848 return journal_start_thread(journal
);
852 * int journal_create() - Initialise the new journal file
853 * @journal: Journal to create. This structure must have been initialised
855 * Given a journal_t structure which tells us which disk blocks we can
856 * use, create a new journal superblock and initialise all of the
857 * journal fields from scratch.
859 int journal_create(journal_t
*journal
)
861 unsigned long blocknr
;
862 struct buffer_head
*bh
;
863 journal_superblock_t
*sb
;
866 if (journal
->j_maxlen
< JFS_MIN_JOURNAL_BLOCKS
) {
867 printk (KERN_ERR
"Journal length (%d blocks) too short.\n",
869 journal_fail_superblock(journal
);
873 if (journal
->j_inode
== NULL
) {
875 * We don't know what block to start at!
878 "%s: creation of journal on external device!\n",
883 /* Zero out the entire journal on disk. We cannot afford to
884 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
885 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
886 for (i
= 0; i
< journal
->j_maxlen
; i
++) {
887 err
= journal_bmap(journal
, i
, &blocknr
);
890 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
892 memset (bh
->b_data
, 0, journal
->j_blocksize
);
893 BUFFER_TRACE(bh
, "marking dirty");
894 mark_buffer_dirty(bh
);
895 BUFFER_TRACE(bh
, "marking uptodate");
896 set_buffer_uptodate(bh
);
901 sync_blockdev(journal
->j_dev
);
902 jbd_debug(1, "JBD: journal cleared.\n");
904 /* OK, fill in the initial static fields in the new superblock */
905 sb
= journal
->j_superblock
;
907 sb
->s_header
.h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
908 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
910 sb
->s_blocksize
= cpu_to_be32(journal
->j_blocksize
);
911 sb
->s_maxlen
= cpu_to_be32(journal
->j_maxlen
);
912 sb
->s_first
= cpu_to_be32(1);
914 journal
->j_transaction_sequence
= 1;
916 journal
->j_flags
&= ~JFS_ABORT
;
917 journal
->j_format_version
= 2;
919 return journal_reset(journal
);
923 * void journal_update_superblock() - Update journal sb on disk.
924 * @journal: The journal to update.
925 * @wait: Set to '0' if you don't want to wait for IO completion.
927 * Update a journal's dynamic superblock fields and write it to disk,
928 * optionally waiting for the IO to complete.
930 void journal_update_superblock(journal_t
*journal
, int wait
)
932 journal_superblock_t
*sb
= journal
->j_superblock
;
933 struct buffer_head
*bh
= journal
->j_sb_buffer
;
936 * As a special case, if the on-disk copy is already marked as needing
937 * no recovery (s_start == 0) and there are no outstanding transactions
938 * in the filesystem, then we can safely defer the superblock update
939 * until the next commit by setting JFS_FLUSHED. This avoids
940 * attempting a write to a potential-readonly device.
942 if (sb
->s_start
== 0 && journal
->j_tail_sequence
==
943 journal
->j_transaction_sequence
) {
944 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
945 "(start %ld, seq %d, errno %d)\n",
946 journal
->j_tail
, journal
->j_tail_sequence
,
951 spin_lock(&journal
->j_state_lock
);
952 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
953 journal
->j_tail
, journal
->j_tail_sequence
, journal
->j_errno
);
955 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
956 sb
->s_start
= cpu_to_be32(journal
->j_tail
);
957 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
958 spin_unlock(&journal
->j_state_lock
);
960 BUFFER_TRACE(bh
, "marking dirty");
961 mark_buffer_dirty(bh
);
963 sync_dirty_buffer(bh
);
965 ll_rw_block(SWRITE
, 1, &bh
);
968 /* If we have just flushed the log (by marking s_start==0), then
969 * any future commit will have to be careful to update the
970 * superblock again to re-record the true start of the log. */
972 spin_lock(&journal
->j_state_lock
);
974 journal
->j_flags
&= ~JFS_FLUSHED
;
976 journal
->j_flags
|= JFS_FLUSHED
;
977 spin_unlock(&journal
->j_state_lock
);
981 * Read the superblock for a given journal, performing initial
982 * validation of the format.
985 static int journal_get_superblock(journal_t
*journal
)
987 struct buffer_head
*bh
;
988 journal_superblock_t
*sb
;
991 bh
= journal
->j_sb_buffer
;
993 J_ASSERT(bh
!= NULL
);
994 if (!buffer_uptodate(bh
)) {
995 ll_rw_block(READ
, 1, &bh
);
997 if (!buffer_uptodate(bh
)) {
999 "JBD: IO error reading journal superblock\n");
1004 sb
= journal
->j_superblock
;
1008 if (sb
->s_header
.h_magic
!= cpu_to_be32(JFS_MAGIC_NUMBER
) ||
1009 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1010 printk(KERN_WARNING
"JBD: no valid journal superblock found\n");
1014 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1015 case JFS_SUPERBLOCK_V1
:
1016 journal
->j_format_version
= 1;
1018 case JFS_SUPERBLOCK_V2
:
1019 journal
->j_format_version
= 2;
1022 printk(KERN_WARNING
"JBD: unrecognised superblock format ID\n");
1026 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1027 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1028 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1029 printk (KERN_WARNING
"JBD: journal file too short\n");
1036 journal_fail_superblock(journal
);
1041 * Load the on-disk journal superblock and read the key fields into the
1045 static int load_superblock(journal_t
*journal
)
1048 journal_superblock_t
*sb
;
1050 err
= journal_get_superblock(journal
);
1054 sb
= journal
->j_superblock
;
1056 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1057 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1058 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1059 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1060 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1067 * int journal_load() - Read journal from disk.
1068 * @journal: Journal to act on.
1070 * Given a journal_t structure which tells us which disk blocks contain
1071 * a journal, read the journal from disk to initialise the in-memory
1074 int journal_load(journal_t
*journal
)
1077 journal_superblock_t
*sb
;
1079 err
= load_superblock(journal
);
1083 sb
= journal
->j_superblock
;
1084 /* If this is a V2 superblock, then we have to check the
1085 * features flags on it. */
1087 if (journal
->j_format_version
>= 2) {
1088 if ((sb
->s_feature_ro_compat
&
1089 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES
)) ||
1090 (sb
->s_feature_incompat
&
1091 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES
))) {
1092 printk (KERN_WARNING
1093 "JBD: Unrecognised features on journal\n");
1099 * Create a slab for this blocksize
1101 err
= journal_create_jbd_slab(be32_to_cpu(sb
->s_blocksize
));
1105 /* Let the recovery code check whether it needs to recover any
1106 * data from the journal. */
1107 if (journal_recover(journal
))
1108 goto recovery_error
;
1110 /* OK, we've finished with the dynamic journal bits:
1111 * reinitialise the dynamic contents of the superblock in memory
1112 * and reset them on disk. */
1113 if (journal_reset(journal
))
1114 goto recovery_error
;
1116 journal
->j_flags
&= ~JFS_ABORT
;
1117 journal
->j_flags
|= JFS_LOADED
;
1121 printk (KERN_WARNING
"JBD: recovery failed\n");
1126 * void journal_destroy() - Release a journal_t structure.
1127 * @journal: Journal to act on.
1129 * Release a journal_t structure once it is no longer in use by the
1132 void journal_destroy(journal_t
*journal
)
1134 /* Wait for the commit thread to wake up and die. */
1135 journal_kill_thread(journal
);
1137 /* Force a final log commit */
1138 if (journal
->j_running_transaction
)
1139 journal_commit_transaction(journal
);
1141 /* Force any old transactions to disk */
1143 /* Totally anal locking here... */
1144 spin_lock(&journal
->j_list_lock
);
1145 while (journal
->j_checkpoint_transactions
!= NULL
) {
1146 spin_unlock(&journal
->j_list_lock
);
1147 log_do_checkpoint(journal
);
1148 spin_lock(&journal
->j_list_lock
);
1151 J_ASSERT(journal
->j_running_transaction
== NULL
);
1152 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1153 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1154 spin_unlock(&journal
->j_list_lock
);
1156 /* We can now mark the journal as empty. */
1157 journal
->j_tail
= 0;
1158 journal
->j_tail_sequence
= ++journal
->j_transaction_sequence
;
1159 if (journal
->j_sb_buffer
) {
1160 journal_update_superblock(journal
, 1);
1161 brelse(journal
->j_sb_buffer
);
1164 if (journal
->j_inode
)
1165 iput(journal
->j_inode
);
1166 if (journal
->j_revoke
)
1167 journal_destroy_revoke(journal
);
1168 kfree(journal
->j_wbuf
);
1174 *int journal_check_used_features () - Check if features specified are used.
1175 * @journal: Journal to check.
1176 * @compat: bitmask of compatible features
1177 * @ro: bitmask of features that force read-only mount
1178 * @incompat: bitmask of incompatible features
1180 * Check whether the journal uses all of a given set of
1181 * features. Return true (non-zero) if it does.
1184 int journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1185 unsigned long ro
, unsigned long incompat
)
1187 journal_superblock_t
*sb
;
1189 if (!compat
&& !ro
&& !incompat
)
1191 if (journal
->j_format_version
== 1)
1194 sb
= journal
->j_superblock
;
1196 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1197 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1198 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1205 * int journal_check_available_features() - Check feature set in journalling layer
1206 * @journal: Journal to check.
1207 * @compat: bitmask of compatible features
1208 * @ro: bitmask of features that force read-only mount
1209 * @incompat: bitmask of incompatible features
1211 * Check whether the journaling code supports the use of
1212 * all of a given set of features on this journal. Return true
1213 * (non-zero) if it can. */
1215 int journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1216 unsigned long ro
, unsigned long incompat
)
1218 journal_superblock_t
*sb
;
1220 if (!compat
&& !ro
&& !incompat
)
1223 sb
= journal
->j_superblock
;
1225 /* We can support any known requested features iff the
1226 * superblock is in version 2. Otherwise we fail to support any
1227 * extended sb features. */
1229 if (journal
->j_format_version
!= 2)
1232 if ((compat
& JFS_KNOWN_COMPAT_FEATURES
) == compat
&&
1233 (ro
& JFS_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1234 (incompat
& JFS_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1241 * int journal_set_features () - Mark a given journal feature in the superblock
1242 * @journal: Journal to act on.
1243 * @compat: bitmask of compatible features
1244 * @ro: bitmask of features that force read-only mount
1245 * @incompat: bitmask of incompatible features
1247 * Mark a given journal feature as present on the
1248 * superblock. Returns true if the requested features could be set.
1252 int journal_set_features (journal_t
*journal
, unsigned long compat
,
1253 unsigned long ro
, unsigned long incompat
)
1255 journal_superblock_t
*sb
;
1257 if (journal_check_used_features(journal
, compat
, ro
, incompat
))
1260 if (!journal_check_available_features(journal
, compat
, ro
, incompat
))
1263 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1264 compat
, ro
, incompat
);
1266 sb
= journal
->j_superblock
;
1268 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1269 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1270 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1277 * int journal_update_format () - Update on-disk journal structure.
1278 * @journal: Journal to act on.
1280 * Given an initialised but unloaded journal struct, poke about in the
1281 * on-disk structure to update it to the most recent supported version.
1283 int journal_update_format (journal_t
*journal
)
1285 journal_superblock_t
*sb
;
1288 err
= journal_get_superblock(journal
);
1292 sb
= journal
->j_superblock
;
1294 switch (be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1295 case JFS_SUPERBLOCK_V2
:
1297 case JFS_SUPERBLOCK_V1
:
1298 return journal_convert_superblock_v1(journal
, sb
);
1305 static int journal_convert_superblock_v1(journal_t
*journal
,
1306 journal_superblock_t
*sb
)
1308 int offset
, blocksize
;
1309 struct buffer_head
*bh
;
1312 "JBD: Converting superblock from version 1 to 2.\n");
1314 /* Pre-initialise new fields to zero */
1315 offset
= ((char *) &(sb
->s_feature_compat
)) - ((char *) sb
);
1316 blocksize
= be32_to_cpu(sb
->s_blocksize
);
1317 memset(&sb
->s_feature_compat
, 0, blocksize
-offset
);
1319 sb
->s_nr_users
= cpu_to_be32(1);
1320 sb
->s_header
.h_blocktype
= cpu_to_be32(JFS_SUPERBLOCK_V2
);
1321 journal
->j_format_version
= 2;
1323 bh
= journal
->j_sb_buffer
;
1324 BUFFER_TRACE(bh
, "marking dirty");
1325 mark_buffer_dirty(bh
);
1326 sync_dirty_buffer(bh
);
1332 * int journal_flush () - Flush journal
1333 * @journal: Journal to act on.
1335 * Flush all data for a given journal to disk and empty the journal.
1336 * Filesystems can use this when remounting readonly to ensure that
1337 * recovery does not need to happen on remount.
1340 int journal_flush(journal_t
*journal
)
1343 transaction_t
*transaction
= NULL
;
1344 unsigned long old_tail
;
1346 spin_lock(&journal
->j_state_lock
);
1348 /* Force everything buffered to the log... */
1349 if (journal
->j_running_transaction
) {
1350 transaction
= journal
->j_running_transaction
;
1351 __log_start_commit(journal
, transaction
->t_tid
);
1352 } else if (journal
->j_committing_transaction
)
1353 transaction
= journal
->j_committing_transaction
;
1355 /* Wait for the log commit to complete... */
1357 tid_t tid
= transaction
->t_tid
;
1359 spin_unlock(&journal
->j_state_lock
);
1360 log_wait_commit(journal
, tid
);
1362 spin_unlock(&journal
->j_state_lock
);
1365 /* ...and flush everything in the log out to disk. */
1366 spin_lock(&journal
->j_list_lock
);
1367 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1368 spin_unlock(&journal
->j_list_lock
);
1369 err
= log_do_checkpoint(journal
);
1370 spin_lock(&journal
->j_list_lock
);
1372 spin_unlock(&journal
->j_list_lock
);
1373 cleanup_journal_tail(journal
);
1375 /* Finally, mark the journal as really needing no recovery.
1376 * This sets s_start==0 in the underlying superblock, which is
1377 * the magic code for a fully-recovered superblock. Any future
1378 * commits of data to the journal will restore the current
1380 spin_lock(&journal
->j_state_lock
);
1381 old_tail
= journal
->j_tail
;
1382 journal
->j_tail
= 0;
1383 spin_unlock(&journal
->j_state_lock
);
1384 journal_update_superblock(journal
, 1);
1385 spin_lock(&journal
->j_state_lock
);
1386 journal
->j_tail
= old_tail
;
1388 J_ASSERT(!journal
->j_running_transaction
);
1389 J_ASSERT(!journal
->j_committing_transaction
);
1390 J_ASSERT(!journal
->j_checkpoint_transactions
);
1391 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1392 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1393 spin_unlock(&journal
->j_state_lock
);
1398 * int journal_wipe() - Wipe journal contents
1399 * @journal: Journal to act on.
1400 * @write: flag (see below)
1402 * Wipe out all of the contents of a journal, safely. This will produce
1403 * a warning if the journal contains any valid recovery information.
1404 * Must be called between journal_init_*() and journal_load().
1406 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1407 * we merely suppress recovery.
1410 int journal_wipe(journal_t
*journal
, int write
)
1412 journal_superblock_t
*sb
;
1415 J_ASSERT (!(journal
->j_flags
& JFS_LOADED
));
1417 err
= load_superblock(journal
);
1421 sb
= journal
->j_superblock
;
1423 if (!journal
->j_tail
)
1426 printk (KERN_WARNING
"JBD: %s recovery information on journal\n",
1427 write
? "Clearing" : "Ignoring");
1429 err
= journal_skip_recovery(journal
);
1431 journal_update_superblock(journal
, 1);
1438 * journal_dev_name: format a character string to describe on what
1439 * device this journal is present.
1442 static const char *journal_dev_name(journal_t
*journal
, char *buffer
)
1444 struct block_device
*bdev
;
1446 if (journal
->j_inode
)
1447 bdev
= journal
->j_inode
->i_sb
->s_bdev
;
1449 bdev
= journal
->j_dev
;
1451 return bdevname(bdev
, buffer
);
1455 * Journal abort has very specific semantics, which we describe
1456 * for journal abort.
1458 * Two internal function, which provide abort to te jbd layer
1463 * Quick version for internal journal use (doesn't lock the journal).
1464 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1465 * and don't attempt to make any other journal updates.
1467 void __journal_abort_hard(journal_t
*journal
)
1469 transaction_t
*transaction
;
1470 char b
[BDEVNAME_SIZE
];
1472 if (journal
->j_flags
& JFS_ABORT
)
1475 printk(KERN_ERR
"Aborting journal on device %s.\n",
1476 journal_dev_name(journal
, b
));
1478 spin_lock(&journal
->j_state_lock
);
1479 journal
->j_flags
|= JFS_ABORT
;
1480 transaction
= journal
->j_running_transaction
;
1482 __log_start_commit(journal
, transaction
->t_tid
);
1483 spin_unlock(&journal
->j_state_lock
);
1486 /* Soft abort: record the abort error status in the journal superblock,
1487 * but don't do any other IO. */
1488 static void __journal_abort_soft (journal_t
*journal
, int errno
)
1490 if (journal
->j_flags
& JFS_ABORT
)
1493 if (!journal
->j_errno
)
1494 journal
->j_errno
= errno
;
1496 __journal_abort_hard(journal
);
1499 journal_update_superblock(journal
, 1);
1503 * void journal_abort () - Shutdown the journal immediately.
1504 * @journal: the journal to shutdown.
1505 * @errno: an error number to record in the journal indicating
1506 * the reason for the shutdown.
1508 * Perform a complete, immediate shutdown of the ENTIRE
1509 * journal (not of a single transaction). This operation cannot be
1510 * undone without closing and reopening the journal.
1512 * The journal_abort function is intended to support higher level error
1513 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1516 * Journal abort has very specific semantics. Any existing dirty,
1517 * unjournaled buffers in the main filesystem will still be written to
1518 * disk by bdflush, but the journaling mechanism will be suspended
1519 * immediately and no further transaction commits will be honoured.
1521 * Any dirty, journaled buffers will be written back to disk without
1522 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1523 * filesystem, but we _do_ attempt to leave as much data as possible
1524 * behind for fsck to use for cleanup.
1526 * Any attempt to get a new transaction handle on a journal which is in
1527 * ABORT state will just result in an -EROFS error return. A
1528 * journal_stop on an existing handle will return -EIO if we have
1529 * entered abort state during the update.
1531 * Recursive transactions are not disturbed by journal abort until the
1532 * final journal_stop, which will receive the -EIO error.
1534 * Finally, the journal_abort call allows the caller to supply an errno
1535 * which will be recorded (if possible) in the journal superblock. This
1536 * allows a client to record failure conditions in the middle of a
1537 * transaction without having to complete the transaction to record the
1538 * failure to disk. ext3_error, for example, now uses this
1541 * Errors which originate from within the journaling layer will NOT
1542 * supply an errno; a null errno implies that absolutely no further
1543 * writes are done to the journal (unless there are any already in
1548 void journal_abort(journal_t
*journal
, int errno
)
1550 __journal_abort_soft(journal
, errno
);
1554 * int journal_errno () - returns the journal's error state.
1555 * @journal: journal to examine.
1557 * This is the errno numbet set with journal_abort(), the last
1558 * time the journal was mounted - if the journal was stopped
1559 * without calling abort this will be 0.
1561 * If the journal has been aborted on this mount time -EROFS will
1564 int journal_errno(journal_t
*journal
)
1568 spin_lock(&journal
->j_state_lock
);
1569 if (journal
->j_flags
& JFS_ABORT
)
1572 err
= journal
->j_errno
;
1573 spin_unlock(&journal
->j_state_lock
);
1578 * int journal_clear_err () - clears the journal's error state
1579 * @journal: journal to act on.
1581 * An error must be cleared or Acked to take a FS out of readonly
1584 int journal_clear_err(journal_t
*journal
)
1588 spin_lock(&journal
->j_state_lock
);
1589 if (journal
->j_flags
& JFS_ABORT
)
1592 journal
->j_errno
= 0;
1593 spin_unlock(&journal
->j_state_lock
);
1598 * void journal_ack_err() - Ack journal err.
1599 * @journal: journal to act on.
1601 * An error must be cleared or Acked to take a FS out of readonly
1604 void journal_ack_err(journal_t
*journal
)
1606 spin_lock(&journal
->j_state_lock
);
1607 if (journal
->j_errno
)
1608 journal
->j_flags
|= JFS_ACK_ERR
;
1609 spin_unlock(&journal
->j_state_lock
);
1612 int journal_blocks_per_page(struct inode
*inode
)
1614 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1618 * Simple support for retrying memory allocations. Introduced to help to
1619 * debug different VM deadlock avoidance strategies.
1621 void * __jbd_kmalloc (const char *where
, size_t size
, gfp_t flags
, int retry
)
1623 return kmalloc(size
, flags
| (retry
? __GFP_NOFAIL
: 0));
1627 * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed
1628 * and allocate frozen and commit buffers from these slabs.
1630 * Reason for doing this is to avoid, SLAB_DEBUG - since it could
1631 * cause bh to cross page boundary.
1634 #define JBD_MAX_SLABS 5
1635 #define JBD_SLAB_INDEX(size) (size >> 11)
1637 static struct kmem_cache
*jbd_slab
[JBD_MAX_SLABS
];
1638 static const char *jbd_slab_names
[JBD_MAX_SLABS
] = {
1639 "jbd_1k", "jbd_2k", "jbd_4k", NULL
, "jbd_8k"
1642 static void journal_destroy_jbd_slabs(void)
1646 for (i
= 0; i
< JBD_MAX_SLABS
; i
++) {
1648 kmem_cache_destroy(jbd_slab
[i
]);
1653 static int journal_create_jbd_slab(size_t slab_size
)
1655 int i
= JBD_SLAB_INDEX(slab_size
);
1657 BUG_ON(i
>= JBD_MAX_SLABS
);
1660 * Check if we already have a slab created for this size
1666 * Create a slab and force alignment to be same as slabsize -
1667 * this will make sure that allocations won't cross the page
1670 jbd_slab
[i
] = kmem_cache_create(jbd_slab_names
[i
],
1671 slab_size
, slab_size
, 0, NULL
);
1673 printk(KERN_EMERG
"JBD: no memory for jbd_slab cache\n");
1679 void * jbd_slab_alloc(size_t size
, gfp_t flags
)
1683 idx
= JBD_SLAB_INDEX(size
);
1684 BUG_ON(jbd_slab
[idx
] == NULL
);
1685 return kmem_cache_alloc(jbd_slab
[idx
], flags
| __GFP_NOFAIL
);
1688 void jbd_slab_free(void *ptr
, size_t size
)
1692 idx
= JBD_SLAB_INDEX(size
);
1693 BUG_ON(jbd_slab
[idx
] == NULL
);
1694 kmem_cache_free(jbd_slab
[idx
], ptr
);
1698 * Journal_head storage management
1700 static struct kmem_cache
*journal_head_cache
;
1701 #ifdef CONFIG_JBD_DEBUG
1702 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
1705 static int journal_init_journal_head_cache(void)
1709 J_ASSERT(journal_head_cache
== 0);
1710 journal_head_cache
= kmem_cache_create("journal_head",
1711 sizeof(struct journal_head
),
1716 if (journal_head_cache
== 0) {
1718 printk(KERN_EMERG
"JBD: no memory for journal_head cache\n");
1723 static void journal_destroy_journal_head_cache(void)
1725 J_ASSERT(journal_head_cache
!= NULL
);
1726 kmem_cache_destroy(journal_head_cache
);
1727 journal_head_cache
= NULL
;
1731 * journal_head splicing and dicing
1733 static struct journal_head
*journal_alloc_journal_head(void)
1735 struct journal_head
*ret
;
1736 static unsigned long last_warning
;
1738 #ifdef CONFIG_JBD_DEBUG
1739 atomic_inc(&nr_journal_heads
);
1741 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1743 jbd_debug(1, "out of memory for journal_head\n");
1744 if (time_after(jiffies
, last_warning
+ 5*HZ
)) {
1745 printk(KERN_NOTICE
"ENOMEM in %s, retrying.\n",
1747 last_warning
= jiffies
;
1751 ret
= kmem_cache_alloc(journal_head_cache
, GFP_NOFS
);
1757 static void journal_free_journal_head(struct journal_head
*jh
)
1759 #ifdef CONFIG_JBD_DEBUG
1760 atomic_dec(&nr_journal_heads
);
1761 memset(jh
, JBD_POISON_FREE
, sizeof(*jh
));
1763 kmem_cache_free(journal_head_cache
, jh
);
1767 * A journal_head is attached to a buffer_head whenever JBD has an
1768 * interest in the buffer.
1770 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1771 * is set. This bit is tested in core kernel code where we need to take
1772 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1775 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1777 * When a buffer has its BH_JBD bit set it is immune from being released by
1778 * core kernel code, mainly via ->b_count.
1780 * A journal_head may be detached from its buffer_head when the journal_head's
1781 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1782 * Various places in JBD call journal_remove_journal_head() to indicate that the
1783 * journal_head can be dropped if needed.
1785 * Various places in the kernel want to attach a journal_head to a buffer_head
1786 * _before_ attaching the journal_head to a transaction. To protect the
1787 * journal_head in this situation, journal_add_journal_head elevates the
1788 * journal_head's b_jcount refcount by one. The caller must call
1789 * journal_put_journal_head() to undo this.
1791 * So the typical usage would be:
1793 * (Attach a journal_head if needed. Increments b_jcount)
1794 * struct journal_head *jh = journal_add_journal_head(bh);
1796 * jh->b_transaction = xxx;
1797 * journal_put_journal_head(jh);
1799 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1800 * because it has a non-zero b_transaction.
1804 * Give a buffer_head a journal_head.
1806 * Doesn't need the journal lock.
1809 struct journal_head
*journal_add_journal_head(struct buffer_head
*bh
)
1811 struct journal_head
*jh
;
1812 struct journal_head
*new_jh
= NULL
;
1815 if (!buffer_jbd(bh
)) {
1816 new_jh
= journal_alloc_journal_head();
1817 memset(new_jh
, 0, sizeof(*new_jh
));
1820 jbd_lock_bh_journal_head(bh
);
1821 if (buffer_jbd(bh
)) {
1825 (atomic_read(&bh
->b_count
) > 0) ||
1826 (bh
->b_page
&& bh
->b_page
->mapping
));
1829 jbd_unlock_bh_journal_head(bh
);
1834 new_jh
= NULL
; /* We consumed it */
1839 BUFFER_TRACE(bh
, "added journal_head");
1842 jbd_unlock_bh_journal_head(bh
);
1844 journal_free_journal_head(new_jh
);
1845 return bh
->b_private
;
1849 * Grab a ref against this buffer_head's journal_head. If it ended up not
1850 * having a journal_head, return NULL
1852 struct journal_head
*journal_grab_journal_head(struct buffer_head
*bh
)
1854 struct journal_head
*jh
= NULL
;
1856 jbd_lock_bh_journal_head(bh
);
1857 if (buffer_jbd(bh
)) {
1861 jbd_unlock_bh_journal_head(bh
);
1865 static void __journal_remove_journal_head(struct buffer_head
*bh
)
1867 struct journal_head
*jh
= bh2jh(bh
);
1869 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
1872 if (jh
->b_jcount
== 0) {
1873 if (jh
->b_transaction
== NULL
&&
1874 jh
->b_next_transaction
== NULL
&&
1875 jh
->b_cp_transaction
== NULL
) {
1876 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
1877 J_ASSERT_BH(bh
, buffer_jbd(bh
));
1878 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
1879 BUFFER_TRACE(bh
, "remove journal_head");
1880 if (jh
->b_frozen_data
) {
1881 printk(KERN_WARNING
"%s: freeing "
1884 jbd_slab_free(jh
->b_frozen_data
, bh
->b_size
);
1886 if (jh
->b_committed_data
) {
1887 printk(KERN_WARNING
"%s: freeing "
1888 "b_committed_data\n",
1890 jbd_slab_free(jh
->b_committed_data
, bh
->b_size
);
1892 bh
->b_private
= NULL
;
1893 jh
->b_bh
= NULL
; /* debug, really */
1894 clear_buffer_jbd(bh
);
1896 journal_free_journal_head(jh
);
1898 BUFFER_TRACE(bh
, "journal_head was locked");
1904 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1905 * and has a zero b_jcount then remove and release its journal_head. If we did
1906 * see that the buffer is not used by any transaction we also "logically"
1907 * decrement ->b_count.
1909 * We in fact take an additional increment on ->b_count as a convenience,
1910 * because the caller usually wants to do additional things with the bh
1911 * after calling here.
1912 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1913 * time. Once the caller has run __brelse(), the buffer is eligible for
1914 * reaping by try_to_free_buffers().
1916 void journal_remove_journal_head(struct buffer_head
*bh
)
1918 jbd_lock_bh_journal_head(bh
);
1919 __journal_remove_journal_head(bh
);
1920 jbd_unlock_bh_journal_head(bh
);
1924 * Drop a reference on the passed journal_head. If it fell to zero then try to
1925 * release the journal_head from the buffer_head.
1927 void journal_put_journal_head(struct journal_head
*jh
)
1929 struct buffer_head
*bh
= jh2bh(jh
);
1931 jbd_lock_bh_journal_head(bh
);
1932 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
1934 if (!jh
->b_jcount
&& !jh
->b_transaction
) {
1935 __journal_remove_journal_head(bh
);
1938 jbd_unlock_bh_journal_head(bh
);
1944 #if defined(CONFIG_JBD_DEBUG)
1945 int journal_enable_debug
;
1946 EXPORT_SYMBOL(journal_enable_debug
);
1949 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1951 static struct proc_dir_entry
*proc_jbd_debug
;
1953 static int read_jbd_debug(char *page
, char **start
, off_t off
,
1954 int count
, int *eof
, void *data
)
1958 ret
= sprintf(page
+ off
, "%d\n", journal_enable_debug
);
1963 static int write_jbd_debug(struct file
*file
, const char __user
*buffer
,
1964 unsigned long count
, void *data
)
1968 if (count
> ARRAY_SIZE(buf
) - 1)
1969 count
= ARRAY_SIZE(buf
) - 1;
1970 if (copy_from_user(buf
, buffer
, count
))
1972 buf
[ARRAY_SIZE(buf
) - 1] = '\0';
1973 journal_enable_debug
= simple_strtoul(buf
, NULL
, 10);
1977 #define JBD_PROC_NAME "sys/fs/jbd-debug"
1979 static void __init
create_jbd_proc_entry(void)
1981 proc_jbd_debug
= create_proc_entry(JBD_PROC_NAME
, 0644, NULL
);
1982 if (proc_jbd_debug
) {
1983 /* Why is this so hard? */
1984 proc_jbd_debug
->read_proc
= read_jbd_debug
;
1985 proc_jbd_debug
->write_proc
= write_jbd_debug
;
1989 static void __exit
remove_jbd_proc_entry(void)
1992 remove_proc_entry(JBD_PROC_NAME
, NULL
);
1997 #define create_jbd_proc_entry() do {} while (0)
1998 #define remove_jbd_proc_entry() do {} while (0)
2002 struct kmem_cache
*jbd_handle_cache
;
2004 static int __init
journal_init_handle_cache(void)
2006 jbd_handle_cache
= kmem_cache_create("journal_handle",
2011 if (jbd_handle_cache
== NULL
) {
2012 printk(KERN_EMERG
"JBD: failed to create handle cache\n");
2018 static void journal_destroy_handle_cache(void)
2020 if (jbd_handle_cache
)
2021 kmem_cache_destroy(jbd_handle_cache
);
2025 * Module startup and shutdown
2028 static int __init
journal_init_caches(void)
2032 ret
= journal_init_revoke_caches();
2034 ret
= journal_init_journal_head_cache();
2036 ret
= journal_init_handle_cache();
2040 static void journal_destroy_caches(void)
2042 journal_destroy_revoke_caches();
2043 journal_destroy_journal_head_cache();
2044 journal_destroy_handle_cache();
2045 journal_destroy_jbd_slabs();
2048 static int __init
journal_init(void)
2052 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2054 ret
= journal_init_caches();
2056 journal_destroy_caches();
2057 create_jbd_proc_entry();
2061 static void __exit
journal_exit(void)
2063 #ifdef CONFIG_JBD_DEBUG
2064 int n
= atomic_read(&nr_journal_heads
);
2066 printk(KERN_EMERG
"JBD: leaked %d journal_heads!\n", n
);
2068 remove_jbd_proc_entry();
2069 journal_destroy_caches();
2072 MODULE_LICENSE("GPL");
2073 module_init(journal_init
);
2074 module_exit(journal_exit
);