2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
66 #include <net/inet_hashtables.h>
68 #include <net/transp_v6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
84 int sysctl_tcp_tw_reuse __read_mostly
;
85 int sysctl_tcp_low_latency __read_mostly
;
87 /* Check TCP sequence numbers in ICMP packets. */
88 #define ICMP_MIN_LENGTH 8
90 /* Socket used for sending RSTs */
91 static struct socket
*tcp_socket
;
93 void tcp_v4_send_check(struct sock
*sk
, int len
, struct sk_buff
*skb
);
95 #ifdef CONFIG_TCP_MD5SIG
96 static struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
,
98 static int tcp_v4_do_calc_md5_hash(char *md5_hash
, struct tcp_md5sig_key
*key
,
99 __be32 saddr
, __be32 daddr
,
100 struct tcphdr
*th
, int protocol
,
104 struct inet_hashinfo __cacheline_aligned tcp_hashinfo
= {
105 .lhash_lock
= __RW_LOCK_UNLOCKED(tcp_hashinfo
.lhash_lock
),
106 .lhash_users
= ATOMIC_INIT(0),
107 .lhash_wait
= __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo
.lhash_wait
),
110 static int tcp_v4_get_port(struct sock
*sk
, unsigned short snum
)
112 return inet_csk_get_port(&tcp_hashinfo
, sk
, snum
,
113 inet_csk_bind_conflict
);
116 static void tcp_v4_hash(struct sock
*sk
)
118 inet_hash(&tcp_hashinfo
, sk
);
121 void tcp_unhash(struct sock
*sk
)
123 inet_unhash(&tcp_hashinfo
, sk
);
126 static inline __u32
tcp_v4_init_sequence(struct sk_buff
*skb
)
128 return secure_tcp_sequence_number(skb
->nh
.iph
->daddr
,
134 int tcp_twsk_unique(struct sock
*sk
, struct sock
*sktw
, void *twp
)
136 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sktw
);
137 struct tcp_sock
*tp
= tcp_sk(sk
);
139 /* With PAWS, it is safe from the viewpoint
140 of data integrity. Even without PAWS it is safe provided sequence
141 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
143 Actually, the idea is close to VJ's one, only timestamp cache is
144 held not per host, but per port pair and TW bucket is used as state
147 If TW bucket has been already destroyed we fall back to VJ's scheme
148 and use initial timestamp retrieved from peer table.
150 if (tcptw
->tw_ts_recent_stamp
&&
151 (twp
== NULL
|| (sysctl_tcp_tw_reuse
&&
152 xtime
.tv_sec
- tcptw
->tw_ts_recent_stamp
> 1))) {
153 tp
->write_seq
= tcptw
->tw_snd_nxt
+ 65535 + 2;
154 if (tp
->write_seq
== 0)
156 tp
->rx_opt
.ts_recent
= tcptw
->tw_ts_recent
;
157 tp
->rx_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
165 EXPORT_SYMBOL_GPL(tcp_twsk_unique
);
167 /* This will initiate an outgoing connection. */
168 int tcp_v4_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
170 struct inet_sock
*inet
= inet_sk(sk
);
171 struct tcp_sock
*tp
= tcp_sk(sk
);
172 struct sockaddr_in
*usin
= (struct sockaddr_in
*)uaddr
;
174 __be32 daddr
, nexthop
;
178 if (addr_len
< sizeof(struct sockaddr_in
))
181 if (usin
->sin_family
!= AF_INET
)
182 return -EAFNOSUPPORT
;
184 nexthop
= daddr
= usin
->sin_addr
.s_addr
;
185 if (inet
->opt
&& inet
->opt
->srr
) {
188 nexthop
= inet
->opt
->faddr
;
191 tmp
= ip_route_connect(&rt
, nexthop
, inet
->saddr
,
192 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
,
194 inet
->sport
, usin
->sin_port
, sk
);
198 if (rt
->rt_flags
& (RTCF_MULTICAST
| RTCF_BROADCAST
)) {
203 if (!inet
->opt
|| !inet
->opt
->srr
)
207 inet
->saddr
= rt
->rt_src
;
208 inet
->rcv_saddr
= inet
->saddr
;
210 if (tp
->rx_opt
.ts_recent_stamp
&& inet
->daddr
!= daddr
) {
211 /* Reset inherited state */
212 tp
->rx_opt
.ts_recent
= 0;
213 tp
->rx_opt
.ts_recent_stamp
= 0;
217 if (tcp_death_row
.sysctl_tw_recycle
&&
218 !tp
->rx_opt
.ts_recent_stamp
&& rt
->rt_dst
== daddr
) {
219 struct inet_peer
*peer
= rt_get_peer(rt
);
221 * VJ's idea. We save last timestamp seen from
222 * the destination in peer table, when entering state
223 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
224 * when trying new connection.
227 peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
>= xtime
.tv_sec
) {
228 tp
->rx_opt
.ts_recent_stamp
= peer
->tcp_ts_stamp
;
229 tp
->rx_opt
.ts_recent
= peer
->tcp_ts
;
233 inet
->dport
= usin
->sin_port
;
236 inet_csk(sk
)->icsk_ext_hdr_len
= 0;
238 inet_csk(sk
)->icsk_ext_hdr_len
= inet
->opt
->optlen
;
240 tp
->rx_opt
.mss_clamp
= 536;
242 /* Socket identity is still unknown (sport may be zero).
243 * However we set state to SYN-SENT and not releasing socket
244 * lock select source port, enter ourselves into the hash tables and
245 * complete initialization after this.
247 tcp_set_state(sk
, TCP_SYN_SENT
);
248 err
= inet_hash_connect(&tcp_death_row
, sk
);
252 err
= ip_route_newports(&rt
, IPPROTO_TCP
,
253 inet
->sport
, inet
->dport
, sk
);
257 /* OK, now commit destination to socket. */
258 sk
->sk_gso_type
= SKB_GSO_TCPV4
;
259 sk_setup_caps(sk
, &rt
->u
.dst
);
262 tp
->write_seq
= secure_tcp_sequence_number(inet
->saddr
,
267 inet
->id
= tp
->write_seq
^ jiffies
;
269 err
= tcp_connect(sk
);
278 * This unhashes the socket and releases the local port,
281 tcp_set_state(sk
, TCP_CLOSE
);
283 sk
->sk_route_caps
= 0;
289 * This routine does path mtu discovery as defined in RFC1191.
291 static void do_pmtu_discovery(struct sock
*sk
, struct iphdr
*iph
, u32 mtu
)
293 struct dst_entry
*dst
;
294 struct inet_sock
*inet
= inet_sk(sk
);
296 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
297 * send out by Linux are always <576bytes so they should go through
300 if (sk
->sk_state
== TCP_LISTEN
)
303 /* We don't check in the destentry if pmtu discovery is forbidden
304 * on this route. We just assume that no packet_to_big packets
305 * are send back when pmtu discovery is not active.
306 * There is a small race when the user changes this flag in the
307 * route, but I think that's acceptable.
309 if ((dst
= __sk_dst_check(sk
, 0)) == NULL
)
312 dst
->ops
->update_pmtu(dst
, mtu
);
314 /* Something is about to be wrong... Remember soft error
315 * for the case, if this connection will not able to recover.
317 if (mtu
< dst_mtu(dst
) && ip_dont_fragment(sk
, dst
))
318 sk
->sk_err_soft
= EMSGSIZE
;
322 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
&&
323 inet_csk(sk
)->icsk_pmtu_cookie
> mtu
) {
324 tcp_sync_mss(sk
, mtu
);
326 /* Resend the TCP packet because it's
327 * clear that the old packet has been
328 * dropped. This is the new "fast" path mtu
331 tcp_simple_retransmit(sk
);
332 } /* else let the usual retransmit timer handle it */
336 * This routine is called by the ICMP module when it gets some
337 * sort of error condition. If err < 0 then the socket should
338 * be closed and the error returned to the user. If err > 0
339 * it's just the icmp type << 8 | icmp code. After adjustment
340 * header points to the first 8 bytes of the tcp header. We need
341 * to find the appropriate port.
343 * The locking strategy used here is very "optimistic". When
344 * someone else accesses the socket the ICMP is just dropped
345 * and for some paths there is no check at all.
346 * A more general error queue to queue errors for later handling
347 * is probably better.
351 void tcp_v4_err(struct sk_buff
*skb
, u32 info
)
353 struct iphdr
*iph
= (struct iphdr
*)skb
->data
;
354 struct tcphdr
*th
= (struct tcphdr
*)(skb
->data
+ (iph
->ihl
<< 2));
356 struct inet_sock
*inet
;
357 int type
= skb
->h
.icmph
->type
;
358 int code
= skb
->h
.icmph
->code
;
363 if (skb
->len
< (iph
->ihl
<< 2) + 8) {
364 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS
);
368 sk
= inet_lookup(&tcp_hashinfo
, iph
->daddr
, th
->dest
, iph
->saddr
,
369 th
->source
, inet_iif(skb
));
371 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS
);
374 if (sk
->sk_state
== TCP_TIME_WAIT
) {
375 inet_twsk_put(inet_twsk(sk
));
380 /* If too many ICMPs get dropped on busy
381 * servers this needs to be solved differently.
383 if (sock_owned_by_user(sk
))
384 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS
);
386 if (sk
->sk_state
== TCP_CLOSE
)
390 seq
= ntohl(th
->seq
);
391 if (sk
->sk_state
!= TCP_LISTEN
&&
392 !between(seq
, tp
->snd_una
, tp
->snd_nxt
)) {
393 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS
);
398 case ICMP_SOURCE_QUENCH
:
399 /* Just silently ignore these. */
401 case ICMP_PARAMETERPROB
:
404 case ICMP_DEST_UNREACH
:
405 if (code
> NR_ICMP_UNREACH
)
408 if (code
== ICMP_FRAG_NEEDED
) { /* PMTU discovery (RFC1191) */
409 if (!sock_owned_by_user(sk
))
410 do_pmtu_discovery(sk
, iph
, info
);
414 err
= icmp_err_convert
[code
].errno
;
416 case ICMP_TIME_EXCEEDED
:
423 switch (sk
->sk_state
) {
424 struct request_sock
*req
, **prev
;
426 if (sock_owned_by_user(sk
))
429 req
= inet_csk_search_req(sk
, &prev
, th
->dest
,
430 iph
->daddr
, iph
->saddr
);
434 /* ICMPs are not backlogged, hence we cannot get
435 an established socket here.
439 if (seq
!= tcp_rsk(req
)->snt_isn
) {
440 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS
);
445 * Still in SYN_RECV, just remove it silently.
446 * There is no good way to pass the error to the newly
447 * created socket, and POSIX does not want network
448 * errors returned from accept().
450 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
454 case TCP_SYN_RECV
: /* Cannot happen.
455 It can f.e. if SYNs crossed.
457 if (!sock_owned_by_user(sk
)) {
460 sk
->sk_error_report(sk
);
464 sk
->sk_err_soft
= err
;
469 /* If we've already connected we will keep trying
470 * until we time out, or the user gives up.
472 * rfc1122 4.2.3.9 allows to consider as hard errors
473 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
474 * but it is obsoleted by pmtu discovery).
476 * Note, that in modern internet, where routing is unreliable
477 * and in each dark corner broken firewalls sit, sending random
478 * errors ordered by their masters even this two messages finally lose
479 * their original sense (even Linux sends invalid PORT_UNREACHs)
481 * Now we are in compliance with RFCs.
486 if (!sock_owned_by_user(sk
) && inet
->recverr
) {
488 sk
->sk_error_report(sk
);
489 } else { /* Only an error on timeout */
490 sk
->sk_err_soft
= err
;
498 /* This routine computes an IPv4 TCP checksum. */
499 void tcp_v4_send_check(struct sock
*sk
, int len
, struct sk_buff
*skb
)
501 struct inet_sock
*inet
= inet_sk(sk
);
502 struct tcphdr
*th
= skb
->h
.th
;
504 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
505 th
->check
= ~tcp_v4_check(th
, len
,
506 inet
->saddr
, inet
->daddr
, 0);
507 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
509 th
->check
= tcp_v4_check(th
, len
, inet
->saddr
, inet
->daddr
,
510 csum_partial((char *)th
,
516 int tcp_v4_gso_send_check(struct sk_buff
*skb
)
521 if (!pskb_may_pull(skb
, sizeof(*th
)))
528 th
->check
= ~tcp_v4_check(th
, skb
->len
, iph
->saddr
, iph
->daddr
, 0);
529 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
530 skb
->ip_summed
= CHECKSUM_PARTIAL
;
535 * This routine will send an RST to the other tcp.
537 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
539 * Answer: if a packet caused RST, it is not for a socket
540 * existing in our system, if it is matched to a socket,
541 * it is just duplicate segment or bug in other side's TCP.
542 * So that we build reply only basing on parameters
543 * arrived with segment.
544 * Exception: precedence violation. We do not implement it in any case.
547 static void tcp_v4_send_reset(struct sock
*sk
, struct sk_buff
*skb
)
549 struct tcphdr
*th
= skb
->h
.th
;
552 #ifdef CONFIG_TCP_MD5SIG
553 __be32 opt
[(TCPOLEN_MD5SIG_ALIGNED
>> 2)];
556 struct ip_reply_arg arg
;
557 #ifdef CONFIG_TCP_MD5SIG
558 struct tcp_md5sig_key
*key
;
561 /* Never send a reset in response to a reset. */
565 if (((struct rtable
*)skb
->dst
)->rt_type
!= RTN_LOCAL
)
568 /* Swap the send and the receive. */
569 memset(&rep
, 0, sizeof(rep
));
570 rep
.th
.dest
= th
->source
;
571 rep
.th
.source
= th
->dest
;
572 rep
.th
.doff
= sizeof(struct tcphdr
) / 4;
576 rep
.th
.seq
= th
->ack_seq
;
579 rep
.th
.ack_seq
= htonl(ntohl(th
->seq
) + th
->syn
+ th
->fin
+
580 skb
->len
- (th
->doff
<< 2));
583 memset(&arg
, 0, sizeof(arg
));
584 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
585 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
587 #ifdef CONFIG_TCP_MD5SIG
588 key
= sk
? tcp_v4_md5_do_lookup(sk
, skb
->nh
.iph
->daddr
) : NULL
;
590 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) |
592 (TCPOPT_MD5SIG
<< 8) |
594 /* Update length and the length the header thinks exists */
595 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
596 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
598 tcp_v4_do_calc_md5_hash((__u8
*)&rep
.opt
[1],
602 &rep
.th
, IPPROTO_TCP
,
606 arg
.csum
= csum_tcpudp_nofold(skb
->nh
.iph
->daddr
,
607 skb
->nh
.iph
->saddr
, /* XXX */
608 sizeof(struct tcphdr
), IPPROTO_TCP
, 0);
609 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
611 ip_send_reply(tcp_socket
->sk
, skb
, &arg
, arg
.iov
[0].iov_len
);
613 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS
);
614 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS
);
617 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
618 outside socket context is ugly, certainly. What can I do?
621 static void tcp_v4_send_ack(struct tcp_timewait_sock
*twsk
,
622 struct sk_buff
*skb
, u32 seq
, u32 ack
,
625 struct tcphdr
*th
= skb
->h
.th
;
628 __be32 opt
[(TCPOLEN_TSTAMP_ALIGNED
>> 2)
629 #ifdef CONFIG_TCP_MD5SIG
630 + (TCPOLEN_MD5SIG_ALIGNED
>> 2)
634 struct ip_reply_arg arg
;
635 #ifdef CONFIG_TCP_MD5SIG
636 struct tcp_md5sig_key
*key
;
637 struct tcp_md5sig_key tw_key
;
640 memset(&rep
.th
, 0, sizeof(struct tcphdr
));
641 memset(&arg
, 0, sizeof(arg
));
643 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
644 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
646 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
647 (TCPOPT_TIMESTAMP
<< 8) |
649 rep
.opt
[1] = htonl(tcp_time_stamp
);
650 rep
.opt
[2] = htonl(ts
);
651 arg
.iov
[0].iov_len
= TCPOLEN_TSTAMP_ALIGNED
;
654 /* Swap the send and the receive. */
655 rep
.th
.dest
= th
->source
;
656 rep
.th
.source
= th
->dest
;
657 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
658 rep
.th
.seq
= htonl(seq
);
659 rep
.th
.ack_seq
= htonl(ack
);
661 rep
.th
.window
= htons(win
);
663 #ifdef CONFIG_TCP_MD5SIG
665 * The SKB holds an imcoming packet, but may not have a valid ->sk
666 * pointer. This is especially the case when we're dealing with a
667 * TIME_WAIT ack, because the sk structure is long gone, and only
668 * the tcp_timewait_sock remains. So the md5 key is stashed in that
669 * structure, and we use it in preference. I believe that (twsk ||
670 * skb->sk) holds true, but we program defensively.
672 if (!twsk
&& skb
->sk
) {
673 key
= tcp_v4_md5_do_lookup(skb
->sk
, skb
->nh
.iph
->daddr
);
674 } else if (twsk
&& twsk
->tw_md5_keylen
) {
675 tw_key
.key
= twsk
->tw_md5_key
;
676 tw_key
.keylen
= twsk
->tw_md5_keylen
;
682 int offset
= (ts
) ? 3 : 0;
684 rep
.opt
[offset
++] = htonl((TCPOPT_NOP
<< 24) |
686 (TCPOPT_MD5SIG
<< 8) |
688 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
689 rep
.th
.doff
= arg
.iov
[0].iov_len
/4;
691 tcp_v4_do_calc_md5_hash((__u8
*)&rep
.opt
[offset
],
695 &rep
.th
, IPPROTO_TCP
,
699 arg
.csum
= csum_tcpudp_nofold(skb
->nh
.iph
->daddr
,
700 skb
->nh
.iph
->saddr
, /* XXX */
701 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
702 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
704 ip_send_reply(tcp_socket
->sk
, skb
, &arg
, arg
.iov
[0].iov_len
);
706 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS
);
709 static void tcp_v4_timewait_ack(struct sock
*sk
, struct sk_buff
*skb
)
711 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
712 struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
714 tcp_v4_send_ack(tcptw
, skb
, tcptw
->tw_snd_nxt
, tcptw
->tw_rcv_nxt
,
715 tcptw
->tw_rcv_wnd
>> tw
->tw_rcv_wscale
,
716 tcptw
->tw_ts_recent
);
721 static void tcp_v4_reqsk_send_ack(struct sk_buff
*skb
,
722 struct request_sock
*req
)
724 tcp_v4_send_ack(NULL
, skb
, tcp_rsk(req
)->snt_isn
+ 1,
725 tcp_rsk(req
)->rcv_isn
+ 1, req
->rcv_wnd
,
730 * Send a SYN-ACK after having received an ACK.
731 * This still operates on a request_sock only, not on a big
734 static int tcp_v4_send_synack(struct sock
*sk
, struct request_sock
*req
,
735 struct dst_entry
*dst
)
737 const struct inet_request_sock
*ireq
= inet_rsk(req
);
739 struct sk_buff
* skb
;
741 /* First, grab a route. */
742 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
745 skb
= tcp_make_synack(sk
, dst
, req
);
748 struct tcphdr
*th
= skb
->h
.th
;
750 th
->check
= tcp_v4_check(th
, skb
->len
,
753 csum_partial((char *)th
, skb
->len
,
756 err
= ip_build_and_send_pkt(skb
, sk
, ireq
->loc_addr
,
759 err
= net_xmit_eval(err
);
768 * IPv4 request_sock destructor.
770 static void tcp_v4_reqsk_destructor(struct request_sock
*req
)
772 kfree(inet_rsk(req
)->opt
);
775 #ifdef CONFIG_SYN_COOKIES
776 static void syn_flood_warning(struct sk_buff
*skb
)
778 static unsigned long warntime
;
780 if (time_after(jiffies
, (warntime
+ HZ
* 60))) {
783 "possible SYN flooding on port %d. Sending cookies.\n",
784 ntohs(skb
->h
.th
->dest
));
790 * Save and compile IPv4 options into the request_sock if needed.
792 static struct ip_options
*tcp_v4_save_options(struct sock
*sk
,
795 struct ip_options
*opt
= &(IPCB(skb
)->opt
);
796 struct ip_options
*dopt
= NULL
;
798 if (opt
&& opt
->optlen
) {
799 int opt_size
= optlength(opt
);
800 dopt
= kmalloc(opt_size
, GFP_ATOMIC
);
802 if (ip_options_echo(dopt
, skb
)) {
811 #ifdef CONFIG_TCP_MD5SIG
813 * RFC2385 MD5 checksumming requires a mapping of
814 * IP address->MD5 Key.
815 * We need to maintain these in the sk structure.
818 /* Find the Key structure for an address. */
819 static struct tcp_md5sig_key
*
820 tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
822 struct tcp_sock
*tp
= tcp_sk(sk
);
825 if (!tp
->md5sig_info
|| !tp
->md5sig_info
->entries4
)
827 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
828 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
)
829 return (struct tcp_md5sig_key
*)
830 &tp
->md5sig_info
->keys4
[i
];
835 struct tcp_md5sig_key
*tcp_v4_md5_lookup(struct sock
*sk
,
836 struct sock
*addr_sk
)
838 return tcp_v4_md5_do_lookup(sk
, inet_sk(addr_sk
)->daddr
);
841 EXPORT_SYMBOL(tcp_v4_md5_lookup
);
843 static struct tcp_md5sig_key
*tcp_v4_reqsk_md5_lookup(struct sock
*sk
,
844 struct request_sock
*req
)
846 return tcp_v4_md5_do_lookup(sk
, inet_rsk(req
)->rmt_addr
);
849 /* This can be called on a newly created socket, from other files */
850 int tcp_v4_md5_do_add(struct sock
*sk
, __be32 addr
,
851 u8
*newkey
, u8 newkeylen
)
853 /* Add Key to the list */
854 struct tcp4_md5sig_key
*key
;
855 struct tcp_sock
*tp
= tcp_sk(sk
);
856 struct tcp4_md5sig_key
*keys
;
858 key
= (struct tcp4_md5sig_key
*)tcp_v4_md5_do_lookup(sk
, addr
);
860 /* Pre-existing entry - just update that one. */
863 key
->keylen
= newkeylen
;
865 struct tcp_md5sig_info
*md5sig
;
867 if (!tp
->md5sig_info
) {
868 tp
->md5sig_info
= kzalloc(sizeof(*tp
->md5sig_info
),
870 if (!tp
->md5sig_info
) {
875 if (tcp_alloc_md5sig_pool() == NULL
) {
879 md5sig
= tp
->md5sig_info
;
881 if (md5sig
->alloced4
== md5sig
->entries4
) {
882 keys
= kmalloc((sizeof(*keys
) *
883 (md5sig
->entries4
+ 1)), GFP_ATOMIC
);
886 tcp_free_md5sig_pool();
890 if (md5sig
->entries4
)
891 memcpy(keys
, md5sig
->keys4
,
892 sizeof(*keys
) * md5sig
->entries4
);
894 /* Free old key list, and reference new one */
896 kfree(md5sig
->keys4
);
897 md5sig
->keys4
= keys
;
901 md5sig
->keys4
[md5sig
->entries4
- 1].addr
= addr
;
902 md5sig
->keys4
[md5sig
->entries4
- 1].key
= newkey
;
903 md5sig
->keys4
[md5sig
->entries4
- 1].keylen
= newkeylen
;
908 EXPORT_SYMBOL(tcp_v4_md5_do_add
);
910 static int tcp_v4_md5_add_func(struct sock
*sk
, struct sock
*addr_sk
,
911 u8
*newkey
, u8 newkeylen
)
913 return tcp_v4_md5_do_add(sk
, inet_sk(addr_sk
)->daddr
,
917 int tcp_v4_md5_do_del(struct sock
*sk
, __be32 addr
)
919 struct tcp_sock
*tp
= tcp_sk(sk
);
922 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
923 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
) {
925 kfree(tp
->md5sig_info
->keys4
[i
].key
);
926 tp
->md5sig_info
->entries4
--;
928 if (tp
->md5sig_info
->entries4
== 0) {
929 kfree(tp
->md5sig_info
->keys4
);
930 tp
->md5sig_info
->keys4
= NULL
;
931 } else if (tp
->md5sig_info
->entries4
!= i
) {
932 /* Need to do some manipulation */
933 memcpy(&tp
->md5sig_info
->keys4
[i
],
934 &tp
->md5sig_info
->keys4
[i
+1],
935 (tp
->md5sig_info
->entries4
- i
) *
936 sizeof(struct tcp4_md5sig_key
));
938 tcp_free_md5sig_pool();
945 EXPORT_SYMBOL(tcp_v4_md5_do_del
);
947 static void tcp_v4_clear_md5_list(struct sock
*sk
)
949 struct tcp_sock
*tp
= tcp_sk(sk
);
951 /* Free each key, then the set of key keys,
952 * the crypto element, and then decrement our
953 * hold on the last resort crypto.
955 if (tp
->md5sig_info
->entries4
) {
957 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++)
958 kfree(tp
->md5sig_info
->keys4
[i
].key
);
959 tp
->md5sig_info
->entries4
= 0;
960 tcp_free_md5sig_pool();
962 if (tp
->md5sig_info
->keys4
) {
963 kfree(tp
->md5sig_info
->keys4
);
964 tp
->md5sig_info
->keys4
= NULL
;
965 tp
->md5sig_info
->alloced4
= 0;
969 static int tcp_v4_parse_md5_keys(struct sock
*sk
, char __user
*optval
,
972 struct tcp_md5sig cmd
;
973 struct sockaddr_in
*sin
= (struct sockaddr_in
*)&cmd
.tcpm_addr
;
976 if (optlen
< sizeof(cmd
))
979 if (copy_from_user(&cmd
, optval
, sizeof(cmd
)))
982 if (sin
->sin_family
!= AF_INET
)
985 if (!cmd
.tcpm_key
|| !cmd
.tcpm_keylen
) {
986 if (!tcp_sk(sk
)->md5sig_info
)
988 return tcp_v4_md5_do_del(sk
, sin
->sin_addr
.s_addr
);
991 if (cmd
.tcpm_keylen
> TCP_MD5SIG_MAXKEYLEN
)
994 if (!tcp_sk(sk
)->md5sig_info
) {
995 struct tcp_sock
*tp
= tcp_sk(sk
);
996 struct tcp_md5sig_info
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1001 tp
->md5sig_info
= p
;
1005 newkey
= kmemdup(cmd
.tcpm_key
, cmd
.tcpm_keylen
, GFP_KERNEL
);
1008 return tcp_v4_md5_do_add(sk
, sin
->sin_addr
.s_addr
,
1009 newkey
, cmd
.tcpm_keylen
);
1012 static int tcp_v4_do_calc_md5_hash(char *md5_hash
, struct tcp_md5sig_key
*key
,
1013 __be32 saddr
, __be32 daddr
,
1014 struct tcphdr
*th
, int protocol
,
1017 struct scatterlist sg
[4];
1020 __sum16 old_checksum
;
1021 struct tcp_md5sig_pool
*hp
;
1022 struct tcp4_pseudohdr
*bp
;
1023 struct hash_desc
*desc
;
1025 unsigned int nbytes
= 0;
1028 * Okay, so RFC2385 is turned on for this connection,
1029 * so we need to generate the MD5 hash for the packet now.
1032 hp
= tcp_get_md5sig_pool();
1034 goto clear_hash_noput
;
1036 bp
= &hp
->md5_blk
.ip4
;
1037 desc
= &hp
->md5_desc
;
1040 * 1. the TCP pseudo-header (in the order: source IP address,
1041 * destination IP address, zero-padded protocol number, and
1047 bp
->protocol
= protocol
;
1048 bp
->len
= htons(tcplen
);
1049 sg_set_buf(&sg
[block
++], bp
, sizeof(*bp
));
1050 nbytes
+= sizeof(*bp
);
1052 /* 2. the TCP header, excluding options, and assuming a
1055 old_checksum
= th
->check
;
1057 sg_set_buf(&sg
[block
++], th
, sizeof(struct tcphdr
));
1058 nbytes
+= sizeof(struct tcphdr
);
1060 /* 3. the TCP segment data (if any) */
1061 data_len
= tcplen
- (th
->doff
<< 2);
1063 unsigned char *data
= (unsigned char *)th
+ (th
->doff
<< 2);
1064 sg_set_buf(&sg
[block
++], data
, data_len
);
1068 /* 4. an independently-specified key or password, known to both
1069 * TCPs and presumably connection-specific
1071 sg_set_buf(&sg
[block
++], key
->key
, key
->keylen
);
1072 nbytes
+= key
->keylen
;
1074 /* Now store the Hash into the packet */
1075 err
= crypto_hash_init(desc
);
1078 err
= crypto_hash_update(desc
, sg
, nbytes
);
1081 err
= crypto_hash_final(desc
, md5_hash
);
1085 /* Reset header, and free up the crypto */
1086 tcp_put_md5sig_pool();
1087 th
->check
= old_checksum
;
1092 tcp_put_md5sig_pool();
1094 memset(md5_hash
, 0, 16);
1098 int tcp_v4_calc_md5_hash(char *md5_hash
, struct tcp_md5sig_key
*key
,
1100 struct dst_entry
*dst
,
1101 struct request_sock
*req
,
1102 struct tcphdr
*th
, int protocol
,
1105 __be32 saddr
, daddr
;
1108 saddr
= inet_sk(sk
)->saddr
;
1109 daddr
= inet_sk(sk
)->daddr
;
1111 struct rtable
*rt
= (struct rtable
*)dst
;
1116 return tcp_v4_do_calc_md5_hash(md5_hash
, key
,
1118 th
, protocol
, tcplen
);
1121 EXPORT_SYMBOL(tcp_v4_calc_md5_hash
);
1123 static int tcp_v4_inbound_md5_hash(struct sock
*sk
, struct sk_buff
*skb
)
1126 * This gets called for each TCP segment that arrives
1127 * so we want to be efficient.
1128 * We have 3 drop cases:
1129 * o No MD5 hash and one expected.
1130 * o MD5 hash and we're not expecting one.
1131 * o MD5 hash and its wrong.
1133 __u8
*hash_location
= NULL
;
1134 struct tcp_md5sig_key
*hash_expected
;
1135 struct iphdr
*iph
= skb
->nh
.iph
;
1136 struct tcphdr
*th
= skb
->h
.th
;
1137 int length
= (th
->doff
<< 2) - sizeof(struct tcphdr
);
1140 unsigned char newhash
[16];
1142 hash_expected
= tcp_v4_md5_do_lookup(sk
, iph
->saddr
);
1145 * If the TCP option length is less than the TCP_MD5SIG
1146 * option length, then we can shortcut
1148 if (length
< TCPOLEN_MD5SIG
) {
1155 /* Okay, we can't shortcut - we have to grub through the options */
1156 ptr
= (unsigned char *)(th
+ 1);
1157 while (length
> 0) {
1158 int opcode
= *ptr
++;
1171 if (opsize
> length
)
1174 if (opcode
== TCPOPT_MD5SIG
) {
1175 hash_location
= ptr
;
1183 /* We've parsed the options - do we have a hash? */
1184 if (!hash_expected
&& !hash_location
)
1187 if (hash_expected
&& !hash_location
) {
1188 LIMIT_NETDEBUG(KERN_INFO
"MD5 Hash NOT expected but found "
1189 "(" NIPQUAD_FMT
", %d)->(" NIPQUAD_FMT
", %d)\n",
1190 NIPQUAD(iph
->saddr
), ntohs(th
->source
),
1191 NIPQUAD(iph
->daddr
), ntohs(th
->dest
));
1195 if (!hash_expected
&& hash_location
) {
1196 LIMIT_NETDEBUG(KERN_INFO
"MD5 Hash NOT expected but found "
1197 "(" NIPQUAD_FMT
", %d)->(" NIPQUAD_FMT
", %d)\n",
1198 NIPQUAD(iph
->saddr
), ntohs(th
->source
),
1199 NIPQUAD(iph
->daddr
), ntohs(th
->dest
));
1203 /* Okay, so this is hash_expected and hash_location -
1204 * so we need to calculate the checksum.
1206 genhash
= tcp_v4_do_calc_md5_hash(newhash
,
1208 iph
->saddr
, iph
->daddr
,
1209 th
, sk
->sk_protocol
,
1212 if (genhash
|| memcmp(hash_location
, newhash
, 16) != 0) {
1213 if (net_ratelimit()) {
1214 printk(KERN_INFO
"MD5 Hash failed for "
1215 "(" NIPQUAD_FMT
", %d)->(" NIPQUAD_FMT
", %d)%s\n",
1216 NIPQUAD(iph
->saddr
), ntohs(th
->source
),
1217 NIPQUAD(iph
->daddr
), ntohs(th
->dest
),
1218 genhash
? " tcp_v4_calc_md5_hash failed" : "");
1227 struct request_sock_ops tcp_request_sock_ops __read_mostly
= {
1229 .obj_size
= sizeof(struct tcp_request_sock
),
1230 .rtx_syn_ack
= tcp_v4_send_synack
,
1231 .send_ack
= tcp_v4_reqsk_send_ack
,
1232 .destructor
= tcp_v4_reqsk_destructor
,
1233 .send_reset
= tcp_v4_send_reset
,
1236 #ifdef CONFIG_TCP_MD5SIG
1237 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops
= {
1238 .md5_lookup
= tcp_v4_reqsk_md5_lookup
,
1242 static struct timewait_sock_ops tcp_timewait_sock_ops
= {
1243 .twsk_obj_size
= sizeof(struct tcp_timewait_sock
),
1244 .twsk_unique
= tcp_twsk_unique
,
1245 .twsk_destructor
= tcp_twsk_destructor
,
1248 int tcp_v4_conn_request(struct sock
*sk
, struct sk_buff
*skb
)
1250 struct inet_request_sock
*ireq
;
1251 struct tcp_options_received tmp_opt
;
1252 struct request_sock
*req
;
1253 __be32 saddr
= skb
->nh
.iph
->saddr
;
1254 __be32 daddr
= skb
->nh
.iph
->daddr
;
1255 __u32 isn
= TCP_SKB_CB(skb
)->when
;
1256 struct dst_entry
*dst
= NULL
;
1257 #ifdef CONFIG_SYN_COOKIES
1258 int want_cookie
= 0;
1260 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1263 /* Never answer to SYNs send to broadcast or multicast */
1264 if (((struct rtable
*)skb
->dst
)->rt_flags
&
1265 (RTCF_BROADCAST
| RTCF_MULTICAST
))
1268 /* TW buckets are converted to open requests without
1269 * limitations, they conserve resources and peer is
1270 * evidently real one.
1272 if (inet_csk_reqsk_queue_is_full(sk
) && !isn
) {
1273 #ifdef CONFIG_SYN_COOKIES
1274 if (sysctl_tcp_syncookies
) {
1281 /* Accept backlog is full. If we have already queued enough
1282 * of warm entries in syn queue, drop request. It is better than
1283 * clogging syn queue with openreqs with exponentially increasing
1286 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1)
1289 req
= reqsk_alloc(&tcp_request_sock_ops
);
1293 #ifdef CONFIG_TCP_MD5SIG
1294 tcp_rsk(req
)->af_specific
= &tcp_request_sock_ipv4_ops
;
1297 tcp_clear_options(&tmp_opt
);
1298 tmp_opt
.mss_clamp
= 536;
1299 tmp_opt
.user_mss
= tcp_sk(sk
)->rx_opt
.user_mss
;
1301 tcp_parse_options(skb
, &tmp_opt
, 0);
1304 tcp_clear_options(&tmp_opt
);
1305 tmp_opt
.saw_tstamp
= 0;
1308 if (tmp_opt
.saw_tstamp
&& !tmp_opt
.rcv_tsval
) {
1309 /* Some OSes (unknown ones, but I see them on web server, which
1310 * contains information interesting only for windows'
1311 * users) do not send their stamp in SYN. It is easy case.
1312 * We simply do not advertise TS support.
1314 tmp_opt
.saw_tstamp
= 0;
1315 tmp_opt
.tstamp_ok
= 0;
1317 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
1319 tcp_openreq_init(req
, &tmp_opt
, skb
);
1321 if (security_inet_conn_request(sk
, skb
, req
))
1324 ireq
= inet_rsk(req
);
1325 ireq
->loc_addr
= daddr
;
1326 ireq
->rmt_addr
= saddr
;
1327 ireq
->opt
= tcp_v4_save_options(sk
, skb
);
1329 TCP_ECN_create_request(req
, skb
->h
.th
);
1332 #ifdef CONFIG_SYN_COOKIES
1333 syn_flood_warning(skb
);
1335 isn
= cookie_v4_init_sequence(sk
, skb
, &req
->mss
);
1337 struct inet_peer
*peer
= NULL
;
1339 /* VJ's idea. We save last timestamp seen
1340 * from the destination in peer table, when entering
1341 * state TIME-WAIT, and check against it before
1342 * accepting new connection request.
1344 * If "isn" is not zero, this request hit alive
1345 * timewait bucket, so that all the necessary checks
1346 * are made in the function processing timewait state.
1348 if (tmp_opt
.saw_tstamp
&&
1349 tcp_death_row
.sysctl_tw_recycle
&&
1350 (dst
= inet_csk_route_req(sk
, req
)) != NULL
&&
1351 (peer
= rt_get_peer((struct rtable
*)dst
)) != NULL
&&
1352 peer
->v4daddr
== saddr
) {
1353 if (xtime
.tv_sec
< peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
&&
1354 (s32
)(peer
->tcp_ts
- req
->ts_recent
) >
1356 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED
);
1361 /* Kill the following clause, if you dislike this way. */
1362 else if (!sysctl_tcp_syncookies
&&
1363 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
1364 (sysctl_max_syn_backlog
>> 2)) &&
1365 (!peer
|| !peer
->tcp_ts_stamp
) &&
1366 (!dst
|| !dst_metric(dst
, RTAX_RTT
))) {
1367 /* Without syncookies last quarter of
1368 * backlog is filled with destinations,
1369 * proven to be alive.
1370 * It means that we continue to communicate
1371 * to destinations, already remembered
1372 * to the moment of synflood.
1374 LIMIT_NETDEBUG(KERN_DEBUG
"TCP: drop open "
1375 "request from %u.%u.%u.%u/%u\n",
1377 ntohs(skb
->h
.th
->source
));
1382 isn
= tcp_v4_init_sequence(skb
);
1384 tcp_rsk(req
)->snt_isn
= isn
;
1386 if (tcp_v4_send_synack(sk
, req
, dst
))
1392 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
1404 * The three way handshake has completed - we got a valid synack -
1405 * now create the new socket.
1407 struct sock
*tcp_v4_syn_recv_sock(struct sock
*sk
, struct sk_buff
*skb
,
1408 struct request_sock
*req
,
1409 struct dst_entry
*dst
)
1411 struct inet_request_sock
*ireq
;
1412 struct inet_sock
*newinet
;
1413 struct tcp_sock
*newtp
;
1415 #ifdef CONFIG_TCP_MD5SIG
1416 struct tcp_md5sig_key
*key
;
1419 if (sk_acceptq_is_full(sk
))
1422 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
1425 newsk
= tcp_create_openreq_child(sk
, req
, skb
);
1429 newsk
->sk_gso_type
= SKB_GSO_TCPV4
;
1430 sk_setup_caps(newsk
, dst
);
1432 newtp
= tcp_sk(newsk
);
1433 newinet
= inet_sk(newsk
);
1434 ireq
= inet_rsk(req
);
1435 newinet
->daddr
= ireq
->rmt_addr
;
1436 newinet
->rcv_saddr
= ireq
->loc_addr
;
1437 newinet
->saddr
= ireq
->loc_addr
;
1438 newinet
->opt
= ireq
->opt
;
1440 newinet
->mc_index
= inet_iif(skb
);
1441 newinet
->mc_ttl
= skb
->nh
.iph
->ttl
;
1442 inet_csk(newsk
)->icsk_ext_hdr_len
= 0;
1444 inet_csk(newsk
)->icsk_ext_hdr_len
= newinet
->opt
->optlen
;
1445 newinet
->id
= newtp
->write_seq
^ jiffies
;
1447 tcp_mtup_init(newsk
);
1448 tcp_sync_mss(newsk
, dst_mtu(dst
));
1449 newtp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
1450 tcp_initialize_rcv_mss(newsk
);
1452 #ifdef CONFIG_TCP_MD5SIG
1453 /* Copy over the MD5 key from the original socket */
1454 if ((key
= tcp_v4_md5_do_lookup(sk
, newinet
->daddr
)) != NULL
) {
1456 * We're using one, so create a matching key
1457 * on the newsk structure. If we fail to get
1458 * memory, then we end up not copying the key
1461 char *newkey
= kmemdup(key
->key
, key
->keylen
, GFP_ATOMIC
);
1463 tcp_v4_md5_do_add(newsk
, inet_sk(sk
)->daddr
,
1464 newkey
, key
->keylen
);
1468 __inet_hash(&tcp_hashinfo
, newsk
, 0);
1469 __inet_inherit_port(&tcp_hashinfo
, sk
, newsk
);
1474 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS
);
1476 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS
);
1481 static struct sock
*tcp_v4_hnd_req(struct sock
*sk
, struct sk_buff
*skb
)
1483 struct tcphdr
*th
= skb
->h
.th
;
1484 struct iphdr
*iph
= skb
->nh
.iph
;
1486 struct request_sock
**prev
;
1487 /* Find possible connection requests. */
1488 struct request_sock
*req
= inet_csk_search_req(sk
, &prev
, th
->source
,
1489 iph
->saddr
, iph
->daddr
);
1491 return tcp_check_req(sk
, skb
, req
, prev
);
1493 nsk
= inet_lookup_established(&tcp_hashinfo
, skb
->nh
.iph
->saddr
,
1494 th
->source
, skb
->nh
.iph
->daddr
,
1495 th
->dest
, inet_iif(skb
));
1498 if (nsk
->sk_state
!= TCP_TIME_WAIT
) {
1502 inet_twsk_put(inet_twsk(nsk
));
1506 #ifdef CONFIG_SYN_COOKIES
1507 if (!th
->rst
&& !th
->syn
&& th
->ack
)
1508 sk
= cookie_v4_check(sk
, skb
, &(IPCB(skb
)->opt
));
1513 static __sum16
tcp_v4_checksum_init(struct sk_buff
*skb
)
1515 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1516 if (!tcp_v4_check(skb
->h
.th
, skb
->len
, skb
->nh
.iph
->saddr
,
1517 skb
->nh
.iph
->daddr
, skb
->csum
)) {
1518 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1523 skb
->csum
= csum_tcpudp_nofold(skb
->nh
.iph
->saddr
, skb
->nh
.iph
->daddr
,
1524 skb
->len
, IPPROTO_TCP
, 0);
1526 if (skb
->len
<= 76) {
1527 return __skb_checksum_complete(skb
);
1533 /* The socket must have it's spinlock held when we get
1536 * We have a potential double-lock case here, so even when
1537 * doing backlog processing we use the BH locking scheme.
1538 * This is because we cannot sleep with the original spinlock
1541 int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
)
1544 #ifdef CONFIG_TCP_MD5SIG
1546 * We really want to reject the packet as early as possible
1548 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1549 * o There is an MD5 option and we're not expecting one
1551 if (tcp_v4_inbound_md5_hash(sk
, skb
))
1555 if (sk
->sk_state
== TCP_ESTABLISHED
) { /* Fast path */
1556 TCP_CHECK_TIMER(sk
);
1557 if (tcp_rcv_established(sk
, skb
, skb
->h
.th
, skb
->len
)) {
1561 TCP_CHECK_TIMER(sk
);
1565 if (skb
->len
< (skb
->h
.th
->doff
<< 2) || tcp_checksum_complete(skb
))
1568 if (sk
->sk_state
== TCP_LISTEN
) {
1569 struct sock
*nsk
= tcp_v4_hnd_req(sk
, skb
);
1574 if (tcp_child_process(sk
, nsk
, skb
)) {
1582 TCP_CHECK_TIMER(sk
);
1583 if (tcp_rcv_state_process(sk
, skb
, skb
->h
.th
, skb
->len
)) {
1587 TCP_CHECK_TIMER(sk
);
1591 tcp_v4_send_reset(rsk
, skb
);
1594 /* Be careful here. If this function gets more complicated and
1595 * gcc suffers from register pressure on the x86, sk (in %ebx)
1596 * might be destroyed here. This current version compiles correctly,
1597 * but you have been warned.
1602 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1610 int tcp_v4_rcv(struct sk_buff
*skb
)
1616 if (skb
->pkt_type
!= PACKET_HOST
)
1619 /* Count it even if it's bad */
1620 TCP_INC_STATS_BH(TCP_MIB_INSEGS
);
1622 if (!pskb_may_pull(skb
, sizeof(struct tcphdr
)))
1627 if (th
->doff
< sizeof(struct tcphdr
) / 4)
1629 if (!pskb_may_pull(skb
, th
->doff
* 4))
1632 /* An explanation is required here, I think.
1633 * Packet length and doff are validated by header prediction,
1634 * provided case of th->doff==0 is eliminated.
1635 * So, we defer the checks. */
1636 if ((skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
1637 tcp_v4_checksum_init(skb
)))
1641 TCP_SKB_CB(skb
)->seq
= ntohl(th
->seq
);
1642 TCP_SKB_CB(skb
)->end_seq
= (TCP_SKB_CB(skb
)->seq
+ th
->syn
+ th
->fin
+
1643 skb
->len
- th
->doff
* 4);
1644 TCP_SKB_CB(skb
)->ack_seq
= ntohl(th
->ack_seq
);
1645 TCP_SKB_CB(skb
)->when
= 0;
1646 TCP_SKB_CB(skb
)->flags
= skb
->nh
.iph
->tos
;
1647 TCP_SKB_CB(skb
)->sacked
= 0;
1649 sk
= __inet_lookup(&tcp_hashinfo
, skb
->nh
.iph
->saddr
, th
->source
,
1650 skb
->nh
.iph
->daddr
, th
->dest
,
1657 if (sk
->sk_state
== TCP_TIME_WAIT
)
1660 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1661 goto discard_and_relse
;
1664 if (sk_filter(sk
, skb
))
1665 goto discard_and_relse
;
1669 bh_lock_sock_nested(sk
);
1671 if (!sock_owned_by_user(sk
)) {
1672 #ifdef CONFIG_NET_DMA
1673 struct tcp_sock
*tp
= tcp_sk(sk
);
1674 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1675 tp
->ucopy
.dma_chan
= get_softnet_dma();
1676 if (tp
->ucopy
.dma_chan
)
1677 ret
= tcp_v4_do_rcv(sk
, skb
);
1681 if (!tcp_prequeue(sk
, skb
))
1682 ret
= tcp_v4_do_rcv(sk
, skb
);
1685 sk_add_backlog(sk
, skb
);
1693 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1696 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1698 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1700 tcp_v4_send_reset(NULL
, skb
);
1704 /* Discard frame. */
1713 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
)) {
1714 inet_twsk_put(inet_twsk(sk
));
1718 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1719 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1720 inet_twsk_put(inet_twsk(sk
));
1723 switch (tcp_timewait_state_process(inet_twsk(sk
), skb
, th
)) {
1725 struct sock
*sk2
= inet_lookup_listener(&tcp_hashinfo
,
1730 inet_twsk_deschedule(inet_twsk(sk
), &tcp_death_row
);
1731 inet_twsk_put(inet_twsk(sk
));
1735 /* Fall through to ACK */
1738 tcp_v4_timewait_ack(sk
, skb
);
1742 case TCP_TW_SUCCESS
:;
1747 /* VJ's idea. Save last timestamp seen from this destination
1748 * and hold it at least for normal timewait interval to use for duplicate
1749 * segment detection in subsequent connections, before they enter synchronized
1753 int tcp_v4_remember_stamp(struct sock
*sk
)
1755 struct inet_sock
*inet
= inet_sk(sk
);
1756 struct tcp_sock
*tp
= tcp_sk(sk
);
1757 struct rtable
*rt
= (struct rtable
*)__sk_dst_get(sk
);
1758 struct inet_peer
*peer
= NULL
;
1761 if (!rt
|| rt
->rt_dst
!= inet
->daddr
) {
1762 peer
= inet_getpeer(inet
->daddr
, 1);
1766 rt_bind_peer(rt
, 1);
1771 if ((s32
)(peer
->tcp_ts
- tp
->rx_opt
.ts_recent
) <= 0 ||
1772 (peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
< xtime
.tv_sec
&&
1773 peer
->tcp_ts_stamp
<= tp
->rx_opt
.ts_recent_stamp
)) {
1774 peer
->tcp_ts_stamp
= tp
->rx_opt
.ts_recent_stamp
;
1775 peer
->tcp_ts
= tp
->rx_opt
.ts_recent
;
1785 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock
*tw
)
1787 struct inet_peer
*peer
= inet_getpeer(tw
->tw_daddr
, 1);
1790 const struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
1792 if ((s32
)(peer
->tcp_ts
- tcptw
->tw_ts_recent
) <= 0 ||
1793 (peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
< xtime
.tv_sec
&&
1794 peer
->tcp_ts_stamp
<= tcptw
->tw_ts_recent_stamp
)) {
1795 peer
->tcp_ts_stamp
= tcptw
->tw_ts_recent_stamp
;
1796 peer
->tcp_ts
= tcptw
->tw_ts_recent
;
1805 struct inet_connection_sock_af_ops ipv4_specific
= {
1806 .queue_xmit
= ip_queue_xmit
,
1807 .send_check
= tcp_v4_send_check
,
1808 .rebuild_header
= inet_sk_rebuild_header
,
1809 .conn_request
= tcp_v4_conn_request
,
1810 .syn_recv_sock
= tcp_v4_syn_recv_sock
,
1811 .remember_stamp
= tcp_v4_remember_stamp
,
1812 .net_header_len
= sizeof(struct iphdr
),
1813 .setsockopt
= ip_setsockopt
,
1814 .getsockopt
= ip_getsockopt
,
1815 .addr2sockaddr
= inet_csk_addr2sockaddr
,
1816 .sockaddr_len
= sizeof(struct sockaddr_in
),
1817 #ifdef CONFIG_COMPAT
1818 .compat_setsockopt
= compat_ip_setsockopt
,
1819 .compat_getsockopt
= compat_ip_getsockopt
,
1823 #ifdef CONFIG_TCP_MD5SIG
1824 static struct tcp_sock_af_ops tcp_sock_ipv4_specific
= {
1825 .md5_lookup
= tcp_v4_md5_lookup
,
1826 .calc_md5_hash
= tcp_v4_calc_md5_hash
,
1827 .md5_add
= tcp_v4_md5_add_func
,
1828 .md5_parse
= tcp_v4_parse_md5_keys
,
1832 /* NOTE: A lot of things set to zero explicitly by call to
1833 * sk_alloc() so need not be done here.
1835 static int tcp_v4_init_sock(struct sock
*sk
)
1837 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1838 struct tcp_sock
*tp
= tcp_sk(sk
);
1840 skb_queue_head_init(&tp
->out_of_order_queue
);
1841 tcp_init_xmit_timers(sk
);
1842 tcp_prequeue_init(tp
);
1844 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
1845 tp
->mdev
= TCP_TIMEOUT_INIT
;
1847 /* So many TCP implementations out there (incorrectly) count the
1848 * initial SYN frame in their delayed-ACK and congestion control
1849 * algorithms that we must have the following bandaid to talk
1850 * efficiently to them. -DaveM
1854 /* See draft-stevens-tcpca-spec-01 for discussion of the
1855 * initialization of these values.
1857 tp
->snd_ssthresh
= 0x7fffffff; /* Infinity */
1858 tp
->snd_cwnd_clamp
= ~0;
1859 tp
->mss_cache
= 536;
1861 tp
->reordering
= sysctl_tcp_reordering
;
1862 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
1864 sk
->sk_state
= TCP_CLOSE
;
1866 sk
->sk_write_space
= sk_stream_write_space
;
1867 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
1869 icsk
->icsk_af_ops
= &ipv4_specific
;
1870 icsk
->icsk_sync_mss
= tcp_sync_mss
;
1871 #ifdef CONFIG_TCP_MD5SIG
1872 tp
->af_specific
= &tcp_sock_ipv4_specific
;
1875 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
1876 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
1878 atomic_inc(&tcp_sockets_allocated
);
1883 int tcp_v4_destroy_sock(struct sock
*sk
)
1885 struct tcp_sock
*tp
= tcp_sk(sk
);
1887 tcp_clear_xmit_timers(sk
);
1889 tcp_cleanup_congestion_control(sk
);
1891 /* Cleanup up the write buffer. */
1892 sk_stream_writequeue_purge(sk
);
1894 /* Cleans up our, hopefully empty, out_of_order_queue. */
1895 __skb_queue_purge(&tp
->out_of_order_queue
);
1897 #ifdef CONFIG_TCP_MD5SIG
1898 /* Clean up the MD5 key list, if any */
1899 if (tp
->md5sig_info
) {
1900 tcp_v4_clear_md5_list(sk
);
1901 kfree(tp
->md5sig_info
);
1902 tp
->md5sig_info
= NULL
;
1906 #ifdef CONFIG_NET_DMA
1907 /* Cleans up our sk_async_wait_queue */
1908 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1911 /* Clean prequeue, it must be empty really */
1912 __skb_queue_purge(&tp
->ucopy
.prequeue
);
1914 /* Clean up a referenced TCP bind bucket. */
1915 if (inet_csk(sk
)->icsk_bind_hash
)
1916 inet_put_port(&tcp_hashinfo
, sk
);
1919 * If sendmsg cached page exists, toss it.
1921 if (sk
->sk_sndmsg_page
) {
1922 __free_page(sk
->sk_sndmsg_page
);
1923 sk
->sk_sndmsg_page
= NULL
;
1926 atomic_dec(&tcp_sockets_allocated
);
1931 EXPORT_SYMBOL(tcp_v4_destroy_sock
);
1933 #ifdef CONFIG_PROC_FS
1934 /* Proc filesystem TCP sock list dumping. */
1936 static inline struct inet_timewait_sock
*tw_head(struct hlist_head
*head
)
1938 return hlist_empty(head
) ? NULL
:
1939 list_entry(head
->first
, struct inet_timewait_sock
, tw_node
);
1942 static inline struct inet_timewait_sock
*tw_next(struct inet_timewait_sock
*tw
)
1944 return tw
->tw_node
.next
?
1945 hlist_entry(tw
->tw_node
.next
, typeof(*tw
), tw_node
) : NULL
;
1948 static void *listening_get_next(struct seq_file
*seq
, void *cur
)
1950 struct inet_connection_sock
*icsk
;
1951 struct hlist_node
*node
;
1952 struct sock
*sk
= cur
;
1953 struct tcp_iter_state
* st
= seq
->private;
1957 sk
= sk_head(&tcp_hashinfo
.listening_hash
[0]);
1963 if (st
->state
== TCP_SEQ_STATE_OPENREQ
) {
1964 struct request_sock
*req
= cur
;
1966 icsk
= inet_csk(st
->syn_wait_sk
);
1970 if (req
->rsk_ops
->family
== st
->family
) {
1976 if (++st
->sbucket
>= icsk
->icsk_accept_queue
.listen_opt
->nr_table_entries
)
1979 req
= icsk
->icsk_accept_queue
.listen_opt
->syn_table
[st
->sbucket
];
1981 sk
= sk_next(st
->syn_wait_sk
);
1982 st
->state
= TCP_SEQ_STATE_LISTENING
;
1983 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1985 icsk
= inet_csk(sk
);
1986 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1987 if (reqsk_queue_len(&icsk
->icsk_accept_queue
))
1989 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1993 sk_for_each_from(sk
, node
) {
1994 if (sk
->sk_family
== st
->family
) {
1998 icsk
= inet_csk(sk
);
1999 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2000 if (reqsk_queue_len(&icsk
->icsk_accept_queue
)) {
2002 st
->uid
= sock_i_uid(sk
);
2003 st
->syn_wait_sk
= sk
;
2004 st
->state
= TCP_SEQ_STATE_OPENREQ
;
2008 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2010 if (++st
->bucket
< INET_LHTABLE_SIZE
) {
2011 sk
= sk_head(&tcp_hashinfo
.listening_hash
[st
->bucket
]);
2019 static void *listening_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2021 void *rc
= listening_get_next(seq
, NULL
);
2023 while (rc
&& *pos
) {
2024 rc
= listening_get_next(seq
, rc
);
2030 static void *established_get_first(struct seq_file
*seq
)
2032 struct tcp_iter_state
* st
= seq
->private;
2035 for (st
->bucket
= 0; st
->bucket
< tcp_hashinfo
.ehash_size
; ++st
->bucket
) {
2037 struct hlist_node
*node
;
2038 struct inet_timewait_sock
*tw
;
2040 /* We can reschedule _before_ having picked the target: */
2041 cond_resched_softirq();
2043 read_lock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2044 sk_for_each(sk
, node
, &tcp_hashinfo
.ehash
[st
->bucket
].chain
) {
2045 if (sk
->sk_family
!= st
->family
) {
2051 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2052 inet_twsk_for_each(tw
, node
,
2053 &tcp_hashinfo
.ehash
[st
->bucket
+ tcp_hashinfo
.ehash_size
].chain
) {
2054 if (tw
->tw_family
!= st
->family
) {
2060 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2061 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2067 static void *established_get_next(struct seq_file
*seq
, void *cur
)
2069 struct sock
*sk
= cur
;
2070 struct inet_timewait_sock
*tw
;
2071 struct hlist_node
*node
;
2072 struct tcp_iter_state
* st
= seq
->private;
2076 if (st
->state
== TCP_SEQ_STATE_TIME_WAIT
) {
2080 while (tw
&& tw
->tw_family
!= st
->family
) {
2087 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2088 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2090 /* We can reschedule between buckets: */
2091 cond_resched_softirq();
2093 if (++st
->bucket
< tcp_hashinfo
.ehash_size
) {
2094 read_lock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2095 sk
= sk_head(&tcp_hashinfo
.ehash
[st
->bucket
].chain
);
2103 sk_for_each_from(sk
, node
) {
2104 if (sk
->sk_family
== st
->family
)
2108 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2109 tw
= tw_head(&tcp_hashinfo
.ehash
[st
->bucket
+ tcp_hashinfo
.ehash_size
].chain
);
2117 static void *established_get_idx(struct seq_file
*seq
, loff_t pos
)
2119 void *rc
= established_get_first(seq
);
2122 rc
= established_get_next(seq
, rc
);
2128 static void *tcp_get_idx(struct seq_file
*seq
, loff_t pos
)
2131 struct tcp_iter_state
* st
= seq
->private;
2133 inet_listen_lock(&tcp_hashinfo
);
2134 st
->state
= TCP_SEQ_STATE_LISTENING
;
2135 rc
= listening_get_idx(seq
, &pos
);
2138 inet_listen_unlock(&tcp_hashinfo
);
2140 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2141 rc
= established_get_idx(seq
, pos
);
2147 static void *tcp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2149 struct tcp_iter_state
* st
= seq
->private;
2150 st
->state
= TCP_SEQ_STATE_LISTENING
;
2152 return *pos
? tcp_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
2155 static void *tcp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2158 struct tcp_iter_state
* st
;
2160 if (v
== SEQ_START_TOKEN
) {
2161 rc
= tcp_get_idx(seq
, 0);
2166 switch (st
->state
) {
2167 case TCP_SEQ_STATE_OPENREQ
:
2168 case TCP_SEQ_STATE_LISTENING
:
2169 rc
= listening_get_next(seq
, v
);
2171 inet_listen_unlock(&tcp_hashinfo
);
2173 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2174 rc
= established_get_first(seq
);
2177 case TCP_SEQ_STATE_ESTABLISHED
:
2178 case TCP_SEQ_STATE_TIME_WAIT
:
2179 rc
= established_get_next(seq
, v
);
2187 static void tcp_seq_stop(struct seq_file
*seq
, void *v
)
2189 struct tcp_iter_state
* st
= seq
->private;
2191 switch (st
->state
) {
2192 case TCP_SEQ_STATE_OPENREQ
:
2194 struct inet_connection_sock
*icsk
= inet_csk(st
->syn_wait_sk
);
2195 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2197 case TCP_SEQ_STATE_LISTENING
:
2198 if (v
!= SEQ_START_TOKEN
)
2199 inet_listen_unlock(&tcp_hashinfo
);
2201 case TCP_SEQ_STATE_TIME_WAIT
:
2202 case TCP_SEQ_STATE_ESTABLISHED
:
2204 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
2210 static int tcp_seq_open(struct inode
*inode
, struct file
*file
)
2212 struct tcp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
2213 struct seq_file
*seq
;
2214 struct tcp_iter_state
*s
;
2217 if (unlikely(afinfo
== NULL
))
2220 s
= kzalloc(sizeof(*s
), GFP_KERNEL
);
2223 s
->family
= afinfo
->family
;
2224 s
->seq_ops
.start
= tcp_seq_start
;
2225 s
->seq_ops
.next
= tcp_seq_next
;
2226 s
->seq_ops
.show
= afinfo
->seq_show
;
2227 s
->seq_ops
.stop
= tcp_seq_stop
;
2229 rc
= seq_open(file
, &s
->seq_ops
);
2232 seq
= file
->private_data
;
2241 int tcp_proc_register(struct tcp_seq_afinfo
*afinfo
)
2244 struct proc_dir_entry
*p
;
2248 afinfo
->seq_fops
->owner
= afinfo
->owner
;
2249 afinfo
->seq_fops
->open
= tcp_seq_open
;
2250 afinfo
->seq_fops
->read
= seq_read
;
2251 afinfo
->seq_fops
->llseek
= seq_lseek
;
2252 afinfo
->seq_fops
->release
= seq_release_private
;
2254 p
= proc_net_fops_create(afinfo
->name
, S_IRUGO
, afinfo
->seq_fops
);
2262 void tcp_proc_unregister(struct tcp_seq_afinfo
*afinfo
)
2266 proc_net_remove(afinfo
->name
);
2267 memset(afinfo
->seq_fops
, 0, sizeof(*afinfo
->seq_fops
));
2270 static void get_openreq4(struct sock
*sk
, struct request_sock
*req
,
2271 char *tmpbuf
, int i
, int uid
)
2273 const struct inet_request_sock
*ireq
= inet_rsk(req
);
2274 int ttd
= req
->expires
- jiffies
;
2276 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X"
2277 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
2280 ntohs(inet_sk(sk
)->sport
),
2282 ntohs(ireq
->rmt_port
),
2284 0, 0, /* could print option size, but that is af dependent. */
2285 1, /* timers active (only the expire timer) */
2286 jiffies_to_clock_t(ttd
),
2289 0, /* non standard timer */
2290 0, /* open_requests have no inode */
2291 atomic_read(&sk
->sk_refcnt
),
2295 static void get_tcp4_sock(struct sock
*sp
, char *tmpbuf
, int i
)
2298 unsigned long timer_expires
;
2299 struct tcp_sock
*tp
= tcp_sk(sp
);
2300 const struct inet_connection_sock
*icsk
= inet_csk(sp
);
2301 struct inet_sock
*inet
= inet_sk(sp
);
2302 __be32 dest
= inet
->daddr
;
2303 __be32 src
= inet
->rcv_saddr
;
2304 __u16 destp
= ntohs(inet
->dport
);
2305 __u16 srcp
= ntohs(inet
->sport
);
2307 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
) {
2309 timer_expires
= icsk
->icsk_timeout
;
2310 } else if (icsk
->icsk_pending
== ICSK_TIME_PROBE0
) {
2312 timer_expires
= icsk
->icsk_timeout
;
2313 } else if (timer_pending(&sp
->sk_timer
)) {
2315 timer_expires
= sp
->sk_timer
.expires
;
2318 timer_expires
= jiffies
;
2321 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2322 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
2323 i
, src
, srcp
, dest
, destp
, sp
->sk_state
,
2324 tp
->write_seq
- tp
->snd_una
,
2325 sp
->sk_state
== TCP_LISTEN
? sp
->sk_ack_backlog
:
2326 (tp
->rcv_nxt
- tp
->copied_seq
),
2328 jiffies_to_clock_t(timer_expires
- jiffies
),
2329 icsk
->icsk_retransmits
,
2331 icsk
->icsk_probes_out
,
2333 atomic_read(&sp
->sk_refcnt
), sp
,
2336 (icsk
->icsk_ack
.quick
<< 1) | icsk
->icsk_ack
.pingpong
,
2338 tp
->snd_ssthresh
>= 0xFFFF ? -1 : tp
->snd_ssthresh
);
2341 static void get_timewait4_sock(struct inet_timewait_sock
*tw
,
2342 char *tmpbuf
, int i
)
2346 int ttd
= tw
->tw_ttd
- jiffies
;
2351 dest
= tw
->tw_daddr
;
2352 src
= tw
->tw_rcv_saddr
;
2353 destp
= ntohs(tw
->tw_dport
);
2354 srcp
= ntohs(tw
->tw_sport
);
2356 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X"
2357 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
2358 i
, src
, srcp
, dest
, destp
, tw
->tw_substate
, 0, 0,
2359 3, jiffies_to_clock_t(ttd
), 0, 0, 0, 0,
2360 atomic_read(&tw
->tw_refcnt
), tw
);
2365 static int tcp4_seq_show(struct seq_file
*seq
, void *v
)
2367 struct tcp_iter_state
* st
;
2368 char tmpbuf
[TMPSZ
+ 1];
2370 if (v
== SEQ_START_TOKEN
) {
2371 seq_printf(seq
, "%-*s\n", TMPSZ
- 1,
2372 " sl local_address rem_address st tx_queue "
2373 "rx_queue tr tm->when retrnsmt uid timeout "
2379 switch (st
->state
) {
2380 case TCP_SEQ_STATE_LISTENING
:
2381 case TCP_SEQ_STATE_ESTABLISHED
:
2382 get_tcp4_sock(v
, tmpbuf
, st
->num
);
2384 case TCP_SEQ_STATE_OPENREQ
:
2385 get_openreq4(st
->syn_wait_sk
, v
, tmpbuf
, st
->num
, st
->uid
);
2387 case TCP_SEQ_STATE_TIME_WAIT
:
2388 get_timewait4_sock(v
, tmpbuf
, st
->num
);
2391 seq_printf(seq
, "%-*s\n", TMPSZ
- 1, tmpbuf
);
2396 static struct file_operations tcp4_seq_fops
;
2397 static struct tcp_seq_afinfo tcp4_seq_afinfo
= {
2398 .owner
= THIS_MODULE
,
2401 .seq_show
= tcp4_seq_show
,
2402 .seq_fops
= &tcp4_seq_fops
,
2405 int __init
tcp4_proc_init(void)
2407 return tcp_proc_register(&tcp4_seq_afinfo
);
2410 void tcp4_proc_exit(void)
2412 tcp_proc_unregister(&tcp4_seq_afinfo
);
2414 #endif /* CONFIG_PROC_FS */
2416 struct proto tcp_prot
= {
2418 .owner
= THIS_MODULE
,
2420 .connect
= tcp_v4_connect
,
2421 .disconnect
= tcp_disconnect
,
2422 .accept
= inet_csk_accept
,
2424 .init
= tcp_v4_init_sock
,
2425 .destroy
= tcp_v4_destroy_sock
,
2426 .shutdown
= tcp_shutdown
,
2427 .setsockopt
= tcp_setsockopt
,
2428 .getsockopt
= tcp_getsockopt
,
2429 .sendmsg
= tcp_sendmsg
,
2430 .recvmsg
= tcp_recvmsg
,
2431 .backlog_rcv
= tcp_v4_do_rcv
,
2432 .hash
= tcp_v4_hash
,
2433 .unhash
= tcp_unhash
,
2434 .get_port
= tcp_v4_get_port
,
2435 .enter_memory_pressure
= tcp_enter_memory_pressure
,
2436 .sockets_allocated
= &tcp_sockets_allocated
,
2437 .orphan_count
= &tcp_orphan_count
,
2438 .memory_allocated
= &tcp_memory_allocated
,
2439 .memory_pressure
= &tcp_memory_pressure
,
2440 .sysctl_mem
= sysctl_tcp_mem
,
2441 .sysctl_wmem
= sysctl_tcp_wmem
,
2442 .sysctl_rmem
= sysctl_tcp_rmem
,
2443 .max_header
= MAX_TCP_HEADER
,
2444 .obj_size
= sizeof(struct tcp_sock
),
2445 .twsk_prot
= &tcp_timewait_sock_ops
,
2446 .rsk_prot
= &tcp_request_sock_ops
,
2447 #ifdef CONFIG_COMPAT
2448 .compat_setsockopt
= compat_tcp_setsockopt
,
2449 .compat_getsockopt
= compat_tcp_getsockopt
,
2453 void __init
tcp_v4_init(struct net_proto_family
*ops
)
2455 if (inet_csk_ctl_sock_create(&tcp_socket
, PF_INET
, SOCK_RAW
,
2457 panic("Failed to create the TCP control socket.\n");
2460 EXPORT_SYMBOL(ipv4_specific
);
2461 EXPORT_SYMBOL(tcp_hashinfo
);
2462 EXPORT_SYMBOL(tcp_prot
);
2463 EXPORT_SYMBOL(tcp_unhash
);
2464 EXPORT_SYMBOL(tcp_v4_conn_request
);
2465 EXPORT_SYMBOL(tcp_v4_connect
);
2466 EXPORT_SYMBOL(tcp_v4_do_rcv
);
2467 EXPORT_SYMBOL(tcp_v4_remember_stamp
);
2468 EXPORT_SYMBOL(tcp_v4_send_check
);
2469 EXPORT_SYMBOL(tcp_v4_syn_recv_sock
);
2471 #ifdef CONFIG_PROC_FS
2472 EXPORT_SYMBOL(tcp_proc_register
);
2473 EXPORT_SYMBOL(tcp_proc_unregister
);
2475 EXPORT_SYMBOL(sysctl_local_port_range
);
2476 EXPORT_SYMBOL(sysctl_tcp_low_latency
);