hisax: hfc_usb: update to current CVS version
[linux-2.6/openmoko-kernel.git] / fs / direct-io.c
blobb5928a7b6a5a61783c74393f4777eef5cc46839e
1 /*
2 * fs/direct-io.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * O_DIRECT
8 * 04Jul2002 akpm@zip.com.au
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
44 #define DIO_PAGES 64
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58 * This determines whether we need to do the fancy locking which prevents
59 * direct-IO from being able to read uninitialised disk blocks. If its zero
60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
61 * not held for the entire direct write (taken briefly, initially, during a
62 * direct read though, but its never held for the duration of a direct-IO).
65 struct dio {
66 /* BIO submission state */
67 struct bio *bio; /* bio under assembly */
68 struct inode *inode;
69 int rw;
70 loff_t i_size; /* i_size when submitted */
71 int lock_type; /* doesn't change */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 size_t size; /* total request size (doesn't change)*/
83 sector_t block_in_file; /* Current offset into the underlying
84 file in dio_block units. */
85 unsigned blocks_available; /* At block_in_file. changes */
86 sector_t final_block_in_request;/* doesn't change */
87 unsigned first_block_in_page; /* doesn't change, Used only once */
88 int boundary; /* prev block is at a boundary */
89 int reap_counter; /* rate limit reaping */
90 get_block_t *get_block; /* block mapping function */
91 dio_iodone_t *end_io; /* IO completion function */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
95 struct buffer_head map_bh; /* last get_block() result */
98 * Deferred addition of a page to the dio. These variables are
99 * private to dio_send_cur_page(), submit_page_section() and
100 * dio_bio_add_page().
102 struct page *cur_page; /* The page */
103 unsigned cur_page_offset; /* Offset into it, in bytes */
104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
105 sector_t cur_page_block; /* Where it starts */
108 * Page fetching state. These variables belong to dio_refill_pages().
110 int curr_page; /* changes */
111 int total_pages; /* doesn't change */
112 unsigned long curr_user_address;/* changes */
115 * Page queue. These variables belong to dio_refill_pages() and
116 * dio_get_page().
118 struct page *pages[DIO_PAGES]; /* page buffer */
119 unsigned head; /* next page to process */
120 unsigned tail; /* last valid page + 1 */
121 int page_errors; /* errno from get_user_pages() */
123 /* BIO completion state */
124 spinlock_t bio_lock; /* protects BIO fields below */
125 unsigned long refcount; /* direct_io_worker() and bios */
126 struct bio *bio_list; /* singly linked via bi_private */
127 struct task_struct *waiter; /* waiting task (NULL if none) */
129 /* AIO related stuff */
130 struct kiocb *iocb; /* kiocb */
131 int is_async; /* is IO async ? */
132 int io_error; /* IO error in completion path */
133 ssize_t result; /* IO result */
137 * How many pages are in the queue?
139 static inline unsigned dio_pages_present(struct dio *dio)
141 return dio->tail - dio->head;
145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
147 static int dio_refill_pages(struct dio *dio)
149 int ret;
150 int nr_pages;
152 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
153 down_read(&current->mm->mmap_sem);
154 ret = get_user_pages(
155 current, /* Task for fault acounting */
156 current->mm, /* whose pages? */
157 dio->curr_user_address, /* Where from? */
158 nr_pages, /* How many pages? */
159 dio->rw == READ, /* Write to memory? */
160 0, /* force (?) */
161 &dio->pages[0],
162 NULL); /* vmas */
163 up_read(&current->mm->mmap_sem);
165 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
166 struct page *page = ZERO_PAGE(dio->curr_user_address);
168 * A memory fault, but the filesystem has some outstanding
169 * mapped blocks. We need to use those blocks up to avoid
170 * leaking stale data in the file.
172 if (dio->page_errors == 0)
173 dio->page_errors = ret;
174 page_cache_get(page);
175 dio->pages[0] = page;
176 dio->head = 0;
177 dio->tail = 1;
178 ret = 0;
179 goto out;
182 if (ret >= 0) {
183 dio->curr_user_address += ret * PAGE_SIZE;
184 dio->curr_page += ret;
185 dio->head = 0;
186 dio->tail = ret;
187 ret = 0;
189 out:
190 return ret;
194 * Get another userspace page. Returns an ERR_PTR on error. Pages are
195 * buffered inside the dio so that we can call get_user_pages() against a
196 * decent number of pages, less frequently. To provide nicer use of the
197 * L1 cache.
199 static struct page *dio_get_page(struct dio *dio)
201 if (dio_pages_present(dio) == 0) {
202 int ret;
204 ret = dio_refill_pages(dio);
205 if (ret)
206 return ERR_PTR(ret);
207 BUG_ON(dio_pages_present(dio) == 0);
209 return dio->pages[dio->head++];
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
216 * This releases locks as dictated by the locking type, lets interested parties
217 * know that a DIO operation has completed, and calculates the resulting return
218 * code for the operation.
220 * It lets the filesystem know if it registered an interest earlier via
221 * get_block. Pass the private field of the map buffer_head so that
222 * filesystems can use it to hold additional state between get_block calls and
223 * dio_complete.
225 static int dio_complete(struct dio *dio, loff_t offset, int ret)
227 ssize_t transferred = 0;
230 * AIO submission can race with bio completion to get here while
231 * expecting to have the last io completed by bio completion.
232 * In that case -EIOCBQUEUED is in fact not an error we want
233 * to preserve through this call.
235 if (ret == -EIOCBQUEUED)
236 ret = 0;
238 if (dio->result) {
239 transferred = dio->result;
241 /* Check for short read case */
242 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 transferred = dio->i_size - offset;
246 if (dio->end_io && dio->result)
247 dio->end_io(dio->iocb, offset, transferred,
248 dio->map_bh.b_private);
249 if (dio->lock_type == DIO_LOCKING)
250 /* lockdep: non-owner release */
251 up_read_non_owner(&dio->inode->i_alloc_sem);
253 if (ret == 0)
254 ret = dio->page_errors;
255 if (ret == 0)
256 ret = dio->io_error;
257 if (ret == 0)
258 ret = transferred;
260 return ret;
263 static int dio_bio_complete(struct dio *dio, struct bio *bio);
265 * Asynchronous IO callback.
267 static void dio_bio_end_aio(struct bio *bio, int error)
269 struct dio *dio = bio->bi_private;
270 unsigned long remaining;
271 unsigned long flags;
273 /* cleanup the bio */
274 dio_bio_complete(dio, bio);
276 spin_lock_irqsave(&dio->bio_lock, flags);
277 remaining = --dio->refcount;
278 if (remaining == 1 && dio->waiter)
279 wake_up_process(dio->waiter);
280 spin_unlock_irqrestore(&dio->bio_lock, flags);
282 if (remaining == 0) {
283 int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
284 aio_complete(dio->iocb, ret, 0);
285 kfree(dio);
290 * The BIO completion handler simply queues the BIO up for the process-context
291 * handler.
293 * During I/O bi_private points at the dio. After I/O, bi_private is used to
294 * implement a singly-linked list of completed BIOs, at dio->bio_list.
296 static void dio_bio_end_io(struct bio *bio, int error)
298 struct dio *dio = bio->bi_private;
299 unsigned long flags;
301 spin_lock_irqsave(&dio->bio_lock, flags);
302 bio->bi_private = dio->bio_list;
303 dio->bio_list = bio;
304 if (--dio->refcount == 1 && dio->waiter)
305 wake_up_process(dio->waiter);
306 spin_unlock_irqrestore(&dio->bio_lock, flags);
309 static int
310 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
311 sector_t first_sector, int nr_vecs)
313 struct bio *bio;
315 bio = bio_alloc(GFP_KERNEL, nr_vecs);
316 if (bio == NULL)
317 return -ENOMEM;
319 bio->bi_bdev = bdev;
320 bio->bi_sector = first_sector;
321 if (dio->is_async)
322 bio->bi_end_io = dio_bio_end_aio;
323 else
324 bio->bi_end_io = dio_bio_end_io;
326 dio->bio = bio;
327 return 0;
331 * In the AIO read case we speculatively dirty the pages before starting IO.
332 * During IO completion, any of these pages which happen to have been written
333 * back will be redirtied by bio_check_pages_dirty().
335 * bios hold a dio reference between submit_bio and ->end_io.
337 static void dio_bio_submit(struct dio *dio)
339 struct bio *bio = dio->bio;
340 unsigned long flags;
342 bio->bi_private = dio;
344 spin_lock_irqsave(&dio->bio_lock, flags);
345 dio->refcount++;
346 spin_unlock_irqrestore(&dio->bio_lock, flags);
348 if (dio->is_async && dio->rw == READ)
349 bio_set_pages_dirty(bio);
351 submit_bio(dio->rw, bio);
353 dio->bio = NULL;
354 dio->boundary = 0;
358 * Release any resources in case of a failure
360 static void dio_cleanup(struct dio *dio)
362 while (dio_pages_present(dio))
363 page_cache_release(dio_get_page(dio));
367 * Wait for the next BIO to complete. Remove it and return it. NULL is
368 * returned once all BIOs have been completed. This must only be called once
369 * all bios have been issued so that dio->refcount can only decrease. This
370 * requires that that the caller hold a reference on the dio.
372 static struct bio *dio_await_one(struct dio *dio)
374 unsigned long flags;
375 struct bio *bio = NULL;
377 spin_lock_irqsave(&dio->bio_lock, flags);
380 * Wait as long as the list is empty and there are bios in flight. bio
381 * completion drops the count, maybe adds to the list, and wakes while
382 * holding the bio_lock so we don't need set_current_state()'s barrier
383 * and can call it after testing our condition.
385 while (dio->refcount > 1 && dio->bio_list == NULL) {
386 __set_current_state(TASK_UNINTERRUPTIBLE);
387 dio->waiter = current;
388 spin_unlock_irqrestore(&dio->bio_lock, flags);
389 io_schedule();
390 /* wake up sets us TASK_RUNNING */
391 spin_lock_irqsave(&dio->bio_lock, flags);
392 dio->waiter = NULL;
394 if (dio->bio_list) {
395 bio = dio->bio_list;
396 dio->bio_list = bio->bi_private;
398 spin_unlock_irqrestore(&dio->bio_lock, flags);
399 return bio;
403 * Process one completed BIO. No locks are held.
405 static int dio_bio_complete(struct dio *dio, struct bio *bio)
407 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
408 struct bio_vec *bvec = bio->bi_io_vec;
409 int page_no;
411 if (!uptodate)
412 dio->io_error = -EIO;
414 if (dio->is_async && dio->rw == READ) {
415 bio_check_pages_dirty(bio); /* transfers ownership */
416 } else {
417 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
418 struct page *page = bvec[page_no].bv_page;
420 if (dio->rw == READ && !PageCompound(page))
421 set_page_dirty_lock(page);
422 page_cache_release(page);
424 bio_put(bio);
426 return uptodate ? 0 : -EIO;
430 * Wait on and process all in-flight BIOs. This must only be called once
431 * all bios have been issued so that the refcount can only decrease.
432 * This just waits for all bios to make it through dio_bio_complete. IO
433 * errors are propagated through dio->io_error and should be propagated via
434 * dio_complete().
436 static void dio_await_completion(struct dio *dio)
438 struct bio *bio;
439 do {
440 bio = dio_await_one(dio);
441 if (bio)
442 dio_bio_complete(dio, bio);
443 } while (bio);
447 * A really large O_DIRECT read or write can generate a lot of BIOs. So
448 * to keep the memory consumption sane we periodically reap any completed BIOs
449 * during the BIO generation phase.
451 * This also helps to limit the peak amount of pinned userspace memory.
453 static int dio_bio_reap(struct dio *dio)
455 int ret = 0;
457 if (dio->reap_counter++ >= 64) {
458 while (dio->bio_list) {
459 unsigned long flags;
460 struct bio *bio;
461 int ret2;
463 spin_lock_irqsave(&dio->bio_lock, flags);
464 bio = dio->bio_list;
465 dio->bio_list = bio->bi_private;
466 spin_unlock_irqrestore(&dio->bio_lock, flags);
467 ret2 = dio_bio_complete(dio, bio);
468 if (ret == 0)
469 ret = ret2;
471 dio->reap_counter = 0;
473 return ret;
477 * Call into the fs to map some more disk blocks. We record the current number
478 * of available blocks at dio->blocks_available. These are in units of the
479 * fs blocksize, (1 << inode->i_blkbits).
481 * The fs is allowed to map lots of blocks at once. If it wants to do that,
482 * it uses the passed inode-relative block number as the file offset, as usual.
484 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
485 * has remaining to do. The fs should not map more than this number of blocks.
487 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
488 * indicate how much contiguous disk space has been made available at
489 * bh->b_blocknr.
491 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
492 * This isn't very efficient...
494 * In the case of filesystem holes: the fs may return an arbitrarily-large
495 * hole by returning an appropriate value in b_size and by clearing
496 * buffer_mapped(). However the direct-io code will only process holes one
497 * block at a time - it will repeatedly call get_block() as it walks the hole.
499 static int get_more_blocks(struct dio *dio)
501 int ret;
502 struct buffer_head *map_bh = &dio->map_bh;
503 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
504 unsigned long fs_count; /* Number of filesystem-sized blocks */
505 unsigned long dio_count;/* Number of dio_block-sized blocks */
506 unsigned long blkmask;
507 int create;
510 * If there was a memory error and we've overwritten all the
511 * mapped blocks then we can now return that memory error
513 ret = dio->page_errors;
514 if (ret == 0) {
515 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
516 fs_startblk = dio->block_in_file >> dio->blkfactor;
517 dio_count = dio->final_block_in_request - dio->block_in_file;
518 fs_count = dio_count >> dio->blkfactor;
519 blkmask = (1 << dio->blkfactor) - 1;
520 if (dio_count & blkmask)
521 fs_count++;
523 map_bh->b_state = 0;
524 map_bh->b_size = fs_count << dio->inode->i_blkbits;
526 create = dio->rw & WRITE;
527 if (dio->lock_type == DIO_LOCKING) {
528 if (dio->block_in_file < (i_size_read(dio->inode) >>
529 dio->blkbits))
530 create = 0;
531 } else if (dio->lock_type == DIO_NO_LOCKING) {
532 create = 0;
536 * For writes inside i_size we forbid block creations: only
537 * overwrites are permitted. We fall back to buffered writes
538 * at a higher level for inside-i_size block-instantiating
539 * writes.
541 ret = (*dio->get_block)(dio->inode, fs_startblk,
542 map_bh, create);
544 return ret;
548 * There is no bio. Make one now.
550 static int dio_new_bio(struct dio *dio, sector_t start_sector)
552 sector_t sector;
553 int ret, nr_pages;
555 ret = dio_bio_reap(dio);
556 if (ret)
557 goto out;
558 sector = start_sector << (dio->blkbits - 9);
559 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
560 BUG_ON(nr_pages <= 0);
561 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
562 dio->boundary = 0;
563 out:
564 return ret;
568 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
569 * that was successful then update final_block_in_bio and take a ref against
570 * the just-added page.
572 * Return zero on success. Non-zero means the caller needs to start a new BIO.
574 static int dio_bio_add_page(struct dio *dio)
576 int ret;
578 ret = bio_add_page(dio->bio, dio->cur_page,
579 dio->cur_page_len, dio->cur_page_offset);
580 if (ret == dio->cur_page_len) {
582 * Decrement count only, if we are done with this page
584 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
585 dio->pages_in_io--;
586 page_cache_get(dio->cur_page);
587 dio->final_block_in_bio = dio->cur_page_block +
588 (dio->cur_page_len >> dio->blkbits);
589 ret = 0;
590 } else {
591 ret = 1;
593 return ret;
597 * Put cur_page under IO. The section of cur_page which is described by
598 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
599 * starts on-disk at cur_page_block.
601 * We take a ref against the page here (on behalf of its presence in the bio).
603 * The caller of this function is responsible for removing cur_page from the
604 * dio, and for dropping the refcount which came from that presence.
606 static int dio_send_cur_page(struct dio *dio)
608 int ret = 0;
610 if (dio->bio) {
612 * See whether this new request is contiguous with the old
614 if (dio->final_block_in_bio != dio->cur_page_block)
615 dio_bio_submit(dio);
617 * Submit now if the underlying fs is about to perform a
618 * metadata read
620 if (dio->boundary)
621 dio_bio_submit(dio);
624 if (dio->bio == NULL) {
625 ret = dio_new_bio(dio, dio->cur_page_block);
626 if (ret)
627 goto out;
630 if (dio_bio_add_page(dio) != 0) {
631 dio_bio_submit(dio);
632 ret = dio_new_bio(dio, dio->cur_page_block);
633 if (ret == 0) {
634 ret = dio_bio_add_page(dio);
635 BUG_ON(ret != 0);
638 out:
639 return ret;
643 * An autonomous function to put a chunk of a page under deferred IO.
645 * The caller doesn't actually know (or care) whether this piece of page is in
646 * a BIO, or is under IO or whatever. We just take care of all possible
647 * situations here. The separation between the logic of do_direct_IO() and
648 * that of submit_page_section() is important for clarity. Please don't break.
650 * The chunk of page starts on-disk at blocknr.
652 * We perform deferred IO, by recording the last-submitted page inside our
653 * private part of the dio structure. If possible, we just expand the IO
654 * across that page here.
656 * If that doesn't work out then we put the old page into the bio and add this
657 * page to the dio instead.
659 static int
660 submit_page_section(struct dio *dio, struct page *page,
661 unsigned offset, unsigned len, sector_t blocknr)
663 int ret = 0;
665 if (dio->rw & WRITE) {
667 * Read accounting is performed in submit_bio()
669 task_io_account_write(len);
673 * Can we just grow the current page's presence in the dio?
675 if ( (dio->cur_page == page) &&
676 (dio->cur_page_offset + dio->cur_page_len == offset) &&
677 (dio->cur_page_block +
678 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
679 dio->cur_page_len += len;
682 * If dio->boundary then we want to schedule the IO now to
683 * avoid metadata seeks.
685 if (dio->boundary) {
686 ret = dio_send_cur_page(dio);
687 page_cache_release(dio->cur_page);
688 dio->cur_page = NULL;
690 goto out;
694 * If there's a deferred page already there then send it.
696 if (dio->cur_page) {
697 ret = dio_send_cur_page(dio);
698 page_cache_release(dio->cur_page);
699 dio->cur_page = NULL;
700 if (ret)
701 goto out;
704 page_cache_get(page); /* It is in dio */
705 dio->cur_page = page;
706 dio->cur_page_offset = offset;
707 dio->cur_page_len = len;
708 dio->cur_page_block = blocknr;
709 out:
710 return ret;
714 * Clean any dirty buffers in the blockdev mapping which alias newly-created
715 * file blocks. Only called for S_ISREG files - blockdevs do not set
716 * buffer_new
718 static void clean_blockdev_aliases(struct dio *dio)
720 unsigned i;
721 unsigned nblocks;
723 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
725 for (i = 0; i < nblocks; i++) {
726 unmap_underlying_metadata(dio->map_bh.b_bdev,
727 dio->map_bh.b_blocknr + i);
732 * If we are not writing the entire block and get_block() allocated
733 * the block for us, we need to fill-in the unused portion of the
734 * block with zeros. This happens only if user-buffer, fileoffset or
735 * io length is not filesystem block-size multiple.
737 * `end' is zero if we're doing the start of the IO, 1 at the end of the
738 * IO.
740 static void dio_zero_block(struct dio *dio, int end)
742 unsigned dio_blocks_per_fs_block;
743 unsigned this_chunk_blocks; /* In dio_blocks */
744 unsigned this_chunk_bytes;
745 struct page *page;
747 dio->start_zero_done = 1;
748 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
749 return;
751 dio_blocks_per_fs_block = 1 << dio->blkfactor;
752 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
754 if (!this_chunk_blocks)
755 return;
758 * We need to zero out part of an fs block. It is either at the
759 * beginning or the end of the fs block.
761 if (end)
762 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
764 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
766 page = ZERO_PAGE(dio->curr_user_address);
767 if (submit_page_section(dio, page, 0, this_chunk_bytes,
768 dio->next_block_for_io))
769 return;
771 dio->next_block_for_io += this_chunk_blocks;
775 * Walk the user pages, and the file, mapping blocks to disk and generating
776 * a sequence of (page,offset,len,block) mappings. These mappings are injected
777 * into submit_page_section(), which takes care of the next stage of submission
779 * Direct IO against a blockdev is different from a file. Because we can
780 * happily perform page-sized but 512-byte aligned IOs. It is important that
781 * blockdev IO be able to have fine alignment and large sizes.
783 * So what we do is to permit the ->get_block function to populate bh.b_size
784 * with the size of IO which is permitted at this offset and this i_blkbits.
786 * For best results, the blockdev should be set up with 512-byte i_blkbits and
787 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
788 * fine alignment but still allows this function to work in PAGE_SIZE units.
790 static int do_direct_IO(struct dio *dio)
792 const unsigned blkbits = dio->blkbits;
793 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
794 struct page *page;
795 unsigned block_in_page;
796 struct buffer_head *map_bh = &dio->map_bh;
797 int ret = 0;
799 /* The I/O can start at any block offset within the first page */
800 block_in_page = dio->first_block_in_page;
802 while (dio->block_in_file < dio->final_block_in_request) {
803 page = dio_get_page(dio);
804 if (IS_ERR(page)) {
805 ret = PTR_ERR(page);
806 goto out;
809 while (block_in_page < blocks_per_page) {
810 unsigned offset_in_page = block_in_page << blkbits;
811 unsigned this_chunk_bytes; /* # of bytes mapped */
812 unsigned this_chunk_blocks; /* # of blocks */
813 unsigned u;
815 if (dio->blocks_available == 0) {
817 * Need to go and map some more disk
819 unsigned long blkmask;
820 unsigned long dio_remainder;
822 ret = get_more_blocks(dio);
823 if (ret) {
824 page_cache_release(page);
825 goto out;
827 if (!buffer_mapped(map_bh))
828 goto do_holes;
830 dio->blocks_available =
831 map_bh->b_size >> dio->blkbits;
832 dio->next_block_for_io =
833 map_bh->b_blocknr << dio->blkfactor;
834 if (buffer_new(map_bh))
835 clean_blockdev_aliases(dio);
837 if (!dio->blkfactor)
838 goto do_holes;
840 blkmask = (1 << dio->blkfactor) - 1;
841 dio_remainder = (dio->block_in_file & blkmask);
844 * If we are at the start of IO and that IO
845 * starts partway into a fs-block,
846 * dio_remainder will be non-zero. If the IO
847 * is a read then we can simply advance the IO
848 * cursor to the first block which is to be
849 * read. But if the IO is a write and the
850 * block was newly allocated we cannot do that;
851 * the start of the fs block must be zeroed out
852 * on-disk
854 if (!buffer_new(map_bh))
855 dio->next_block_for_io += dio_remainder;
856 dio->blocks_available -= dio_remainder;
858 do_holes:
859 /* Handle holes */
860 if (!buffer_mapped(map_bh)) {
861 loff_t i_size_aligned;
863 /* AKPM: eargh, -ENOTBLK is a hack */
864 if (dio->rw & WRITE) {
865 page_cache_release(page);
866 return -ENOTBLK;
870 * Be sure to account for a partial block as the
871 * last block in the file
873 i_size_aligned = ALIGN(i_size_read(dio->inode),
874 1 << blkbits);
875 if (dio->block_in_file >=
876 i_size_aligned >> blkbits) {
877 /* We hit eof */
878 page_cache_release(page);
879 goto out;
881 zero_user_page(page, block_in_page << blkbits,
882 1 << blkbits, KM_USER0);
883 dio->block_in_file++;
884 block_in_page++;
885 goto next_block;
889 * If we're performing IO which has an alignment which
890 * is finer than the underlying fs, go check to see if
891 * we must zero out the start of this block.
893 if (unlikely(dio->blkfactor && !dio->start_zero_done))
894 dio_zero_block(dio, 0);
897 * Work out, in this_chunk_blocks, how much disk we
898 * can add to this page
900 this_chunk_blocks = dio->blocks_available;
901 u = (PAGE_SIZE - offset_in_page) >> blkbits;
902 if (this_chunk_blocks > u)
903 this_chunk_blocks = u;
904 u = dio->final_block_in_request - dio->block_in_file;
905 if (this_chunk_blocks > u)
906 this_chunk_blocks = u;
907 this_chunk_bytes = this_chunk_blocks << blkbits;
908 BUG_ON(this_chunk_bytes == 0);
910 dio->boundary = buffer_boundary(map_bh);
911 ret = submit_page_section(dio, page, offset_in_page,
912 this_chunk_bytes, dio->next_block_for_io);
913 if (ret) {
914 page_cache_release(page);
915 goto out;
917 dio->next_block_for_io += this_chunk_blocks;
919 dio->block_in_file += this_chunk_blocks;
920 block_in_page += this_chunk_blocks;
921 dio->blocks_available -= this_chunk_blocks;
922 next_block:
923 BUG_ON(dio->block_in_file > dio->final_block_in_request);
924 if (dio->block_in_file == dio->final_block_in_request)
925 break;
928 /* Drop the ref which was taken in get_user_pages() */
929 page_cache_release(page);
930 block_in_page = 0;
932 out:
933 return ret;
937 * Releases both i_mutex and i_alloc_sem
939 static ssize_t
940 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
941 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
942 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
943 struct dio *dio)
945 unsigned long user_addr;
946 unsigned long flags;
947 int seg;
948 ssize_t ret = 0;
949 ssize_t ret2;
950 size_t bytes;
952 dio->inode = inode;
953 dio->rw = rw;
954 dio->blkbits = blkbits;
955 dio->blkfactor = inode->i_blkbits - blkbits;
956 dio->block_in_file = offset >> blkbits;
958 dio->get_block = get_block;
959 dio->end_io = end_io;
960 dio->final_block_in_bio = -1;
961 dio->next_block_for_io = -1;
963 dio->iocb = iocb;
964 dio->i_size = i_size_read(inode);
966 spin_lock_init(&dio->bio_lock);
967 dio->refcount = 1;
970 * In case of non-aligned buffers, we may need 2 more
971 * pages since we need to zero out first and last block.
973 if (unlikely(dio->blkfactor))
974 dio->pages_in_io = 2;
976 for (seg = 0; seg < nr_segs; seg++) {
977 user_addr = (unsigned long)iov[seg].iov_base;
978 dio->pages_in_io +=
979 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
980 - user_addr/PAGE_SIZE);
983 for (seg = 0; seg < nr_segs; seg++) {
984 user_addr = (unsigned long)iov[seg].iov_base;
985 dio->size += bytes = iov[seg].iov_len;
987 /* Index into the first page of the first block */
988 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
989 dio->final_block_in_request = dio->block_in_file +
990 (bytes >> blkbits);
991 /* Page fetching state */
992 dio->head = 0;
993 dio->tail = 0;
994 dio->curr_page = 0;
996 dio->total_pages = 0;
997 if (user_addr & (PAGE_SIZE-1)) {
998 dio->total_pages++;
999 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1001 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1002 dio->curr_user_address = user_addr;
1004 ret = do_direct_IO(dio);
1006 dio->result += iov[seg].iov_len -
1007 ((dio->final_block_in_request - dio->block_in_file) <<
1008 blkbits);
1010 if (ret) {
1011 dio_cleanup(dio);
1012 break;
1014 } /* end iovec loop */
1016 if (ret == -ENOTBLK && (rw & WRITE)) {
1018 * The remaining part of the request will be
1019 * be handled by buffered I/O when we return
1021 ret = 0;
1024 * There may be some unwritten disk at the end of a part-written
1025 * fs-block-sized block. Go zero that now.
1027 dio_zero_block(dio, 1);
1029 if (dio->cur_page) {
1030 ret2 = dio_send_cur_page(dio);
1031 if (ret == 0)
1032 ret = ret2;
1033 page_cache_release(dio->cur_page);
1034 dio->cur_page = NULL;
1036 if (dio->bio)
1037 dio_bio_submit(dio);
1039 /* All IO is now issued, send it on its way */
1040 blk_run_address_space(inode->i_mapping);
1043 * It is possible that, we return short IO due to end of file.
1044 * In that case, we need to release all the pages we got hold on.
1046 dio_cleanup(dio);
1049 * All block lookups have been performed. For READ requests
1050 * we can let i_mutex go now that its achieved its purpose
1051 * of protecting us from looking up uninitialized blocks.
1053 if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1054 mutex_unlock(&dio->inode->i_mutex);
1057 * The only time we want to leave bios in flight is when a successful
1058 * partial aio read or full aio write have been setup. In that case
1059 * bio completion will call aio_complete. The only time it's safe to
1060 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1061 * This had *better* be the only place that raises -EIOCBQUEUED.
1063 BUG_ON(ret == -EIOCBQUEUED);
1064 if (dio->is_async && ret == 0 && dio->result &&
1065 ((rw & READ) || (dio->result == dio->size)))
1066 ret = -EIOCBQUEUED;
1068 if (ret != -EIOCBQUEUED)
1069 dio_await_completion(dio);
1072 * Sync will always be dropping the final ref and completing the
1073 * operation. AIO can if it was a broken operation described above or
1074 * in fact if all the bios race to complete before we get here. In
1075 * that case dio_complete() translates the EIOCBQUEUED into the proper
1076 * return code that the caller will hand to aio_complete().
1078 * This is managed by the bio_lock instead of being an atomic_t so that
1079 * completion paths can drop their ref and use the remaining count to
1080 * decide to wake the submission path atomically.
1082 spin_lock_irqsave(&dio->bio_lock, flags);
1083 ret2 = --dio->refcount;
1084 spin_unlock_irqrestore(&dio->bio_lock, flags);
1086 if (ret2 == 0) {
1087 ret = dio_complete(dio, offset, ret);
1088 kfree(dio);
1089 } else
1090 BUG_ON(ret != -EIOCBQUEUED);
1092 return ret;
1096 * This is a library function for use by filesystem drivers.
1097 * The locking rules are governed by the dio_lock_type parameter.
1099 * DIO_NO_LOCKING (no locking, for raw block device access)
1100 * For writes, i_mutex is not held on entry; it is never taken.
1102 * DIO_LOCKING (simple locking for regular files)
1103 * For writes we are called under i_mutex and return with i_mutex held, even
1104 * though it is internally dropped.
1105 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1106 * returning.
1108 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1109 * uninitialised data, allowing parallel direct readers and writers)
1110 * For writes we are called without i_mutex, return without it, never touch it.
1111 * For reads we are called under i_mutex and return with i_mutex held, even
1112 * though it may be internally dropped.
1114 * Additional i_alloc_sem locking requirements described inline below.
1116 ssize_t
1117 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1118 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1119 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1120 int dio_lock_type)
1122 int seg;
1123 size_t size;
1124 unsigned long addr;
1125 unsigned blkbits = inode->i_blkbits;
1126 unsigned bdev_blkbits = 0;
1127 unsigned blocksize_mask = (1 << blkbits) - 1;
1128 ssize_t retval = -EINVAL;
1129 loff_t end = offset;
1130 struct dio *dio;
1131 int release_i_mutex = 0;
1132 int acquire_i_mutex = 0;
1134 if (rw & WRITE)
1135 rw = WRITE_SYNC;
1137 if (bdev)
1138 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1140 if (offset & blocksize_mask) {
1141 if (bdev)
1142 blkbits = bdev_blkbits;
1143 blocksize_mask = (1 << blkbits) - 1;
1144 if (offset & blocksize_mask)
1145 goto out;
1148 /* Check the memory alignment. Blocks cannot straddle pages */
1149 for (seg = 0; seg < nr_segs; seg++) {
1150 addr = (unsigned long)iov[seg].iov_base;
1151 size = iov[seg].iov_len;
1152 end += size;
1153 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1154 if (bdev)
1155 blkbits = bdev_blkbits;
1156 blocksize_mask = (1 << blkbits) - 1;
1157 if ((addr & blocksize_mask) || (size & blocksize_mask))
1158 goto out;
1162 dio = kzalloc(sizeof(*dio), GFP_KERNEL);
1163 retval = -ENOMEM;
1164 if (!dio)
1165 goto out;
1168 * For block device access DIO_NO_LOCKING is used,
1169 * neither readers nor writers do any locking at all
1170 * For regular files using DIO_LOCKING,
1171 * readers need to grab i_mutex and i_alloc_sem
1172 * writers need to grab i_alloc_sem only (i_mutex is already held)
1173 * For regular files using DIO_OWN_LOCKING,
1174 * neither readers nor writers take any locks here
1176 dio->lock_type = dio_lock_type;
1177 if (dio_lock_type != DIO_NO_LOCKING) {
1178 /* watch out for a 0 len io from a tricksy fs */
1179 if (rw == READ && end > offset) {
1180 struct address_space *mapping;
1182 mapping = iocb->ki_filp->f_mapping;
1183 if (dio_lock_type != DIO_OWN_LOCKING) {
1184 mutex_lock(&inode->i_mutex);
1185 release_i_mutex = 1;
1188 retval = filemap_write_and_wait_range(mapping, offset,
1189 end - 1);
1190 if (retval) {
1191 kfree(dio);
1192 goto out;
1195 if (dio_lock_type == DIO_OWN_LOCKING) {
1196 mutex_unlock(&inode->i_mutex);
1197 acquire_i_mutex = 1;
1201 if (dio_lock_type == DIO_LOCKING)
1202 /* lockdep: not the owner will release it */
1203 down_read_non_owner(&inode->i_alloc_sem);
1207 * For file extending writes updating i_size before data
1208 * writeouts complete can expose uninitialized blocks. So
1209 * even for AIO, we need to wait for i/o to complete before
1210 * returning in this case.
1212 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1213 (end > i_size_read(inode)));
1215 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1216 nr_segs, blkbits, get_block, end_io, dio);
1218 if (rw == READ && dio_lock_type == DIO_LOCKING)
1219 release_i_mutex = 0;
1221 out:
1222 if (release_i_mutex)
1223 mutex_unlock(&inode->i_mutex);
1224 else if (acquire_i_mutex)
1225 mutex_lock(&inode->i_mutex);
1226 return retval;
1228 EXPORT_SYMBOL(__blockdev_direct_IO);