BF54x LQ043 Framebuffer driver: Update copyright on previously modified files
[linux-2.6/openmoko-kernel.git] / mm / hugetlb.c
blob74c1b6b0b37b82dce75e06533c989ab73001afeb
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
43 static void clear_huge_page(struct page *page, unsigned long addr)
45 int i;
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
57 int i;
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
66 static void enqueue_huge_page(struct page *page)
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
74 static struct page *dequeue_huge_page(void)
76 int nid;
77 struct page *page = NULL;
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
89 return page;
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
95 int nid;
96 struct page *page = NULL;
97 struct mempolicy *mpol;
98 struct zonelist *zonelist = huge_zonelist(vma, address,
99 htlb_alloc_mask, &mpol);
100 struct zone **z;
102 for (z = zonelist->zones; *z; z++) {
103 nid = zone_to_nid(*z);
104 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
105 !list_empty(&hugepage_freelists[nid])) {
106 page = list_entry(hugepage_freelists[nid].next,
107 struct page, lru);
108 list_del(&page->lru);
109 free_huge_pages--;
110 free_huge_pages_node[nid]--;
111 if (vma && vma->vm_flags & VM_MAYSHARE)
112 resv_huge_pages--;
113 break;
116 mpol_free(mpol); /* unref if mpol !NULL */
117 return page;
120 static void update_and_free_page(struct page *page)
122 int i;
123 nr_huge_pages--;
124 nr_huge_pages_node[page_to_nid(page)]--;
125 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
126 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
127 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
128 1 << PG_private | 1<< PG_writeback);
130 set_compound_page_dtor(page, NULL);
131 set_page_refcounted(page);
132 __free_pages(page, HUGETLB_PAGE_ORDER);
135 static void free_huge_page(struct page *page)
137 int nid = page_to_nid(page);
138 struct address_space *mapping;
140 mapping = (struct address_space *) page_private(page);
141 set_page_private(page, 0);
142 BUG_ON(page_count(page));
143 INIT_LIST_HEAD(&page->lru);
145 spin_lock(&hugetlb_lock);
146 if (surplus_huge_pages_node[nid]) {
147 update_and_free_page(page);
148 surplus_huge_pages--;
149 surplus_huge_pages_node[nid]--;
150 } else {
151 enqueue_huge_page(page);
153 spin_unlock(&hugetlb_lock);
154 if (mapping)
155 hugetlb_put_quota(mapping, 1);
159 * Increment or decrement surplus_huge_pages. Keep node-specific counters
160 * balanced by operating on them in a round-robin fashion.
161 * Returns 1 if an adjustment was made.
163 static int adjust_pool_surplus(int delta)
165 static int prev_nid;
166 int nid = prev_nid;
167 int ret = 0;
169 VM_BUG_ON(delta != -1 && delta != 1);
170 do {
171 nid = next_node(nid, node_online_map);
172 if (nid == MAX_NUMNODES)
173 nid = first_node(node_online_map);
175 /* To shrink on this node, there must be a surplus page */
176 if (delta < 0 && !surplus_huge_pages_node[nid])
177 continue;
178 /* Surplus cannot exceed the total number of pages */
179 if (delta > 0 && surplus_huge_pages_node[nid] >=
180 nr_huge_pages_node[nid])
181 continue;
183 surplus_huge_pages += delta;
184 surplus_huge_pages_node[nid] += delta;
185 ret = 1;
186 break;
187 } while (nid != prev_nid);
189 prev_nid = nid;
190 return ret;
193 static struct page *alloc_fresh_huge_page_node(int nid)
195 struct page *page;
197 page = alloc_pages_node(nid,
198 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
199 HUGETLB_PAGE_ORDER);
200 if (page) {
201 set_compound_page_dtor(page, free_huge_page);
202 spin_lock(&hugetlb_lock);
203 nr_huge_pages++;
204 nr_huge_pages_node[nid]++;
205 spin_unlock(&hugetlb_lock);
206 put_page(page); /* free it into the hugepage allocator */
209 return page;
212 static int alloc_fresh_huge_page(void)
214 struct page *page;
215 int start_nid;
216 int next_nid;
217 int ret = 0;
219 start_nid = hugetlb_next_nid;
221 do {
222 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
223 if (page)
224 ret = 1;
226 * Use a helper variable to find the next node and then
227 * copy it back to hugetlb_next_nid afterwards:
228 * otherwise there's a window in which a racer might
229 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
230 * But we don't need to use a spin_lock here: it really
231 * doesn't matter if occasionally a racer chooses the
232 * same nid as we do. Move nid forward in the mask even
233 * if we just successfully allocated a hugepage so that
234 * the next caller gets hugepages on the next node.
236 next_nid = next_node(hugetlb_next_nid, node_online_map);
237 if (next_nid == MAX_NUMNODES)
238 next_nid = first_node(node_online_map);
239 hugetlb_next_nid = next_nid;
240 } while (!page && hugetlb_next_nid != start_nid);
242 return ret;
245 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
246 unsigned long address)
248 struct page *page;
249 unsigned int nid;
252 * Assume we will successfully allocate the surplus page to
253 * prevent racing processes from causing the surplus to exceed
254 * overcommit
256 * This however introduces a different race, where a process B
257 * tries to grow the static hugepage pool while alloc_pages() is
258 * called by process A. B will only examine the per-node
259 * counters in determining if surplus huge pages can be
260 * converted to normal huge pages in adjust_pool_surplus(). A
261 * won't be able to increment the per-node counter, until the
262 * lock is dropped by B, but B doesn't drop hugetlb_lock until
263 * no more huge pages can be converted from surplus to normal
264 * state (and doesn't try to convert again). Thus, we have a
265 * case where a surplus huge page exists, the pool is grown, and
266 * the surplus huge page still exists after, even though it
267 * should just have been converted to a normal huge page. This
268 * does not leak memory, though, as the hugepage will be freed
269 * once it is out of use. It also does not allow the counters to
270 * go out of whack in adjust_pool_surplus() as we don't modify
271 * the node values until we've gotten the hugepage and only the
272 * per-node value is checked there.
274 spin_lock(&hugetlb_lock);
275 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
276 spin_unlock(&hugetlb_lock);
277 return NULL;
278 } else {
279 nr_huge_pages++;
280 surplus_huge_pages++;
282 spin_unlock(&hugetlb_lock);
284 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
285 HUGETLB_PAGE_ORDER);
287 spin_lock(&hugetlb_lock);
288 if (page) {
290 * This page is now managed by the hugetlb allocator and has
291 * no users -- drop the buddy allocator's reference.
293 put_page_testzero(page);
294 VM_BUG_ON(page_count(page));
295 nid = page_to_nid(page);
296 set_compound_page_dtor(page, free_huge_page);
298 * We incremented the global counters already
300 nr_huge_pages_node[nid]++;
301 surplus_huge_pages_node[nid]++;
302 } else {
303 nr_huge_pages--;
304 surplus_huge_pages--;
306 spin_unlock(&hugetlb_lock);
308 return page;
312 * Increase the hugetlb pool such that it can accomodate a reservation
313 * of size 'delta'.
315 static int gather_surplus_pages(int delta)
317 struct list_head surplus_list;
318 struct page *page, *tmp;
319 int ret, i;
320 int needed, allocated;
322 needed = (resv_huge_pages + delta) - free_huge_pages;
323 if (needed <= 0) {
324 resv_huge_pages += delta;
325 return 0;
328 allocated = 0;
329 INIT_LIST_HEAD(&surplus_list);
331 ret = -ENOMEM;
332 retry:
333 spin_unlock(&hugetlb_lock);
334 for (i = 0; i < needed; i++) {
335 page = alloc_buddy_huge_page(NULL, 0);
336 if (!page) {
338 * We were not able to allocate enough pages to
339 * satisfy the entire reservation so we free what
340 * we've allocated so far.
342 spin_lock(&hugetlb_lock);
343 needed = 0;
344 goto free;
347 list_add(&page->lru, &surplus_list);
349 allocated += needed;
352 * After retaking hugetlb_lock, we need to recalculate 'needed'
353 * because either resv_huge_pages or free_huge_pages may have changed.
355 spin_lock(&hugetlb_lock);
356 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
357 if (needed > 0)
358 goto retry;
361 * The surplus_list now contains _at_least_ the number of extra pages
362 * needed to accomodate the reservation. Add the appropriate number
363 * of pages to the hugetlb pool and free the extras back to the buddy
364 * allocator. Commit the entire reservation here to prevent another
365 * process from stealing the pages as they are added to the pool but
366 * before they are reserved.
368 needed += allocated;
369 resv_huge_pages += delta;
370 ret = 0;
371 free:
372 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
373 list_del(&page->lru);
374 if ((--needed) >= 0)
375 enqueue_huge_page(page);
376 else {
378 * The page has a reference count of zero already, so
379 * call free_huge_page directly instead of using
380 * put_page. This must be done with hugetlb_lock
381 * unlocked which is safe because free_huge_page takes
382 * hugetlb_lock before deciding how to free the page.
384 spin_unlock(&hugetlb_lock);
385 free_huge_page(page);
386 spin_lock(&hugetlb_lock);
390 return ret;
394 * When releasing a hugetlb pool reservation, any surplus pages that were
395 * allocated to satisfy the reservation must be explicitly freed if they were
396 * never used.
398 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
400 static int nid = -1;
401 struct page *page;
402 unsigned long nr_pages;
404 /* Uncommit the reservation */
405 resv_huge_pages -= unused_resv_pages;
407 nr_pages = min(unused_resv_pages, surplus_huge_pages);
409 while (nr_pages) {
410 nid = next_node(nid, node_online_map);
411 if (nid == MAX_NUMNODES)
412 nid = first_node(node_online_map);
414 if (!surplus_huge_pages_node[nid])
415 continue;
417 if (!list_empty(&hugepage_freelists[nid])) {
418 page = list_entry(hugepage_freelists[nid].next,
419 struct page, lru);
420 list_del(&page->lru);
421 update_and_free_page(page);
422 free_huge_pages--;
423 free_huge_pages_node[nid]--;
424 surplus_huge_pages--;
425 surplus_huge_pages_node[nid]--;
426 nr_pages--;
432 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
433 unsigned long addr)
435 struct page *page;
437 spin_lock(&hugetlb_lock);
438 page = dequeue_huge_page_vma(vma, addr);
439 spin_unlock(&hugetlb_lock);
440 return page ? page : ERR_PTR(-VM_FAULT_OOM);
443 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
444 unsigned long addr)
446 struct page *page = NULL;
448 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
449 return ERR_PTR(-VM_FAULT_SIGBUS);
451 spin_lock(&hugetlb_lock);
452 if (free_huge_pages > resv_huge_pages)
453 page = dequeue_huge_page_vma(vma, addr);
454 spin_unlock(&hugetlb_lock);
455 if (!page) {
456 page = alloc_buddy_huge_page(vma, addr);
457 if (!page) {
458 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
459 return ERR_PTR(-VM_FAULT_OOM);
462 return page;
465 static struct page *alloc_huge_page(struct vm_area_struct *vma,
466 unsigned long addr)
468 struct page *page;
469 struct address_space *mapping = vma->vm_file->f_mapping;
471 if (vma->vm_flags & VM_MAYSHARE)
472 page = alloc_huge_page_shared(vma, addr);
473 else
474 page = alloc_huge_page_private(vma, addr);
476 if (!IS_ERR(page)) {
477 set_page_refcounted(page);
478 set_page_private(page, (unsigned long) mapping);
480 return page;
483 static int __init hugetlb_init(void)
485 unsigned long i;
487 if (HPAGE_SHIFT == 0)
488 return 0;
490 for (i = 0; i < MAX_NUMNODES; ++i)
491 INIT_LIST_HEAD(&hugepage_freelists[i]);
493 hugetlb_next_nid = first_node(node_online_map);
495 for (i = 0; i < max_huge_pages; ++i) {
496 if (!alloc_fresh_huge_page())
497 break;
499 max_huge_pages = free_huge_pages = nr_huge_pages = i;
500 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
501 return 0;
503 module_init(hugetlb_init);
505 static int __init hugetlb_setup(char *s)
507 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
508 max_huge_pages = 0;
509 return 1;
511 __setup("hugepages=", hugetlb_setup);
513 static unsigned int cpuset_mems_nr(unsigned int *array)
515 int node;
516 unsigned int nr = 0;
518 for_each_node_mask(node, cpuset_current_mems_allowed)
519 nr += array[node];
521 return nr;
524 #ifdef CONFIG_SYSCTL
525 #ifdef CONFIG_HIGHMEM
526 static void try_to_free_low(unsigned long count)
528 int i;
530 for (i = 0; i < MAX_NUMNODES; ++i) {
531 struct page *page, *next;
532 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
533 if (count >= nr_huge_pages)
534 return;
535 if (PageHighMem(page))
536 continue;
537 list_del(&page->lru);
538 update_and_free_page(page);
539 free_huge_pages--;
540 free_huge_pages_node[page_to_nid(page)]--;
544 #else
545 static inline void try_to_free_low(unsigned long count)
548 #endif
550 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
551 static unsigned long set_max_huge_pages(unsigned long count)
553 unsigned long min_count, ret;
556 * Increase the pool size
557 * First take pages out of surplus state. Then make up the
558 * remaining difference by allocating fresh huge pages.
560 * We might race with alloc_buddy_huge_page() here and be unable
561 * to convert a surplus huge page to a normal huge page. That is
562 * not critical, though, it just means the overall size of the
563 * pool might be one hugepage larger than it needs to be, but
564 * within all the constraints specified by the sysctls.
566 spin_lock(&hugetlb_lock);
567 while (surplus_huge_pages && count > persistent_huge_pages) {
568 if (!adjust_pool_surplus(-1))
569 break;
572 while (count > persistent_huge_pages) {
573 int ret;
575 * If this allocation races such that we no longer need the
576 * page, free_huge_page will handle it by freeing the page
577 * and reducing the surplus.
579 spin_unlock(&hugetlb_lock);
580 ret = alloc_fresh_huge_page();
581 spin_lock(&hugetlb_lock);
582 if (!ret)
583 goto out;
588 * Decrease the pool size
589 * First return free pages to the buddy allocator (being careful
590 * to keep enough around to satisfy reservations). Then place
591 * pages into surplus state as needed so the pool will shrink
592 * to the desired size as pages become free.
594 * By placing pages into the surplus state independent of the
595 * overcommit value, we are allowing the surplus pool size to
596 * exceed overcommit. There are few sane options here. Since
597 * alloc_buddy_huge_page() is checking the global counter,
598 * though, we'll note that we're not allowed to exceed surplus
599 * and won't grow the pool anywhere else. Not until one of the
600 * sysctls are changed, or the surplus pages go out of use.
602 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
603 min_count = max(count, min_count);
604 try_to_free_low(min_count);
605 while (min_count < persistent_huge_pages) {
606 struct page *page = dequeue_huge_page();
607 if (!page)
608 break;
609 update_and_free_page(page);
611 while (count < persistent_huge_pages) {
612 if (!adjust_pool_surplus(1))
613 break;
615 out:
616 ret = persistent_huge_pages;
617 spin_unlock(&hugetlb_lock);
618 return ret;
621 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
622 struct file *file, void __user *buffer,
623 size_t *length, loff_t *ppos)
625 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
626 max_huge_pages = set_max_huge_pages(max_huge_pages);
627 return 0;
630 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
631 struct file *file, void __user *buffer,
632 size_t *length, loff_t *ppos)
634 proc_dointvec(table, write, file, buffer, length, ppos);
635 if (hugepages_treat_as_movable)
636 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
637 else
638 htlb_alloc_mask = GFP_HIGHUSER;
639 return 0;
642 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
643 struct file *file, void __user *buffer,
644 size_t *length, loff_t *ppos)
646 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
647 spin_lock(&hugetlb_lock);
648 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
649 spin_unlock(&hugetlb_lock);
650 return 0;
653 #endif /* CONFIG_SYSCTL */
655 int hugetlb_report_meminfo(char *buf)
657 return sprintf(buf,
658 "HugePages_Total: %5lu\n"
659 "HugePages_Free: %5lu\n"
660 "HugePages_Rsvd: %5lu\n"
661 "HugePages_Surp: %5lu\n"
662 "Hugepagesize: %5lu kB\n",
663 nr_huge_pages,
664 free_huge_pages,
665 resv_huge_pages,
666 surplus_huge_pages,
667 HPAGE_SIZE/1024);
670 int hugetlb_report_node_meminfo(int nid, char *buf)
672 return sprintf(buf,
673 "Node %d HugePages_Total: %5u\n"
674 "Node %d HugePages_Free: %5u\n",
675 nid, nr_huge_pages_node[nid],
676 nid, free_huge_pages_node[nid]);
679 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
680 unsigned long hugetlb_total_pages(void)
682 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
686 * We cannot handle pagefaults against hugetlb pages at all. They cause
687 * handle_mm_fault() to try to instantiate regular-sized pages in the
688 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
689 * this far.
691 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
693 BUG();
694 return 0;
697 struct vm_operations_struct hugetlb_vm_ops = {
698 .fault = hugetlb_vm_op_fault,
701 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
702 int writable)
704 pte_t entry;
706 if (writable) {
707 entry =
708 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
709 } else {
710 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
712 entry = pte_mkyoung(entry);
713 entry = pte_mkhuge(entry);
715 return entry;
718 static void set_huge_ptep_writable(struct vm_area_struct *vma,
719 unsigned long address, pte_t *ptep)
721 pte_t entry;
723 entry = pte_mkwrite(pte_mkdirty(*ptep));
724 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
725 update_mmu_cache(vma, address, entry);
730 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
731 struct vm_area_struct *vma)
733 pte_t *src_pte, *dst_pte, entry;
734 struct page *ptepage;
735 unsigned long addr;
736 int cow;
738 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
740 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
741 src_pte = huge_pte_offset(src, addr);
742 if (!src_pte)
743 continue;
744 dst_pte = huge_pte_alloc(dst, addr);
745 if (!dst_pte)
746 goto nomem;
748 /* If the pagetables are shared don't copy or take references */
749 if (dst_pte == src_pte)
750 continue;
752 spin_lock(&dst->page_table_lock);
753 spin_lock(&src->page_table_lock);
754 if (!pte_none(*src_pte)) {
755 if (cow)
756 ptep_set_wrprotect(src, addr, src_pte);
757 entry = *src_pte;
758 ptepage = pte_page(entry);
759 get_page(ptepage);
760 set_huge_pte_at(dst, addr, dst_pte, entry);
762 spin_unlock(&src->page_table_lock);
763 spin_unlock(&dst->page_table_lock);
765 return 0;
767 nomem:
768 return -ENOMEM;
771 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
772 unsigned long end)
774 struct mm_struct *mm = vma->vm_mm;
775 unsigned long address;
776 pte_t *ptep;
777 pte_t pte;
778 struct page *page;
779 struct page *tmp;
781 * A page gathering list, protected by per file i_mmap_lock. The
782 * lock is used to avoid list corruption from multiple unmapping
783 * of the same page since we are using page->lru.
785 LIST_HEAD(page_list);
787 WARN_ON(!is_vm_hugetlb_page(vma));
788 BUG_ON(start & ~HPAGE_MASK);
789 BUG_ON(end & ~HPAGE_MASK);
791 spin_lock(&mm->page_table_lock);
792 for (address = start; address < end; address += HPAGE_SIZE) {
793 ptep = huge_pte_offset(mm, address);
794 if (!ptep)
795 continue;
797 if (huge_pmd_unshare(mm, &address, ptep))
798 continue;
800 pte = huge_ptep_get_and_clear(mm, address, ptep);
801 if (pte_none(pte))
802 continue;
804 page = pte_page(pte);
805 if (pte_dirty(pte))
806 set_page_dirty(page);
807 list_add(&page->lru, &page_list);
809 spin_unlock(&mm->page_table_lock);
810 flush_tlb_range(vma, start, end);
811 list_for_each_entry_safe(page, tmp, &page_list, lru) {
812 list_del(&page->lru);
813 put_page(page);
817 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
818 unsigned long end)
821 * It is undesirable to test vma->vm_file as it should be non-null
822 * for valid hugetlb area. However, vm_file will be NULL in the error
823 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
824 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
825 * to clean up. Since no pte has actually been setup, it is safe to
826 * do nothing in this case.
828 if (vma->vm_file) {
829 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
830 __unmap_hugepage_range(vma, start, end);
831 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
835 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
836 unsigned long address, pte_t *ptep, pte_t pte)
838 struct page *old_page, *new_page;
839 int avoidcopy;
841 old_page = pte_page(pte);
843 /* If no-one else is actually using this page, avoid the copy
844 * and just make the page writable */
845 avoidcopy = (page_count(old_page) == 1);
846 if (avoidcopy) {
847 set_huge_ptep_writable(vma, address, ptep);
848 return 0;
851 page_cache_get(old_page);
852 new_page = alloc_huge_page(vma, address);
854 if (IS_ERR(new_page)) {
855 page_cache_release(old_page);
856 return -PTR_ERR(new_page);
859 spin_unlock(&mm->page_table_lock);
860 copy_huge_page(new_page, old_page, address, vma);
861 __SetPageUptodate(new_page);
862 spin_lock(&mm->page_table_lock);
864 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
865 if (likely(pte_same(*ptep, pte))) {
866 /* Break COW */
867 set_huge_pte_at(mm, address, ptep,
868 make_huge_pte(vma, new_page, 1));
869 /* Make the old page be freed below */
870 new_page = old_page;
872 page_cache_release(new_page);
873 page_cache_release(old_page);
874 return 0;
877 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
878 unsigned long address, pte_t *ptep, int write_access)
880 int ret = VM_FAULT_SIGBUS;
881 unsigned long idx;
882 unsigned long size;
883 struct page *page;
884 struct address_space *mapping;
885 pte_t new_pte;
887 mapping = vma->vm_file->f_mapping;
888 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
889 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
892 * Use page lock to guard against racing truncation
893 * before we get page_table_lock.
895 retry:
896 page = find_lock_page(mapping, idx);
897 if (!page) {
898 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
899 if (idx >= size)
900 goto out;
901 page = alloc_huge_page(vma, address);
902 if (IS_ERR(page)) {
903 ret = -PTR_ERR(page);
904 goto out;
906 clear_huge_page(page, address);
907 __SetPageUptodate(page);
909 if (vma->vm_flags & VM_SHARED) {
910 int err;
911 struct inode *inode = mapping->host;
913 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
914 if (err) {
915 put_page(page);
916 if (err == -EEXIST)
917 goto retry;
918 goto out;
921 spin_lock(&inode->i_lock);
922 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
923 spin_unlock(&inode->i_lock);
924 } else
925 lock_page(page);
928 spin_lock(&mm->page_table_lock);
929 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
930 if (idx >= size)
931 goto backout;
933 ret = 0;
934 if (!pte_none(*ptep))
935 goto backout;
937 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
938 && (vma->vm_flags & VM_SHARED)));
939 set_huge_pte_at(mm, address, ptep, new_pte);
941 if (write_access && !(vma->vm_flags & VM_SHARED)) {
942 /* Optimization, do the COW without a second fault */
943 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
946 spin_unlock(&mm->page_table_lock);
947 unlock_page(page);
948 out:
949 return ret;
951 backout:
952 spin_unlock(&mm->page_table_lock);
953 unlock_page(page);
954 put_page(page);
955 goto out;
958 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
959 unsigned long address, int write_access)
961 pte_t *ptep;
962 pte_t entry;
963 int ret;
964 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
966 ptep = huge_pte_alloc(mm, address);
967 if (!ptep)
968 return VM_FAULT_OOM;
971 * Serialize hugepage allocation and instantiation, so that we don't
972 * get spurious allocation failures if two CPUs race to instantiate
973 * the same page in the page cache.
975 mutex_lock(&hugetlb_instantiation_mutex);
976 entry = *ptep;
977 if (pte_none(entry)) {
978 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
979 mutex_unlock(&hugetlb_instantiation_mutex);
980 return ret;
983 ret = 0;
985 spin_lock(&mm->page_table_lock);
986 /* Check for a racing update before calling hugetlb_cow */
987 if (likely(pte_same(entry, *ptep)))
988 if (write_access && !pte_write(entry))
989 ret = hugetlb_cow(mm, vma, address, ptep, entry);
990 spin_unlock(&mm->page_table_lock);
991 mutex_unlock(&hugetlb_instantiation_mutex);
993 return ret;
996 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
997 struct page **pages, struct vm_area_struct **vmas,
998 unsigned long *position, int *length, int i,
999 int write)
1001 unsigned long pfn_offset;
1002 unsigned long vaddr = *position;
1003 int remainder = *length;
1005 spin_lock(&mm->page_table_lock);
1006 while (vaddr < vma->vm_end && remainder) {
1007 pte_t *pte;
1008 struct page *page;
1011 * Some archs (sparc64, sh*) have multiple pte_ts to
1012 * each hugepage. We have to make * sure we get the
1013 * first, for the page indexing below to work.
1015 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1017 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1018 int ret;
1020 spin_unlock(&mm->page_table_lock);
1021 ret = hugetlb_fault(mm, vma, vaddr, write);
1022 spin_lock(&mm->page_table_lock);
1023 if (!(ret & VM_FAULT_ERROR))
1024 continue;
1026 remainder = 0;
1027 if (!i)
1028 i = -EFAULT;
1029 break;
1032 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1033 page = pte_page(*pte);
1034 same_page:
1035 if (pages) {
1036 get_page(page);
1037 pages[i] = page + pfn_offset;
1040 if (vmas)
1041 vmas[i] = vma;
1043 vaddr += PAGE_SIZE;
1044 ++pfn_offset;
1045 --remainder;
1046 ++i;
1047 if (vaddr < vma->vm_end && remainder &&
1048 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1050 * We use pfn_offset to avoid touching the pageframes
1051 * of this compound page.
1053 goto same_page;
1056 spin_unlock(&mm->page_table_lock);
1057 *length = remainder;
1058 *position = vaddr;
1060 return i;
1063 void hugetlb_change_protection(struct vm_area_struct *vma,
1064 unsigned long address, unsigned long end, pgprot_t newprot)
1066 struct mm_struct *mm = vma->vm_mm;
1067 unsigned long start = address;
1068 pte_t *ptep;
1069 pte_t pte;
1071 BUG_ON(address >= end);
1072 flush_cache_range(vma, address, end);
1074 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1075 spin_lock(&mm->page_table_lock);
1076 for (; address < end; address += HPAGE_SIZE) {
1077 ptep = huge_pte_offset(mm, address);
1078 if (!ptep)
1079 continue;
1080 if (huge_pmd_unshare(mm, &address, ptep))
1081 continue;
1082 if (!pte_none(*ptep)) {
1083 pte = huge_ptep_get_and_clear(mm, address, ptep);
1084 pte = pte_mkhuge(pte_modify(pte, newprot));
1085 set_huge_pte_at(mm, address, ptep, pte);
1088 spin_unlock(&mm->page_table_lock);
1089 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1091 flush_tlb_range(vma, start, end);
1094 struct file_region {
1095 struct list_head link;
1096 long from;
1097 long to;
1100 static long region_add(struct list_head *head, long f, long t)
1102 struct file_region *rg, *nrg, *trg;
1104 /* Locate the region we are either in or before. */
1105 list_for_each_entry(rg, head, link)
1106 if (f <= rg->to)
1107 break;
1109 /* Round our left edge to the current segment if it encloses us. */
1110 if (f > rg->from)
1111 f = rg->from;
1113 /* Check for and consume any regions we now overlap with. */
1114 nrg = rg;
1115 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1116 if (&rg->link == head)
1117 break;
1118 if (rg->from > t)
1119 break;
1121 /* If this area reaches higher then extend our area to
1122 * include it completely. If this is not the first area
1123 * which we intend to reuse, free it. */
1124 if (rg->to > t)
1125 t = rg->to;
1126 if (rg != nrg) {
1127 list_del(&rg->link);
1128 kfree(rg);
1131 nrg->from = f;
1132 nrg->to = t;
1133 return 0;
1136 static long region_chg(struct list_head *head, long f, long t)
1138 struct file_region *rg, *nrg;
1139 long chg = 0;
1141 /* Locate the region we are before or in. */
1142 list_for_each_entry(rg, head, link)
1143 if (f <= rg->to)
1144 break;
1146 /* If we are below the current region then a new region is required.
1147 * Subtle, allocate a new region at the position but make it zero
1148 * size such that we can guarantee to record the reservation. */
1149 if (&rg->link == head || t < rg->from) {
1150 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1151 if (!nrg)
1152 return -ENOMEM;
1153 nrg->from = f;
1154 nrg->to = f;
1155 INIT_LIST_HEAD(&nrg->link);
1156 list_add(&nrg->link, rg->link.prev);
1158 return t - f;
1161 /* Round our left edge to the current segment if it encloses us. */
1162 if (f > rg->from)
1163 f = rg->from;
1164 chg = t - f;
1166 /* Check for and consume any regions we now overlap with. */
1167 list_for_each_entry(rg, rg->link.prev, link) {
1168 if (&rg->link == head)
1169 break;
1170 if (rg->from > t)
1171 return chg;
1173 /* We overlap with this area, if it extends futher than
1174 * us then we must extend ourselves. Account for its
1175 * existing reservation. */
1176 if (rg->to > t) {
1177 chg += rg->to - t;
1178 t = rg->to;
1180 chg -= rg->to - rg->from;
1182 return chg;
1185 static long region_truncate(struct list_head *head, long end)
1187 struct file_region *rg, *trg;
1188 long chg = 0;
1190 /* Locate the region we are either in or before. */
1191 list_for_each_entry(rg, head, link)
1192 if (end <= rg->to)
1193 break;
1194 if (&rg->link == head)
1195 return 0;
1197 /* If we are in the middle of a region then adjust it. */
1198 if (end > rg->from) {
1199 chg = rg->to - end;
1200 rg->to = end;
1201 rg = list_entry(rg->link.next, typeof(*rg), link);
1204 /* Drop any remaining regions. */
1205 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1206 if (&rg->link == head)
1207 break;
1208 chg += rg->to - rg->from;
1209 list_del(&rg->link);
1210 kfree(rg);
1212 return chg;
1215 static int hugetlb_acct_memory(long delta)
1217 int ret = -ENOMEM;
1219 spin_lock(&hugetlb_lock);
1221 * When cpuset is configured, it breaks the strict hugetlb page
1222 * reservation as the accounting is done on a global variable. Such
1223 * reservation is completely rubbish in the presence of cpuset because
1224 * the reservation is not checked against page availability for the
1225 * current cpuset. Application can still potentially OOM'ed by kernel
1226 * with lack of free htlb page in cpuset that the task is in.
1227 * Attempt to enforce strict accounting with cpuset is almost
1228 * impossible (or too ugly) because cpuset is too fluid that
1229 * task or memory node can be dynamically moved between cpusets.
1231 * The change of semantics for shared hugetlb mapping with cpuset is
1232 * undesirable. However, in order to preserve some of the semantics,
1233 * we fall back to check against current free page availability as
1234 * a best attempt and hopefully to minimize the impact of changing
1235 * semantics that cpuset has.
1237 if (delta > 0) {
1238 if (gather_surplus_pages(delta) < 0)
1239 goto out;
1241 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1242 return_unused_surplus_pages(delta);
1243 goto out;
1247 ret = 0;
1248 if (delta < 0)
1249 return_unused_surplus_pages((unsigned long) -delta);
1251 out:
1252 spin_unlock(&hugetlb_lock);
1253 return ret;
1256 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1258 long ret, chg;
1260 chg = region_chg(&inode->i_mapping->private_list, from, to);
1261 if (chg < 0)
1262 return chg;
1264 if (hugetlb_get_quota(inode->i_mapping, chg))
1265 return -ENOSPC;
1266 ret = hugetlb_acct_memory(chg);
1267 if (ret < 0) {
1268 hugetlb_put_quota(inode->i_mapping, chg);
1269 return ret;
1271 region_add(&inode->i_mapping->private_list, from, to);
1272 return 0;
1275 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1277 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1279 spin_lock(&inode->i_lock);
1280 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1281 spin_unlock(&inode->i_lock);
1283 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1284 hugetlb_acct_memory(-(chg - freed));