4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 akpm@zip.com.au
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58 * This determines whether we need to do the fancy locking which prevents
59 * direct-IO from being able to read uninitialised disk blocks. If its zero
60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
61 * not held for the entire direct write (taken briefly, initially, during a
62 * direct read though, but its never held for the duration of a direct-IO).
66 /* BIO submission state */
67 struct bio
*bio
; /* bio under assembly */
70 loff_t i_size
; /* i_size when submitted */
71 int lock_type
; /* doesn't change */
72 unsigned blkbits
; /* doesn't change */
73 unsigned blkfactor
; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
81 int pages_in_io
; /* approximate total IO pages */
82 size_t size
; /* total request size (doesn't change)*/
83 sector_t block_in_file
; /* Current offset into the underlying
84 file in dio_block units. */
85 unsigned blocks_available
; /* At block_in_file. changes */
86 sector_t final_block_in_request
;/* doesn't change */
87 unsigned first_block_in_page
; /* doesn't change, Used only once */
88 int boundary
; /* prev block is at a boundary */
89 int reap_counter
; /* rate limit reaping */
90 get_block_t
*get_block
; /* block mapping function */
91 dio_iodone_t
*end_io
; /* IO completion function */
92 sector_t final_block_in_bio
; /* current final block in bio + 1 */
93 sector_t next_block_for_io
; /* next block to be put under IO,
94 in dio_blocks units */
95 struct buffer_head map_bh
; /* last get_block() result */
98 * Deferred addition of a page to the dio. These variables are
99 * private to dio_send_cur_page(), submit_page_section() and
100 * dio_bio_add_page().
102 struct page
*cur_page
; /* The page */
103 unsigned cur_page_offset
; /* Offset into it, in bytes */
104 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
105 sector_t cur_page_block
; /* Where it starts */
108 * Page fetching state. These variables belong to dio_refill_pages().
110 int curr_page
; /* changes */
111 int total_pages
; /* doesn't change */
112 unsigned long curr_user_address
;/* changes */
115 * Page queue. These variables belong to dio_refill_pages() and
118 struct page
*pages
[DIO_PAGES
]; /* page buffer */
119 unsigned head
; /* next page to process */
120 unsigned tail
; /* last valid page + 1 */
121 int page_errors
; /* errno from get_user_pages() */
123 /* BIO completion state */
124 spinlock_t bio_lock
; /* protects BIO fields below */
125 unsigned long refcount
; /* direct_io_worker() and bios */
126 struct bio
*bio_list
; /* singly linked via bi_private */
127 struct task_struct
*waiter
; /* waiting task (NULL if none) */
129 /* AIO related stuff */
130 struct kiocb
*iocb
; /* kiocb */
131 int is_async
; /* is IO async ? */
132 int io_error
; /* IO error in completion path */
133 ssize_t result
; /* IO result */
137 * How many pages are in the queue?
139 static inline unsigned dio_pages_present(struct dio
*dio
)
141 return dio
->tail
- dio
->head
;
145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
147 static int dio_refill_pages(struct dio
*dio
)
152 nr_pages
= min(dio
->total_pages
- dio
->curr_page
, DIO_PAGES
);
153 down_read(¤t
->mm
->mmap_sem
);
154 ret
= get_user_pages(
155 current
, /* Task for fault acounting */
156 current
->mm
, /* whose pages? */
157 dio
->curr_user_address
, /* Where from? */
158 nr_pages
, /* How many pages? */
159 dio
->rw
== READ
, /* Write to memory? */
163 up_read(¤t
->mm
->mmap_sem
);
165 if (ret
< 0 && dio
->blocks_available
&& (dio
->rw
& WRITE
)) {
166 struct page
*page
= ZERO_PAGE(dio
->curr_user_address
);
168 * A memory fault, but the filesystem has some outstanding
169 * mapped blocks. We need to use those blocks up to avoid
170 * leaking stale data in the file.
172 if (dio
->page_errors
== 0)
173 dio
->page_errors
= ret
;
174 page_cache_get(page
);
175 dio
->pages
[0] = page
;
183 dio
->curr_user_address
+= ret
* PAGE_SIZE
;
184 dio
->curr_page
+= ret
;
194 * Get another userspace page. Returns an ERR_PTR on error. Pages are
195 * buffered inside the dio so that we can call get_user_pages() against a
196 * decent number of pages, less frequently. To provide nicer use of the
199 static struct page
*dio_get_page(struct dio
*dio
)
201 if (dio_pages_present(dio
) == 0) {
204 ret
= dio_refill_pages(dio
);
207 BUG_ON(dio_pages_present(dio
) == 0);
209 return dio
->pages
[dio
->head
++];
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
216 * This releases locks as dictated by the locking type, lets interested parties
217 * know that a DIO operation has completed, and calculates the resulting return
218 * code for the operation.
220 * It lets the filesystem know if it registered an interest earlier via
221 * get_block. Pass the private field of the map buffer_head so that
222 * filesystems can use it to hold additional state between get_block calls and
225 static int dio_complete(struct dio
*dio
, loff_t offset
, int ret
)
227 ssize_t transferred
= 0;
230 * AIO submission can race with bio completion to get here while
231 * expecting to have the last io completed by bio completion.
232 * In that case -EIOCBQUEUED is in fact not an error we want
233 * to preserve through this call.
235 if (ret
== -EIOCBQUEUED
)
239 transferred
= dio
->result
;
241 /* Check for short read case */
242 if ((dio
->rw
== READ
) && ((offset
+ transferred
) > dio
->i_size
))
243 transferred
= dio
->i_size
- offset
;
246 if (dio
->end_io
&& dio
->result
)
247 dio
->end_io(dio
->iocb
, offset
, transferred
,
248 dio
->map_bh
.b_private
);
249 if (dio
->lock_type
== DIO_LOCKING
)
250 /* lockdep: non-owner release */
251 up_read_non_owner(&dio
->inode
->i_alloc_sem
);
254 ret
= dio
->page_errors
;
263 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
265 * Asynchronous IO callback.
267 static void dio_bio_end_aio(struct bio
*bio
, int error
)
269 struct dio
*dio
= bio
->bi_private
;
270 unsigned long remaining
;
273 /* cleanup the bio */
274 dio_bio_complete(dio
, bio
);
276 spin_lock_irqsave(&dio
->bio_lock
, flags
);
277 remaining
= --dio
->refcount
;
278 if (remaining
== 1 && dio
->waiter
)
279 wake_up_process(dio
->waiter
);
280 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
282 if (remaining
== 0) {
283 int ret
= dio_complete(dio
, dio
->iocb
->ki_pos
, 0);
284 aio_complete(dio
->iocb
, ret
, 0);
290 * The BIO completion handler simply queues the BIO up for the process-context
293 * During I/O bi_private points at the dio. After I/O, bi_private is used to
294 * implement a singly-linked list of completed BIOs, at dio->bio_list.
296 static void dio_bio_end_io(struct bio
*bio
, int error
)
298 struct dio
*dio
= bio
->bi_private
;
301 spin_lock_irqsave(&dio
->bio_lock
, flags
);
302 bio
->bi_private
= dio
->bio_list
;
304 if (--dio
->refcount
== 1 && dio
->waiter
)
305 wake_up_process(dio
->waiter
);
306 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
310 dio_bio_alloc(struct dio
*dio
, struct block_device
*bdev
,
311 sector_t first_sector
, int nr_vecs
)
315 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
320 bio
->bi_sector
= first_sector
;
322 bio
->bi_end_io
= dio_bio_end_aio
;
324 bio
->bi_end_io
= dio_bio_end_io
;
331 * In the AIO read case we speculatively dirty the pages before starting IO.
332 * During IO completion, any of these pages which happen to have been written
333 * back will be redirtied by bio_check_pages_dirty().
335 * bios hold a dio reference between submit_bio and ->end_io.
337 static void dio_bio_submit(struct dio
*dio
)
339 struct bio
*bio
= dio
->bio
;
342 bio
->bi_private
= dio
;
344 spin_lock_irqsave(&dio
->bio_lock
, flags
);
346 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
348 if (dio
->is_async
&& dio
->rw
== READ
)
349 bio_set_pages_dirty(bio
);
351 submit_bio(dio
->rw
, bio
);
358 * Release any resources in case of a failure
360 static void dio_cleanup(struct dio
*dio
)
362 while (dio_pages_present(dio
))
363 page_cache_release(dio_get_page(dio
));
367 * Wait for the next BIO to complete. Remove it and return it. NULL is
368 * returned once all BIOs have been completed. This must only be called once
369 * all bios have been issued so that dio->refcount can only decrease. This
370 * requires that that the caller hold a reference on the dio.
372 static struct bio
*dio_await_one(struct dio
*dio
)
375 struct bio
*bio
= NULL
;
377 spin_lock_irqsave(&dio
->bio_lock
, flags
);
380 * Wait as long as the list is empty and there are bios in flight. bio
381 * completion drops the count, maybe adds to the list, and wakes while
382 * holding the bio_lock so we don't need set_current_state()'s barrier
383 * and can call it after testing our condition.
385 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
386 __set_current_state(TASK_UNINTERRUPTIBLE
);
387 dio
->waiter
= current
;
388 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
390 /* wake up sets us TASK_RUNNING */
391 spin_lock_irqsave(&dio
->bio_lock
, flags
);
396 dio
->bio_list
= bio
->bi_private
;
398 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
403 * Process one completed BIO. No locks are held.
405 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
407 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
408 struct bio_vec
*bvec
= bio
->bi_io_vec
;
412 dio
->io_error
= -EIO
;
414 if (dio
->is_async
&& dio
->rw
== READ
) {
415 bio_check_pages_dirty(bio
); /* transfers ownership */
417 for (page_no
= 0; page_no
< bio
->bi_vcnt
; page_no
++) {
418 struct page
*page
= bvec
[page_no
].bv_page
;
420 if (dio
->rw
== READ
&& !PageCompound(page
))
421 set_page_dirty_lock(page
);
422 page_cache_release(page
);
426 return uptodate
? 0 : -EIO
;
430 * Wait on and process all in-flight BIOs. This must only be called once
431 * all bios have been issued so that the refcount can only decrease.
432 * This just waits for all bios to make it through dio_bio_complete. IO
433 * errors are propagated through dio->io_error and should be propagated via
436 static void dio_await_completion(struct dio
*dio
)
440 bio
= dio_await_one(dio
);
442 dio_bio_complete(dio
, bio
);
447 * A really large O_DIRECT read or write can generate a lot of BIOs. So
448 * to keep the memory consumption sane we periodically reap any completed BIOs
449 * during the BIO generation phase.
451 * This also helps to limit the peak amount of pinned userspace memory.
453 static int dio_bio_reap(struct dio
*dio
)
457 if (dio
->reap_counter
++ >= 64) {
458 while (dio
->bio_list
) {
463 spin_lock_irqsave(&dio
->bio_lock
, flags
);
465 dio
->bio_list
= bio
->bi_private
;
466 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
467 ret2
= dio_bio_complete(dio
, bio
);
471 dio
->reap_counter
= 0;
477 * Call into the fs to map some more disk blocks. We record the current number
478 * of available blocks at dio->blocks_available. These are in units of the
479 * fs blocksize, (1 << inode->i_blkbits).
481 * The fs is allowed to map lots of blocks at once. If it wants to do that,
482 * it uses the passed inode-relative block number as the file offset, as usual.
484 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
485 * has remaining to do. The fs should not map more than this number of blocks.
487 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
488 * indicate how much contiguous disk space has been made available at
491 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
492 * This isn't very efficient...
494 * In the case of filesystem holes: the fs may return an arbitrarily-large
495 * hole by returning an appropriate value in b_size and by clearing
496 * buffer_mapped(). However the direct-io code will only process holes one
497 * block at a time - it will repeatedly call get_block() as it walks the hole.
499 static int get_more_blocks(struct dio
*dio
)
502 struct buffer_head
*map_bh
= &dio
->map_bh
;
503 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
504 unsigned long fs_count
; /* Number of filesystem-sized blocks */
505 unsigned long dio_count
;/* Number of dio_block-sized blocks */
506 unsigned long blkmask
;
510 * If there was a memory error and we've overwritten all the
511 * mapped blocks then we can now return that memory error
513 ret
= dio
->page_errors
;
515 BUG_ON(dio
->block_in_file
>= dio
->final_block_in_request
);
516 fs_startblk
= dio
->block_in_file
>> dio
->blkfactor
;
517 dio_count
= dio
->final_block_in_request
- dio
->block_in_file
;
518 fs_count
= dio_count
>> dio
->blkfactor
;
519 blkmask
= (1 << dio
->blkfactor
) - 1;
520 if (dio_count
& blkmask
)
524 map_bh
->b_size
= fs_count
<< dio
->inode
->i_blkbits
;
526 create
= dio
->rw
& WRITE
;
527 if (dio
->lock_type
== DIO_LOCKING
) {
528 if (dio
->block_in_file
< (i_size_read(dio
->inode
) >>
531 } else if (dio
->lock_type
== DIO_NO_LOCKING
) {
536 * For writes inside i_size we forbid block creations: only
537 * overwrites are permitted. We fall back to buffered writes
538 * at a higher level for inside-i_size block-instantiating
541 ret
= (*dio
->get_block
)(dio
->inode
, fs_startblk
,
548 * There is no bio. Make one now.
550 static int dio_new_bio(struct dio
*dio
, sector_t start_sector
)
555 ret
= dio_bio_reap(dio
);
558 sector
= start_sector
<< (dio
->blkbits
- 9);
559 nr_pages
= min(dio
->pages_in_io
, bio_get_nr_vecs(dio
->map_bh
.b_bdev
));
560 BUG_ON(nr_pages
<= 0);
561 ret
= dio_bio_alloc(dio
, dio
->map_bh
.b_bdev
, sector
, nr_pages
);
568 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
569 * that was successful then update final_block_in_bio and take a ref against
570 * the just-added page.
572 * Return zero on success. Non-zero means the caller needs to start a new BIO.
574 static int dio_bio_add_page(struct dio
*dio
)
578 ret
= bio_add_page(dio
->bio
, dio
->cur_page
,
579 dio
->cur_page_len
, dio
->cur_page_offset
);
580 if (ret
== dio
->cur_page_len
) {
582 * Decrement count only, if we are done with this page
584 if ((dio
->cur_page_len
+ dio
->cur_page_offset
) == PAGE_SIZE
)
586 page_cache_get(dio
->cur_page
);
587 dio
->final_block_in_bio
= dio
->cur_page_block
+
588 (dio
->cur_page_len
>> dio
->blkbits
);
597 * Put cur_page under IO. The section of cur_page which is described by
598 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
599 * starts on-disk at cur_page_block.
601 * We take a ref against the page here (on behalf of its presence in the bio).
603 * The caller of this function is responsible for removing cur_page from the
604 * dio, and for dropping the refcount which came from that presence.
606 static int dio_send_cur_page(struct dio
*dio
)
612 * See whether this new request is contiguous with the old
614 if (dio
->final_block_in_bio
!= dio
->cur_page_block
)
617 * Submit now if the underlying fs is about to perform a
624 if (dio
->bio
== NULL
) {
625 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
630 if (dio_bio_add_page(dio
) != 0) {
632 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
634 ret
= dio_bio_add_page(dio
);
643 * An autonomous function to put a chunk of a page under deferred IO.
645 * The caller doesn't actually know (or care) whether this piece of page is in
646 * a BIO, or is under IO or whatever. We just take care of all possible
647 * situations here. The separation between the logic of do_direct_IO() and
648 * that of submit_page_section() is important for clarity. Please don't break.
650 * The chunk of page starts on-disk at blocknr.
652 * We perform deferred IO, by recording the last-submitted page inside our
653 * private part of the dio structure. If possible, we just expand the IO
654 * across that page here.
656 * If that doesn't work out then we put the old page into the bio and add this
657 * page to the dio instead.
660 submit_page_section(struct dio
*dio
, struct page
*page
,
661 unsigned offset
, unsigned len
, sector_t blocknr
)
665 if (dio
->rw
& WRITE
) {
667 * Read accounting is performed in submit_bio()
669 task_io_account_write(len
);
673 * Can we just grow the current page's presence in the dio?
675 if ( (dio
->cur_page
== page
) &&
676 (dio
->cur_page_offset
+ dio
->cur_page_len
== offset
) &&
677 (dio
->cur_page_block
+
678 (dio
->cur_page_len
>> dio
->blkbits
) == blocknr
)) {
679 dio
->cur_page_len
+= len
;
682 * If dio->boundary then we want to schedule the IO now to
683 * avoid metadata seeks.
686 ret
= dio_send_cur_page(dio
);
687 page_cache_release(dio
->cur_page
);
688 dio
->cur_page
= NULL
;
694 * If there's a deferred page already there then send it.
697 ret
= dio_send_cur_page(dio
);
698 page_cache_release(dio
->cur_page
);
699 dio
->cur_page
= NULL
;
704 page_cache_get(page
); /* It is in dio */
705 dio
->cur_page
= page
;
706 dio
->cur_page_offset
= offset
;
707 dio
->cur_page_len
= len
;
708 dio
->cur_page_block
= blocknr
;
714 * Clean any dirty buffers in the blockdev mapping which alias newly-created
715 * file blocks. Only called for S_ISREG files - blockdevs do not set
718 static void clean_blockdev_aliases(struct dio
*dio
)
723 nblocks
= dio
->map_bh
.b_size
>> dio
->inode
->i_blkbits
;
725 for (i
= 0; i
< nblocks
; i
++) {
726 unmap_underlying_metadata(dio
->map_bh
.b_bdev
,
727 dio
->map_bh
.b_blocknr
+ i
);
732 * If we are not writing the entire block and get_block() allocated
733 * the block for us, we need to fill-in the unused portion of the
734 * block with zeros. This happens only if user-buffer, fileoffset or
735 * io length is not filesystem block-size multiple.
737 * `end' is zero if we're doing the start of the IO, 1 at the end of the
740 static void dio_zero_block(struct dio
*dio
, int end
)
742 unsigned dio_blocks_per_fs_block
;
743 unsigned this_chunk_blocks
; /* In dio_blocks */
744 unsigned this_chunk_bytes
;
747 dio
->start_zero_done
= 1;
748 if (!dio
->blkfactor
|| !buffer_new(&dio
->map_bh
))
751 dio_blocks_per_fs_block
= 1 << dio
->blkfactor
;
752 this_chunk_blocks
= dio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
754 if (!this_chunk_blocks
)
758 * We need to zero out part of an fs block. It is either at the
759 * beginning or the end of the fs block.
762 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
764 this_chunk_bytes
= this_chunk_blocks
<< dio
->blkbits
;
766 page
= ZERO_PAGE(dio
->curr_user_address
);
767 if (submit_page_section(dio
, page
, 0, this_chunk_bytes
,
768 dio
->next_block_for_io
))
771 dio
->next_block_for_io
+= this_chunk_blocks
;
775 * Walk the user pages, and the file, mapping blocks to disk and generating
776 * a sequence of (page,offset,len,block) mappings. These mappings are injected
777 * into submit_page_section(), which takes care of the next stage of submission
779 * Direct IO against a blockdev is different from a file. Because we can
780 * happily perform page-sized but 512-byte aligned IOs. It is important that
781 * blockdev IO be able to have fine alignment and large sizes.
783 * So what we do is to permit the ->get_block function to populate bh.b_size
784 * with the size of IO which is permitted at this offset and this i_blkbits.
786 * For best results, the blockdev should be set up with 512-byte i_blkbits and
787 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
788 * fine alignment but still allows this function to work in PAGE_SIZE units.
790 static int do_direct_IO(struct dio
*dio
)
792 const unsigned blkbits
= dio
->blkbits
;
793 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
795 unsigned block_in_page
;
796 struct buffer_head
*map_bh
= &dio
->map_bh
;
799 /* The I/O can start at any block offset within the first page */
800 block_in_page
= dio
->first_block_in_page
;
802 while (dio
->block_in_file
< dio
->final_block_in_request
) {
803 page
= dio_get_page(dio
);
809 while (block_in_page
< blocks_per_page
) {
810 unsigned offset_in_page
= block_in_page
<< blkbits
;
811 unsigned this_chunk_bytes
; /* # of bytes mapped */
812 unsigned this_chunk_blocks
; /* # of blocks */
815 if (dio
->blocks_available
== 0) {
817 * Need to go and map some more disk
819 unsigned long blkmask
;
820 unsigned long dio_remainder
;
822 ret
= get_more_blocks(dio
);
824 page_cache_release(page
);
827 if (!buffer_mapped(map_bh
))
830 dio
->blocks_available
=
831 map_bh
->b_size
>> dio
->blkbits
;
832 dio
->next_block_for_io
=
833 map_bh
->b_blocknr
<< dio
->blkfactor
;
834 if (buffer_new(map_bh
))
835 clean_blockdev_aliases(dio
);
840 blkmask
= (1 << dio
->blkfactor
) - 1;
841 dio_remainder
= (dio
->block_in_file
& blkmask
);
844 * If we are at the start of IO and that IO
845 * starts partway into a fs-block,
846 * dio_remainder will be non-zero. If the IO
847 * is a read then we can simply advance the IO
848 * cursor to the first block which is to be
849 * read. But if the IO is a write and the
850 * block was newly allocated we cannot do that;
851 * the start of the fs block must be zeroed out
854 if (!buffer_new(map_bh
))
855 dio
->next_block_for_io
+= dio_remainder
;
856 dio
->blocks_available
-= dio_remainder
;
860 if (!buffer_mapped(map_bh
)) {
861 loff_t i_size_aligned
;
863 /* AKPM: eargh, -ENOTBLK is a hack */
864 if (dio
->rw
& WRITE
) {
865 page_cache_release(page
);
870 * Be sure to account for a partial block as the
871 * last block in the file
873 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
875 if (dio
->block_in_file
>=
876 i_size_aligned
>> blkbits
) {
878 page_cache_release(page
);
881 zero_user_page(page
, block_in_page
<< blkbits
,
882 1 << blkbits
, KM_USER0
);
883 dio
->block_in_file
++;
889 * If we're performing IO which has an alignment which
890 * is finer than the underlying fs, go check to see if
891 * we must zero out the start of this block.
893 if (unlikely(dio
->blkfactor
&& !dio
->start_zero_done
))
894 dio_zero_block(dio
, 0);
897 * Work out, in this_chunk_blocks, how much disk we
898 * can add to this page
900 this_chunk_blocks
= dio
->blocks_available
;
901 u
= (PAGE_SIZE
- offset_in_page
) >> blkbits
;
902 if (this_chunk_blocks
> u
)
903 this_chunk_blocks
= u
;
904 u
= dio
->final_block_in_request
- dio
->block_in_file
;
905 if (this_chunk_blocks
> u
)
906 this_chunk_blocks
= u
;
907 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
908 BUG_ON(this_chunk_bytes
== 0);
910 dio
->boundary
= buffer_boundary(map_bh
);
911 ret
= submit_page_section(dio
, page
, offset_in_page
,
912 this_chunk_bytes
, dio
->next_block_for_io
);
914 page_cache_release(page
);
917 dio
->next_block_for_io
+= this_chunk_blocks
;
919 dio
->block_in_file
+= this_chunk_blocks
;
920 block_in_page
+= this_chunk_blocks
;
921 dio
->blocks_available
-= this_chunk_blocks
;
923 BUG_ON(dio
->block_in_file
> dio
->final_block_in_request
);
924 if (dio
->block_in_file
== dio
->final_block_in_request
)
928 /* Drop the ref which was taken in get_user_pages() */
929 page_cache_release(page
);
937 * Releases both i_mutex and i_alloc_sem
940 direct_io_worker(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
941 const struct iovec
*iov
, loff_t offset
, unsigned long nr_segs
,
942 unsigned blkbits
, get_block_t get_block
, dio_iodone_t end_io
,
945 unsigned long user_addr
;
954 dio
->blkbits
= blkbits
;
955 dio
->blkfactor
= inode
->i_blkbits
- blkbits
;
956 dio
->block_in_file
= offset
>> blkbits
;
958 dio
->get_block
= get_block
;
959 dio
->end_io
= end_io
;
960 dio
->final_block_in_bio
= -1;
961 dio
->next_block_for_io
= -1;
964 dio
->i_size
= i_size_read(inode
);
966 spin_lock_init(&dio
->bio_lock
);
970 * In case of non-aligned buffers, we may need 2 more
971 * pages since we need to zero out first and last block.
973 if (unlikely(dio
->blkfactor
))
974 dio
->pages_in_io
= 2;
976 for (seg
= 0; seg
< nr_segs
; seg
++) {
977 user_addr
= (unsigned long)iov
[seg
].iov_base
;
979 ((user_addr
+iov
[seg
].iov_len
+PAGE_SIZE
-1)/PAGE_SIZE
980 - user_addr
/PAGE_SIZE
);
983 for (seg
= 0; seg
< nr_segs
; seg
++) {
984 user_addr
= (unsigned long)iov
[seg
].iov_base
;
985 dio
->size
+= bytes
= iov
[seg
].iov_len
;
987 /* Index into the first page of the first block */
988 dio
->first_block_in_page
= (user_addr
& ~PAGE_MASK
) >> blkbits
;
989 dio
->final_block_in_request
= dio
->block_in_file
+
991 /* Page fetching state */
996 dio
->total_pages
= 0;
997 if (user_addr
& (PAGE_SIZE
-1)) {
999 bytes
-= PAGE_SIZE
- (user_addr
& (PAGE_SIZE
- 1));
1001 dio
->total_pages
+= (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1002 dio
->curr_user_address
= user_addr
;
1004 ret
= do_direct_IO(dio
);
1006 dio
->result
+= iov
[seg
].iov_len
-
1007 ((dio
->final_block_in_request
- dio
->block_in_file
) <<
1014 } /* end iovec loop */
1016 if (ret
== -ENOTBLK
&& (rw
& WRITE
)) {
1018 * The remaining part of the request will be
1019 * be handled by buffered I/O when we return
1024 * There may be some unwritten disk at the end of a part-written
1025 * fs-block-sized block. Go zero that now.
1027 dio_zero_block(dio
, 1);
1029 if (dio
->cur_page
) {
1030 ret2
= dio_send_cur_page(dio
);
1033 page_cache_release(dio
->cur_page
);
1034 dio
->cur_page
= NULL
;
1037 dio_bio_submit(dio
);
1039 /* All IO is now issued, send it on its way */
1040 blk_run_address_space(inode
->i_mapping
);
1043 * It is possible that, we return short IO due to end of file.
1044 * In that case, we need to release all the pages we got hold on.
1049 * All block lookups have been performed. For READ requests
1050 * we can let i_mutex go now that its achieved its purpose
1051 * of protecting us from looking up uninitialized blocks.
1053 if ((rw
== READ
) && (dio
->lock_type
== DIO_LOCKING
))
1054 mutex_unlock(&dio
->inode
->i_mutex
);
1057 * The only time we want to leave bios in flight is when a successful
1058 * partial aio read or full aio write have been setup. In that case
1059 * bio completion will call aio_complete. The only time it's safe to
1060 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1061 * This had *better* be the only place that raises -EIOCBQUEUED.
1063 BUG_ON(ret
== -EIOCBQUEUED
);
1064 if (dio
->is_async
&& ret
== 0 && dio
->result
&&
1065 ((rw
& READ
) || (dio
->result
== dio
->size
)))
1068 if (ret
!= -EIOCBQUEUED
)
1069 dio_await_completion(dio
);
1072 * Sync will always be dropping the final ref and completing the
1073 * operation. AIO can if it was a broken operation described above or
1074 * in fact if all the bios race to complete before we get here. In
1075 * that case dio_complete() translates the EIOCBQUEUED into the proper
1076 * return code that the caller will hand to aio_complete().
1078 * This is managed by the bio_lock instead of being an atomic_t so that
1079 * completion paths can drop their ref and use the remaining count to
1080 * decide to wake the submission path atomically.
1082 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1083 ret2
= --dio
->refcount
;
1084 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1087 ret
= dio_complete(dio
, offset
, ret
);
1090 BUG_ON(ret
!= -EIOCBQUEUED
);
1096 * This is a library function for use by filesystem drivers.
1097 * The locking rules are governed by the dio_lock_type parameter.
1099 * DIO_NO_LOCKING (no locking, for raw block device access)
1100 * For writes, i_mutex is not held on entry; it is never taken.
1102 * DIO_LOCKING (simple locking for regular files)
1103 * For writes we are called under i_mutex and return with i_mutex held, even
1104 * though it is internally dropped.
1105 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1108 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1109 * uninitialised data, allowing parallel direct readers and writers)
1110 * For writes we are called without i_mutex, return without it, never touch it.
1111 * For reads we are called under i_mutex and return with i_mutex held, even
1112 * though it may be internally dropped.
1114 * Additional i_alloc_sem locking requirements described inline below.
1117 __blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1118 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1119 unsigned long nr_segs
, get_block_t get_block
, dio_iodone_t end_io
,
1125 unsigned blkbits
= inode
->i_blkbits
;
1126 unsigned bdev_blkbits
= 0;
1127 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1128 ssize_t retval
= -EINVAL
;
1129 loff_t end
= offset
;
1131 int release_i_mutex
= 0;
1132 int acquire_i_mutex
= 0;
1138 bdev_blkbits
= blksize_bits(bdev_hardsect_size(bdev
));
1140 if (offset
& blocksize_mask
) {
1142 blkbits
= bdev_blkbits
;
1143 blocksize_mask
= (1 << blkbits
) - 1;
1144 if (offset
& blocksize_mask
)
1148 /* Check the memory alignment. Blocks cannot straddle pages */
1149 for (seg
= 0; seg
< nr_segs
; seg
++) {
1150 addr
= (unsigned long)iov
[seg
].iov_base
;
1151 size
= iov
[seg
].iov_len
;
1153 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
)) {
1155 blkbits
= bdev_blkbits
;
1156 blocksize_mask
= (1 << blkbits
) - 1;
1157 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
1162 dio
= kzalloc(sizeof(*dio
), GFP_KERNEL
);
1168 * For block device access DIO_NO_LOCKING is used,
1169 * neither readers nor writers do any locking at all
1170 * For regular files using DIO_LOCKING,
1171 * readers need to grab i_mutex and i_alloc_sem
1172 * writers need to grab i_alloc_sem only (i_mutex is already held)
1173 * For regular files using DIO_OWN_LOCKING,
1174 * neither readers nor writers take any locks here
1176 dio
->lock_type
= dio_lock_type
;
1177 if (dio_lock_type
!= DIO_NO_LOCKING
) {
1178 /* watch out for a 0 len io from a tricksy fs */
1179 if (rw
== READ
&& end
> offset
) {
1180 struct address_space
*mapping
;
1182 mapping
= iocb
->ki_filp
->f_mapping
;
1183 if (dio_lock_type
!= DIO_OWN_LOCKING
) {
1184 mutex_lock(&inode
->i_mutex
);
1185 release_i_mutex
= 1;
1188 retval
= filemap_write_and_wait_range(mapping
, offset
,
1195 if (dio_lock_type
== DIO_OWN_LOCKING
) {
1196 mutex_unlock(&inode
->i_mutex
);
1197 acquire_i_mutex
= 1;
1201 if (dio_lock_type
== DIO_LOCKING
)
1202 /* lockdep: not the owner will release it */
1203 down_read_non_owner(&inode
->i_alloc_sem
);
1207 * For file extending writes updating i_size before data
1208 * writeouts complete can expose uninitialized blocks. So
1209 * even for AIO, we need to wait for i/o to complete before
1210 * returning in this case.
1212 dio
->is_async
= !is_sync_kiocb(iocb
) && !((rw
& WRITE
) &&
1213 (end
> i_size_read(inode
)));
1215 retval
= direct_io_worker(rw
, iocb
, inode
, iov
, offset
,
1216 nr_segs
, blkbits
, get_block
, end_io
, dio
);
1218 if (rw
== READ
&& dio_lock_type
== DIO_LOCKING
)
1219 release_i_mutex
= 0;
1222 if (release_i_mutex
)
1223 mutex_unlock(&inode
->i_mutex
);
1224 else if (acquire_i_mutex
)
1225 mutex_lock(&inode
->i_mutex
);
1228 EXPORT_SYMBOL(__blockdev_direct_IO
);