2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
53 /* This limits the percentage of the congestion window which we
54 * will allow a single TSO frame to consume. Building TSO frames
55 * which are too large can cause TCP streams to be bursty.
57 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
59 int sysctl_tcp_mtu_probing __read_mostly
= 0;
60 int sysctl_tcp_base_mss __read_mostly
= 512;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
65 static void update_send_head(struct sock
*sk
, struct tcp_sock
*tp
,
68 sk
->sk_send_head
= skb
->next
;
69 if (sk
->sk_send_head
== (struct sk_buff
*)&sk
->sk_write_queue
)
70 sk
->sk_send_head
= NULL
;
71 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
72 tcp_packets_out_inc(sk
, tp
, skb
);
75 /* SND.NXT, if window was not shrunk.
76 * If window has been shrunk, what should we make? It is not clear at all.
77 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
78 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
79 * invalid. OK, let's make this for now:
81 static inline __u32
tcp_acceptable_seq(struct sock
*sk
, struct tcp_sock
*tp
)
83 if (!before(tp
->snd_una
+tp
->snd_wnd
, tp
->snd_nxt
))
86 return tp
->snd_una
+tp
->snd_wnd
;
89 /* Calculate mss to advertise in SYN segment.
90 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
92 * 1. It is independent of path mtu.
93 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
94 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
95 * attached devices, because some buggy hosts are confused by
97 * 4. We do not make 3, we advertise MSS, calculated from first
98 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
99 * This may be overridden via information stored in routing table.
100 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
101 * probably even Jumbo".
103 static __u16
tcp_advertise_mss(struct sock
*sk
)
105 struct tcp_sock
*tp
= tcp_sk(sk
);
106 struct dst_entry
*dst
= __sk_dst_get(sk
);
107 int mss
= tp
->advmss
;
109 if (dst
&& dst_metric(dst
, RTAX_ADVMSS
) < mss
) {
110 mss
= dst_metric(dst
, RTAX_ADVMSS
);
117 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
118 * This is the first part of cwnd validation mechanism. */
119 static void tcp_cwnd_restart(struct sock
*sk
, struct dst_entry
*dst
)
121 struct tcp_sock
*tp
= tcp_sk(sk
);
122 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
123 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
124 u32 cwnd
= tp
->snd_cwnd
;
126 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
128 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
129 restart_cwnd
= min(restart_cwnd
, cwnd
);
131 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
133 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
134 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
135 tp
->snd_cwnd_used
= 0;
138 static void tcp_event_data_sent(struct tcp_sock
*tp
,
139 struct sk_buff
*skb
, struct sock
*sk
)
141 struct inet_connection_sock
*icsk
= inet_csk(sk
);
142 const u32 now
= tcp_time_stamp
;
144 if (sysctl_tcp_slow_start_after_idle
&&
145 (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > icsk
->icsk_rto
))
146 tcp_cwnd_restart(sk
, __sk_dst_get(sk
));
150 /* If it is a reply for ato after last received
151 * packet, enter pingpong mode.
153 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
154 icsk
->icsk_ack
.pingpong
= 1;
157 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
159 tcp_dec_quickack_mode(sk
, pkts
);
160 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
163 /* Determine a window scaling and initial window to offer.
164 * Based on the assumption that the given amount of space
165 * will be offered. Store the results in the tp structure.
166 * NOTE: for smooth operation initial space offering should
167 * be a multiple of mss if possible. We assume here that mss >= 1.
168 * This MUST be enforced by all callers.
170 void tcp_select_initial_window(int __space
, __u32 mss
,
171 __u32
*rcv_wnd
, __u32
*window_clamp
,
172 int wscale_ok
, __u8
*rcv_wscale
)
174 unsigned int space
= (__space
< 0 ? 0 : __space
);
176 /* If no clamp set the clamp to the max possible scaled window */
177 if (*window_clamp
== 0)
178 (*window_clamp
) = (65535 << 14);
179 space
= min(*window_clamp
, space
);
181 /* Quantize space offering to a multiple of mss if possible. */
183 space
= (space
/ mss
) * mss
;
185 /* NOTE: offering an initial window larger than 32767
186 * will break some buggy TCP stacks. If the admin tells us
187 * it is likely we could be speaking with such a buggy stack
188 * we will truncate our initial window offering to 32K-1
189 * unless the remote has sent us a window scaling option,
190 * which we interpret as a sign the remote TCP is not
191 * misinterpreting the window field as a signed quantity.
193 if (sysctl_tcp_workaround_signed_windows
)
194 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
200 /* Set window scaling on max possible window
201 * See RFC1323 for an explanation of the limit to 14
203 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
204 space
= min_t(u32
, space
, *window_clamp
);
205 while (space
> 65535 && (*rcv_wscale
) < 14) {
211 /* Set initial window to value enough for senders,
212 * following RFC2414. Senders, not following this RFC,
213 * will be satisfied with 2.
215 if (mss
> (1<<*rcv_wscale
)) {
221 if (*rcv_wnd
> init_cwnd
*mss
)
222 *rcv_wnd
= init_cwnd
*mss
;
225 /* Set the clamp no higher than max representable value */
226 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
229 /* Chose a new window to advertise, update state in tcp_sock for the
230 * socket, and return result with RFC1323 scaling applied. The return
231 * value can be stuffed directly into th->window for an outgoing
234 static u16
tcp_select_window(struct sock
*sk
)
236 struct tcp_sock
*tp
= tcp_sk(sk
);
237 u32 cur_win
= tcp_receive_window(tp
);
238 u32 new_win
= __tcp_select_window(sk
);
240 /* Never shrink the offered window */
241 if(new_win
< cur_win
) {
242 /* Danger Will Robinson!
243 * Don't update rcv_wup/rcv_wnd here or else
244 * we will not be able to advertise a zero
245 * window in time. --DaveM
247 * Relax Will Robinson.
251 tp
->rcv_wnd
= new_win
;
252 tp
->rcv_wup
= tp
->rcv_nxt
;
254 /* Make sure we do not exceed the maximum possible
257 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
258 new_win
= min(new_win
, MAX_TCP_WINDOW
);
260 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
262 /* RFC1323 scaling applied */
263 new_win
>>= tp
->rx_opt
.rcv_wscale
;
265 /* If we advertise zero window, disable fast path. */
272 static void tcp_build_and_update_options(__be32
*ptr
, struct tcp_sock
*tp
,
273 __u32 tstamp
, __u8
**md5_hash
)
275 if (tp
->rx_opt
.tstamp_ok
) {
276 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
278 (TCPOPT_TIMESTAMP
<< 8) |
280 *ptr
++ = htonl(tstamp
);
281 *ptr
++ = htonl(tp
->rx_opt
.ts_recent
);
283 if (tp
->rx_opt
.eff_sacks
) {
284 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
? tp
->duplicate_sack
: tp
->selective_acks
;
287 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
290 (TCPOLEN_SACK_BASE
+ (tp
->rx_opt
.eff_sacks
*
291 TCPOLEN_SACK_PERBLOCK
)));
292 for(this_sack
= 0; this_sack
< tp
->rx_opt
.eff_sacks
; this_sack
++) {
293 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
294 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
296 if (tp
->rx_opt
.dsack
) {
297 tp
->rx_opt
.dsack
= 0;
298 tp
->rx_opt
.eff_sacks
--;
301 #ifdef CONFIG_TCP_MD5SIG
303 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
305 (TCPOPT_MD5SIG
<< 8) |
307 *md5_hash
= (__u8
*)ptr
;
312 /* Construct a tcp options header for a SYN or SYN_ACK packet.
313 * If this is every changed make sure to change the definition of
314 * MAX_SYN_SIZE to match the new maximum number of options that you
317 * Note - that with the RFC2385 TCP option, we make room for the
318 * 16 byte MD5 hash. This will be filled in later, so the pointer for the
319 * location to be filled is passed back up.
321 static void tcp_syn_build_options(__be32
*ptr
, int mss
, int ts
, int sack
,
322 int offer_wscale
, int wscale
, __u32 tstamp
,
323 __u32 ts_recent
, __u8
**md5_hash
)
325 /* We always get an MSS option.
326 * The option bytes which will be seen in normal data
327 * packets should timestamps be used, must be in the MSS
328 * advertised. But we subtract them from tp->mss_cache so
329 * that calculations in tcp_sendmsg are simpler etc.
330 * So account for this fact here if necessary. If we
331 * don't do this correctly, as a receiver we won't
332 * recognize data packets as being full sized when we
333 * should, and thus we won't abide by the delayed ACK
335 * SACKs don't matter, we never delay an ACK when we
336 * have any of those going out.
338 *ptr
++ = htonl((TCPOPT_MSS
<< 24) | (TCPOLEN_MSS
<< 16) | mss
);
341 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
342 (TCPOLEN_SACK_PERM
<< 16) |
343 (TCPOPT_TIMESTAMP
<< 8) |
346 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
348 (TCPOPT_TIMESTAMP
<< 8) |
350 *ptr
++ = htonl(tstamp
); /* TSVAL */
351 *ptr
++ = htonl(ts_recent
); /* TSECR */
353 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
355 (TCPOPT_SACK_PERM
<< 8) |
358 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
359 (TCPOPT_WINDOW
<< 16) |
360 (TCPOLEN_WINDOW
<< 8) |
362 #ifdef CONFIG_TCP_MD5SIG
364 * If MD5 is enabled, then we set the option, and include the size
365 * (always 18). The actual MD5 hash is added just before the
369 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
371 (TCPOPT_MD5SIG
<< 8) |
373 *md5_hash
= (__u8
*) ptr
;
378 /* This routine actually transmits TCP packets queued in by
379 * tcp_do_sendmsg(). This is used by both the initial
380 * transmission and possible later retransmissions.
381 * All SKB's seen here are completely headerless. It is our
382 * job to build the TCP header, and pass the packet down to
383 * IP so it can do the same plus pass the packet off to the
386 * We are working here with either a clone of the original
387 * SKB, or a fresh unique copy made by the retransmit engine.
389 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
, gfp_t gfp_mask
)
391 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
392 struct inet_sock
*inet
;
394 struct tcp_skb_cb
*tcb
;
396 #ifdef CONFIG_TCP_MD5SIG
397 struct tcp_md5sig_key
*md5
;
398 __u8
*md5_hash_location
;
404 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
406 /* If congestion control is doing timestamping, we must
407 * take such a timestamp before we potentially clone/copy.
409 if (icsk
->icsk_ca_ops
->rtt_sample
)
410 __net_timestamp(skb
);
412 if (likely(clone_it
)) {
413 if (unlikely(skb_cloned(skb
)))
414 skb
= pskb_copy(skb
, gfp_mask
);
416 skb
= skb_clone(skb
, gfp_mask
);
423 tcb
= TCP_SKB_CB(skb
);
424 tcp_header_size
= tp
->tcp_header_len
;
426 #define SYSCTL_FLAG_TSTAMPS 0x1
427 #define SYSCTL_FLAG_WSCALE 0x2
428 #define SYSCTL_FLAG_SACK 0x4
431 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
432 tcp_header_size
= sizeof(struct tcphdr
) + TCPOLEN_MSS
;
433 if(sysctl_tcp_timestamps
) {
434 tcp_header_size
+= TCPOLEN_TSTAMP_ALIGNED
;
435 sysctl_flags
|= SYSCTL_FLAG_TSTAMPS
;
437 if (sysctl_tcp_window_scaling
) {
438 tcp_header_size
+= TCPOLEN_WSCALE_ALIGNED
;
439 sysctl_flags
|= SYSCTL_FLAG_WSCALE
;
441 if (sysctl_tcp_sack
) {
442 sysctl_flags
|= SYSCTL_FLAG_SACK
;
443 if (!(sysctl_flags
& SYSCTL_FLAG_TSTAMPS
))
444 tcp_header_size
+= TCPOLEN_SACKPERM_ALIGNED
;
446 } else if (unlikely(tp
->rx_opt
.eff_sacks
)) {
447 /* A SACK is 2 pad bytes, a 2 byte header, plus
448 * 2 32-bit sequence numbers for each SACK block.
450 tcp_header_size
+= (TCPOLEN_SACK_BASE_ALIGNED
+
451 (tp
->rx_opt
.eff_sacks
*
452 TCPOLEN_SACK_PERBLOCK
));
455 if (tcp_packets_in_flight(tp
) == 0)
456 tcp_ca_event(sk
, CA_EVENT_TX_START
);
458 #ifdef CONFIG_TCP_MD5SIG
460 * Are we doing MD5 on this segment? If so - make
463 md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
465 tcp_header_size
+= TCPOLEN_MD5SIG_ALIGNED
;
468 th
= (struct tcphdr
*) skb_push(skb
, tcp_header_size
);
471 /* Build TCP header and checksum it. */
472 th
->source
= inet
->sport
;
473 th
->dest
= inet
->dport
;
474 th
->seq
= htonl(tcb
->seq
);
475 th
->ack_seq
= htonl(tp
->rcv_nxt
);
476 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
479 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
480 /* RFC1323: The window in SYN & SYN/ACK segments
483 th
->window
= htons(tp
->rcv_wnd
);
485 th
->window
= htons(tcp_select_window(sk
));
490 if (unlikely(tp
->urg_mode
&&
491 between(tp
->snd_up
, tcb
->seq
+1, tcb
->seq
+0xFFFF))) {
492 th
->urg_ptr
= htons(tp
->snd_up
-tcb
->seq
);
496 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
497 tcp_syn_build_options((__be32
*)(th
+ 1),
498 tcp_advertise_mss(sk
),
499 (sysctl_flags
& SYSCTL_FLAG_TSTAMPS
),
500 (sysctl_flags
& SYSCTL_FLAG_SACK
),
501 (sysctl_flags
& SYSCTL_FLAG_WSCALE
),
502 tp
->rx_opt
.rcv_wscale
,
504 tp
->rx_opt
.ts_recent
,
506 #ifdef CONFIG_TCP_MD5SIG
507 md5
? &md5_hash_location
:
511 tcp_build_and_update_options((__be32
*)(th
+ 1),
513 #ifdef CONFIG_TCP_MD5SIG
514 md5
? &md5_hash_location
:
517 TCP_ECN_send(sk
, tp
, skb
, tcp_header_size
);
520 #ifdef CONFIG_TCP_MD5SIG
521 /* Calculate the MD5 hash, as we have all we need now */
523 tp
->af_specific
->calc_md5_hash(md5_hash_location
,
532 icsk
->icsk_af_ops
->send_check(sk
, skb
->len
, skb
);
534 if (likely(tcb
->flags
& TCPCB_FLAG_ACK
))
535 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
537 if (skb
->len
!= tcp_header_size
)
538 tcp_event_data_sent(tp
, skb
, sk
);
540 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
541 TCP_INC_STATS(TCP_MIB_OUTSEGS
);
543 err
= icsk
->icsk_af_ops
->queue_xmit(skb
, sk
, 0);
544 if (likely(err
<= 0))
549 return net_xmit_eval(err
);
551 #undef SYSCTL_FLAG_TSTAMPS
552 #undef SYSCTL_FLAG_WSCALE
553 #undef SYSCTL_FLAG_SACK
557 /* This routine just queue's the buffer
559 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
560 * otherwise socket can stall.
562 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
564 struct tcp_sock
*tp
= tcp_sk(sk
);
566 /* Advance write_seq and place onto the write_queue. */
567 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
568 skb_header_release(skb
);
569 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
570 sk_charge_skb(sk
, skb
);
572 /* Queue it, remembering where we must start sending. */
573 if (sk
->sk_send_head
== NULL
)
574 sk
->sk_send_head
= skb
;
577 static void tcp_set_skb_tso_segs(struct sock
*sk
, struct sk_buff
*skb
, unsigned int mss_now
)
579 if (skb
->len
<= mss_now
|| !sk_can_gso(sk
)) {
580 /* Avoid the costly divide in the normal
583 skb_shinfo(skb
)->gso_segs
= 1;
584 skb_shinfo(skb
)->gso_size
= 0;
585 skb_shinfo(skb
)->gso_type
= 0;
589 factor
= skb
->len
+ (mss_now
- 1);
591 skb_shinfo(skb
)->gso_segs
= factor
;
592 skb_shinfo(skb
)->gso_size
= mss_now
;
593 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
597 /* Function to create two new TCP segments. Shrinks the given segment
598 * to the specified size and appends a new segment with the rest of the
599 * packet to the list. This won't be called frequently, I hope.
600 * Remember, these are still headerless SKBs at this point.
602 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
, unsigned int mss_now
)
604 struct tcp_sock
*tp
= tcp_sk(sk
);
605 struct sk_buff
*buff
;
606 int nsize
, old_factor
;
610 BUG_ON(len
> skb
->len
);
612 clear_all_retrans_hints(tp
);
613 nsize
= skb_headlen(skb
) - len
;
617 if (skb_cloned(skb
) &&
618 skb_is_nonlinear(skb
) &&
619 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
622 /* Get a new skb... force flag on. */
623 buff
= sk_stream_alloc_skb(sk
, nsize
, GFP_ATOMIC
);
625 return -ENOMEM
; /* We'll just try again later. */
627 sk_charge_skb(sk
, buff
);
628 nlen
= skb
->len
- len
- nsize
;
629 buff
->truesize
+= nlen
;
630 skb
->truesize
-= nlen
;
632 /* Correct the sequence numbers. */
633 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
634 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
635 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
637 /* PSH and FIN should only be set in the second packet. */
638 flags
= TCP_SKB_CB(skb
)->flags
;
639 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
640 TCP_SKB_CB(buff
)->flags
= flags
;
641 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
642 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_AT_TAIL
;
644 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
645 /* Copy and checksum data tail into the new buffer. */
646 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
, skb_put(buff
, nsize
),
651 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
653 skb
->ip_summed
= CHECKSUM_PARTIAL
;
654 skb_split(skb
, buff
, len
);
657 buff
->ip_summed
= skb
->ip_summed
;
659 /* Looks stupid, but our code really uses when of
660 * skbs, which it never sent before. --ANK
662 TCP_SKB_CB(buff
)->when
= TCP_SKB_CB(skb
)->when
;
663 buff
->tstamp
= skb
->tstamp
;
665 old_factor
= tcp_skb_pcount(skb
);
667 /* Fix up tso_factor for both original and new SKB. */
668 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
669 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
671 /* If this packet has been sent out already, we must
672 * adjust the various packet counters.
674 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
675 int diff
= old_factor
- tcp_skb_pcount(skb
) -
676 tcp_skb_pcount(buff
);
678 tp
->packets_out
-= diff
;
680 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
681 tp
->sacked_out
-= diff
;
682 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
683 tp
->retrans_out
-= diff
;
685 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
) {
686 tp
->lost_out
-= diff
;
687 tp
->left_out
-= diff
;
691 /* Adjust Reno SACK estimate. */
692 if (!tp
->rx_opt
.sack_ok
) {
693 tp
->sacked_out
-= diff
;
694 if ((int)tp
->sacked_out
< 0)
696 tcp_sync_left_out(tp
);
699 tp
->fackets_out
-= diff
;
700 if ((int)tp
->fackets_out
< 0)
705 /* Link BUFF into the send queue. */
706 skb_header_release(buff
);
707 __skb_append(skb
, buff
, &sk
->sk_write_queue
);
712 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
713 * eventually). The difference is that pulled data not copied, but
714 * immediately discarded.
716 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
722 for (i
=0; i
<skb_shinfo(skb
)->nr_frags
; i
++) {
723 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
724 put_page(skb_shinfo(skb
)->frags
[i
].page
);
725 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
727 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
729 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
730 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
736 skb_shinfo(skb
)->nr_frags
= k
;
738 skb
->tail
= skb
->data
;
739 skb
->data_len
-= len
;
740 skb
->len
= skb
->data_len
;
743 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
745 if (skb_cloned(skb
) &&
746 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
749 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
750 if (unlikely(len
< skb_headlen(skb
)))
751 __skb_pull(skb
, len
);
753 __pskb_trim_head(skb
, len
- skb_headlen(skb
));
755 TCP_SKB_CB(skb
)->seq
+= len
;
756 skb
->ip_summed
= CHECKSUM_PARTIAL
;
758 skb
->truesize
-= len
;
759 sk
->sk_wmem_queued
-= len
;
760 sk
->sk_forward_alloc
+= len
;
761 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
763 /* Any change of skb->len requires recalculation of tso
766 if (tcp_skb_pcount(skb
) > 1)
767 tcp_set_skb_tso_segs(sk
, skb
, tcp_current_mss(sk
, 1));
772 /* Not accounting for SACKs here. */
773 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
775 struct tcp_sock
*tp
= tcp_sk(sk
);
776 struct inet_connection_sock
*icsk
= inet_csk(sk
);
779 /* Calculate base mss without TCP options:
780 It is MMS_S - sizeof(tcphdr) of rfc1122
782 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
784 /* Clamp it (mss_clamp does not include tcp options) */
785 if (mss_now
> tp
->rx_opt
.mss_clamp
)
786 mss_now
= tp
->rx_opt
.mss_clamp
;
788 /* Now subtract optional transport overhead */
789 mss_now
-= icsk
->icsk_ext_hdr_len
;
791 /* Then reserve room for full set of TCP options and 8 bytes of data */
795 /* Now subtract TCP options size, not including SACKs */
796 mss_now
-= tp
->tcp_header_len
- sizeof(struct tcphdr
);
801 /* Inverse of above */
802 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
804 struct tcp_sock
*tp
= tcp_sk(sk
);
805 struct inet_connection_sock
*icsk
= inet_csk(sk
);
810 icsk
->icsk_ext_hdr_len
+
811 icsk
->icsk_af_ops
->net_header_len
;
816 void tcp_mtup_init(struct sock
*sk
)
818 struct tcp_sock
*tp
= tcp_sk(sk
);
819 struct inet_connection_sock
*icsk
= inet_csk(sk
);
821 icsk
->icsk_mtup
.enabled
= sysctl_tcp_mtu_probing
> 1;
822 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
823 icsk
->icsk_af_ops
->net_header_len
;
824 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, sysctl_tcp_base_mss
);
825 icsk
->icsk_mtup
.probe_size
= 0;
828 /* This function synchronize snd mss to current pmtu/exthdr set.
830 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
831 for TCP options, but includes only bare TCP header.
833 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
834 It is minimum of user_mss and mss received with SYN.
835 It also does not include TCP options.
837 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
839 tp->mss_cache is current effective sending mss, including
840 all tcp options except for SACKs. It is evaluated,
841 taking into account current pmtu, but never exceeds
842 tp->rx_opt.mss_clamp.
844 NOTE1. rfc1122 clearly states that advertised MSS
845 DOES NOT include either tcp or ip options.
847 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
848 are READ ONLY outside this function. --ANK (980731)
851 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
853 struct tcp_sock
*tp
= tcp_sk(sk
);
854 struct inet_connection_sock
*icsk
= inet_csk(sk
);
857 if (icsk
->icsk_mtup
.search_high
> pmtu
)
858 icsk
->icsk_mtup
.search_high
= pmtu
;
860 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
862 /* Bound mss with half of window */
863 if (tp
->max_window
&& mss_now
> (tp
->max_window
>>1))
864 mss_now
= max((tp
->max_window
>>1), 68U - tp
->tcp_header_len
);
866 /* And store cached results */
867 icsk
->icsk_pmtu_cookie
= pmtu
;
868 if (icsk
->icsk_mtup
.enabled
)
869 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
870 tp
->mss_cache
= mss_now
;
875 /* Compute the current effective MSS, taking SACKs and IP options,
876 * and even PMTU discovery events into account.
878 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
879 * cannot be large. However, taking into account rare use of URG, this
882 unsigned int tcp_current_mss(struct sock
*sk
, int large_allowed
)
884 struct tcp_sock
*tp
= tcp_sk(sk
);
885 struct dst_entry
*dst
= __sk_dst_get(sk
);
890 mss_now
= tp
->mss_cache
;
892 if (large_allowed
&& sk_can_gso(sk
) && !tp
->urg_mode
)
896 u32 mtu
= dst_mtu(dst
);
897 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
898 mss_now
= tcp_sync_mss(sk
, mtu
);
901 if (tp
->rx_opt
.eff_sacks
)
902 mss_now
-= (TCPOLEN_SACK_BASE_ALIGNED
+
903 (tp
->rx_opt
.eff_sacks
* TCPOLEN_SACK_PERBLOCK
));
905 #ifdef CONFIG_TCP_MD5SIG
906 if (tp
->af_specific
->md5_lookup(sk
, sk
))
907 mss_now
-= TCPOLEN_MD5SIG_ALIGNED
;
910 xmit_size_goal
= mss_now
;
913 xmit_size_goal
= (65535 -
914 inet_csk(sk
)->icsk_af_ops
->net_header_len
-
915 inet_csk(sk
)->icsk_ext_hdr_len
-
918 if (tp
->max_window
&&
919 (xmit_size_goal
> (tp
->max_window
>> 1)))
920 xmit_size_goal
= max((tp
->max_window
>> 1),
921 68U - tp
->tcp_header_len
);
923 xmit_size_goal
-= (xmit_size_goal
% mss_now
);
925 tp
->xmit_size_goal
= xmit_size_goal
;
930 /* Congestion window validation. (RFC2861) */
932 static void tcp_cwnd_validate(struct sock
*sk
, struct tcp_sock
*tp
)
934 __u32 packets_out
= tp
->packets_out
;
936 if (packets_out
>= tp
->snd_cwnd
) {
937 /* Network is feed fully. */
938 tp
->snd_cwnd_used
= 0;
939 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
941 /* Network starves. */
942 if (tp
->packets_out
> tp
->snd_cwnd_used
)
943 tp
->snd_cwnd_used
= tp
->packets_out
;
945 if ((s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
946 tcp_cwnd_application_limited(sk
);
950 static unsigned int tcp_window_allows(struct tcp_sock
*tp
, struct sk_buff
*skb
, unsigned int mss_now
, unsigned int cwnd
)
952 u32 window
, cwnd_len
;
954 window
= (tp
->snd_una
+ tp
->snd_wnd
- TCP_SKB_CB(skb
)->seq
);
955 cwnd_len
= mss_now
* cwnd
;
956 return min(window
, cwnd_len
);
959 /* Can at least one segment of SKB be sent right now, according to the
960 * congestion window rules? If so, return how many segments are allowed.
962 static inline unsigned int tcp_cwnd_test(struct tcp_sock
*tp
, struct sk_buff
*skb
)
966 /* Don't be strict about the congestion window for the final FIN. */
967 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
)
970 in_flight
= tcp_packets_in_flight(tp
);
972 if (in_flight
< cwnd
)
973 return (cwnd
- in_flight
);
978 /* This must be invoked the first time we consider transmitting
981 static int tcp_init_tso_segs(struct sock
*sk
, struct sk_buff
*skb
, unsigned int mss_now
)
983 int tso_segs
= tcp_skb_pcount(skb
);
987 tcp_skb_mss(skb
) != mss_now
)) {
988 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
989 tso_segs
= tcp_skb_pcount(skb
);
994 static inline int tcp_minshall_check(const struct tcp_sock
*tp
)
996 return after(tp
->snd_sml
,tp
->snd_una
) &&
997 !after(tp
->snd_sml
, tp
->snd_nxt
);
1000 /* Return 0, if packet can be sent now without violation Nagle's rules:
1001 * 1. It is full sized.
1002 * 2. Or it contains FIN. (already checked by caller)
1003 * 3. Or TCP_NODELAY was set.
1004 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1005 * With Minshall's modification: all sent small packets are ACKed.
1008 static inline int tcp_nagle_check(const struct tcp_sock
*tp
,
1009 const struct sk_buff
*skb
,
1010 unsigned mss_now
, int nonagle
)
1012 return (skb
->len
< mss_now
&&
1013 ((nonagle
&TCP_NAGLE_CORK
) ||
1016 tcp_minshall_check(tp
))));
1019 /* Return non-zero if the Nagle test allows this packet to be
1022 static inline int tcp_nagle_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
1023 unsigned int cur_mss
, int nonagle
)
1025 /* Nagle rule does not apply to frames, which sit in the middle of the
1026 * write_queue (they have no chances to get new data).
1028 * This is implemented in the callers, where they modify the 'nonagle'
1029 * argument based upon the location of SKB in the send queue.
1031 if (nonagle
& TCP_NAGLE_PUSH
)
1034 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1036 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
))
1039 if (!tcp_nagle_check(tp
, skb
, cur_mss
, nonagle
))
1045 /* Does at least the first segment of SKB fit into the send window? */
1046 static inline int tcp_snd_wnd_test(struct tcp_sock
*tp
, struct sk_buff
*skb
, unsigned int cur_mss
)
1048 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1050 if (skb
->len
> cur_mss
)
1051 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1053 return !after(end_seq
, tp
->snd_una
+ tp
->snd_wnd
);
1056 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
1057 * should be put on the wire right now. If so, it returns the number of
1058 * packets allowed by the congestion window.
1060 static unsigned int tcp_snd_test(struct sock
*sk
, struct sk_buff
*skb
,
1061 unsigned int cur_mss
, int nonagle
)
1063 struct tcp_sock
*tp
= tcp_sk(sk
);
1064 unsigned int cwnd_quota
;
1066 tcp_init_tso_segs(sk
, skb
, cur_mss
);
1068 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1071 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1073 !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1079 static inline int tcp_skb_is_last(const struct sock
*sk
,
1080 const struct sk_buff
*skb
)
1082 return skb
->next
== (struct sk_buff
*)&sk
->sk_write_queue
;
1085 int tcp_may_send_now(struct sock
*sk
, struct tcp_sock
*tp
)
1087 struct sk_buff
*skb
= sk
->sk_send_head
;
1090 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
, 1),
1091 (tcp_skb_is_last(sk
, skb
) ?
1096 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1097 * which is put after SKB on the list. It is very much like
1098 * tcp_fragment() except that it may make several kinds of assumptions
1099 * in order to speed up the splitting operation. In particular, we
1100 * know that all the data is in scatter-gather pages, and that the
1101 * packet has never been sent out before (and thus is not cloned).
1103 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
, unsigned int mss_now
)
1105 struct sk_buff
*buff
;
1106 int nlen
= skb
->len
- len
;
1109 /* All of a TSO frame must be composed of paged data. */
1110 if (skb
->len
!= skb
->data_len
)
1111 return tcp_fragment(sk
, skb
, len
, mss_now
);
1113 buff
= sk_stream_alloc_pskb(sk
, 0, 0, GFP_ATOMIC
);
1114 if (unlikely(buff
== NULL
))
1117 sk_charge_skb(sk
, buff
);
1118 buff
->truesize
+= nlen
;
1119 skb
->truesize
-= nlen
;
1121 /* Correct the sequence numbers. */
1122 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1123 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1124 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1126 /* PSH and FIN should only be set in the second packet. */
1127 flags
= TCP_SKB_CB(skb
)->flags
;
1128 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
1129 TCP_SKB_CB(buff
)->flags
= flags
;
1131 /* This packet was never sent out yet, so no SACK bits. */
1132 TCP_SKB_CB(buff
)->sacked
= 0;
1134 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1135 skb_split(skb
, buff
, len
);
1137 /* Fix up tso_factor for both original and new SKB. */
1138 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1139 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1141 /* Link BUFF into the send queue. */
1142 skb_header_release(buff
);
1143 __skb_append(skb
, buff
, &sk
->sk_write_queue
);
1148 /* Try to defer sending, if possible, in order to minimize the amount
1149 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1151 * This algorithm is from John Heffner.
1153 static int tcp_tso_should_defer(struct sock
*sk
, struct tcp_sock
*tp
, struct sk_buff
*skb
)
1155 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1156 u32 send_win
, cong_win
, limit
, in_flight
;
1158 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
)
1161 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
1164 /* Defer for less than two clock ticks. */
1165 if (!tp
->tso_deferred
&& ((jiffies
<<1)>>1) - (tp
->tso_deferred
>>1) > 1)
1168 in_flight
= tcp_packets_in_flight(tp
);
1170 BUG_ON(tcp_skb_pcount(skb
) <= 1 ||
1171 (tp
->snd_cwnd
<= in_flight
));
1173 send_win
= (tp
->snd_una
+ tp
->snd_wnd
) - TCP_SKB_CB(skb
)->seq
;
1175 /* From in_flight test above, we know that cwnd > in_flight. */
1176 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1178 limit
= min(send_win
, cong_win
);
1180 /* If a full-sized TSO skb can be sent, do it. */
1184 if (sysctl_tcp_tso_win_divisor
) {
1185 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1187 /* If at least some fraction of a window is available,
1190 chunk
/= sysctl_tcp_tso_win_divisor
;
1194 /* Different approach, try not to defer past a single
1195 * ACK. Receiver should ACK every other full sized
1196 * frame, so if we have space for more than 3 frames
1199 if (limit
> tcp_max_burst(tp
) * tp
->mss_cache
)
1203 /* Ok, it looks like it is advisable to defer. */
1204 tp
->tso_deferred
= 1 | (jiffies
<<1);
1209 tp
->tso_deferred
= 0;
1213 /* Create a new MTU probe if we are ready.
1214 * Returns 0 if we should wait to probe (no cwnd available),
1215 * 1 if a probe was sent,
1217 static int tcp_mtu_probe(struct sock
*sk
)
1219 struct tcp_sock
*tp
= tcp_sk(sk
);
1220 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1221 struct sk_buff
*skb
, *nskb
, *next
;
1228 /* Not currently probing/verifying,
1230 * have enough cwnd, and
1231 * not SACKing (the variable headers throw things off) */
1232 if (!icsk
->icsk_mtup
.enabled
||
1233 icsk
->icsk_mtup
.probe_size
||
1234 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1235 tp
->snd_cwnd
< 11 ||
1236 tp
->rx_opt
.eff_sacks
)
1239 /* Very simple search strategy: just double the MSS. */
1240 mss_now
= tcp_current_mss(sk
, 0);
1241 probe_size
= 2*tp
->mss_cache
;
1242 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
)) {
1243 /* TODO: set timer for probe_converge_event */
1247 /* Have enough data in the send queue to probe? */
1249 if ((skb
= sk
->sk_send_head
) == NULL
)
1251 while ((len
+= skb
->len
) < probe_size
&& !tcp_skb_is_last(sk
, skb
))
1253 if (len
< probe_size
)
1256 /* Receive window check. */
1257 if (after(TCP_SKB_CB(skb
)->seq
+ probe_size
, tp
->snd_una
+ tp
->snd_wnd
)) {
1258 if (tp
->snd_wnd
< probe_size
)
1264 /* Do we need to wait to drain cwnd? */
1265 pif
= tcp_packets_in_flight(tp
);
1266 if (pif
+ 2 > tp
->snd_cwnd
) {
1267 /* With no packets in flight, don't stall. */
1274 /* We're allowed to probe. Build it now. */
1275 if ((nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
)) == NULL
)
1277 sk_charge_skb(sk
, nskb
);
1279 skb
= sk
->sk_send_head
;
1280 __skb_insert(nskb
, skb
->prev
, skb
, &sk
->sk_write_queue
);
1281 sk
->sk_send_head
= nskb
;
1283 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1284 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1285 TCP_SKB_CB(nskb
)->flags
= TCPCB_FLAG_ACK
;
1286 TCP_SKB_CB(nskb
)->sacked
= 0;
1288 nskb
->ip_summed
= skb
->ip_summed
;
1291 while (len
< probe_size
) {
1294 copy
= min_t(int, skb
->len
, probe_size
- len
);
1295 if (nskb
->ip_summed
)
1296 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1298 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1299 skb_put(nskb
, copy
), copy
, nskb
->csum
);
1301 if (skb
->len
<= copy
) {
1302 /* We've eaten all the data from this skb.
1304 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
;
1305 __skb_unlink(skb
, &sk
->sk_write_queue
);
1306 sk_stream_free_skb(sk
, skb
);
1308 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
&
1309 ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
1310 if (!skb_shinfo(skb
)->nr_frags
) {
1311 skb_pull(skb
, copy
);
1312 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1313 skb
->csum
= csum_partial(skb
->data
, skb
->len
, 0);
1315 __pskb_trim_head(skb
, copy
);
1316 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1318 TCP_SKB_CB(skb
)->seq
+= copy
;
1324 tcp_init_tso_segs(sk
, nskb
, nskb
->len
);
1326 /* We're ready to send. If this fails, the probe will
1327 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1328 TCP_SKB_CB(nskb
)->when
= tcp_time_stamp
;
1329 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1330 /* Decrement cwnd here because we are sending
1331 * effectively two packets. */
1333 update_send_head(sk
, tp
, nskb
);
1335 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1336 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1337 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
1346 /* This routine writes packets to the network. It advances the
1347 * send_head. This happens as incoming acks open up the remote
1350 * Returns 1, if no segments are in flight and we have queued segments, but
1351 * cannot send anything now because of SWS or another problem.
1353 static int tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
)
1355 struct tcp_sock
*tp
= tcp_sk(sk
);
1356 struct sk_buff
*skb
;
1357 unsigned int tso_segs
, sent_pkts
;
1361 /* If we are closed, the bytes will have to remain here.
1362 * In time closedown will finish, we empty the write queue and all
1365 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
1370 /* Do MTU probing. */
1371 if ((result
= tcp_mtu_probe(sk
)) == 0) {
1373 } else if (result
> 0) {
1377 while ((skb
= sk
->sk_send_head
)) {
1380 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1383 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1387 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
1390 if (tso_segs
== 1) {
1391 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
1392 (tcp_skb_is_last(sk
, skb
) ?
1393 nonagle
: TCP_NAGLE_PUSH
))))
1396 if (tcp_tso_should_defer(sk
, tp
, skb
))
1402 limit
= tcp_window_allows(tp
, skb
,
1403 mss_now
, cwnd_quota
);
1405 if (skb
->len
< limit
) {
1406 unsigned int trim
= skb
->len
% mss_now
;
1409 limit
= skb
->len
- trim
;
1413 if (skb
->len
> limit
&&
1414 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1417 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1419 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
)))
1422 /* Advance the send_head. This one is sent out.
1423 * This call will increment packets_out.
1425 update_send_head(sk
, tp
, skb
);
1427 tcp_minshall_update(tp
, mss_now
, skb
);
1431 if (likely(sent_pkts
)) {
1432 tcp_cwnd_validate(sk
, tp
);
1435 return !tp
->packets_out
&& sk
->sk_send_head
;
1438 /* Push out any pending frames which were held back due to
1439 * TCP_CORK or attempt at coalescing tiny packets.
1440 * The socket must be locked by the caller.
1442 void __tcp_push_pending_frames(struct sock
*sk
, struct tcp_sock
*tp
,
1443 unsigned int cur_mss
, int nonagle
)
1445 struct sk_buff
*skb
= sk
->sk_send_head
;
1448 if (tcp_write_xmit(sk
, cur_mss
, nonagle
))
1449 tcp_check_probe_timer(sk
, tp
);
1453 /* Send _single_ skb sitting at the send head. This function requires
1454 * true push pending frames to setup probe timer etc.
1456 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
1458 struct tcp_sock
*tp
= tcp_sk(sk
);
1459 struct sk_buff
*skb
= sk
->sk_send_head
;
1460 unsigned int tso_segs
, cwnd_quota
;
1462 BUG_ON(!skb
|| skb
->len
< mss_now
);
1464 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1465 cwnd_quota
= tcp_snd_test(sk
, skb
, mss_now
, TCP_NAGLE_PUSH
);
1467 if (likely(cwnd_quota
)) {
1474 limit
= tcp_window_allows(tp
, skb
,
1475 mss_now
, cwnd_quota
);
1477 if (skb
->len
< limit
) {
1478 unsigned int trim
= skb
->len
% mss_now
;
1481 limit
= skb
->len
- trim
;
1485 if (skb
->len
> limit
&&
1486 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1489 /* Send it out now. */
1490 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1492 if (likely(!tcp_transmit_skb(sk
, skb
, 1, sk
->sk_allocation
))) {
1493 update_send_head(sk
, tp
, skb
);
1494 tcp_cwnd_validate(sk
, tp
);
1500 /* This function returns the amount that we can raise the
1501 * usable window based on the following constraints
1503 * 1. The window can never be shrunk once it is offered (RFC 793)
1504 * 2. We limit memory per socket
1507 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1508 * RECV.NEXT + RCV.WIN fixed until:
1509 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1511 * i.e. don't raise the right edge of the window until you can raise
1512 * it at least MSS bytes.
1514 * Unfortunately, the recommended algorithm breaks header prediction,
1515 * since header prediction assumes th->window stays fixed.
1517 * Strictly speaking, keeping th->window fixed violates the receiver
1518 * side SWS prevention criteria. The problem is that under this rule
1519 * a stream of single byte packets will cause the right side of the
1520 * window to always advance by a single byte.
1522 * Of course, if the sender implements sender side SWS prevention
1523 * then this will not be a problem.
1525 * BSD seems to make the following compromise:
1527 * If the free space is less than the 1/4 of the maximum
1528 * space available and the free space is less than 1/2 mss,
1529 * then set the window to 0.
1530 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1531 * Otherwise, just prevent the window from shrinking
1532 * and from being larger than the largest representable value.
1534 * This prevents incremental opening of the window in the regime
1535 * where TCP is limited by the speed of the reader side taking
1536 * data out of the TCP receive queue. It does nothing about
1537 * those cases where the window is constrained on the sender side
1538 * because the pipeline is full.
1540 * BSD also seems to "accidentally" limit itself to windows that are a
1541 * multiple of MSS, at least until the free space gets quite small.
1542 * This would appear to be a side effect of the mbuf implementation.
1543 * Combining these two algorithms results in the observed behavior
1544 * of having a fixed window size at almost all times.
1546 * Below we obtain similar behavior by forcing the offered window to
1547 * a multiple of the mss when it is feasible to do so.
1549 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1550 * Regular options like TIMESTAMP are taken into account.
1552 u32
__tcp_select_window(struct sock
*sk
)
1554 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1555 struct tcp_sock
*tp
= tcp_sk(sk
);
1556 /* MSS for the peer's data. Previous versions used mss_clamp
1557 * here. I don't know if the value based on our guesses
1558 * of peer's MSS is better for the performance. It's more correct
1559 * but may be worse for the performance because of rcv_mss
1560 * fluctuations. --SAW 1998/11/1
1562 int mss
= icsk
->icsk_ack
.rcv_mss
;
1563 int free_space
= tcp_space(sk
);
1564 int full_space
= min_t(int, tp
->window_clamp
, tcp_full_space(sk
));
1567 if (mss
> full_space
)
1570 if (free_space
< full_space
/2) {
1571 icsk
->icsk_ack
.quick
= 0;
1573 if (tcp_memory_pressure
)
1574 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U*tp
->advmss
);
1576 if (free_space
< mss
)
1580 if (free_space
> tp
->rcv_ssthresh
)
1581 free_space
= tp
->rcv_ssthresh
;
1583 /* Don't do rounding if we are using window scaling, since the
1584 * scaled window will not line up with the MSS boundary anyway.
1586 window
= tp
->rcv_wnd
;
1587 if (tp
->rx_opt
.rcv_wscale
) {
1588 window
= free_space
;
1590 /* Advertise enough space so that it won't get scaled away.
1591 * Import case: prevent zero window announcement if
1592 * 1<<rcv_wscale > mss.
1594 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
1595 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
1596 << tp
->rx_opt
.rcv_wscale
);
1598 /* Get the largest window that is a nice multiple of mss.
1599 * Window clamp already applied above.
1600 * If our current window offering is within 1 mss of the
1601 * free space we just keep it. This prevents the divide
1602 * and multiply from happening most of the time.
1603 * We also don't do any window rounding when the free space
1606 if (window
<= free_space
- mss
|| window
> free_space
)
1607 window
= (free_space
/mss
)*mss
;
1613 /* Attempt to collapse two adjacent SKB's during retransmission. */
1614 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*skb
, int mss_now
)
1616 struct tcp_sock
*tp
= tcp_sk(sk
);
1617 struct sk_buff
*next_skb
= skb
->next
;
1619 /* The first test we must make is that neither of these two
1620 * SKB's are still referenced by someone else.
1622 if (!skb_cloned(skb
) && !skb_cloned(next_skb
)) {
1623 int skb_size
= skb
->len
, next_skb_size
= next_skb
->len
;
1624 u16 flags
= TCP_SKB_CB(skb
)->flags
;
1626 /* Also punt if next skb has been SACK'd. */
1627 if(TCP_SKB_CB(next_skb
)->sacked
& TCPCB_SACKED_ACKED
)
1630 /* Next skb is out of window. */
1631 if (after(TCP_SKB_CB(next_skb
)->end_seq
, tp
->snd_una
+tp
->snd_wnd
))
1634 /* Punt if not enough space exists in the first SKB for
1635 * the data in the second, or the total combined payload
1636 * would exceed the MSS.
1638 if ((next_skb_size
> skb_tailroom(skb
)) ||
1639 ((skb_size
+ next_skb_size
) > mss_now
))
1642 BUG_ON(tcp_skb_pcount(skb
) != 1 ||
1643 tcp_skb_pcount(next_skb
) != 1);
1645 /* changing transmit queue under us so clear hints */
1646 clear_all_retrans_hints(tp
);
1648 /* Ok. We will be able to collapse the packet. */
1649 __skb_unlink(next_skb
, &sk
->sk_write_queue
);
1651 memcpy(skb_put(skb
, next_skb_size
), next_skb
->data
, next_skb_size
);
1653 skb
->ip_summed
= next_skb
->ip_summed
;
1655 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1656 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
1658 /* Update sequence range on original skb. */
1659 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
1661 /* Merge over control information. */
1662 flags
|= TCP_SKB_CB(next_skb
)->flags
; /* This moves PSH/FIN etc. over */
1663 TCP_SKB_CB(skb
)->flags
= flags
;
1665 /* All done, get rid of second SKB and account for it so
1666 * packet counting does not break.
1668 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
&(TCPCB_EVER_RETRANS
|TCPCB_AT_TAIL
);
1669 if (TCP_SKB_CB(next_skb
)->sacked
&TCPCB_SACKED_RETRANS
)
1670 tp
->retrans_out
-= tcp_skb_pcount(next_skb
);
1671 if (TCP_SKB_CB(next_skb
)->sacked
&TCPCB_LOST
) {
1672 tp
->lost_out
-= tcp_skb_pcount(next_skb
);
1673 tp
->left_out
-= tcp_skb_pcount(next_skb
);
1675 /* Reno case is special. Sigh... */
1676 if (!tp
->rx_opt
.sack_ok
&& tp
->sacked_out
) {
1677 tcp_dec_pcount_approx(&tp
->sacked_out
, next_skb
);
1678 tp
->left_out
-= tcp_skb_pcount(next_skb
);
1681 /* Not quite right: it can be > snd.fack, but
1682 * it is better to underestimate fackets.
1684 tcp_dec_pcount_approx(&tp
->fackets_out
, next_skb
);
1685 tcp_packets_out_dec(tp
, next_skb
);
1686 sk_stream_free_skb(sk
, next_skb
);
1690 /* Do a simple retransmit without using the backoff mechanisms in
1691 * tcp_timer. This is used for path mtu discovery.
1692 * The socket is already locked here.
1694 void tcp_simple_retransmit(struct sock
*sk
)
1696 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1697 struct tcp_sock
*tp
= tcp_sk(sk
);
1698 struct sk_buff
*skb
;
1699 unsigned int mss
= tcp_current_mss(sk
, 0);
1702 sk_stream_for_retrans_queue(skb
, sk
) {
1703 if (skb
->len
> mss
&&
1704 !(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
)) {
1705 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) {
1706 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1707 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1709 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_LOST
)) {
1710 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1711 tp
->lost_out
+= tcp_skb_pcount(skb
);
1717 clear_all_retrans_hints(tp
);
1722 tcp_sync_left_out(tp
);
1724 /* Don't muck with the congestion window here.
1725 * Reason is that we do not increase amount of _data_
1726 * in network, but units changed and effective
1727 * cwnd/ssthresh really reduced now.
1729 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
1730 tp
->high_seq
= tp
->snd_nxt
;
1731 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1732 tp
->prior_ssthresh
= 0;
1733 tp
->undo_marker
= 0;
1734 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1736 tcp_xmit_retransmit_queue(sk
);
1739 /* This retransmits one SKB. Policy decisions and retransmit queue
1740 * state updates are done by the caller. Returns non-zero if an
1741 * error occurred which prevented the send.
1743 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
1745 struct tcp_sock
*tp
= tcp_sk(sk
);
1746 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1747 unsigned int cur_mss
= tcp_current_mss(sk
, 0);
1750 /* Inconslusive MTU probe */
1751 if (icsk
->icsk_mtup
.probe_size
) {
1752 icsk
->icsk_mtup
.probe_size
= 0;
1755 /* Do not sent more than we queued. 1/4 is reserved for possible
1756 * copying overhead: fragmentation, tunneling, mangling etc.
1758 if (atomic_read(&sk
->sk_wmem_alloc
) >
1759 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
1762 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
1763 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1765 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
1769 /* If receiver has shrunk his window, and skb is out of
1770 * new window, do not retransmit it. The exception is the
1771 * case, when window is shrunk to zero. In this case
1772 * our retransmit serves as a zero window probe.
1774 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
+tp
->snd_wnd
)
1775 && TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
1778 if (skb
->len
> cur_mss
) {
1779 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
))
1780 return -ENOMEM
; /* We'll try again later. */
1783 /* Collapse two adjacent packets if worthwhile and we can. */
1784 if(!(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
) &&
1785 (skb
->len
< (cur_mss
>> 1)) &&
1786 (skb
->next
!= sk
->sk_send_head
) &&
1787 (skb
->next
!= (struct sk_buff
*)&sk
->sk_write_queue
) &&
1788 (skb_shinfo(skb
)->nr_frags
== 0 && skb_shinfo(skb
->next
)->nr_frags
== 0) &&
1789 (tcp_skb_pcount(skb
) == 1 && tcp_skb_pcount(skb
->next
) == 1) &&
1790 (sysctl_tcp_retrans_collapse
!= 0))
1791 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
1793 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
1794 return -EHOSTUNREACH
; /* Routing failure or similar. */
1796 /* Some Solaris stacks overoptimize and ignore the FIN on a
1797 * retransmit when old data is attached. So strip it off
1798 * since it is cheap to do so and saves bytes on the network.
1801 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1802 tp
->snd_una
== (TCP_SKB_CB(skb
)->end_seq
- 1)) {
1803 if (!pskb_trim(skb
, 0)) {
1804 TCP_SKB_CB(skb
)->seq
= TCP_SKB_CB(skb
)->end_seq
- 1;
1805 skb_shinfo(skb
)->gso_segs
= 1;
1806 skb_shinfo(skb
)->gso_size
= 0;
1807 skb_shinfo(skb
)->gso_type
= 0;
1808 skb
->ip_summed
= CHECKSUM_NONE
;
1813 /* Make a copy, if the first transmission SKB clone we made
1814 * is still in somebody's hands, else make a clone.
1816 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1818 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
1821 /* Update global TCP statistics. */
1822 TCP_INC_STATS(TCP_MIB_RETRANSSEGS
);
1824 tp
->total_retrans
++;
1826 #if FASTRETRANS_DEBUG > 0
1827 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) {
1828 if (net_ratelimit())
1829 printk(KERN_DEBUG
"retrans_out leaked.\n");
1832 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
1833 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1835 /* Save stamp of the first retransmit. */
1836 if (!tp
->retrans_stamp
)
1837 tp
->retrans_stamp
= TCP_SKB_CB(skb
)->when
;
1841 /* snd_nxt is stored to detect loss of retransmitted segment,
1842 * see tcp_input.c tcp_sacktag_write_queue().
1844 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
1849 /* This gets called after a retransmit timeout, and the initially
1850 * retransmitted data is acknowledged. It tries to continue
1851 * resending the rest of the retransmit queue, until either
1852 * we've sent it all or the congestion window limit is reached.
1853 * If doing SACK, the first ACK which comes back for a timeout
1854 * based retransmit packet might feed us FACK information again.
1855 * If so, we use it to avoid unnecessarily retransmissions.
1857 void tcp_xmit_retransmit_queue(struct sock
*sk
)
1859 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1860 struct tcp_sock
*tp
= tcp_sk(sk
);
1861 struct sk_buff
*skb
;
1864 if (tp
->retransmit_skb_hint
) {
1865 skb
= tp
->retransmit_skb_hint
;
1866 packet_cnt
= tp
->retransmit_cnt_hint
;
1868 skb
= sk
->sk_write_queue
.next
;
1872 /* First pass: retransmit lost packets. */
1874 sk_stream_for_retrans_queue_from(skb
, sk
) {
1875 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1877 /* we could do better than to assign each time */
1878 tp
->retransmit_skb_hint
= skb
;
1879 tp
->retransmit_cnt_hint
= packet_cnt
;
1881 /* Assume this retransmit will generate
1882 * only one packet for congestion window
1883 * calculation purposes. This works because
1884 * tcp_retransmit_skb() will chop up the
1885 * packet to be MSS sized and all the
1886 * packet counting works out.
1888 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
1891 if (sacked
& TCPCB_LOST
) {
1892 if (!(sacked
&(TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))) {
1893 if (tcp_retransmit_skb(sk
, skb
)) {
1894 tp
->retransmit_skb_hint
= NULL
;
1897 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
1898 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS
);
1900 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS
);
1903 skb_peek(&sk
->sk_write_queue
))
1904 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1905 inet_csk(sk
)->icsk_rto
,
1909 packet_cnt
+= tcp_skb_pcount(skb
);
1910 if (packet_cnt
>= tp
->lost_out
)
1916 /* OK, demanded retransmission is finished. */
1918 /* Forward retransmissions are possible only during Recovery. */
1919 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1922 /* No forward retransmissions in Reno are possible. */
1923 if (!tp
->rx_opt
.sack_ok
)
1926 /* Yeah, we have to make difficult choice between forward transmission
1927 * and retransmission... Both ways have their merits...
1929 * For now we do not retransmit anything, while we have some new
1933 if (tcp_may_send_now(sk
, tp
))
1936 if (tp
->forward_skb_hint
) {
1937 skb
= tp
->forward_skb_hint
;
1938 packet_cnt
= tp
->forward_cnt_hint
;
1940 skb
= sk
->sk_write_queue
.next
;
1944 sk_stream_for_retrans_queue_from(skb
, sk
) {
1945 tp
->forward_cnt_hint
= packet_cnt
;
1946 tp
->forward_skb_hint
= skb
;
1948 /* Similar to the retransmit loop above we
1949 * can pretend that the retransmitted SKB
1950 * we send out here will be composed of one
1951 * real MSS sized packet because tcp_retransmit_skb()
1952 * will fragment it if necessary.
1954 if (++packet_cnt
> tp
->fackets_out
)
1957 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
1960 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
)
1963 /* Ok, retransmit it. */
1964 if (tcp_retransmit_skb(sk
, skb
)) {
1965 tp
->forward_skb_hint
= NULL
;
1969 if (skb
== skb_peek(&sk
->sk_write_queue
))
1970 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1971 inet_csk(sk
)->icsk_rto
,
1974 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS
);
1979 /* Send a fin. The caller locks the socket for us. This cannot be
1980 * allowed to fail queueing a FIN frame under any circumstances.
1982 void tcp_send_fin(struct sock
*sk
)
1984 struct tcp_sock
*tp
= tcp_sk(sk
);
1985 struct sk_buff
*skb
= skb_peek_tail(&sk
->sk_write_queue
);
1988 /* Optimization, tack on the FIN if we have a queue of
1989 * unsent frames. But be careful about outgoing SACKS
1992 mss_now
= tcp_current_mss(sk
, 1);
1994 if (sk
->sk_send_head
!= NULL
) {
1995 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_FIN
;
1996 TCP_SKB_CB(skb
)->end_seq
++;
1999 /* Socket is locked, keep trying until memory is available. */
2001 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, GFP_KERNEL
);
2007 /* Reserve space for headers and prepare control bits. */
2008 skb_reserve(skb
, MAX_TCP_HEADER
);
2010 TCP_SKB_CB(skb
)->flags
= (TCPCB_FLAG_ACK
| TCPCB_FLAG_FIN
);
2011 TCP_SKB_CB(skb
)->sacked
= 0;
2012 skb_shinfo(skb
)->gso_segs
= 1;
2013 skb_shinfo(skb
)->gso_size
= 0;
2014 skb_shinfo(skb
)->gso_type
= 0;
2016 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2017 TCP_SKB_CB(skb
)->seq
= tp
->write_seq
;
2018 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ 1;
2019 tcp_queue_skb(sk
, skb
);
2021 __tcp_push_pending_frames(sk
, tp
, mss_now
, TCP_NAGLE_OFF
);
2024 /* We get here when a process closes a file descriptor (either due to
2025 * an explicit close() or as a byproduct of exit()'ing) and there
2026 * was unread data in the receive queue. This behavior is recommended
2027 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
2029 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2031 struct tcp_sock
*tp
= tcp_sk(sk
);
2032 struct sk_buff
*skb
;
2034 /* NOTE: No TCP options attached and we never retransmit this. */
2035 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2037 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED
);
2041 /* Reserve space for headers and prepare control bits. */
2042 skb_reserve(skb
, MAX_TCP_HEADER
);
2044 TCP_SKB_CB(skb
)->flags
= (TCPCB_FLAG_ACK
| TCPCB_FLAG_RST
);
2045 TCP_SKB_CB(skb
)->sacked
= 0;
2046 skb_shinfo(skb
)->gso_segs
= 1;
2047 skb_shinfo(skb
)->gso_size
= 0;
2048 skb_shinfo(skb
)->gso_type
= 0;
2051 TCP_SKB_CB(skb
)->seq
= tcp_acceptable_seq(sk
, tp
);
2052 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
;
2053 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2054 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2055 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED
);
2058 /* WARNING: This routine must only be called when we have already sent
2059 * a SYN packet that crossed the incoming SYN that caused this routine
2060 * to get called. If this assumption fails then the initial rcv_wnd
2061 * and rcv_wscale values will not be correct.
2063 int tcp_send_synack(struct sock
*sk
)
2065 struct sk_buff
* skb
;
2067 skb
= skb_peek(&sk
->sk_write_queue
);
2068 if (skb
== NULL
|| !(TCP_SKB_CB(skb
)->flags
&TCPCB_FLAG_SYN
)) {
2069 printk(KERN_DEBUG
"tcp_send_synack: wrong queue state\n");
2072 if (!(TCP_SKB_CB(skb
)->flags
&TCPCB_FLAG_ACK
)) {
2073 if (skb_cloned(skb
)) {
2074 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2077 __skb_unlink(skb
, &sk
->sk_write_queue
);
2078 skb_header_release(nskb
);
2079 __skb_queue_head(&sk
->sk_write_queue
, nskb
);
2080 sk_stream_free_skb(sk
, skb
);
2081 sk_charge_skb(sk
, nskb
);
2085 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ACK
;
2086 TCP_ECN_send_synack(tcp_sk(sk
), skb
);
2088 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2089 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2093 * Prepare a SYN-ACK.
2095 struct sk_buff
* tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
2096 struct request_sock
*req
)
2098 struct inet_request_sock
*ireq
= inet_rsk(req
);
2099 struct tcp_sock
*tp
= tcp_sk(sk
);
2101 int tcp_header_size
;
2102 struct sk_buff
*skb
;
2103 #ifdef CONFIG_TCP_MD5SIG
2104 struct tcp_md5sig_key
*md5
;
2105 __u8
*md5_hash_location
;
2108 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
+ 15, 1, GFP_ATOMIC
);
2112 /* Reserve space for headers. */
2113 skb_reserve(skb
, MAX_TCP_HEADER
);
2115 skb
->dst
= dst_clone(dst
);
2117 tcp_header_size
= (sizeof(struct tcphdr
) + TCPOLEN_MSS
+
2118 (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0) +
2119 (ireq
->wscale_ok
? TCPOLEN_WSCALE_ALIGNED
: 0) +
2120 /* SACK_PERM is in the place of NOP NOP of TS */
2121 ((ireq
->sack_ok
&& !ireq
->tstamp_ok
) ? TCPOLEN_SACKPERM_ALIGNED
: 0));
2123 #ifdef CONFIG_TCP_MD5SIG
2124 /* Are we doing MD5 on this segment? If so - make room for it */
2125 md5
= tcp_rsk(req
)->af_specific
->md5_lookup(sk
, req
);
2127 tcp_header_size
+= TCPOLEN_MD5SIG_ALIGNED
;
2129 skb
->h
.th
= th
= (struct tcphdr
*) skb_push(skb
, tcp_header_size
);
2131 memset(th
, 0, sizeof(struct tcphdr
));
2134 TCP_ECN_make_synack(req
, th
);
2135 th
->source
= inet_sk(sk
)->sport
;
2136 th
->dest
= ireq
->rmt_port
;
2137 TCP_SKB_CB(skb
)->seq
= tcp_rsk(req
)->snt_isn
;
2138 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ 1;
2139 TCP_SKB_CB(skb
)->sacked
= 0;
2140 skb_shinfo(skb
)->gso_segs
= 1;
2141 skb_shinfo(skb
)->gso_size
= 0;
2142 skb_shinfo(skb
)->gso_type
= 0;
2143 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
2144 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_isn
+ 1);
2145 if (req
->rcv_wnd
== 0) { /* ignored for retransmitted syns */
2147 /* Set this up on the first call only */
2148 req
->window_clamp
= tp
->window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
2149 /* tcp_full_space because it is guaranteed to be the first packet */
2150 tcp_select_initial_window(tcp_full_space(sk
),
2151 dst_metric(dst
, RTAX_ADVMSS
) - (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
2156 ireq
->rcv_wscale
= rcv_wscale
;
2159 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2160 th
->window
= htons(req
->rcv_wnd
);
2162 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2163 tcp_syn_build_options((__be32
*)(th
+ 1), dst_metric(dst
, RTAX_ADVMSS
), ireq
->tstamp_ok
,
2164 ireq
->sack_ok
, ireq
->wscale_ok
, ireq
->rcv_wscale
,
2165 TCP_SKB_CB(skb
)->when
,
2168 #ifdef CONFIG_TCP_MD5SIG
2169 md5
? &md5_hash_location
:
2175 th
->doff
= (tcp_header_size
>> 2);
2176 TCP_INC_STATS(TCP_MIB_OUTSEGS
);
2178 #ifdef CONFIG_TCP_MD5SIG
2179 /* Okay, we have all we need - do the md5 hash if needed */
2181 tp
->af_specific
->calc_md5_hash(md5_hash_location
,
2184 skb
->h
.th
, sk
->sk_protocol
,
2193 * Do all connect socket setups that can be done AF independent.
2195 static void tcp_connect_init(struct sock
*sk
)
2197 struct dst_entry
*dst
= __sk_dst_get(sk
);
2198 struct tcp_sock
*tp
= tcp_sk(sk
);
2201 /* We'll fix this up when we get a response from the other end.
2202 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2204 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
2205 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
2207 #ifdef CONFIG_TCP_MD5SIG
2208 if (tp
->af_specific
->md5_lookup(sk
, sk
) != NULL
)
2209 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
2212 /* If user gave his TCP_MAXSEG, record it to clamp */
2213 if (tp
->rx_opt
.user_mss
)
2214 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
2217 tcp_sync_mss(sk
, dst_mtu(dst
));
2219 if (!tp
->window_clamp
)
2220 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
2221 tp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
2222 tcp_initialize_rcv_mss(sk
);
2224 tcp_select_initial_window(tcp_full_space(sk
),
2225 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
2228 sysctl_tcp_window_scaling
,
2231 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2232 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
2235 sock_reset_flag(sk
, SOCK_DONE
);
2237 tcp_init_wl(tp
, tp
->write_seq
, 0);
2238 tp
->snd_una
= tp
->write_seq
;
2239 tp
->snd_sml
= tp
->write_seq
;
2244 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
2245 inet_csk(sk
)->icsk_retransmits
= 0;
2246 tcp_clear_retrans(tp
);
2250 * Build a SYN and send it off.
2252 int tcp_connect(struct sock
*sk
)
2254 struct tcp_sock
*tp
= tcp_sk(sk
);
2255 struct sk_buff
*buff
;
2257 tcp_connect_init(sk
);
2259 buff
= alloc_skb_fclone(MAX_TCP_HEADER
+ 15, sk
->sk_allocation
);
2260 if (unlikely(buff
== NULL
))
2263 /* Reserve space for headers. */
2264 skb_reserve(buff
, MAX_TCP_HEADER
);
2266 TCP_SKB_CB(buff
)->flags
= TCPCB_FLAG_SYN
;
2267 TCP_ECN_send_syn(sk
, tp
, buff
);
2268 TCP_SKB_CB(buff
)->sacked
= 0;
2269 skb_shinfo(buff
)->gso_segs
= 1;
2270 skb_shinfo(buff
)->gso_size
= 0;
2271 skb_shinfo(buff
)->gso_type
= 0;
2273 tp
->snd_nxt
= tp
->write_seq
;
2274 TCP_SKB_CB(buff
)->seq
= tp
->write_seq
++;
2275 TCP_SKB_CB(buff
)->end_seq
= tp
->write_seq
;
2278 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2279 tp
->retrans_stamp
= TCP_SKB_CB(buff
)->when
;
2280 skb_header_release(buff
);
2281 __skb_queue_tail(&sk
->sk_write_queue
, buff
);
2282 sk_charge_skb(sk
, buff
);
2283 tp
->packets_out
+= tcp_skb_pcount(buff
);
2284 tcp_transmit_skb(sk
, buff
, 1, GFP_KERNEL
);
2286 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2287 * in order to make this packet get counted in tcpOutSegs.
2289 tp
->snd_nxt
= tp
->write_seq
;
2290 tp
->pushed_seq
= tp
->write_seq
;
2291 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS
);
2293 /* Timer for repeating the SYN until an answer. */
2294 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2295 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2299 /* Send out a delayed ack, the caller does the policy checking
2300 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2303 void tcp_send_delayed_ack(struct sock
*sk
)
2305 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2306 int ato
= icsk
->icsk_ack
.ato
;
2307 unsigned long timeout
;
2309 if (ato
> TCP_DELACK_MIN
) {
2310 const struct tcp_sock
*tp
= tcp_sk(sk
);
2313 if (icsk
->icsk_ack
.pingpong
|| (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
2314 max_ato
= TCP_DELACK_MAX
;
2316 /* Slow path, intersegment interval is "high". */
2318 /* If some rtt estimate is known, use it to bound delayed ack.
2319 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2323 int rtt
= max(tp
->srtt
>>3, TCP_DELACK_MIN
);
2329 ato
= min(ato
, max_ato
);
2332 /* Stay within the limit we were given */
2333 timeout
= jiffies
+ ato
;
2335 /* Use new timeout only if there wasn't a older one earlier. */
2336 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
2337 /* If delack timer was blocked or is about to expire,
2340 if (icsk
->icsk_ack
.blocked
||
2341 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
2346 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
2347 timeout
= icsk
->icsk_ack
.timeout
;
2349 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
2350 icsk
->icsk_ack
.timeout
= timeout
;
2351 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
2354 /* This routine sends an ack and also updates the window. */
2355 void tcp_send_ack(struct sock
*sk
)
2357 /* If we have been reset, we may not send again. */
2358 if (sk
->sk_state
!= TCP_CLOSE
) {
2359 struct tcp_sock
*tp
= tcp_sk(sk
);
2360 struct sk_buff
*buff
;
2362 /* We are not putting this on the write queue, so
2363 * tcp_transmit_skb() will set the ownership to this
2366 buff
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2368 inet_csk_schedule_ack(sk
);
2369 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
2370 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
2371 TCP_DELACK_MAX
, TCP_RTO_MAX
);
2375 /* Reserve space for headers and prepare control bits. */
2376 skb_reserve(buff
, MAX_TCP_HEADER
);
2378 TCP_SKB_CB(buff
)->flags
= TCPCB_FLAG_ACK
;
2379 TCP_SKB_CB(buff
)->sacked
= 0;
2380 skb_shinfo(buff
)->gso_segs
= 1;
2381 skb_shinfo(buff
)->gso_size
= 0;
2382 skb_shinfo(buff
)->gso_type
= 0;
2384 /* Send it off, this clears delayed acks for us. */
2385 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(buff
)->end_seq
= tcp_acceptable_seq(sk
, tp
);
2386 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2387 tcp_transmit_skb(sk
, buff
, 0, GFP_ATOMIC
);
2391 /* This routine sends a packet with an out of date sequence
2392 * number. It assumes the other end will try to ack it.
2394 * Question: what should we make while urgent mode?
2395 * 4.4BSD forces sending single byte of data. We cannot send
2396 * out of window data, because we have SND.NXT==SND.MAX...
2398 * Current solution: to send TWO zero-length segments in urgent mode:
2399 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2400 * out-of-date with SND.UNA-1 to probe window.
2402 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
)
2404 struct tcp_sock
*tp
= tcp_sk(sk
);
2405 struct sk_buff
*skb
;
2407 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2408 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2412 /* Reserve space for headers and set control bits. */
2413 skb_reserve(skb
, MAX_TCP_HEADER
);
2415 TCP_SKB_CB(skb
)->flags
= TCPCB_FLAG_ACK
;
2416 TCP_SKB_CB(skb
)->sacked
= urgent
;
2417 skb_shinfo(skb
)->gso_segs
= 1;
2418 skb_shinfo(skb
)->gso_size
= 0;
2419 skb_shinfo(skb
)->gso_type
= 0;
2421 /* Use a previous sequence. This should cause the other
2422 * end to send an ack. Don't queue or clone SKB, just
2425 TCP_SKB_CB(skb
)->seq
= urgent
? tp
->snd_una
: tp
->snd_una
- 1;
2426 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
;
2427 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2428 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
2431 int tcp_write_wakeup(struct sock
*sk
)
2433 if (sk
->sk_state
!= TCP_CLOSE
) {
2434 struct tcp_sock
*tp
= tcp_sk(sk
);
2435 struct sk_buff
*skb
;
2437 if ((skb
= sk
->sk_send_head
) != NULL
&&
2438 before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
+tp
->snd_wnd
)) {
2440 unsigned int mss
= tcp_current_mss(sk
, 0);
2441 unsigned int seg_size
= tp
->snd_una
+tp
->snd_wnd
-TCP_SKB_CB(skb
)->seq
;
2443 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
2444 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
2446 /* We are probing the opening of a window
2447 * but the window size is != 0
2448 * must have been a result SWS avoidance ( sender )
2450 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
2452 seg_size
= min(seg_size
, mss
);
2453 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2454 if (tcp_fragment(sk
, skb
, seg_size
, mss
))
2456 } else if (!tcp_skb_pcount(skb
))
2457 tcp_set_skb_tso_segs(sk
, skb
, mss
);
2459 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2460 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2461 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2463 update_send_head(sk
, tp
, skb
);
2468 between(tp
->snd_up
, tp
->snd_una
+1, tp
->snd_una
+0xFFFF))
2469 tcp_xmit_probe_skb(sk
, TCPCB_URG
);
2470 return tcp_xmit_probe_skb(sk
, 0);
2476 /* A window probe timeout has occurred. If window is not closed send
2477 * a partial packet else a zero probe.
2479 void tcp_send_probe0(struct sock
*sk
)
2481 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2482 struct tcp_sock
*tp
= tcp_sk(sk
);
2485 err
= tcp_write_wakeup(sk
);
2487 if (tp
->packets_out
|| !sk
->sk_send_head
) {
2488 /* Cancel probe timer, if it is not required. */
2489 icsk
->icsk_probes_out
= 0;
2490 icsk
->icsk_backoff
= 0;
2495 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
2496 icsk
->icsk_backoff
++;
2497 icsk
->icsk_probes_out
++;
2498 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2499 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2502 /* If packet was not sent due to local congestion,
2503 * do not backoff and do not remember icsk_probes_out.
2504 * Let local senders to fight for local resources.
2506 * Use accumulated backoff yet.
2508 if (!icsk
->icsk_probes_out
)
2509 icsk
->icsk_probes_out
= 1;
2510 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2511 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
,
2512 TCP_RESOURCE_PROBE_INTERVAL
),
2517 EXPORT_SYMBOL(tcp_connect
);
2518 EXPORT_SYMBOL(tcp_make_synack
);
2519 EXPORT_SYMBOL(tcp_simple_retransmit
);
2520 EXPORT_SYMBOL(tcp_sync_mss
);
2521 EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor
);
2522 EXPORT_SYMBOL(tcp_mtup_init
);