2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
66 #include <net/inet_hashtables.h>
68 #include <net/transp_v6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
84 int sysctl_tcp_tw_reuse __read_mostly
;
85 int sysctl_tcp_low_latency __read_mostly
;
87 /* Check TCP sequence numbers in ICMP packets. */
88 #define ICMP_MIN_LENGTH 8
90 /* Socket used for sending RSTs */
91 static struct socket
*tcp_socket __read_mostly
;
93 void tcp_v4_send_check(struct sock
*sk
, int len
, struct sk_buff
*skb
);
95 #ifdef CONFIG_TCP_MD5SIG
96 static struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
,
98 static int tcp_v4_do_calc_md5_hash(char *md5_hash
, struct tcp_md5sig_key
*key
,
99 __be32 saddr
, __be32 daddr
,
100 struct tcphdr
*th
, int protocol
,
104 struct inet_hashinfo __cacheline_aligned tcp_hashinfo
= {
105 .lhash_lock
= __RW_LOCK_UNLOCKED(tcp_hashinfo
.lhash_lock
),
106 .lhash_users
= ATOMIC_INIT(0),
107 .lhash_wait
= __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo
.lhash_wait
),
110 static int tcp_v4_get_port(struct sock
*sk
, unsigned short snum
)
112 return inet_csk_get_port(&tcp_hashinfo
, sk
, snum
,
113 inet_csk_bind_conflict
);
116 static void tcp_v4_hash(struct sock
*sk
)
118 inet_hash(&tcp_hashinfo
, sk
);
121 void tcp_unhash(struct sock
*sk
)
123 inet_unhash(&tcp_hashinfo
, sk
);
126 static inline __u32
tcp_v4_init_sequence(struct sk_buff
*skb
)
128 return secure_tcp_sequence_number(ip_hdr(skb
)->daddr
,
131 tcp_hdr(skb
)->source
);
134 int tcp_twsk_unique(struct sock
*sk
, struct sock
*sktw
, void *twp
)
136 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sktw
);
137 struct tcp_sock
*tp
= tcp_sk(sk
);
139 /* With PAWS, it is safe from the viewpoint
140 of data integrity. Even without PAWS it is safe provided sequence
141 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
143 Actually, the idea is close to VJ's one, only timestamp cache is
144 held not per host, but per port pair and TW bucket is used as state
147 If TW bucket has been already destroyed we fall back to VJ's scheme
148 and use initial timestamp retrieved from peer table.
150 if (tcptw
->tw_ts_recent_stamp
&&
151 (twp
== NULL
|| (sysctl_tcp_tw_reuse
&&
152 get_seconds() - tcptw
->tw_ts_recent_stamp
> 1))) {
153 tp
->write_seq
= tcptw
->tw_snd_nxt
+ 65535 + 2;
154 if (tp
->write_seq
== 0)
156 tp
->rx_opt
.ts_recent
= tcptw
->tw_ts_recent
;
157 tp
->rx_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
165 EXPORT_SYMBOL_GPL(tcp_twsk_unique
);
167 /* This will initiate an outgoing connection. */
168 int tcp_v4_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
170 struct inet_sock
*inet
= inet_sk(sk
);
171 struct tcp_sock
*tp
= tcp_sk(sk
);
172 struct sockaddr_in
*usin
= (struct sockaddr_in
*)uaddr
;
174 __be32 daddr
, nexthop
;
178 if (addr_len
< sizeof(struct sockaddr_in
))
181 if (usin
->sin_family
!= AF_INET
)
182 return -EAFNOSUPPORT
;
184 nexthop
= daddr
= usin
->sin_addr
.s_addr
;
185 if (inet
->opt
&& inet
->opt
->srr
) {
188 nexthop
= inet
->opt
->faddr
;
191 tmp
= ip_route_connect(&rt
, nexthop
, inet
->saddr
,
192 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
,
194 inet
->sport
, usin
->sin_port
, sk
, 1);
198 if (rt
->rt_flags
& (RTCF_MULTICAST
| RTCF_BROADCAST
)) {
203 if (!inet
->opt
|| !inet
->opt
->srr
)
207 inet
->saddr
= rt
->rt_src
;
208 inet
->rcv_saddr
= inet
->saddr
;
210 if (tp
->rx_opt
.ts_recent_stamp
&& inet
->daddr
!= daddr
) {
211 /* Reset inherited state */
212 tp
->rx_opt
.ts_recent
= 0;
213 tp
->rx_opt
.ts_recent_stamp
= 0;
217 if (tcp_death_row
.sysctl_tw_recycle
&&
218 !tp
->rx_opt
.ts_recent_stamp
&& rt
->rt_dst
== daddr
) {
219 struct inet_peer
*peer
= rt_get_peer(rt
);
221 * VJ's idea. We save last timestamp seen from
222 * the destination in peer table, when entering state
223 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
224 * when trying new connection.
227 peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
>= get_seconds()) {
228 tp
->rx_opt
.ts_recent_stamp
= peer
->tcp_ts_stamp
;
229 tp
->rx_opt
.ts_recent
= peer
->tcp_ts
;
233 inet
->dport
= usin
->sin_port
;
236 inet_csk(sk
)->icsk_ext_hdr_len
= 0;
238 inet_csk(sk
)->icsk_ext_hdr_len
= inet
->opt
->optlen
;
240 tp
->rx_opt
.mss_clamp
= 536;
242 /* Socket identity is still unknown (sport may be zero).
243 * However we set state to SYN-SENT and not releasing socket
244 * lock select source port, enter ourselves into the hash tables and
245 * complete initialization after this.
247 tcp_set_state(sk
, TCP_SYN_SENT
);
248 err
= inet_hash_connect(&tcp_death_row
, sk
);
252 err
= ip_route_newports(&rt
, IPPROTO_TCP
,
253 inet
->sport
, inet
->dport
, sk
);
257 /* OK, now commit destination to socket. */
258 sk
->sk_gso_type
= SKB_GSO_TCPV4
;
259 sk_setup_caps(sk
, &rt
->u
.dst
);
262 tp
->write_seq
= secure_tcp_sequence_number(inet
->saddr
,
267 inet
->id
= tp
->write_seq
^ jiffies
;
269 err
= tcp_connect(sk
);
278 * This unhashes the socket and releases the local port,
281 tcp_set_state(sk
, TCP_CLOSE
);
283 sk
->sk_route_caps
= 0;
289 * This routine does path mtu discovery as defined in RFC1191.
291 static void do_pmtu_discovery(struct sock
*sk
, struct iphdr
*iph
, u32 mtu
)
293 struct dst_entry
*dst
;
294 struct inet_sock
*inet
= inet_sk(sk
);
296 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
297 * send out by Linux are always <576bytes so they should go through
300 if (sk
->sk_state
== TCP_LISTEN
)
303 /* We don't check in the destentry if pmtu discovery is forbidden
304 * on this route. We just assume that no packet_to_big packets
305 * are send back when pmtu discovery is not active.
306 * There is a small race when the user changes this flag in the
307 * route, but I think that's acceptable.
309 if ((dst
= __sk_dst_check(sk
, 0)) == NULL
)
312 dst
->ops
->update_pmtu(dst
, mtu
);
314 /* Something is about to be wrong... Remember soft error
315 * for the case, if this connection will not able to recover.
317 if (mtu
< dst_mtu(dst
) && ip_dont_fragment(sk
, dst
))
318 sk
->sk_err_soft
= EMSGSIZE
;
322 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
&&
323 inet_csk(sk
)->icsk_pmtu_cookie
> mtu
) {
324 tcp_sync_mss(sk
, mtu
);
326 /* Resend the TCP packet because it's
327 * clear that the old packet has been
328 * dropped. This is the new "fast" path mtu
331 tcp_simple_retransmit(sk
);
332 } /* else let the usual retransmit timer handle it */
336 * This routine is called by the ICMP module when it gets some
337 * sort of error condition. If err < 0 then the socket should
338 * be closed and the error returned to the user. If err > 0
339 * it's just the icmp type << 8 | icmp code. After adjustment
340 * header points to the first 8 bytes of the tcp header. We need
341 * to find the appropriate port.
343 * The locking strategy used here is very "optimistic". When
344 * someone else accesses the socket the ICMP is just dropped
345 * and for some paths there is no check at all.
346 * A more general error queue to queue errors for later handling
347 * is probably better.
351 void tcp_v4_err(struct sk_buff
*skb
, u32 info
)
353 struct iphdr
*iph
= (struct iphdr
*)skb
->data
;
354 struct tcphdr
*th
= (struct tcphdr
*)(skb
->data
+ (iph
->ihl
<< 2));
356 struct inet_sock
*inet
;
357 const int type
= icmp_hdr(skb
)->type
;
358 const int code
= icmp_hdr(skb
)->code
;
363 if (skb
->len
< (iph
->ihl
<< 2) + 8) {
364 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS
);
368 sk
= inet_lookup(&tcp_hashinfo
, iph
->daddr
, th
->dest
, iph
->saddr
,
369 th
->source
, inet_iif(skb
));
371 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS
);
374 if (sk
->sk_state
== TCP_TIME_WAIT
) {
375 inet_twsk_put(inet_twsk(sk
));
380 /* If too many ICMPs get dropped on busy
381 * servers this needs to be solved differently.
383 if (sock_owned_by_user(sk
))
384 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS
);
386 if (sk
->sk_state
== TCP_CLOSE
)
390 seq
= ntohl(th
->seq
);
391 if (sk
->sk_state
!= TCP_LISTEN
&&
392 !between(seq
, tp
->snd_una
, tp
->snd_nxt
)) {
393 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS
);
398 case ICMP_SOURCE_QUENCH
:
399 /* Just silently ignore these. */
401 case ICMP_PARAMETERPROB
:
404 case ICMP_DEST_UNREACH
:
405 if (code
> NR_ICMP_UNREACH
)
408 if (code
== ICMP_FRAG_NEEDED
) { /* PMTU discovery (RFC1191) */
409 if (!sock_owned_by_user(sk
))
410 do_pmtu_discovery(sk
, iph
, info
);
414 err
= icmp_err_convert
[code
].errno
;
416 case ICMP_TIME_EXCEEDED
:
423 switch (sk
->sk_state
) {
424 struct request_sock
*req
, **prev
;
426 if (sock_owned_by_user(sk
))
429 req
= inet_csk_search_req(sk
, &prev
, th
->dest
,
430 iph
->daddr
, iph
->saddr
);
434 /* ICMPs are not backlogged, hence we cannot get
435 an established socket here.
439 if (seq
!= tcp_rsk(req
)->snt_isn
) {
440 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS
);
445 * Still in SYN_RECV, just remove it silently.
446 * There is no good way to pass the error to the newly
447 * created socket, and POSIX does not want network
448 * errors returned from accept().
450 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
454 case TCP_SYN_RECV
: /* Cannot happen.
455 It can f.e. if SYNs crossed.
457 if (!sock_owned_by_user(sk
)) {
460 sk
->sk_error_report(sk
);
464 sk
->sk_err_soft
= err
;
469 /* If we've already connected we will keep trying
470 * until we time out, or the user gives up.
472 * rfc1122 4.2.3.9 allows to consider as hard errors
473 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
474 * but it is obsoleted by pmtu discovery).
476 * Note, that in modern internet, where routing is unreliable
477 * and in each dark corner broken firewalls sit, sending random
478 * errors ordered by their masters even this two messages finally lose
479 * their original sense (even Linux sends invalid PORT_UNREACHs)
481 * Now we are in compliance with RFCs.
486 if (!sock_owned_by_user(sk
) && inet
->recverr
) {
488 sk
->sk_error_report(sk
);
489 } else { /* Only an error on timeout */
490 sk
->sk_err_soft
= err
;
498 /* This routine computes an IPv4 TCP checksum. */
499 void tcp_v4_send_check(struct sock
*sk
, int len
, struct sk_buff
*skb
)
501 struct inet_sock
*inet
= inet_sk(sk
);
502 struct tcphdr
*th
= tcp_hdr(skb
);
504 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
505 th
->check
= ~tcp_v4_check(len
, inet
->saddr
,
507 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
509 th
->check
= tcp_v4_check(len
, inet
->saddr
, inet
->daddr
,
510 csum_partial((char *)th
,
516 int tcp_v4_gso_send_check(struct sk_buff
*skb
)
518 const struct iphdr
*iph
;
521 if (!pskb_may_pull(skb
, sizeof(*th
)))
528 th
->check
= ~tcp_v4_check(skb
->len
, iph
->saddr
, iph
->daddr
, 0);
529 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
530 skb
->ip_summed
= CHECKSUM_PARTIAL
;
535 * This routine will send an RST to the other tcp.
537 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
539 * Answer: if a packet caused RST, it is not for a socket
540 * existing in our system, if it is matched to a socket,
541 * it is just duplicate segment or bug in other side's TCP.
542 * So that we build reply only basing on parameters
543 * arrived with segment.
544 * Exception: precedence violation. We do not implement it in any case.
547 static void tcp_v4_send_reset(struct sock
*sk
, struct sk_buff
*skb
)
549 struct tcphdr
*th
= tcp_hdr(skb
);
552 #ifdef CONFIG_TCP_MD5SIG
553 __be32 opt
[(TCPOLEN_MD5SIG_ALIGNED
>> 2)];
556 struct ip_reply_arg arg
;
557 #ifdef CONFIG_TCP_MD5SIG
558 struct tcp_md5sig_key
*key
;
561 /* Never send a reset in response to a reset. */
565 if (((struct rtable
*)skb
->dst
)->rt_type
!= RTN_LOCAL
)
568 /* Swap the send and the receive. */
569 memset(&rep
, 0, sizeof(rep
));
570 rep
.th
.dest
= th
->source
;
571 rep
.th
.source
= th
->dest
;
572 rep
.th
.doff
= sizeof(struct tcphdr
) / 4;
576 rep
.th
.seq
= th
->ack_seq
;
579 rep
.th
.ack_seq
= htonl(ntohl(th
->seq
) + th
->syn
+ th
->fin
+
580 skb
->len
- (th
->doff
<< 2));
583 memset(&arg
, 0, sizeof(arg
));
584 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
585 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
587 #ifdef CONFIG_TCP_MD5SIG
588 key
= sk
? tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
) : NULL
;
590 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) |
592 (TCPOPT_MD5SIG
<< 8) |
594 /* Update length and the length the header thinks exists */
595 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
596 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
598 tcp_v4_do_calc_md5_hash((__u8
*)&rep
.opt
[1],
602 &rep
.th
, IPPROTO_TCP
,
606 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
607 ip_hdr(skb
)->saddr
, /* XXX */
608 sizeof(struct tcphdr
), IPPROTO_TCP
, 0);
609 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
611 ip_send_reply(tcp_socket
->sk
, skb
, &arg
, arg
.iov
[0].iov_len
);
613 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS
);
614 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS
);
617 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
618 outside socket context is ugly, certainly. What can I do?
621 static void tcp_v4_send_ack(struct tcp_timewait_sock
*twsk
,
622 struct sk_buff
*skb
, u32 seq
, u32 ack
,
625 struct tcphdr
*th
= tcp_hdr(skb
);
628 __be32 opt
[(TCPOLEN_TSTAMP_ALIGNED
>> 2)
629 #ifdef CONFIG_TCP_MD5SIG
630 + (TCPOLEN_MD5SIG_ALIGNED
>> 2)
634 struct ip_reply_arg arg
;
635 #ifdef CONFIG_TCP_MD5SIG
636 struct tcp_md5sig_key
*key
;
637 struct tcp_md5sig_key tw_key
;
640 memset(&rep
.th
, 0, sizeof(struct tcphdr
));
641 memset(&arg
, 0, sizeof(arg
));
643 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
644 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
646 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
647 (TCPOPT_TIMESTAMP
<< 8) |
649 rep
.opt
[1] = htonl(tcp_time_stamp
);
650 rep
.opt
[2] = htonl(ts
);
651 arg
.iov
[0].iov_len
+= TCPOLEN_TSTAMP_ALIGNED
;
654 /* Swap the send and the receive. */
655 rep
.th
.dest
= th
->source
;
656 rep
.th
.source
= th
->dest
;
657 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
658 rep
.th
.seq
= htonl(seq
);
659 rep
.th
.ack_seq
= htonl(ack
);
661 rep
.th
.window
= htons(win
);
663 #ifdef CONFIG_TCP_MD5SIG
665 * The SKB holds an imcoming packet, but may not have a valid ->sk
666 * pointer. This is especially the case when we're dealing with a
667 * TIME_WAIT ack, because the sk structure is long gone, and only
668 * the tcp_timewait_sock remains. So the md5 key is stashed in that
669 * structure, and we use it in preference. I believe that (twsk ||
670 * skb->sk) holds true, but we program defensively.
672 if (!twsk
&& skb
->sk
) {
673 key
= tcp_v4_md5_do_lookup(skb
->sk
, ip_hdr(skb
)->daddr
);
674 } else if (twsk
&& twsk
->tw_md5_keylen
) {
675 tw_key
.key
= twsk
->tw_md5_key
;
676 tw_key
.keylen
= twsk
->tw_md5_keylen
;
682 int offset
= (ts
) ? 3 : 0;
684 rep
.opt
[offset
++] = htonl((TCPOPT_NOP
<< 24) |
686 (TCPOPT_MD5SIG
<< 8) |
688 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
689 rep
.th
.doff
= arg
.iov
[0].iov_len
/4;
691 tcp_v4_do_calc_md5_hash((__u8
*)&rep
.opt
[offset
],
695 &rep
.th
, IPPROTO_TCP
,
699 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
700 ip_hdr(skb
)->saddr
, /* XXX */
701 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
702 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
704 ip_send_reply(tcp_socket
->sk
, skb
, &arg
, arg
.iov
[0].iov_len
);
706 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS
);
709 static void tcp_v4_timewait_ack(struct sock
*sk
, struct sk_buff
*skb
)
711 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
712 struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
714 tcp_v4_send_ack(tcptw
, skb
, tcptw
->tw_snd_nxt
, tcptw
->tw_rcv_nxt
,
715 tcptw
->tw_rcv_wnd
>> tw
->tw_rcv_wscale
,
716 tcptw
->tw_ts_recent
);
721 static void tcp_v4_reqsk_send_ack(struct sk_buff
*skb
,
722 struct request_sock
*req
)
724 tcp_v4_send_ack(NULL
, skb
, tcp_rsk(req
)->snt_isn
+ 1,
725 tcp_rsk(req
)->rcv_isn
+ 1, req
->rcv_wnd
,
730 * Send a SYN-ACK after having received an ACK.
731 * This still operates on a request_sock only, not on a big
734 static int tcp_v4_send_synack(struct sock
*sk
, struct request_sock
*req
,
735 struct dst_entry
*dst
)
737 const struct inet_request_sock
*ireq
= inet_rsk(req
);
739 struct sk_buff
* skb
;
741 /* First, grab a route. */
742 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
745 skb
= tcp_make_synack(sk
, dst
, req
);
748 struct tcphdr
*th
= tcp_hdr(skb
);
750 th
->check
= tcp_v4_check(skb
->len
,
753 csum_partial((char *)th
, skb
->len
,
756 err
= ip_build_and_send_pkt(skb
, sk
, ireq
->loc_addr
,
759 err
= net_xmit_eval(err
);
768 * IPv4 request_sock destructor.
770 static void tcp_v4_reqsk_destructor(struct request_sock
*req
)
772 kfree(inet_rsk(req
)->opt
);
775 #ifdef CONFIG_SYN_COOKIES
776 static void syn_flood_warning(struct sk_buff
*skb
)
778 static unsigned long warntime
;
780 if (time_after(jiffies
, (warntime
+ HZ
* 60))) {
783 "possible SYN flooding on port %d. Sending cookies.\n",
784 ntohs(tcp_hdr(skb
)->dest
));
790 * Save and compile IPv4 options into the request_sock if needed.
792 static struct ip_options
*tcp_v4_save_options(struct sock
*sk
,
795 struct ip_options
*opt
= &(IPCB(skb
)->opt
);
796 struct ip_options
*dopt
= NULL
;
798 if (opt
&& opt
->optlen
) {
799 int opt_size
= optlength(opt
);
800 dopt
= kmalloc(opt_size
, GFP_ATOMIC
);
802 if (ip_options_echo(dopt
, skb
)) {
811 #ifdef CONFIG_TCP_MD5SIG
813 * RFC2385 MD5 checksumming requires a mapping of
814 * IP address->MD5 Key.
815 * We need to maintain these in the sk structure.
818 /* Find the Key structure for an address. */
819 static struct tcp_md5sig_key
*
820 tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
822 struct tcp_sock
*tp
= tcp_sk(sk
);
825 if (!tp
->md5sig_info
|| !tp
->md5sig_info
->entries4
)
827 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
828 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
)
829 return (struct tcp_md5sig_key
*)
830 &tp
->md5sig_info
->keys4
[i
];
835 struct tcp_md5sig_key
*tcp_v4_md5_lookup(struct sock
*sk
,
836 struct sock
*addr_sk
)
838 return tcp_v4_md5_do_lookup(sk
, inet_sk(addr_sk
)->daddr
);
841 EXPORT_SYMBOL(tcp_v4_md5_lookup
);
843 static struct tcp_md5sig_key
*tcp_v4_reqsk_md5_lookup(struct sock
*sk
,
844 struct request_sock
*req
)
846 return tcp_v4_md5_do_lookup(sk
, inet_rsk(req
)->rmt_addr
);
849 /* This can be called on a newly created socket, from other files */
850 int tcp_v4_md5_do_add(struct sock
*sk
, __be32 addr
,
851 u8
*newkey
, u8 newkeylen
)
853 /* Add Key to the list */
854 struct tcp4_md5sig_key
*key
;
855 struct tcp_sock
*tp
= tcp_sk(sk
);
856 struct tcp4_md5sig_key
*keys
;
858 key
= (struct tcp4_md5sig_key
*)tcp_v4_md5_do_lookup(sk
, addr
);
860 /* Pre-existing entry - just update that one. */
863 key
->keylen
= newkeylen
;
865 struct tcp_md5sig_info
*md5sig
;
867 if (!tp
->md5sig_info
) {
868 tp
->md5sig_info
= kzalloc(sizeof(*tp
->md5sig_info
),
870 if (!tp
->md5sig_info
) {
875 if (tcp_alloc_md5sig_pool() == NULL
) {
879 md5sig
= tp
->md5sig_info
;
881 if (md5sig
->alloced4
== md5sig
->entries4
) {
882 keys
= kmalloc((sizeof(*keys
) *
883 (md5sig
->entries4
+ 1)), GFP_ATOMIC
);
886 tcp_free_md5sig_pool();
890 if (md5sig
->entries4
)
891 memcpy(keys
, md5sig
->keys4
,
892 sizeof(*keys
) * md5sig
->entries4
);
894 /* Free old key list, and reference new one */
896 kfree(md5sig
->keys4
);
897 md5sig
->keys4
= keys
;
901 md5sig
->keys4
[md5sig
->entries4
- 1].addr
= addr
;
902 md5sig
->keys4
[md5sig
->entries4
- 1].key
= newkey
;
903 md5sig
->keys4
[md5sig
->entries4
- 1].keylen
= newkeylen
;
908 EXPORT_SYMBOL(tcp_v4_md5_do_add
);
910 static int tcp_v4_md5_add_func(struct sock
*sk
, struct sock
*addr_sk
,
911 u8
*newkey
, u8 newkeylen
)
913 return tcp_v4_md5_do_add(sk
, inet_sk(addr_sk
)->daddr
,
917 int tcp_v4_md5_do_del(struct sock
*sk
, __be32 addr
)
919 struct tcp_sock
*tp
= tcp_sk(sk
);
922 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
923 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
) {
925 kfree(tp
->md5sig_info
->keys4
[i
].key
);
926 tp
->md5sig_info
->entries4
--;
928 if (tp
->md5sig_info
->entries4
== 0) {
929 kfree(tp
->md5sig_info
->keys4
);
930 tp
->md5sig_info
->keys4
= NULL
;
931 tp
->md5sig_info
->alloced4
= 0;
932 } else if (tp
->md5sig_info
->entries4
!= i
) {
933 /* Need to do some manipulation */
934 memcpy(&tp
->md5sig_info
->keys4
[i
],
935 &tp
->md5sig_info
->keys4
[i
+1],
936 (tp
->md5sig_info
->entries4
- i
) *
937 sizeof(struct tcp4_md5sig_key
));
939 tcp_free_md5sig_pool();
946 EXPORT_SYMBOL(tcp_v4_md5_do_del
);
948 static void tcp_v4_clear_md5_list(struct sock
*sk
)
950 struct tcp_sock
*tp
= tcp_sk(sk
);
952 /* Free each key, then the set of key keys,
953 * the crypto element, and then decrement our
954 * hold on the last resort crypto.
956 if (tp
->md5sig_info
->entries4
) {
958 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++)
959 kfree(tp
->md5sig_info
->keys4
[i
].key
);
960 tp
->md5sig_info
->entries4
= 0;
961 tcp_free_md5sig_pool();
963 if (tp
->md5sig_info
->keys4
) {
964 kfree(tp
->md5sig_info
->keys4
);
965 tp
->md5sig_info
->keys4
= NULL
;
966 tp
->md5sig_info
->alloced4
= 0;
970 static int tcp_v4_parse_md5_keys(struct sock
*sk
, char __user
*optval
,
973 struct tcp_md5sig cmd
;
974 struct sockaddr_in
*sin
= (struct sockaddr_in
*)&cmd
.tcpm_addr
;
977 if (optlen
< sizeof(cmd
))
980 if (copy_from_user(&cmd
, optval
, sizeof(cmd
)))
983 if (sin
->sin_family
!= AF_INET
)
986 if (!cmd
.tcpm_key
|| !cmd
.tcpm_keylen
) {
987 if (!tcp_sk(sk
)->md5sig_info
)
989 return tcp_v4_md5_do_del(sk
, sin
->sin_addr
.s_addr
);
992 if (cmd
.tcpm_keylen
> TCP_MD5SIG_MAXKEYLEN
)
995 if (!tcp_sk(sk
)->md5sig_info
) {
996 struct tcp_sock
*tp
= tcp_sk(sk
);
997 struct tcp_md5sig_info
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1002 tp
->md5sig_info
= p
;
1006 newkey
= kmemdup(cmd
.tcpm_key
, cmd
.tcpm_keylen
, GFP_KERNEL
);
1009 return tcp_v4_md5_do_add(sk
, sin
->sin_addr
.s_addr
,
1010 newkey
, cmd
.tcpm_keylen
);
1013 static int tcp_v4_do_calc_md5_hash(char *md5_hash
, struct tcp_md5sig_key
*key
,
1014 __be32 saddr
, __be32 daddr
,
1015 struct tcphdr
*th
, int protocol
,
1018 struct scatterlist sg
[4];
1021 __sum16 old_checksum
;
1022 struct tcp_md5sig_pool
*hp
;
1023 struct tcp4_pseudohdr
*bp
;
1024 struct hash_desc
*desc
;
1026 unsigned int nbytes
= 0;
1029 * Okay, so RFC2385 is turned on for this connection,
1030 * so we need to generate the MD5 hash for the packet now.
1033 hp
= tcp_get_md5sig_pool();
1035 goto clear_hash_noput
;
1037 bp
= &hp
->md5_blk
.ip4
;
1038 desc
= &hp
->md5_desc
;
1041 * 1. the TCP pseudo-header (in the order: source IP address,
1042 * destination IP address, zero-padded protocol number, and
1048 bp
->protocol
= protocol
;
1049 bp
->len
= htons(tcplen
);
1050 sg_set_buf(&sg
[block
++], bp
, sizeof(*bp
));
1051 nbytes
+= sizeof(*bp
);
1053 /* 2. the TCP header, excluding options, and assuming a
1056 old_checksum
= th
->check
;
1058 sg_set_buf(&sg
[block
++], th
, sizeof(struct tcphdr
));
1059 nbytes
+= sizeof(struct tcphdr
);
1061 /* 3. the TCP segment data (if any) */
1062 data_len
= tcplen
- (th
->doff
<< 2);
1064 unsigned char *data
= (unsigned char *)th
+ (th
->doff
<< 2);
1065 sg_set_buf(&sg
[block
++], data
, data_len
);
1069 /* 4. an independently-specified key or password, known to both
1070 * TCPs and presumably connection-specific
1072 sg_set_buf(&sg
[block
++], key
->key
, key
->keylen
);
1073 nbytes
+= key
->keylen
;
1075 /* Now store the Hash into the packet */
1076 err
= crypto_hash_init(desc
);
1079 err
= crypto_hash_update(desc
, sg
, nbytes
);
1082 err
= crypto_hash_final(desc
, md5_hash
);
1086 /* Reset header, and free up the crypto */
1087 tcp_put_md5sig_pool();
1088 th
->check
= old_checksum
;
1093 tcp_put_md5sig_pool();
1095 memset(md5_hash
, 0, 16);
1099 int tcp_v4_calc_md5_hash(char *md5_hash
, struct tcp_md5sig_key
*key
,
1101 struct dst_entry
*dst
,
1102 struct request_sock
*req
,
1103 struct tcphdr
*th
, int protocol
,
1106 __be32 saddr
, daddr
;
1109 saddr
= inet_sk(sk
)->saddr
;
1110 daddr
= inet_sk(sk
)->daddr
;
1112 struct rtable
*rt
= (struct rtable
*)dst
;
1117 return tcp_v4_do_calc_md5_hash(md5_hash
, key
,
1119 th
, protocol
, tcplen
);
1122 EXPORT_SYMBOL(tcp_v4_calc_md5_hash
);
1124 static int tcp_v4_inbound_md5_hash(struct sock
*sk
, struct sk_buff
*skb
)
1127 * This gets called for each TCP segment that arrives
1128 * so we want to be efficient.
1129 * We have 3 drop cases:
1130 * o No MD5 hash and one expected.
1131 * o MD5 hash and we're not expecting one.
1132 * o MD5 hash and its wrong.
1134 __u8
*hash_location
= NULL
;
1135 struct tcp_md5sig_key
*hash_expected
;
1136 const struct iphdr
*iph
= ip_hdr(skb
);
1137 struct tcphdr
*th
= tcp_hdr(skb
);
1138 int length
= (th
->doff
<< 2) - sizeof(struct tcphdr
);
1141 unsigned char newhash
[16];
1143 hash_expected
= tcp_v4_md5_do_lookup(sk
, iph
->saddr
);
1146 * If the TCP option length is less than the TCP_MD5SIG
1147 * option length, then we can shortcut
1149 if (length
< TCPOLEN_MD5SIG
) {
1156 /* Okay, we can't shortcut - we have to grub through the options */
1157 ptr
= (unsigned char *)(th
+ 1);
1158 while (length
> 0) {
1159 int opcode
= *ptr
++;
1172 if (opsize
> length
)
1175 if (opcode
== TCPOPT_MD5SIG
) {
1176 hash_location
= ptr
;
1184 /* We've parsed the options - do we have a hash? */
1185 if (!hash_expected
&& !hash_location
)
1188 if (hash_expected
&& !hash_location
) {
1189 LIMIT_NETDEBUG(KERN_INFO
"MD5 Hash expected but NOT found "
1190 "(" NIPQUAD_FMT
", %d)->(" NIPQUAD_FMT
", %d)\n",
1191 NIPQUAD(iph
->saddr
), ntohs(th
->source
),
1192 NIPQUAD(iph
->daddr
), ntohs(th
->dest
));
1196 if (!hash_expected
&& hash_location
) {
1197 LIMIT_NETDEBUG(KERN_INFO
"MD5 Hash NOT expected but found "
1198 "(" NIPQUAD_FMT
", %d)->(" NIPQUAD_FMT
", %d)\n",
1199 NIPQUAD(iph
->saddr
), ntohs(th
->source
),
1200 NIPQUAD(iph
->daddr
), ntohs(th
->dest
));
1204 /* Okay, so this is hash_expected and hash_location -
1205 * so we need to calculate the checksum.
1207 genhash
= tcp_v4_do_calc_md5_hash(newhash
,
1209 iph
->saddr
, iph
->daddr
,
1210 th
, sk
->sk_protocol
,
1213 if (genhash
|| memcmp(hash_location
, newhash
, 16) != 0) {
1214 if (net_ratelimit()) {
1215 printk(KERN_INFO
"MD5 Hash failed for "
1216 "(" NIPQUAD_FMT
", %d)->(" NIPQUAD_FMT
", %d)%s\n",
1217 NIPQUAD(iph
->saddr
), ntohs(th
->source
),
1218 NIPQUAD(iph
->daddr
), ntohs(th
->dest
),
1219 genhash
? " tcp_v4_calc_md5_hash failed" : "");
1228 struct request_sock_ops tcp_request_sock_ops __read_mostly
= {
1230 .obj_size
= sizeof(struct tcp_request_sock
),
1231 .rtx_syn_ack
= tcp_v4_send_synack
,
1232 .send_ack
= tcp_v4_reqsk_send_ack
,
1233 .destructor
= tcp_v4_reqsk_destructor
,
1234 .send_reset
= tcp_v4_send_reset
,
1237 #ifdef CONFIG_TCP_MD5SIG
1238 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops
= {
1239 .md5_lookup
= tcp_v4_reqsk_md5_lookup
,
1243 static struct timewait_sock_ops tcp_timewait_sock_ops
= {
1244 .twsk_obj_size
= sizeof(struct tcp_timewait_sock
),
1245 .twsk_unique
= tcp_twsk_unique
,
1246 .twsk_destructor
= tcp_twsk_destructor
,
1249 int tcp_v4_conn_request(struct sock
*sk
, struct sk_buff
*skb
)
1251 struct inet_request_sock
*ireq
;
1252 struct tcp_options_received tmp_opt
;
1253 struct request_sock
*req
;
1254 __be32 saddr
= ip_hdr(skb
)->saddr
;
1255 __be32 daddr
= ip_hdr(skb
)->daddr
;
1256 __u32 isn
= TCP_SKB_CB(skb
)->when
;
1257 struct dst_entry
*dst
= NULL
;
1258 #ifdef CONFIG_SYN_COOKIES
1259 int want_cookie
= 0;
1261 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1264 /* Never answer to SYNs send to broadcast or multicast */
1265 if (((struct rtable
*)skb
->dst
)->rt_flags
&
1266 (RTCF_BROADCAST
| RTCF_MULTICAST
))
1269 /* TW buckets are converted to open requests without
1270 * limitations, they conserve resources and peer is
1271 * evidently real one.
1273 if (inet_csk_reqsk_queue_is_full(sk
) && !isn
) {
1274 #ifdef CONFIG_SYN_COOKIES
1275 if (sysctl_tcp_syncookies
) {
1282 /* Accept backlog is full. If we have already queued enough
1283 * of warm entries in syn queue, drop request. It is better than
1284 * clogging syn queue with openreqs with exponentially increasing
1287 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1)
1290 req
= reqsk_alloc(&tcp_request_sock_ops
);
1294 #ifdef CONFIG_TCP_MD5SIG
1295 tcp_rsk(req
)->af_specific
= &tcp_request_sock_ipv4_ops
;
1298 tcp_clear_options(&tmp_opt
);
1299 tmp_opt
.mss_clamp
= 536;
1300 tmp_opt
.user_mss
= tcp_sk(sk
)->rx_opt
.user_mss
;
1302 tcp_parse_options(skb
, &tmp_opt
, 0);
1305 tcp_clear_options(&tmp_opt
);
1306 tmp_opt
.saw_tstamp
= 0;
1309 if (tmp_opt
.saw_tstamp
&& !tmp_opt
.rcv_tsval
) {
1310 /* Some OSes (unknown ones, but I see them on web server, which
1311 * contains information interesting only for windows'
1312 * users) do not send their stamp in SYN. It is easy case.
1313 * We simply do not advertise TS support.
1315 tmp_opt
.saw_tstamp
= 0;
1316 tmp_opt
.tstamp_ok
= 0;
1318 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
1320 tcp_openreq_init(req
, &tmp_opt
, skb
);
1322 if (security_inet_conn_request(sk
, skb
, req
))
1325 ireq
= inet_rsk(req
);
1326 ireq
->loc_addr
= daddr
;
1327 ireq
->rmt_addr
= saddr
;
1328 ireq
->opt
= tcp_v4_save_options(sk
, skb
);
1330 TCP_ECN_create_request(req
, tcp_hdr(skb
));
1333 #ifdef CONFIG_SYN_COOKIES
1334 syn_flood_warning(skb
);
1336 isn
= cookie_v4_init_sequence(sk
, skb
, &req
->mss
);
1338 struct inet_peer
*peer
= NULL
;
1340 /* VJ's idea. We save last timestamp seen
1341 * from the destination in peer table, when entering
1342 * state TIME-WAIT, and check against it before
1343 * accepting new connection request.
1345 * If "isn" is not zero, this request hit alive
1346 * timewait bucket, so that all the necessary checks
1347 * are made in the function processing timewait state.
1349 if (tmp_opt
.saw_tstamp
&&
1350 tcp_death_row
.sysctl_tw_recycle
&&
1351 (dst
= inet_csk_route_req(sk
, req
)) != NULL
&&
1352 (peer
= rt_get_peer((struct rtable
*)dst
)) != NULL
&&
1353 peer
->v4daddr
== saddr
) {
1354 if (get_seconds() < peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
&&
1355 (s32
)(peer
->tcp_ts
- req
->ts_recent
) >
1357 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED
);
1362 /* Kill the following clause, if you dislike this way. */
1363 else if (!sysctl_tcp_syncookies
&&
1364 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
1365 (sysctl_max_syn_backlog
>> 2)) &&
1366 (!peer
|| !peer
->tcp_ts_stamp
) &&
1367 (!dst
|| !dst_metric(dst
, RTAX_RTT
))) {
1368 /* Without syncookies last quarter of
1369 * backlog is filled with destinations,
1370 * proven to be alive.
1371 * It means that we continue to communicate
1372 * to destinations, already remembered
1373 * to the moment of synflood.
1375 LIMIT_NETDEBUG(KERN_DEBUG
"TCP: drop open "
1376 "request from %u.%u.%u.%u/%u\n",
1378 ntohs(tcp_hdr(skb
)->source
));
1383 isn
= tcp_v4_init_sequence(skb
);
1385 tcp_rsk(req
)->snt_isn
= isn
;
1387 if (tcp_v4_send_synack(sk
, req
, dst
))
1393 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
1405 * The three way handshake has completed - we got a valid synack -
1406 * now create the new socket.
1408 struct sock
*tcp_v4_syn_recv_sock(struct sock
*sk
, struct sk_buff
*skb
,
1409 struct request_sock
*req
,
1410 struct dst_entry
*dst
)
1412 struct inet_request_sock
*ireq
;
1413 struct inet_sock
*newinet
;
1414 struct tcp_sock
*newtp
;
1416 #ifdef CONFIG_TCP_MD5SIG
1417 struct tcp_md5sig_key
*key
;
1420 if (sk_acceptq_is_full(sk
))
1423 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
1426 newsk
= tcp_create_openreq_child(sk
, req
, skb
);
1430 newsk
->sk_gso_type
= SKB_GSO_TCPV4
;
1431 sk_setup_caps(newsk
, dst
);
1433 newtp
= tcp_sk(newsk
);
1434 newinet
= inet_sk(newsk
);
1435 ireq
= inet_rsk(req
);
1436 newinet
->daddr
= ireq
->rmt_addr
;
1437 newinet
->rcv_saddr
= ireq
->loc_addr
;
1438 newinet
->saddr
= ireq
->loc_addr
;
1439 newinet
->opt
= ireq
->opt
;
1441 newinet
->mc_index
= inet_iif(skb
);
1442 newinet
->mc_ttl
= ip_hdr(skb
)->ttl
;
1443 inet_csk(newsk
)->icsk_ext_hdr_len
= 0;
1445 inet_csk(newsk
)->icsk_ext_hdr_len
= newinet
->opt
->optlen
;
1446 newinet
->id
= newtp
->write_seq
^ jiffies
;
1448 tcp_mtup_init(newsk
);
1449 tcp_sync_mss(newsk
, dst_mtu(dst
));
1450 newtp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
1451 tcp_initialize_rcv_mss(newsk
);
1453 #ifdef CONFIG_TCP_MD5SIG
1454 /* Copy over the MD5 key from the original socket */
1455 if ((key
= tcp_v4_md5_do_lookup(sk
, newinet
->daddr
)) != NULL
) {
1457 * We're using one, so create a matching key
1458 * on the newsk structure. If we fail to get
1459 * memory, then we end up not copying the key
1462 char *newkey
= kmemdup(key
->key
, key
->keylen
, GFP_ATOMIC
);
1464 tcp_v4_md5_do_add(newsk
, inet_sk(sk
)->daddr
,
1465 newkey
, key
->keylen
);
1469 __inet_hash(&tcp_hashinfo
, newsk
, 0);
1470 __inet_inherit_port(&tcp_hashinfo
, sk
, newsk
);
1475 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS
);
1477 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS
);
1482 static struct sock
*tcp_v4_hnd_req(struct sock
*sk
, struct sk_buff
*skb
)
1484 struct tcphdr
*th
= tcp_hdr(skb
);
1485 const struct iphdr
*iph
= ip_hdr(skb
);
1487 struct request_sock
**prev
;
1488 /* Find possible connection requests. */
1489 struct request_sock
*req
= inet_csk_search_req(sk
, &prev
, th
->source
,
1490 iph
->saddr
, iph
->daddr
);
1492 return tcp_check_req(sk
, skb
, req
, prev
);
1494 nsk
= inet_lookup_established(&tcp_hashinfo
, iph
->saddr
, th
->source
,
1495 iph
->daddr
, th
->dest
, inet_iif(skb
));
1498 if (nsk
->sk_state
!= TCP_TIME_WAIT
) {
1502 inet_twsk_put(inet_twsk(nsk
));
1506 #ifdef CONFIG_SYN_COOKIES
1507 if (!th
->rst
&& !th
->syn
&& th
->ack
)
1508 sk
= cookie_v4_check(sk
, skb
, &(IPCB(skb
)->opt
));
1513 static __sum16
tcp_v4_checksum_init(struct sk_buff
*skb
)
1515 const struct iphdr
*iph
= ip_hdr(skb
);
1517 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1518 if (!tcp_v4_check(skb
->len
, iph
->saddr
,
1519 iph
->daddr
, skb
->csum
)) {
1520 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1525 skb
->csum
= csum_tcpudp_nofold(iph
->saddr
, iph
->daddr
,
1526 skb
->len
, IPPROTO_TCP
, 0);
1528 if (skb
->len
<= 76) {
1529 return __skb_checksum_complete(skb
);
1535 /* The socket must have it's spinlock held when we get
1538 * We have a potential double-lock case here, so even when
1539 * doing backlog processing we use the BH locking scheme.
1540 * This is because we cannot sleep with the original spinlock
1543 int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
)
1546 #ifdef CONFIG_TCP_MD5SIG
1548 * We really want to reject the packet as early as possible
1550 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1551 * o There is an MD5 option and we're not expecting one
1553 if (tcp_v4_inbound_md5_hash(sk
, skb
))
1557 if (sk
->sk_state
== TCP_ESTABLISHED
) { /* Fast path */
1558 TCP_CHECK_TIMER(sk
);
1559 if (tcp_rcv_established(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1563 TCP_CHECK_TIMER(sk
);
1567 if (skb
->len
< tcp_hdrlen(skb
) || tcp_checksum_complete(skb
))
1570 if (sk
->sk_state
== TCP_LISTEN
) {
1571 struct sock
*nsk
= tcp_v4_hnd_req(sk
, skb
);
1576 if (tcp_child_process(sk
, nsk
, skb
)) {
1584 TCP_CHECK_TIMER(sk
);
1585 if (tcp_rcv_state_process(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1589 TCP_CHECK_TIMER(sk
);
1593 tcp_v4_send_reset(rsk
, skb
);
1596 /* Be careful here. If this function gets more complicated and
1597 * gcc suffers from register pressure on the x86, sk (in %ebx)
1598 * might be destroyed here. This current version compiles correctly,
1599 * but you have been warned.
1604 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1612 int tcp_v4_rcv(struct sk_buff
*skb
)
1614 const struct iphdr
*iph
;
1619 if (skb
->pkt_type
!= PACKET_HOST
)
1622 /* Count it even if it's bad */
1623 TCP_INC_STATS_BH(TCP_MIB_INSEGS
);
1625 if (!pskb_may_pull(skb
, sizeof(struct tcphdr
)))
1630 if (th
->doff
< sizeof(struct tcphdr
) / 4)
1632 if (!pskb_may_pull(skb
, th
->doff
* 4))
1635 /* An explanation is required here, I think.
1636 * Packet length and doff are validated by header prediction,
1637 * provided case of th->doff==0 is eliminated.
1638 * So, we defer the checks. */
1639 if ((skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
1640 tcp_v4_checksum_init(skb
)))
1645 TCP_SKB_CB(skb
)->seq
= ntohl(th
->seq
);
1646 TCP_SKB_CB(skb
)->end_seq
= (TCP_SKB_CB(skb
)->seq
+ th
->syn
+ th
->fin
+
1647 skb
->len
- th
->doff
* 4);
1648 TCP_SKB_CB(skb
)->ack_seq
= ntohl(th
->ack_seq
);
1649 TCP_SKB_CB(skb
)->when
= 0;
1650 TCP_SKB_CB(skb
)->flags
= iph
->tos
;
1651 TCP_SKB_CB(skb
)->sacked
= 0;
1653 sk
= __inet_lookup(&tcp_hashinfo
, iph
->saddr
, th
->source
,
1654 iph
->daddr
, th
->dest
, inet_iif(skb
));
1659 if (sk
->sk_state
== TCP_TIME_WAIT
)
1662 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1663 goto discard_and_relse
;
1666 if (sk_filter(sk
, skb
))
1667 goto discard_and_relse
;
1671 bh_lock_sock_nested(sk
);
1673 if (!sock_owned_by_user(sk
)) {
1674 #ifdef CONFIG_NET_DMA
1675 struct tcp_sock
*tp
= tcp_sk(sk
);
1676 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1677 tp
->ucopy
.dma_chan
= get_softnet_dma();
1678 if (tp
->ucopy
.dma_chan
)
1679 ret
= tcp_v4_do_rcv(sk
, skb
);
1683 if (!tcp_prequeue(sk
, skb
))
1684 ret
= tcp_v4_do_rcv(sk
, skb
);
1687 sk_add_backlog(sk
, skb
);
1695 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1698 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1700 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1702 tcp_v4_send_reset(NULL
, skb
);
1706 /* Discard frame. */
1715 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
)) {
1716 inet_twsk_put(inet_twsk(sk
));
1720 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1721 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1722 inet_twsk_put(inet_twsk(sk
));
1725 switch (tcp_timewait_state_process(inet_twsk(sk
), skb
, th
)) {
1727 struct sock
*sk2
= inet_lookup_listener(&tcp_hashinfo
,
1728 iph
->daddr
, th
->dest
,
1731 inet_twsk_deschedule(inet_twsk(sk
), &tcp_death_row
);
1732 inet_twsk_put(inet_twsk(sk
));
1736 /* Fall through to ACK */
1739 tcp_v4_timewait_ack(sk
, skb
);
1743 case TCP_TW_SUCCESS
:;
1748 /* VJ's idea. Save last timestamp seen from this destination
1749 * and hold it at least for normal timewait interval to use for duplicate
1750 * segment detection in subsequent connections, before they enter synchronized
1754 int tcp_v4_remember_stamp(struct sock
*sk
)
1756 struct inet_sock
*inet
= inet_sk(sk
);
1757 struct tcp_sock
*tp
= tcp_sk(sk
);
1758 struct rtable
*rt
= (struct rtable
*)__sk_dst_get(sk
);
1759 struct inet_peer
*peer
= NULL
;
1762 if (!rt
|| rt
->rt_dst
!= inet
->daddr
) {
1763 peer
= inet_getpeer(inet
->daddr
, 1);
1767 rt_bind_peer(rt
, 1);
1772 if ((s32
)(peer
->tcp_ts
- tp
->rx_opt
.ts_recent
) <= 0 ||
1773 (peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
< get_seconds() &&
1774 peer
->tcp_ts_stamp
<= tp
->rx_opt
.ts_recent_stamp
)) {
1775 peer
->tcp_ts_stamp
= tp
->rx_opt
.ts_recent_stamp
;
1776 peer
->tcp_ts
= tp
->rx_opt
.ts_recent
;
1786 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock
*tw
)
1788 struct inet_peer
*peer
= inet_getpeer(tw
->tw_daddr
, 1);
1791 const struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
1793 if ((s32
)(peer
->tcp_ts
- tcptw
->tw_ts_recent
) <= 0 ||
1794 (peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
< get_seconds() &&
1795 peer
->tcp_ts_stamp
<= tcptw
->tw_ts_recent_stamp
)) {
1796 peer
->tcp_ts_stamp
= tcptw
->tw_ts_recent_stamp
;
1797 peer
->tcp_ts
= tcptw
->tw_ts_recent
;
1806 struct inet_connection_sock_af_ops ipv4_specific
= {
1807 .queue_xmit
= ip_queue_xmit
,
1808 .send_check
= tcp_v4_send_check
,
1809 .rebuild_header
= inet_sk_rebuild_header
,
1810 .conn_request
= tcp_v4_conn_request
,
1811 .syn_recv_sock
= tcp_v4_syn_recv_sock
,
1812 .remember_stamp
= tcp_v4_remember_stamp
,
1813 .net_header_len
= sizeof(struct iphdr
),
1814 .setsockopt
= ip_setsockopt
,
1815 .getsockopt
= ip_getsockopt
,
1816 .addr2sockaddr
= inet_csk_addr2sockaddr
,
1817 .sockaddr_len
= sizeof(struct sockaddr_in
),
1818 #ifdef CONFIG_COMPAT
1819 .compat_setsockopt
= compat_ip_setsockopt
,
1820 .compat_getsockopt
= compat_ip_getsockopt
,
1824 #ifdef CONFIG_TCP_MD5SIG
1825 static struct tcp_sock_af_ops tcp_sock_ipv4_specific
= {
1826 .md5_lookup
= tcp_v4_md5_lookup
,
1827 .calc_md5_hash
= tcp_v4_calc_md5_hash
,
1828 .md5_add
= tcp_v4_md5_add_func
,
1829 .md5_parse
= tcp_v4_parse_md5_keys
,
1833 /* NOTE: A lot of things set to zero explicitly by call to
1834 * sk_alloc() so need not be done here.
1836 static int tcp_v4_init_sock(struct sock
*sk
)
1838 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1839 struct tcp_sock
*tp
= tcp_sk(sk
);
1841 skb_queue_head_init(&tp
->out_of_order_queue
);
1842 tcp_init_xmit_timers(sk
);
1843 tcp_prequeue_init(tp
);
1845 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
1846 tp
->mdev
= TCP_TIMEOUT_INIT
;
1848 /* So many TCP implementations out there (incorrectly) count the
1849 * initial SYN frame in their delayed-ACK and congestion control
1850 * algorithms that we must have the following bandaid to talk
1851 * efficiently to them. -DaveM
1855 /* See draft-stevens-tcpca-spec-01 for discussion of the
1856 * initialization of these values.
1858 tp
->snd_ssthresh
= 0x7fffffff; /* Infinity */
1859 tp
->snd_cwnd_clamp
= ~0;
1860 tp
->mss_cache
= 536;
1862 tp
->reordering
= sysctl_tcp_reordering
;
1863 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
1865 sk
->sk_state
= TCP_CLOSE
;
1867 sk
->sk_write_space
= sk_stream_write_space
;
1868 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
1870 icsk
->icsk_af_ops
= &ipv4_specific
;
1871 icsk
->icsk_sync_mss
= tcp_sync_mss
;
1872 #ifdef CONFIG_TCP_MD5SIG
1873 tp
->af_specific
= &tcp_sock_ipv4_specific
;
1876 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
1877 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
1879 atomic_inc(&tcp_sockets_allocated
);
1884 int tcp_v4_destroy_sock(struct sock
*sk
)
1886 struct tcp_sock
*tp
= tcp_sk(sk
);
1888 tcp_clear_xmit_timers(sk
);
1890 tcp_cleanup_congestion_control(sk
);
1892 /* Cleanup up the write buffer. */
1893 tcp_write_queue_purge(sk
);
1895 /* Cleans up our, hopefully empty, out_of_order_queue. */
1896 __skb_queue_purge(&tp
->out_of_order_queue
);
1898 #ifdef CONFIG_TCP_MD5SIG
1899 /* Clean up the MD5 key list, if any */
1900 if (tp
->md5sig_info
) {
1901 tcp_v4_clear_md5_list(sk
);
1902 kfree(tp
->md5sig_info
);
1903 tp
->md5sig_info
= NULL
;
1907 #ifdef CONFIG_NET_DMA
1908 /* Cleans up our sk_async_wait_queue */
1909 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1912 /* Clean prequeue, it must be empty really */
1913 __skb_queue_purge(&tp
->ucopy
.prequeue
);
1915 /* Clean up a referenced TCP bind bucket. */
1916 if (inet_csk(sk
)->icsk_bind_hash
)
1917 inet_put_port(&tcp_hashinfo
, sk
);
1920 * If sendmsg cached page exists, toss it.
1922 if (sk
->sk_sndmsg_page
) {
1923 __free_page(sk
->sk_sndmsg_page
);
1924 sk
->sk_sndmsg_page
= NULL
;
1927 atomic_dec(&tcp_sockets_allocated
);
1932 EXPORT_SYMBOL(tcp_v4_destroy_sock
);
1934 #ifdef CONFIG_PROC_FS
1935 /* Proc filesystem TCP sock list dumping. */
1937 static inline struct inet_timewait_sock
*tw_head(struct hlist_head
*head
)
1939 return hlist_empty(head
) ? NULL
:
1940 list_entry(head
->first
, struct inet_timewait_sock
, tw_node
);
1943 static inline struct inet_timewait_sock
*tw_next(struct inet_timewait_sock
*tw
)
1945 return tw
->tw_node
.next
?
1946 hlist_entry(tw
->tw_node
.next
, typeof(*tw
), tw_node
) : NULL
;
1949 static void *listening_get_next(struct seq_file
*seq
, void *cur
)
1951 struct inet_connection_sock
*icsk
;
1952 struct hlist_node
*node
;
1953 struct sock
*sk
= cur
;
1954 struct tcp_iter_state
* st
= seq
->private;
1958 sk
= sk_head(&tcp_hashinfo
.listening_hash
[0]);
1964 if (st
->state
== TCP_SEQ_STATE_OPENREQ
) {
1965 struct request_sock
*req
= cur
;
1967 icsk
= inet_csk(st
->syn_wait_sk
);
1971 if (req
->rsk_ops
->family
== st
->family
) {
1977 if (++st
->sbucket
>= icsk
->icsk_accept_queue
.listen_opt
->nr_table_entries
)
1980 req
= icsk
->icsk_accept_queue
.listen_opt
->syn_table
[st
->sbucket
];
1982 sk
= sk_next(st
->syn_wait_sk
);
1983 st
->state
= TCP_SEQ_STATE_LISTENING
;
1984 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1986 icsk
= inet_csk(sk
);
1987 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1988 if (reqsk_queue_len(&icsk
->icsk_accept_queue
))
1990 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1994 sk_for_each_from(sk
, node
) {
1995 if (sk
->sk_family
== st
->family
) {
1999 icsk
= inet_csk(sk
);
2000 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2001 if (reqsk_queue_len(&icsk
->icsk_accept_queue
)) {
2003 st
->uid
= sock_i_uid(sk
);
2004 st
->syn_wait_sk
= sk
;
2005 st
->state
= TCP_SEQ_STATE_OPENREQ
;
2009 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2011 if (++st
->bucket
< INET_LHTABLE_SIZE
) {
2012 sk
= sk_head(&tcp_hashinfo
.listening_hash
[st
->bucket
]);
2020 static void *listening_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2022 void *rc
= listening_get_next(seq
, NULL
);
2024 while (rc
&& *pos
) {
2025 rc
= listening_get_next(seq
, rc
);
2031 static void *established_get_first(struct seq_file
*seq
)
2033 struct tcp_iter_state
* st
= seq
->private;
2036 for (st
->bucket
= 0; st
->bucket
< tcp_hashinfo
.ehash_size
; ++st
->bucket
) {
2038 struct hlist_node
*node
;
2039 struct inet_timewait_sock
*tw
;
2041 /* We can reschedule _before_ having picked the target: */
2042 cond_resched_softirq();
2044 read_lock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2045 sk_for_each(sk
, node
, &tcp_hashinfo
.ehash
[st
->bucket
].chain
) {
2046 if (sk
->sk_family
!= st
->family
) {
2052 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2053 inet_twsk_for_each(tw
, node
,
2054 &tcp_hashinfo
.ehash
[st
->bucket
].twchain
) {
2055 if (tw
->tw_family
!= st
->family
) {
2061 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2062 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2068 static void *established_get_next(struct seq_file
*seq
, void *cur
)
2070 struct sock
*sk
= cur
;
2071 struct inet_timewait_sock
*tw
;
2072 struct hlist_node
*node
;
2073 struct tcp_iter_state
* st
= seq
->private;
2077 if (st
->state
== TCP_SEQ_STATE_TIME_WAIT
) {
2081 while (tw
&& tw
->tw_family
!= st
->family
) {
2088 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2089 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2091 /* We can reschedule between buckets: */
2092 cond_resched_softirq();
2094 if (++st
->bucket
< tcp_hashinfo
.ehash_size
) {
2095 read_lock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2096 sk
= sk_head(&tcp_hashinfo
.ehash
[st
->bucket
].chain
);
2104 sk_for_each_from(sk
, node
) {
2105 if (sk
->sk_family
== st
->family
)
2109 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2110 tw
= tw_head(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2118 static void *established_get_idx(struct seq_file
*seq
, loff_t pos
)
2120 void *rc
= established_get_first(seq
);
2123 rc
= established_get_next(seq
, rc
);
2129 static void *tcp_get_idx(struct seq_file
*seq
, loff_t pos
)
2132 struct tcp_iter_state
* st
= seq
->private;
2134 inet_listen_lock(&tcp_hashinfo
);
2135 st
->state
= TCP_SEQ_STATE_LISTENING
;
2136 rc
= listening_get_idx(seq
, &pos
);
2139 inet_listen_unlock(&tcp_hashinfo
);
2141 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2142 rc
= established_get_idx(seq
, pos
);
2148 static void *tcp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2150 struct tcp_iter_state
* st
= seq
->private;
2151 st
->state
= TCP_SEQ_STATE_LISTENING
;
2153 return *pos
? tcp_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
2156 static void *tcp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2159 struct tcp_iter_state
* st
;
2161 if (v
== SEQ_START_TOKEN
) {
2162 rc
= tcp_get_idx(seq
, 0);
2167 switch (st
->state
) {
2168 case TCP_SEQ_STATE_OPENREQ
:
2169 case TCP_SEQ_STATE_LISTENING
:
2170 rc
= listening_get_next(seq
, v
);
2172 inet_listen_unlock(&tcp_hashinfo
);
2174 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2175 rc
= established_get_first(seq
);
2178 case TCP_SEQ_STATE_ESTABLISHED
:
2179 case TCP_SEQ_STATE_TIME_WAIT
:
2180 rc
= established_get_next(seq
, v
);
2188 static void tcp_seq_stop(struct seq_file
*seq
, void *v
)
2190 struct tcp_iter_state
* st
= seq
->private;
2192 switch (st
->state
) {
2193 case TCP_SEQ_STATE_OPENREQ
:
2195 struct inet_connection_sock
*icsk
= inet_csk(st
->syn_wait_sk
);
2196 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2198 case TCP_SEQ_STATE_LISTENING
:
2199 if (v
!= SEQ_START_TOKEN
)
2200 inet_listen_unlock(&tcp_hashinfo
);
2202 case TCP_SEQ_STATE_TIME_WAIT
:
2203 case TCP_SEQ_STATE_ESTABLISHED
:
2205 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2211 static int tcp_seq_open(struct inode
*inode
, struct file
*file
)
2213 struct tcp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
2214 struct seq_file
*seq
;
2215 struct tcp_iter_state
*s
;
2218 if (unlikely(afinfo
== NULL
))
2221 s
= kzalloc(sizeof(*s
), GFP_KERNEL
);
2224 s
->family
= afinfo
->family
;
2225 s
->seq_ops
.start
= tcp_seq_start
;
2226 s
->seq_ops
.next
= tcp_seq_next
;
2227 s
->seq_ops
.show
= afinfo
->seq_show
;
2228 s
->seq_ops
.stop
= tcp_seq_stop
;
2230 rc
= seq_open(file
, &s
->seq_ops
);
2233 seq
= file
->private_data
;
2242 int tcp_proc_register(struct tcp_seq_afinfo
*afinfo
)
2245 struct proc_dir_entry
*p
;
2249 afinfo
->seq_fops
->owner
= afinfo
->owner
;
2250 afinfo
->seq_fops
->open
= tcp_seq_open
;
2251 afinfo
->seq_fops
->read
= seq_read
;
2252 afinfo
->seq_fops
->llseek
= seq_lseek
;
2253 afinfo
->seq_fops
->release
= seq_release_private
;
2255 p
= proc_net_fops_create(afinfo
->name
, S_IRUGO
, afinfo
->seq_fops
);
2263 void tcp_proc_unregister(struct tcp_seq_afinfo
*afinfo
)
2267 proc_net_remove(afinfo
->name
);
2268 memset(afinfo
->seq_fops
, 0, sizeof(*afinfo
->seq_fops
));
2271 static void get_openreq4(struct sock
*sk
, struct request_sock
*req
,
2272 char *tmpbuf
, int i
, int uid
)
2274 const struct inet_request_sock
*ireq
= inet_rsk(req
);
2275 int ttd
= req
->expires
- jiffies
;
2277 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X"
2278 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
2281 ntohs(inet_sk(sk
)->sport
),
2283 ntohs(ireq
->rmt_port
),
2285 0, 0, /* could print option size, but that is af dependent. */
2286 1, /* timers active (only the expire timer) */
2287 jiffies_to_clock_t(ttd
),
2290 0, /* non standard timer */
2291 0, /* open_requests have no inode */
2292 atomic_read(&sk
->sk_refcnt
),
2296 static void get_tcp4_sock(struct sock
*sk
, char *tmpbuf
, int i
)
2299 unsigned long timer_expires
;
2300 struct tcp_sock
*tp
= tcp_sk(sk
);
2301 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2302 struct inet_sock
*inet
= inet_sk(sk
);
2303 __be32 dest
= inet
->daddr
;
2304 __be32 src
= inet
->rcv_saddr
;
2305 __u16 destp
= ntohs(inet
->dport
);
2306 __u16 srcp
= ntohs(inet
->sport
);
2308 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
) {
2310 timer_expires
= icsk
->icsk_timeout
;
2311 } else if (icsk
->icsk_pending
== ICSK_TIME_PROBE0
) {
2313 timer_expires
= icsk
->icsk_timeout
;
2314 } else if (timer_pending(&sk
->sk_timer
)) {
2316 timer_expires
= sk
->sk_timer
.expires
;
2319 timer_expires
= jiffies
;
2322 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2323 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
2324 i
, src
, srcp
, dest
, destp
, sk
->sk_state
,
2325 tp
->write_seq
- tp
->snd_una
,
2326 sk
->sk_state
== TCP_LISTEN
? sk
->sk_ack_backlog
:
2327 (tp
->rcv_nxt
- tp
->copied_seq
),
2329 jiffies_to_clock_t(timer_expires
- jiffies
),
2330 icsk
->icsk_retransmits
,
2332 icsk
->icsk_probes_out
,
2334 atomic_read(&sk
->sk_refcnt
), sk
,
2337 (icsk
->icsk_ack
.quick
<< 1) | icsk
->icsk_ack
.pingpong
,
2339 tp
->snd_ssthresh
>= 0xFFFF ? -1 : tp
->snd_ssthresh
);
2342 static void get_timewait4_sock(struct inet_timewait_sock
*tw
,
2343 char *tmpbuf
, int i
)
2347 int ttd
= tw
->tw_ttd
- jiffies
;
2352 dest
= tw
->tw_daddr
;
2353 src
= tw
->tw_rcv_saddr
;
2354 destp
= ntohs(tw
->tw_dport
);
2355 srcp
= ntohs(tw
->tw_sport
);
2357 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X"
2358 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
2359 i
, src
, srcp
, dest
, destp
, tw
->tw_substate
, 0, 0,
2360 3, jiffies_to_clock_t(ttd
), 0, 0, 0, 0,
2361 atomic_read(&tw
->tw_refcnt
), tw
);
2366 static int tcp4_seq_show(struct seq_file
*seq
, void *v
)
2368 struct tcp_iter_state
* st
;
2369 char tmpbuf
[TMPSZ
+ 1];
2371 if (v
== SEQ_START_TOKEN
) {
2372 seq_printf(seq
, "%-*s\n", TMPSZ
- 1,
2373 " sl local_address rem_address st tx_queue "
2374 "rx_queue tr tm->when retrnsmt uid timeout "
2380 switch (st
->state
) {
2381 case TCP_SEQ_STATE_LISTENING
:
2382 case TCP_SEQ_STATE_ESTABLISHED
:
2383 get_tcp4_sock(v
, tmpbuf
, st
->num
);
2385 case TCP_SEQ_STATE_OPENREQ
:
2386 get_openreq4(st
->syn_wait_sk
, v
, tmpbuf
, st
->num
, st
->uid
);
2388 case TCP_SEQ_STATE_TIME_WAIT
:
2389 get_timewait4_sock(v
, tmpbuf
, st
->num
);
2392 seq_printf(seq
, "%-*s\n", TMPSZ
- 1, tmpbuf
);
2397 static struct file_operations tcp4_seq_fops
;
2398 static struct tcp_seq_afinfo tcp4_seq_afinfo
= {
2399 .owner
= THIS_MODULE
,
2402 .seq_show
= tcp4_seq_show
,
2403 .seq_fops
= &tcp4_seq_fops
,
2406 int __init
tcp4_proc_init(void)
2408 return tcp_proc_register(&tcp4_seq_afinfo
);
2411 void tcp4_proc_exit(void)
2413 tcp_proc_unregister(&tcp4_seq_afinfo
);
2415 #endif /* CONFIG_PROC_FS */
2417 struct proto tcp_prot
= {
2419 .owner
= THIS_MODULE
,
2421 .connect
= tcp_v4_connect
,
2422 .disconnect
= tcp_disconnect
,
2423 .accept
= inet_csk_accept
,
2425 .init
= tcp_v4_init_sock
,
2426 .destroy
= tcp_v4_destroy_sock
,
2427 .shutdown
= tcp_shutdown
,
2428 .setsockopt
= tcp_setsockopt
,
2429 .getsockopt
= tcp_getsockopt
,
2430 .sendmsg
= tcp_sendmsg
,
2431 .recvmsg
= tcp_recvmsg
,
2432 .backlog_rcv
= tcp_v4_do_rcv
,
2433 .hash
= tcp_v4_hash
,
2434 .unhash
= tcp_unhash
,
2435 .get_port
= tcp_v4_get_port
,
2436 .enter_memory_pressure
= tcp_enter_memory_pressure
,
2437 .sockets_allocated
= &tcp_sockets_allocated
,
2438 .orphan_count
= &tcp_orphan_count
,
2439 .memory_allocated
= &tcp_memory_allocated
,
2440 .memory_pressure
= &tcp_memory_pressure
,
2441 .sysctl_mem
= sysctl_tcp_mem
,
2442 .sysctl_wmem
= sysctl_tcp_wmem
,
2443 .sysctl_rmem
= sysctl_tcp_rmem
,
2444 .max_header
= MAX_TCP_HEADER
,
2445 .obj_size
= sizeof(struct tcp_sock
),
2446 .twsk_prot
= &tcp_timewait_sock_ops
,
2447 .rsk_prot
= &tcp_request_sock_ops
,
2448 #ifdef CONFIG_COMPAT
2449 .compat_setsockopt
= compat_tcp_setsockopt
,
2450 .compat_getsockopt
= compat_tcp_getsockopt
,
2454 void __init
tcp_v4_init(struct net_proto_family
*ops
)
2456 if (inet_csk_ctl_sock_create(&tcp_socket
, PF_INET
, SOCK_RAW
,
2458 panic("Failed to create the TCP control socket.\n");
2461 EXPORT_SYMBOL(ipv4_specific
);
2462 EXPORT_SYMBOL(tcp_hashinfo
);
2463 EXPORT_SYMBOL(tcp_prot
);
2464 EXPORT_SYMBOL(tcp_unhash
);
2465 EXPORT_SYMBOL(tcp_v4_conn_request
);
2466 EXPORT_SYMBOL(tcp_v4_connect
);
2467 EXPORT_SYMBOL(tcp_v4_do_rcv
);
2468 EXPORT_SYMBOL(tcp_v4_remember_stamp
);
2469 EXPORT_SYMBOL(tcp_v4_send_check
);
2470 EXPORT_SYMBOL(tcp_v4_syn_recv_sock
);
2472 #ifdef CONFIG_PROC_FS
2473 EXPORT_SYMBOL(tcp_proc_register
);
2474 EXPORT_SYMBOL(tcp_proc_unregister
);
2476 EXPORT_SYMBOL(sysctl_local_port_range
);
2477 EXPORT_SYMBOL(sysctl_tcp_low_latency
);