4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
46 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
47 loff_t offset
, unsigned long nr_segs
);
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
71 * ->i_mmap_lock (truncate->unmap_mapping_range)
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_file_buffered_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 * ->i_alloc_sem (various)
88 * ->sb_lock (fs/fs-writeback.c)
89 * ->mapping->tree_lock (__sync_single_inode)
92 * ->anon_vma.lock (vma_adjust)
95 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
97 * ->page_table_lock or pte_lock
98 * ->swap_lock (try_to_unmap_one)
99 * ->private_lock (try_to_unmap_one)
100 * ->tree_lock (try_to_unmap_one)
101 * ->zone.lru_lock (follow_page->mark_page_accessed)
102 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
103 * ->private_lock (page_remove_rmap->set_page_dirty)
104 * ->tree_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (page_remove_rmap->set_page_dirty)
106 * ->inode_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
110 * ->dcache_lock (proc_pid_lookup)
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
118 void __remove_from_page_cache(struct page
*page
)
120 struct address_space
*mapping
= page
->mapping
;
122 radix_tree_delete(&mapping
->page_tree
, page
->index
);
123 page
->mapping
= NULL
;
125 __dec_zone_page_state(page
, NR_FILE_PAGES
);
126 BUG_ON(page_mapped(page
));
129 void remove_from_page_cache(struct page
*page
)
131 struct address_space
*mapping
= page
->mapping
;
133 BUG_ON(!PageLocked(page
));
135 write_lock_irq(&mapping
->tree_lock
);
136 __remove_from_page_cache(page
);
137 write_unlock_irq(&mapping
->tree_lock
);
140 static int sync_page(void *word
)
142 struct address_space
*mapping
;
145 page
= container_of((unsigned long *)word
, struct page
, flags
);
148 * page_mapping() is being called without PG_locked held.
149 * Some knowledge of the state and use of the page is used to
150 * reduce the requirements down to a memory barrier.
151 * The danger here is of a stale page_mapping() return value
152 * indicating a struct address_space different from the one it's
153 * associated with when it is associated with one.
154 * After smp_mb(), it's either the correct page_mapping() for
155 * the page, or an old page_mapping() and the page's own
156 * page_mapping() has gone NULL.
157 * The ->sync_page() address_space operation must tolerate
158 * page_mapping() going NULL. By an amazing coincidence,
159 * this comes about because none of the users of the page
160 * in the ->sync_page() methods make essential use of the
161 * page_mapping(), merely passing the page down to the backing
162 * device's unplug functions when it's non-NULL, which in turn
163 * ignore it for all cases but swap, where only page_private(page) is
164 * of interest. When page_mapping() does go NULL, the entire
165 * call stack gracefully ignores the page and returns.
169 mapping
= page_mapping(page
);
170 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
171 mapping
->a_ops
->sync_page(page
);
177 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
178 * @mapping: address space structure to write
179 * @start: offset in bytes where the range starts
180 * @end: offset in bytes where the range ends (inclusive)
181 * @sync_mode: enable synchronous operation
183 * Start writeback against all of a mapping's dirty pages that lie
184 * within the byte offsets <start, end> inclusive.
186 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
187 * opposed to a regular memory cleansing writeback. The difference between
188 * these two operations is that if a dirty page/buffer is encountered, it must
189 * be waited upon, and not just skipped over.
191 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
192 loff_t end
, int sync_mode
)
195 struct writeback_control wbc
= {
196 .sync_mode
= sync_mode
,
197 .nr_to_write
= mapping
->nrpages
* 2,
198 .range_start
= start
,
202 if (!mapping_cap_writeback_dirty(mapping
))
205 ret
= do_writepages(mapping
, &wbc
);
209 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
212 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
215 int filemap_fdatawrite(struct address_space
*mapping
)
217 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
219 EXPORT_SYMBOL(filemap_fdatawrite
);
221 static int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
224 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
228 * filemap_flush - mostly a non-blocking flush
229 * @mapping: target address_space
231 * This is a mostly non-blocking flush. Not suitable for data-integrity
232 * purposes - I/O may not be started against all dirty pages.
234 int filemap_flush(struct address_space
*mapping
)
236 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
238 EXPORT_SYMBOL(filemap_flush
);
241 * wait_on_page_writeback_range - wait for writeback to complete
242 * @mapping: target address_space
243 * @start: beginning page index
244 * @end: ending page index
246 * Wait for writeback to complete against pages indexed by start->end
249 int wait_on_page_writeback_range(struct address_space
*mapping
,
250 pgoff_t start
, pgoff_t end
)
260 pagevec_init(&pvec
, 0);
262 while ((index
<= end
) &&
263 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
264 PAGECACHE_TAG_WRITEBACK
,
265 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
268 for (i
= 0; i
< nr_pages
; i
++) {
269 struct page
*page
= pvec
.pages
[i
];
271 /* until radix tree lookup accepts end_index */
272 if (page
->index
> end
)
275 wait_on_page_writeback(page
);
279 pagevec_release(&pvec
);
283 /* Check for outstanding write errors */
284 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
286 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
293 * sync_page_range - write and wait on all pages in the passed range
294 * @inode: target inode
295 * @mapping: target address_space
296 * @pos: beginning offset in pages to write
297 * @count: number of bytes to write
299 * Write and wait upon all the pages in the passed range. This is a "data
300 * integrity" operation. It waits upon in-flight writeout before starting and
301 * waiting upon new writeout. If there was an IO error, return it.
303 * We need to re-take i_mutex during the generic_osync_inode list walk because
304 * it is otherwise livelockable.
306 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
307 loff_t pos
, loff_t count
)
309 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
310 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
313 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
315 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
317 mutex_lock(&inode
->i_mutex
);
318 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
319 mutex_unlock(&inode
->i_mutex
);
322 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
325 EXPORT_SYMBOL(sync_page_range
);
328 * sync_page_range_nolock
329 * @inode: target inode
330 * @mapping: target address_space
331 * @pos: beginning offset in pages to write
332 * @count: number of bytes to write
334 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
335 * as it forces O_SYNC writers to different parts of the same file
336 * to be serialised right until io completion.
338 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
339 loff_t pos
, loff_t count
)
341 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
342 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
345 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
347 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
349 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
351 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
354 EXPORT_SYMBOL(sync_page_range_nolock
);
357 * filemap_fdatawait - wait for all under-writeback pages to complete
358 * @mapping: address space structure to wait for
360 * Walk the list of under-writeback pages of the given address space
361 * and wait for all of them.
363 int filemap_fdatawait(struct address_space
*mapping
)
365 loff_t i_size
= i_size_read(mapping
->host
);
370 return wait_on_page_writeback_range(mapping
, 0,
371 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
373 EXPORT_SYMBOL(filemap_fdatawait
);
375 int filemap_write_and_wait(struct address_space
*mapping
)
379 if (mapping
->nrpages
) {
380 err
= filemap_fdatawrite(mapping
);
382 * Even if the above returned error, the pages may be
383 * written partially (e.g. -ENOSPC), so we wait for it.
384 * But the -EIO is special case, it may indicate the worst
385 * thing (e.g. bug) happened, so we avoid waiting for it.
388 int err2
= filemap_fdatawait(mapping
);
395 EXPORT_SYMBOL(filemap_write_and_wait
);
398 * filemap_write_and_wait_range - write out & wait on a file range
399 * @mapping: the address_space for the pages
400 * @lstart: offset in bytes where the range starts
401 * @lend: offset in bytes where the range ends (inclusive)
403 * Write out and wait upon file offsets lstart->lend, inclusive.
405 * Note that `lend' is inclusive (describes the last byte to be written) so
406 * that this function can be used to write to the very end-of-file (end = -1).
408 int filemap_write_and_wait_range(struct address_space
*mapping
,
409 loff_t lstart
, loff_t lend
)
413 if (mapping
->nrpages
) {
414 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
416 /* See comment of filemap_write_and_wait() */
418 int err2
= wait_on_page_writeback_range(mapping
,
419 lstart
>> PAGE_CACHE_SHIFT
,
420 lend
>> PAGE_CACHE_SHIFT
);
429 * add_to_page_cache - add newly allocated pagecache pages
431 * @mapping: the page's address_space
432 * @offset: page index
433 * @gfp_mask: page allocation mode
435 * This function is used to add newly allocated pagecache pages;
436 * the page is new, so we can just run SetPageLocked() against it.
437 * The other page state flags were set by rmqueue().
439 * This function does not add the page to the LRU. The caller must do that.
441 int add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
442 pgoff_t offset
, gfp_t gfp_mask
)
444 int error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
447 write_lock_irq(&mapping
->tree_lock
);
448 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
450 page_cache_get(page
);
452 page
->mapping
= mapping
;
453 page
->index
= offset
;
455 __inc_zone_page_state(page
, NR_FILE_PAGES
);
457 write_unlock_irq(&mapping
->tree_lock
);
458 radix_tree_preload_end();
462 EXPORT_SYMBOL(add_to_page_cache
);
464 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
465 pgoff_t offset
, gfp_t gfp_mask
)
467 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
474 struct page
*__page_cache_alloc(gfp_t gfp
)
476 if (cpuset_do_page_mem_spread()) {
477 int n
= cpuset_mem_spread_node();
478 return alloc_pages_node(n
, gfp
, 0);
480 return alloc_pages(gfp
, 0);
482 EXPORT_SYMBOL(__page_cache_alloc
);
485 static int __sleep_on_page_lock(void *word
)
492 * In order to wait for pages to become available there must be
493 * waitqueues associated with pages. By using a hash table of
494 * waitqueues where the bucket discipline is to maintain all
495 * waiters on the same queue and wake all when any of the pages
496 * become available, and for the woken contexts to check to be
497 * sure the appropriate page became available, this saves space
498 * at a cost of "thundering herd" phenomena during rare hash
501 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
503 const struct zone
*zone
= page_zone(page
);
505 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
508 static inline void wake_up_page(struct page
*page
, int bit
)
510 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
513 void fastcall
wait_on_page_bit(struct page
*page
, int bit_nr
)
515 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
517 if (test_bit(bit_nr
, &page
->flags
))
518 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
519 TASK_UNINTERRUPTIBLE
);
521 EXPORT_SYMBOL(wait_on_page_bit
);
524 * unlock_page - unlock a locked page
527 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
528 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
529 * mechananism between PageLocked pages and PageWriteback pages is shared.
530 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
532 * The first mb is necessary to safely close the critical section opened by the
533 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
534 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
535 * parallel wait_on_page_locked()).
537 void fastcall
unlock_page(struct page
*page
)
539 smp_mb__before_clear_bit();
540 if (!TestClearPageLocked(page
))
542 smp_mb__after_clear_bit();
543 wake_up_page(page
, PG_locked
);
545 EXPORT_SYMBOL(unlock_page
);
548 * end_page_writeback - end writeback against a page
551 void end_page_writeback(struct page
*page
)
553 if (!TestClearPageReclaim(page
) || rotate_reclaimable_page(page
)) {
554 if (!test_clear_page_writeback(page
))
557 smp_mb__after_clear_bit();
558 wake_up_page(page
, PG_writeback
);
560 EXPORT_SYMBOL(end_page_writeback
);
563 * __lock_page - get a lock on the page, assuming we need to sleep to get it
564 * @page: the page to lock
566 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
567 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
568 * chances are that on the second loop, the block layer's plug list is empty,
569 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
571 void fastcall
__lock_page(struct page
*page
)
573 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
575 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
576 TASK_UNINTERRUPTIBLE
);
578 EXPORT_SYMBOL(__lock_page
);
581 * Variant of lock_page that does not require the caller to hold a reference
582 * on the page's mapping.
584 void fastcall
__lock_page_nosync(struct page
*page
)
586 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
587 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
588 TASK_UNINTERRUPTIBLE
);
592 * find_get_page - find and get a page reference
593 * @mapping: the address_space to search
594 * @offset: the page index
596 * Is there a pagecache struct page at the given (mapping, offset) tuple?
597 * If yes, increment its refcount and return it; if no, return NULL.
599 struct page
* find_get_page(struct address_space
*mapping
, pgoff_t offset
)
603 read_lock_irq(&mapping
->tree_lock
);
604 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
606 page_cache_get(page
);
607 read_unlock_irq(&mapping
->tree_lock
);
610 EXPORT_SYMBOL(find_get_page
);
613 * find_lock_page - locate, pin and lock a pagecache page
614 * @mapping: the address_space to search
615 * @offset: the page index
617 * Locates the desired pagecache page, locks it, increments its reference
618 * count and returns its address.
620 * Returns zero if the page was not present. find_lock_page() may sleep.
622 struct page
*find_lock_page(struct address_space
*mapping
,
628 read_lock_irq(&mapping
->tree_lock
);
629 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
631 page_cache_get(page
);
632 if (TestSetPageLocked(page
)) {
633 read_unlock_irq(&mapping
->tree_lock
);
636 /* Has the page been truncated while we slept? */
637 if (unlikely(page
->mapping
!= mapping
)) {
639 page_cache_release(page
);
642 VM_BUG_ON(page
->index
!= offset
);
646 read_unlock_irq(&mapping
->tree_lock
);
650 EXPORT_SYMBOL(find_lock_page
);
653 * find_or_create_page - locate or add a pagecache page
654 * @mapping: the page's address_space
655 * @index: the page's index into the mapping
656 * @gfp_mask: page allocation mode
658 * Locates a page in the pagecache. If the page is not present, a new page
659 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
660 * LRU list. The returned page is locked and has its reference count
663 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
666 * find_or_create_page() returns the desired page's address, or zero on
669 struct page
*find_or_create_page(struct address_space
*mapping
,
670 pgoff_t index
, gfp_t gfp_mask
)
675 page
= find_lock_page(mapping
, index
);
677 page
= __page_cache_alloc(gfp_mask
);
680 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp_mask
);
682 page_cache_release(page
);
690 EXPORT_SYMBOL(find_or_create_page
);
693 * find_get_pages - gang pagecache lookup
694 * @mapping: The address_space to search
695 * @start: The starting page index
696 * @nr_pages: The maximum number of pages
697 * @pages: Where the resulting pages are placed
699 * find_get_pages() will search for and return a group of up to
700 * @nr_pages pages in the mapping. The pages are placed at @pages.
701 * find_get_pages() takes a reference against the returned pages.
703 * The search returns a group of mapping-contiguous pages with ascending
704 * indexes. There may be holes in the indices due to not-present pages.
706 * find_get_pages() returns the number of pages which were found.
708 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
709 unsigned int nr_pages
, struct page
**pages
)
714 read_lock_irq(&mapping
->tree_lock
);
715 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
716 (void **)pages
, start
, nr_pages
);
717 for (i
= 0; i
< ret
; i
++)
718 page_cache_get(pages
[i
]);
719 read_unlock_irq(&mapping
->tree_lock
);
724 * find_get_pages_contig - gang contiguous pagecache lookup
725 * @mapping: The address_space to search
726 * @index: The starting page index
727 * @nr_pages: The maximum number of pages
728 * @pages: Where the resulting pages are placed
730 * find_get_pages_contig() works exactly like find_get_pages(), except
731 * that the returned number of pages are guaranteed to be contiguous.
733 * find_get_pages_contig() returns the number of pages which were found.
735 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
736 unsigned int nr_pages
, struct page
**pages
)
741 read_lock_irq(&mapping
->tree_lock
);
742 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
743 (void **)pages
, index
, nr_pages
);
744 for (i
= 0; i
< ret
; i
++) {
745 if (pages
[i
]->mapping
== NULL
|| pages
[i
]->index
!= index
)
748 page_cache_get(pages
[i
]);
751 read_unlock_irq(&mapping
->tree_lock
);
754 EXPORT_SYMBOL(find_get_pages_contig
);
757 * find_get_pages_tag - find and return pages that match @tag
758 * @mapping: the address_space to search
759 * @index: the starting page index
760 * @tag: the tag index
761 * @nr_pages: the maximum number of pages
762 * @pages: where the resulting pages are placed
764 * Like find_get_pages, except we only return pages which are tagged with
765 * @tag. We update @index to index the next page for the traversal.
767 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
768 int tag
, unsigned int nr_pages
, struct page
**pages
)
773 read_lock_irq(&mapping
->tree_lock
);
774 ret
= radix_tree_gang_lookup_tag(&mapping
->page_tree
,
775 (void **)pages
, *index
, nr_pages
, tag
);
776 for (i
= 0; i
< ret
; i
++)
777 page_cache_get(pages
[i
]);
779 *index
= pages
[ret
- 1]->index
+ 1;
780 read_unlock_irq(&mapping
->tree_lock
);
783 EXPORT_SYMBOL(find_get_pages_tag
);
786 * grab_cache_page_nowait - returns locked page at given index in given cache
787 * @mapping: target address_space
788 * @index: the page index
790 * Same as grab_cache_page(), but do not wait if the page is unavailable.
791 * This is intended for speculative data generators, where the data can
792 * be regenerated if the page couldn't be grabbed. This routine should
793 * be safe to call while holding the lock for another page.
795 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
796 * and deadlock against the caller's locked page.
799 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
801 struct page
*page
= find_get_page(mapping
, index
);
804 if (!TestSetPageLocked(page
))
806 page_cache_release(page
);
809 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
810 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
)) {
811 page_cache_release(page
);
816 EXPORT_SYMBOL(grab_cache_page_nowait
);
819 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
820 * a _large_ part of the i/o request. Imagine the worst scenario:
822 * ---R__________________________________________B__________
823 * ^ reading here ^ bad block(assume 4k)
825 * read(R) => miss => readahead(R...B) => media error => frustrating retries
826 * => failing the whole request => read(R) => read(R+1) =>
827 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
828 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
829 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
831 * It is going insane. Fix it by quickly scaling down the readahead size.
833 static void shrink_readahead_size_eio(struct file
*filp
,
834 struct file_ra_state
*ra
)
843 * do_generic_mapping_read - generic file read routine
844 * @mapping: address_space to be read
845 * @ra: file's readahead state
846 * @filp: the file to read
847 * @ppos: current file position
848 * @desc: read_descriptor
849 * @actor: read method
851 * This is a generic file read routine, and uses the
852 * mapping->a_ops->readpage() function for the actual low-level stuff.
854 * This is really ugly. But the goto's actually try to clarify some
855 * of the logic when it comes to error handling etc.
857 * Note the struct file* is only passed for the use of readpage.
860 void do_generic_mapping_read(struct address_space
*mapping
,
861 struct file_ra_state
*ra
,
864 read_descriptor_t
*desc
,
867 struct inode
*inode
= mapping
->host
;
871 unsigned long offset
; /* offset into pagecache page */
872 unsigned int prev_offset
;
875 index
= *ppos
>> PAGE_CACHE_SHIFT
;
876 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
877 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
878 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
879 offset
= *ppos
& ~PAGE_CACHE_MASK
;
885 unsigned long nr
, ret
;
889 page
= find_get_page(mapping
, index
);
891 page_cache_sync_readahead(mapping
,
893 index
, last_index
- index
);
894 page
= find_get_page(mapping
, index
);
895 if (unlikely(page
== NULL
))
898 if (PageReadahead(page
)) {
899 page_cache_async_readahead(mapping
,
901 index
, last_index
- index
);
903 if (!PageUptodate(page
))
904 goto page_not_up_to_date
;
907 * i_size must be checked after we know the page is Uptodate.
909 * Checking i_size after the check allows us to calculate
910 * the correct value for "nr", which means the zero-filled
911 * part of the page is not copied back to userspace (unless
912 * another truncate extends the file - this is desired though).
915 isize
= i_size_read(inode
);
916 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
917 if (unlikely(!isize
|| index
> end_index
)) {
918 page_cache_release(page
);
922 /* nr is the maximum number of bytes to copy from this page */
923 nr
= PAGE_CACHE_SIZE
;
924 if (index
== end_index
) {
925 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
927 page_cache_release(page
);
933 /* If users can be writing to this page using arbitrary
934 * virtual addresses, take care about potential aliasing
935 * before reading the page on the kernel side.
937 if (mapping_writably_mapped(mapping
))
938 flush_dcache_page(page
);
941 * When a sequential read accesses a page several times,
942 * only mark it as accessed the first time.
944 if (prev_index
!= index
|| offset
!= prev_offset
)
945 mark_page_accessed(page
);
949 * Ok, we have the page, and it's up-to-date, so
950 * now we can copy it to user space...
952 * The actor routine returns how many bytes were actually used..
953 * NOTE! This may not be the same as how much of a user buffer
954 * we filled up (we may be padding etc), so we can only update
955 * "pos" here (the actor routine has to update the user buffer
956 * pointers and the remaining count).
958 ret
= actor(desc
, page
, offset
, nr
);
960 index
+= offset
>> PAGE_CACHE_SHIFT
;
961 offset
&= ~PAGE_CACHE_MASK
;
962 prev_offset
= offset
;
964 page_cache_release(page
);
965 if (ret
== nr
&& desc
->count
)
970 /* Get exclusive access to the page ... */
973 /* Did it get truncated before we got the lock? */
974 if (!page
->mapping
) {
976 page_cache_release(page
);
980 /* Did somebody else fill it already? */
981 if (PageUptodate(page
)) {
987 /* Start the actual read. The read will unlock the page. */
988 error
= mapping
->a_ops
->readpage(filp
, page
);
990 if (unlikely(error
)) {
991 if (error
== AOP_TRUNCATED_PAGE
) {
992 page_cache_release(page
);
998 if (!PageUptodate(page
)) {
1000 if (!PageUptodate(page
)) {
1001 if (page
->mapping
== NULL
) {
1003 * invalidate_inode_pages got it
1006 page_cache_release(page
);
1011 shrink_readahead_size_eio(filp
, ra
);
1012 goto readpage_error
;
1020 /* UHHUH! A synchronous read error occurred. Report it */
1021 desc
->error
= error
;
1022 page_cache_release(page
);
1027 * Ok, it wasn't cached, so we need to create a new
1030 page
= page_cache_alloc_cold(mapping
);
1032 desc
->error
= -ENOMEM
;
1035 error
= add_to_page_cache_lru(page
, mapping
,
1038 page_cache_release(page
);
1039 if (error
== -EEXIST
)
1041 desc
->error
= error
;
1048 ra
->prev_pos
= prev_index
;
1049 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1050 ra
->prev_pos
|= prev_offset
;
1052 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1054 file_accessed(filp
);
1056 EXPORT_SYMBOL(do_generic_mapping_read
);
1058 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1059 unsigned long offset
, unsigned long size
)
1062 unsigned long left
, count
= desc
->count
;
1068 * Faults on the destination of a read are common, so do it before
1071 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1072 kaddr
= kmap_atomic(page
, KM_USER0
);
1073 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1074 kaddr
+ offset
, size
);
1075 kunmap_atomic(kaddr
, KM_USER0
);
1080 /* Do it the slow way */
1082 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1087 desc
->error
= -EFAULT
;
1090 desc
->count
= count
- size
;
1091 desc
->written
+= size
;
1092 desc
->arg
.buf
+= size
;
1097 * Performs necessary checks before doing a write
1098 * @iov: io vector request
1099 * @nr_segs: number of segments in the iovec
1100 * @count: number of bytes to write
1101 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1103 * Adjust number of segments and amount of bytes to write (nr_segs should be
1104 * properly initialized first). Returns appropriate error code that caller
1105 * should return or zero in case that write should be allowed.
1107 int generic_segment_checks(const struct iovec
*iov
,
1108 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1112 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1113 const struct iovec
*iv
= &iov
[seg
];
1116 * If any segment has a negative length, or the cumulative
1117 * length ever wraps negative then return -EINVAL.
1120 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1122 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1127 cnt
-= iv
->iov_len
; /* This segment is no good */
1133 EXPORT_SYMBOL(generic_segment_checks
);
1136 * generic_file_aio_read - generic filesystem read routine
1137 * @iocb: kernel I/O control block
1138 * @iov: io vector request
1139 * @nr_segs: number of segments in the iovec
1140 * @pos: current file position
1142 * This is the "read()" routine for all filesystems
1143 * that can use the page cache directly.
1146 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1147 unsigned long nr_segs
, loff_t pos
)
1149 struct file
*filp
= iocb
->ki_filp
;
1153 loff_t
*ppos
= &iocb
->ki_pos
;
1156 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1160 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1161 if (filp
->f_flags
& O_DIRECT
) {
1163 struct address_space
*mapping
;
1164 struct inode
*inode
;
1166 mapping
= filp
->f_mapping
;
1167 inode
= mapping
->host
;
1170 goto out
; /* skip atime */
1171 size
= i_size_read(inode
);
1173 retval
= generic_file_direct_IO(READ
, iocb
,
1176 *ppos
= pos
+ retval
;
1178 if (likely(retval
!= 0)) {
1179 file_accessed(filp
);
1186 for (seg
= 0; seg
< nr_segs
; seg
++) {
1187 read_descriptor_t desc
;
1190 desc
.arg
.buf
= iov
[seg
].iov_base
;
1191 desc
.count
= iov
[seg
].iov_len
;
1192 if (desc
.count
== 0)
1195 do_generic_file_read(filp
,ppos
,&desc
,file_read_actor
);
1196 retval
+= desc
.written
;
1198 retval
= retval
?: desc
.error
;
1208 EXPORT_SYMBOL(generic_file_aio_read
);
1211 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1212 pgoff_t index
, unsigned long nr
)
1214 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1217 force_page_cache_readahead(mapping
, filp
, index
,
1218 max_sane_readahead(nr
));
1222 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1230 if (file
->f_mode
& FMODE_READ
) {
1231 struct address_space
*mapping
= file
->f_mapping
;
1232 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1233 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1234 unsigned long len
= end
- start
+ 1;
1235 ret
= do_readahead(mapping
, file
, start
, len
);
1244 * page_cache_read - adds requested page to the page cache if not already there
1245 * @file: file to read
1246 * @offset: page index
1248 * This adds the requested page to the page cache if it isn't already there,
1249 * and schedules an I/O to read in its contents from disk.
1251 static int fastcall
page_cache_read(struct file
* file
, pgoff_t offset
)
1253 struct address_space
*mapping
= file
->f_mapping
;
1258 page
= page_cache_alloc_cold(mapping
);
1262 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1264 ret
= mapping
->a_ops
->readpage(file
, page
);
1265 else if (ret
== -EEXIST
)
1266 ret
= 0; /* losing race to add is OK */
1268 page_cache_release(page
);
1270 } while (ret
== AOP_TRUNCATED_PAGE
);
1275 #define MMAP_LOTSAMISS (100)
1278 * filemap_fault - read in file data for page fault handling
1279 * @vma: vma in which the fault was taken
1280 * @vmf: struct vm_fault containing details of the fault
1282 * filemap_fault() is invoked via the vma operations vector for a
1283 * mapped memory region to read in file data during a page fault.
1285 * The goto's are kind of ugly, but this streamlines the normal case of having
1286 * it in the page cache, and handles the special cases reasonably without
1287 * having a lot of duplicated code.
1289 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1292 struct file
*file
= vma
->vm_file
;
1293 struct address_space
*mapping
= file
->f_mapping
;
1294 struct file_ra_state
*ra
= &file
->f_ra
;
1295 struct inode
*inode
= mapping
->host
;
1298 int did_readaround
= 0;
1301 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1302 if (vmf
->pgoff
>= size
)
1303 return VM_FAULT_SIGBUS
;
1305 /* If we don't want any read-ahead, don't bother */
1306 if (VM_RandomReadHint(vma
))
1307 goto no_cached_page
;
1310 * Do we have something in the page cache already?
1313 page
= find_lock_page(mapping
, vmf
->pgoff
);
1315 * For sequential accesses, we use the generic readahead logic.
1317 if (VM_SequentialReadHint(vma
)) {
1319 page_cache_sync_readahead(mapping
, ra
, file
,
1321 page
= find_lock_page(mapping
, vmf
->pgoff
);
1323 goto no_cached_page
;
1325 if (PageReadahead(page
)) {
1326 page_cache_async_readahead(mapping
, ra
, file
, page
,
1332 unsigned long ra_pages
;
1337 * Do we miss much more than hit in this file? If so,
1338 * stop bothering with read-ahead. It will only hurt.
1340 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1341 goto no_cached_page
;
1344 * To keep the pgmajfault counter straight, we need to
1345 * check did_readaround, as this is an inner loop.
1347 if (!did_readaround
) {
1348 ret
= VM_FAULT_MAJOR
;
1349 count_vm_event(PGMAJFAULT
);
1352 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1356 if (vmf
->pgoff
> ra_pages
/ 2)
1357 start
= vmf
->pgoff
- ra_pages
/ 2;
1358 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1360 page
= find_lock_page(mapping
, vmf
->pgoff
);
1362 goto no_cached_page
;
1365 if (!did_readaround
)
1369 * We have a locked page in the page cache, now we need to check
1370 * that it's up-to-date. If not, it is going to be due to an error.
1372 if (unlikely(!PageUptodate(page
)))
1373 goto page_not_uptodate
;
1375 /* Must recheck i_size under page lock */
1376 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1377 if (unlikely(vmf
->pgoff
>= size
)) {
1379 page_cache_release(page
);
1380 return VM_FAULT_SIGBUS
;
1384 * Found the page and have a reference on it.
1386 mark_page_accessed(page
);
1387 ra
->prev_pos
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1389 return ret
| VM_FAULT_LOCKED
;
1393 * We're only likely to ever get here if MADV_RANDOM is in
1396 error
= page_cache_read(file
, vmf
->pgoff
);
1399 * The page we want has now been added to the page cache.
1400 * In the unlikely event that someone removed it in the
1401 * meantime, we'll just come back here and read it again.
1407 * An error return from page_cache_read can result if the
1408 * system is low on memory, or a problem occurs while trying
1411 if (error
== -ENOMEM
)
1412 return VM_FAULT_OOM
;
1413 return VM_FAULT_SIGBUS
;
1417 if (!did_readaround
) {
1418 ret
= VM_FAULT_MAJOR
;
1419 count_vm_event(PGMAJFAULT
);
1423 * Umm, take care of errors if the page isn't up-to-date.
1424 * Try to re-read it _once_. We do this synchronously,
1425 * because there really aren't any performance issues here
1426 * and we need to check for errors.
1428 ClearPageError(page
);
1429 error
= mapping
->a_ops
->readpage(file
, page
);
1430 page_cache_release(page
);
1432 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1435 /* Things didn't work out. Return zero to tell the mm layer so. */
1436 shrink_readahead_size_eio(file
, ra
);
1437 return VM_FAULT_SIGBUS
;
1439 EXPORT_SYMBOL(filemap_fault
);
1441 struct vm_operations_struct generic_file_vm_ops
= {
1442 .fault
= filemap_fault
,
1445 /* This is used for a general mmap of a disk file */
1447 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1449 struct address_space
*mapping
= file
->f_mapping
;
1451 if (!mapping
->a_ops
->readpage
)
1453 file_accessed(file
);
1454 vma
->vm_ops
= &generic_file_vm_ops
;
1455 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1460 * This is for filesystems which do not implement ->writepage.
1462 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1464 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1466 return generic_file_mmap(file
, vma
);
1469 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1473 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1477 #endif /* CONFIG_MMU */
1479 EXPORT_SYMBOL(generic_file_mmap
);
1480 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1482 static struct page
*__read_cache_page(struct address_space
*mapping
,
1484 int (*filler
)(void *,struct page
*),
1490 page
= find_get_page(mapping
, index
);
1492 page
= page_cache_alloc_cold(mapping
);
1494 return ERR_PTR(-ENOMEM
);
1495 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1496 if (unlikely(err
)) {
1497 page_cache_release(page
);
1500 /* Presumably ENOMEM for radix tree node */
1501 return ERR_PTR(err
);
1503 err
= filler(data
, page
);
1505 page_cache_release(page
);
1506 page
= ERR_PTR(err
);
1513 * Same as read_cache_page, but don't wait for page to become unlocked
1514 * after submitting it to the filler.
1516 struct page
*read_cache_page_async(struct address_space
*mapping
,
1518 int (*filler
)(void *,struct page
*),
1525 page
= __read_cache_page(mapping
, index
, filler
, data
);
1528 if (PageUptodate(page
))
1532 if (!page
->mapping
) {
1534 page_cache_release(page
);
1537 if (PageUptodate(page
)) {
1541 err
= filler(data
, page
);
1543 page_cache_release(page
);
1544 return ERR_PTR(err
);
1547 mark_page_accessed(page
);
1550 EXPORT_SYMBOL(read_cache_page_async
);
1553 * read_cache_page - read into page cache, fill it if needed
1554 * @mapping: the page's address_space
1555 * @index: the page index
1556 * @filler: function to perform the read
1557 * @data: destination for read data
1559 * Read into the page cache. If a page already exists, and PageUptodate() is
1560 * not set, try to fill the page then wait for it to become unlocked.
1562 * If the page does not get brought uptodate, return -EIO.
1564 struct page
*read_cache_page(struct address_space
*mapping
,
1566 int (*filler
)(void *,struct page
*),
1571 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1574 wait_on_page_locked(page
);
1575 if (!PageUptodate(page
)) {
1576 page_cache_release(page
);
1577 page
= ERR_PTR(-EIO
);
1582 EXPORT_SYMBOL(read_cache_page
);
1585 * The logic we want is
1587 * if suid or (sgid and xgrp)
1590 int should_remove_suid(struct dentry
*dentry
)
1592 mode_t mode
= dentry
->d_inode
->i_mode
;
1595 /* suid always must be killed */
1596 if (unlikely(mode
& S_ISUID
))
1597 kill
= ATTR_KILL_SUID
;
1600 * sgid without any exec bits is just a mandatory locking mark; leave
1601 * it alone. If some exec bits are set, it's a real sgid; kill it.
1603 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1604 kill
|= ATTR_KILL_SGID
;
1606 if (unlikely(kill
&& !capable(CAP_FSETID
)))
1611 EXPORT_SYMBOL(should_remove_suid
);
1613 int __remove_suid(struct dentry
*dentry
, int kill
)
1615 struct iattr newattrs
;
1617 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1618 return notify_change(dentry
, &newattrs
);
1621 int remove_suid(struct dentry
*dentry
)
1623 int killsuid
= should_remove_suid(dentry
);
1624 int killpriv
= security_inode_need_killpriv(dentry
);
1630 error
= security_inode_killpriv(dentry
);
1631 if (!error
&& killsuid
)
1632 error
= __remove_suid(dentry
, killsuid
);
1636 EXPORT_SYMBOL(remove_suid
);
1638 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1639 const struct iovec
*iov
, size_t base
, size_t bytes
)
1641 size_t copied
= 0, left
= 0;
1644 char __user
*buf
= iov
->iov_base
+ base
;
1645 int copy
= min(bytes
, iov
->iov_len
- base
);
1648 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1657 return copied
- left
;
1661 * Copy as much as we can into the page and return the number of bytes which
1662 * were sucessfully copied. If a fault is encountered then return the number of
1663 * bytes which were copied.
1665 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1666 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1671 BUG_ON(!in_atomic());
1672 kaddr
= kmap_atomic(page
, KM_USER0
);
1673 if (likely(i
->nr_segs
== 1)) {
1675 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1676 left
= __copy_from_user_inatomic_nocache(kaddr
+ offset
,
1678 copied
= bytes
- left
;
1680 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1681 i
->iov
, i
->iov_offset
, bytes
);
1683 kunmap_atomic(kaddr
, KM_USER0
);
1687 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1690 * This has the same sideeffects and return value as
1691 * iov_iter_copy_from_user_atomic().
1692 * The difference is that it attempts to resolve faults.
1693 * Page must not be locked.
1695 size_t iov_iter_copy_from_user(struct page
*page
,
1696 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1702 if (likely(i
->nr_segs
== 1)) {
1704 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1705 left
= __copy_from_user_nocache(kaddr
+ offset
, buf
, bytes
);
1706 copied
= bytes
- left
;
1708 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1709 i
->iov
, i
->iov_offset
, bytes
);
1714 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1716 static void __iov_iter_advance_iov(struct iov_iter
*i
, size_t bytes
)
1718 if (likely(i
->nr_segs
== 1)) {
1719 i
->iov_offset
+= bytes
;
1721 const struct iovec
*iov
= i
->iov
;
1722 size_t base
= i
->iov_offset
;
1725 int copy
= min(bytes
, iov
->iov_len
- base
);
1729 if (iov
->iov_len
== base
) {
1735 i
->iov_offset
= base
;
1739 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1741 BUG_ON(i
->count
< bytes
);
1743 __iov_iter_advance_iov(i
, bytes
);
1746 EXPORT_SYMBOL(iov_iter_advance
);
1749 * Fault in the first iovec of the given iov_iter, to a maximum length
1750 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1751 * accessed (ie. because it is an invalid address).
1753 * writev-intensive code may want this to prefault several iovecs -- that
1754 * would be possible (callers must not rely on the fact that _only_ the
1755 * first iovec will be faulted with the current implementation).
1757 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1759 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1760 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
1761 return fault_in_pages_readable(buf
, bytes
);
1763 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
1766 * Return the count of just the current iov_iter segment.
1768 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
1770 const struct iovec
*iov
= i
->iov
;
1771 if (i
->nr_segs
== 1)
1774 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
1776 EXPORT_SYMBOL(iov_iter_single_seg_count
);
1779 * Performs necessary checks before doing a write
1781 * Can adjust writing position or amount of bytes to write.
1782 * Returns appropriate error code that caller should return or
1783 * zero in case that write should be allowed.
1785 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1787 struct inode
*inode
= file
->f_mapping
->host
;
1788 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1790 if (unlikely(*pos
< 0))
1794 /* FIXME: this is for backwards compatibility with 2.4 */
1795 if (file
->f_flags
& O_APPEND
)
1796 *pos
= i_size_read(inode
);
1798 if (limit
!= RLIM_INFINITY
) {
1799 if (*pos
>= limit
) {
1800 send_sig(SIGXFSZ
, current
, 0);
1803 if (*count
> limit
- (typeof(limit
))*pos
) {
1804 *count
= limit
- (typeof(limit
))*pos
;
1812 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1813 !(file
->f_flags
& O_LARGEFILE
))) {
1814 if (*pos
>= MAX_NON_LFS
) {
1817 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1818 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1823 * Are we about to exceed the fs block limit ?
1825 * If we have written data it becomes a short write. If we have
1826 * exceeded without writing data we send a signal and return EFBIG.
1827 * Linus frestrict idea will clean these up nicely..
1829 if (likely(!isblk
)) {
1830 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1831 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
1834 /* zero-length writes at ->s_maxbytes are OK */
1837 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
1838 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
1842 if (bdev_read_only(I_BDEV(inode
)))
1844 isize
= i_size_read(inode
);
1845 if (*pos
>= isize
) {
1846 if (*count
|| *pos
> isize
)
1850 if (*pos
+ *count
> isize
)
1851 *count
= isize
- *pos
;
1858 EXPORT_SYMBOL(generic_write_checks
);
1860 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
1861 loff_t pos
, unsigned len
, unsigned flags
,
1862 struct page
**pagep
, void **fsdata
)
1864 const struct address_space_operations
*aops
= mapping
->a_ops
;
1866 if (aops
->write_begin
) {
1867 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
1871 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1872 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1873 struct inode
*inode
= mapping
->host
;
1876 page
= __grab_cache_page(mapping
, index
);
1881 if (flags
& AOP_FLAG_UNINTERRUPTIBLE
&& !PageUptodate(page
)) {
1883 * There is no way to resolve a short write situation
1884 * for a !Uptodate page (except by double copying in
1885 * the caller done by generic_perform_write_2copy).
1887 * Instead, we have to bring it uptodate here.
1889 ret
= aops
->readpage(file
, page
);
1890 page_cache_release(page
);
1892 if (ret
== AOP_TRUNCATED_PAGE
)
1899 ret
= aops
->prepare_write(file
, page
, offset
, offset
+len
);
1902 page_cache_release(page
);
1903 if (pos
+ len
> inode
->i_size
)
1904 vmtruncate(inode
, inode
->i_size
);
1909 EXPORT_SYMBOL(pagecache_write_begin
);
1911 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
1912 loff_t pos
, unsigned len
, unsigned copied
,
1913 struct page
*page
, void *fsdata
)
1915 const struct address_space_operations
*aops
= mapping
->a_ops
;
1918 if (aops
->write_end
) {
1919 mark_page_accessed(page
);
1920 ret
= aops
->write_end(file
, mapping
, pos
, len
, copied
,
1923 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1924 struct inode
*inode
= mapping
->host
;
1926 flush_dcache_page(page
);
1927 ret
= aops
->commit_write(file
, page
, offset
, offset
+len
);
1929 mark_page_accessed(page
);
1930 page_cache_release(page
);
1933 if (pos
+ len
> inode
->i_size
)
1934 vmtruncate(inode
, inode
->i_size
);
1936 ret
= min_t(size_t, copied
, ret
);
1943 EXPORT_SYMBOL(pagecache_write_end
);
1946 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1947 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
1948 size_t count
, size_t ocount
)
1950 struct file
*file
= iocb
->ki_filp
;
1951 struct address_space
*mapping
= file
->f_mapping
;
1952 struct inode
*inode
= mapping
->host
;
1955 if (count
!= ocount
)
1956 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
1958 written
= generic_file_direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
1960 loff_t end
= pos
+ written
;
1961 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
1962 i_size_write(inode
, end
);
1963 mark_inode_dirty(inode
);
1969 * Sync the fs metadata but not the minor inode changes and
1970 * of course not the data as we did direct DMA for the IO.
1971 * i_mutex is held, which protects generic_osync_inode() from
1972 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1974 if ((written
>= 0 || written
== -EIOCBQUEUED
) &&
1975 ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
1976 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
1982 EXPORT_SYMBOL(generic_file_direct_write
);
1985 * Find or create a page at the given pagecache position. Return the locked
1986 * page. This function is specifically for buffered writes.
1988 struct page
*__grab_cache_page(struct address_space
*mapping
, pgoff_t index
)
1993 page
= find_lock_page(mapping
, index
);
1997 page
= page_cache_alloc(mapping
);
2000 status
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
2001 if (unlikely(status
)) {
2002 page_cache_release(page
);
2003 if (status
== -EEXIST
)
2009 EXPORT_SYMBOL(__grab_cache_page
);
2011 static ssize_t
generic_perform_write_2copy(struct file
*file
,
2012 struct iov_iter
*i
, loff_t pos
)
2014 struct address_space
*mapping
= file
->f_mapping
;
2015 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2016 struct inode
*inode
= mapping
->host
;
2018 ssize_t written
= 0;
2021 struct page
*src_page
;
2023 pgoff_t index
; /* Pagecache index for current page */
2024 unsigned long offset
; /* Offset into pagecache page */
2025 unsigned long bytes
; /* Bytes to write to page */
2026 size_t copied
; /* Bytes copied from user */
2028 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2029 index
= pos
>> PAGE_CACHE_SHIFT
;
2030 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2034 * a non-NULL src_page indicates that we're doing the
2035 * copy via get_user_pages and kmap.
2040 * Bring in the user page that we will copy from _first_.
2041 * Otherwise there's a nasty deadlock on copying from the
2042 * same page as we're writing to, without it being marked
2045 * Not only is this an optimisation, but it is also required
2046 * to check that the address is actually valid, when atomic
2047 * usercopies are used, below.
2049 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2054 page
= __grab_cache_page(mapping
, index
);
2061 * non-uptodate pages cannot cope with short copies, and we
2062 * cannot take a pagefault with the destination page locked.
2063 * So pin the source page to copy it.
2065 if (!PageUptodate(page
) && !segment_eq(get_fs(), KERNEL_DS
)) {
2068 src_page
= alloc_page(GFP_KERNEL
);
2070 page_cache_release(page
);
2076 * Cannot get_user_pages with a page locked for the
2077 * same reason as we can't take a page fault with a
2078 * page locked (as explained below).
2080 copied
= iov_iter_copy_from_user(src_page
, i
,
2082 if (unlikely(copied
== 0)) {
2084 page_cache_release(page
);
2085 page_cache_release(src_page
);
2092 * Can't handle the page going uptodate here, because
2093 * that means we would use non-atomic usercopies, which
2094 * zero out the tail of the page, which can cause
2095 * zeroes to become transiently visible. We could just
2096 * use a non-zeroing copy, but the APIs aren't too
2099 if (unlikely(!page
->mapping
|| PageUptodate(page
))) {
2101 page_cache_release(page
);
2102 page_cache_release(src_page
);
2107 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
2108 if (unlikely(status
))
2109 goto fs_write_aop_error
;
2113 * Must not enter the pagefault handler here, because
2114 * we hold the page lock, so we might recursively
2115 * deadlock on the same lock, or get an ABBA deadlock
2116 * against a different lock, or against the mmap_sem
2117 * (which nests outside the page lock). So increment
2118 * preempt count, and use _atomic usercopies.
2120 * The page is uptodate so we are OK to encounter a
2121 * short copy: if unmodified parts of the page are
2122 * marked dirty and written out to disk, it doesn't
2125 pagefault_disable();
2126 copied
= iov_iter_copy_from_user_atomic(page
, i
,
2131 src
= kmap_atomic(src_page
, KM_USER0
);
2132 dst
= kmap_atomic(page
, KM_USER1
);
2133 memcpy(dst
+ offset
, src
+ offset
, bytes
);
2134 kunmap_atomic(dst
, KM_USER1
);
2135 kunmap_atomic(src
, KM_USER0
);
2138 flush_dcache_page(page
);
2140 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
2141 if (unlikely(status
< 0))
2142 goto fs_write_aop_error
;
2143 if (unlikely(status
> 0)) /* filesystem did partial write */
2144 copied
= min_t(size_t, copied
, status
);
2147 mark_page_accessed(page
);
2148 page_cache_release(page
);
2150 page_cache_release(src_page
);
2152 iov_iter_advance(i
, copied
);
2156 balance_dirty_pages_ratelimited(mapping
);
2162 page_cache_release(page
);
2164 page_cache_release(src_page
);
2167 * prepare_write() may have instantiated a few blocks
2168 * outside i_size. Trim these off again. Don't need
2169 * i_size_read because we hold i_mutex.
2171 if (pos
+ bytes
> inode
->i_size
)
2172 vmtruncate(inode
, inode
->i_size
);
2174 } while (iov_iter_count(i
));
2176 return written
? written
: status
;
2179 static ssize_t
generic_perform_write(struct file
*file
,
2180 struct iov_iter
*i
, loff_t pos
)
2182 struct address_space
*mapping
= file
->f_mapping
;
2183 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2185 ssize_t written
= 0;
2186 unsigned int flags
= 0;
2189 * Copies from kernel address space cannot fail (NFSD is a big user).
2191 if (segment_eq(get_fs(), KERNEL_DS
))
2192 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2196 pgoff_t index
; /* Pagecache index for current page */
2197 unsigned long offset
; /* Offset into pagecache page */
2198 unsigned long bytes
; /* Bytes to write to page */
2199 size_t copied
; /* Bytes copied from user */
2202 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2203 index
= pos
>> PAGE_CACHE_SHIFT
;
2204 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2210 * Bring in the user page that we will copy from _first_.
2211 * Otherwise there's a nasty deadlock on copying from the
2212 * same page as we're writing to, without it being marked
2215 * Not only is this an optimisation, but it is also required
2216 * to check that the address is actually valid, when atomic
2217 * usercopies are used, below.
2219 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2224 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2226 if (unlikely(status
))
2229 pagefault_disable();
2230 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2232 flush_dcache_page(page
);
2234 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2236 if (unlikely(status
< 0))
2242 if (unlikely(copied
== 0)) {
2244 * If we were unable to copy any data at all, we must
2245 * fall back to a single segment length write.
2247 * If we didn't fallback here, we could livelock
2248 * because not all segments in the iov can be copied at
2249 * once without a pagefault.
2251 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2252 iov_iter_single_seg_count(i
));
2255 iov_iter_advance(i
, copied
);
2259 balance_dirty_pages_ratelimited(mapping
);
2261 } while (iov_iter_count(i
));
2263 return written
? written
: status
;
2267 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2268 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2269 size_t count
, ssize_t written
)
2271 struct file
*file
= iocb
->ki_filp
;
2272 struct address_space
*mapping
= file
->f_mapping
;
2273 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2274 struct inode
*inode
= mapping
->host
;
2278 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2279 if (a_ops
->write_begin
)
2280 status
= generic_perform_write(file
, &i
, pos
);
2282 status
= generic_perform_write_2copy(file
, &i
, pos
);
2284 if (likely(status
>= 0)) {
2286 *ppos
= pos
+ status
;
2289 * For now, when the user asks for O_SYNC, we'll actually give
2292 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2293 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2294 status
= generic_osync_inode(inode
, mapping
,
2295 OSYNC_METADATA
|OSYNC_DATA
);
2300 * If we get here for O_DIRECT writes then we must have fallen through
2301 * to buffered writes (block instantiation inside i_size). So we sync
2302 * the file data here, to try to honour O_DIRECT expectations.
2304 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2305 status
= filemap_write_and_wait(mapping
);
2307 return written
? written
: status
;
2309 EXPORT_SYMBOL(generic_file_buffered_write
);
2312 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2313 unsigned long nr_segs
, loff_t
*ppos
)
2315 struct file
*file
= iocb
->ki_filp
;
2316 struct address_space
* mapping
= file
->f_mapping
;
2317 size_t ocount
; /* original count */
2318 size_t count
; /* after file limit checks */
2319 struct inode
*inode
= mapping
->host
;
2325 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2332 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2334 /* We can write back this queue in page reclaim */
2335 current
->backing_dev_info
= mapping
->backing_dev_info
;
2338 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2345 err
= remove_suid(file
->f_path
.dentry
);
2349 file_update_time(file
);
2351 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2352 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2354 ssize_t written_buffered
;
2356 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2357 ppos
, count
, ocount
);
2358 if (written
< 0 || written
== count
)
2361 * direct-io write to a hole: fall through to buffered I/O
2362 * for completing the rest of the request.
2366 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2367 nr_segs
, pos
, ppos
, count
,
2370 * If generic_file_buffered_write() retuned a synchronous error
2371 * then we want to return the number of bytes which were
2372 * direct-written, or the error code if that was zero. Note
2373 * that this differs from normal direct-io semantics, which
2374 * will return -EFOO even if some bytes were written.
2376 if (written_buffered
< 0) {
2377 err
= written_buffered
;
2382 * We need to ensure that the page cache pages are written to
2383 * disk and invalidated to preserve the expected O_DIRECT
2386 endbyte
= pos
+ written_buffered
- written
- 1;
2387 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2388 SYNC_FILE_RANGE_WAIT_BEFORE
|
2389 SYNC_FILE_RANGE_WRITE
|
2390 SYNC_FILE_RANGE_WAIT_AFTER
);
2392 written
= written_buffered
;
2393 invalidate_mapping_pages(mapping
,
2394 pos
>> PAGE_CACHE_SHIFT
,
2395 endbyte
>> PAGE_CACHE_SHIFT
);
2398 * We don't know how much we wrote, so just return
2399 * the number of bytes which were direct-written
2403 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2404 pos
, ppos
, count
, written
);
2407 current
->backing_dev_info
= NULL
;
2408 return written
? written
: err
;
2411 ssize_t
generic_file_aio_write_nolock(struct kiocb
*iocb
,
2412 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
2414 struct file
*file
= iocb
->ki_filp
;
2415 struct address_space
*mapping
= file
->f_mapping
;
2416 struct inode
*inode
= mapping
->host
;
2419 BUG_ON(iocb
->ki_pos
!= pos
);
2421 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2424 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2427 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2433 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2435 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2436 unsigned long nr_segs
, loff_t pos
)
2438 struct file
*file
= iocb
->ki_filp
;
2439 struct address_space
*mapping
= file
->f_mapping
;
2440 struct inode
*inode
= mapping
->host
;
2443 BUG_ON(iocb
->ki_pos
!= pos
);
2445 mutex_lock(&inode
->i_mutex
);
2446 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2448 mutex_unlock(&inode
->i_mutex
);
2450 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2453 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2459 EXPORT_SYMBOL(generic_file_aio_write
);
2462 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2463 * went wrong during pagecache shootdown.
2466 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
2467 loff_t offset
, unsigned long nr_segs
)
2469 struct file
*file
= iocb
->ki_filp
;
2470 struct address_space
*mapping
= file
->f_mapping
;
2473 pgoff_t end
= 0; /* silence gcc */
2476 * If it's a write, unmap all mmappings of the file up-front. This
2477 * will cause any pte dirty bits to be propagated into the pageframes
2478 * for the subsequent filemap_write_and_wait().
2481 write_len
= iov_length(iov
, nr_segs
);
2482 end
= (offset
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2483 if (mapping_mapped(mapping
))
2484 unmap_mapping_range(mapping
, offset
, write_len
, 0);
2487 retval
= filemap_write_and_wait(mapping
);
2492 * After a write we want buffered reads to be sure to go to disk to get
2493 * the new data. We invalidate clean cached page from the region we're
2494 * about to write. We do this *before* the write so that we can return
2495 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2497 if (rw
== WRITE
&& mapping
->nrpages
) {
2498 retval
= invalidate_inode_pages2_range(mapping
,
2499 offset
>> PAGE_CACHE_SHIFT
, end
);
2504 retval
= mapping
->a_ops
->direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2507 * Finally, try again to invalidate clean pages which might have been
2508 * cached by non-direct readahead, or faulted in by get_user_pages()
2509 * if the source of the write was an mmap'ed region of the file
2510 * we're writing. Either one is a pretty crazy thing to do,
2511 * so we don't support it 100%. If this invalidation
2512 * fails, tough, the write still worked...
2514 if (rw
== WRITE
&& mapping
->nrpages
) {
2515 invalidate_inode_pages2_range(mapping
, offset
>> PAGE_CACHE_SHIFT
, end
);
2522 * try_to_release_page() - release old fs-specific metadata on a page
2524 * @page: the page which the kernel is trying to free
2525 * @gfp_mask: memory allocation flags (and I/O mode)
2527 * The address_space is to try to release any data against the page
2528 * (presumably at page->private). If the release was successful, return `1'.
2529 * Otherwise return zero.
2531 * The @gfp_mask argument specifies whether I/O may be performed to release
2532 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2534 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2536 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2538 struct address_space
* const mapping
= page
->mapping
;
2540 BUG_ON(!PageLocked(page
));
2541 if (PageWriteback(page
))
2544 if (mapping
&& mapping
->a_ops
->releasepage
)
2545 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2546 return try_to_free_buffers(page
);
2549 EXPORT_SYMBOL(try_to_release_page
);