UHCI: Eliminate asynchronous skeleton Queue Headers
[linux-2.6/openmoko-kernel.git] / drivers / usb / host / uhci-q.c
blobf4ebdb3e488f59ad23d17ae7fc2a301b2aae0e9c
1 /*
2 * Universal Host Controller Interface driver for USB.
4 * Maintainer: Alan Stern <stern@rowland.harvard.edu>
6 * (C) Copyright 1999 Linus Torvalds
7 * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com
8 * (C) Copyright 1999 Randy Dunlap
9 * (C) Copyright 1999 Georg Acher, acher@in.tum.de
10 * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de
11 * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch
12 * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at
13 * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
14 * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
15 * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
16 * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu
21 * Technically, updating td->status here is a race, but it's not really a
22 * problem. The worst that can happen is that we set the IOC bit again
23 * generating a spurious interrupt. We could fix this by creating another
24 * QH and leaving the IOC bit always set, but then we would have to play
25 * games with the FSBR code to make sure we get the correct order in all
26 * the cases. I don't think it's worth the effort
28 static void uhci_set_next_interrupt(struct uhci_hcd *uhci)
30 if (uhci->is_stopped)
31 mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies);
32 uhci->term_td->status |= cpu_to_le32(TD_CTRL_IOC);
35 static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci)
37 uhci->term_td->status &= ~cpu_to_le32(TD_CTRL_IOC);
42 * Full-Speed Bandwidth Reclamation (FSBR).
43 * We turn on FSBR whenever a queue that wants it is advancing,
44 * and leave it on for a short time thereafter.
46 static void uhci_fsbr_on(struct uhci_hcd *uhci)
48 struct uhci_qh *fsbr_qh, *lqh, *tqh;
50 uhci->fsbr_is_on = 1;
51 lqh = list_entry(uhci->skel_async_qh->node.prev,
52 struct uhci_qh, node);
54 /* Find the first FSBR QH. Linear search through the list is
55 * acceptable because normally FSBR gets turned on as soon as
56 * one QH needs it. */
57 fsbr_qh = NULL;
58 list_for_each_entry_reverse(tqh, &uhci->skel_async_qh->node, node) {
59 if (tqh->skel < SKEL_FSBR)
60 break;
61 fsbr_qh = tqh;
64 /* No FSBR QH means we must insert the terminating skeleton QH */
65 if (!fsbr_qh) {
66 uhci->skel_term_qh->link = LINK_TO_QH(uhci->skel_term_qh);
67 wmb();
68 lqh->link = uhci->skel_term_qh->link;
70 /* Otherwise loop the last QH to the first FSBR QH */
71 } else
72 lqh->link = LINK_TO_QH(fsbr_qh);
75 static void uhci_fsbr_off(struct uhci_hcd *uhci)
77 struct uhci_qh *lqh;
79 uhci->fsbr_is_on = 0;
80 lqh = list_entry(uhci->skel_async_qh->node.prev,
81 struct uhci_qh, node);
83 /* End the async list normally and unlink the terminating QH */
84 lqh->link = uhci->skel_term_qh->link = UHCI_PTR_TERM;
87 static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb)
89 struct urb_priv *urbp = urb->hcpriv;
91 if (!(urb->transfer_flags & URB_NO_FSBR))
92 urbp->fsbr = 1;
95 static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp)
97 if (urbp->fsbr) {
98 uhci->fsbr_is_wanted = 1;
99 if (!uhci->fsbr_is_on)
100 uhci_fsbr_on(uhci);
101 else if (uhci->fsbr_expiring) {
102 uhci->fsbr_expiring = 0;
103 del_timer(&uhci->fsbr_timer);
108 static void uhci_fsbr_timeout(unsigned long _uhci)
110 struct uhci_hcd *uhci = (struct uhci_hcd *) _uhci;
111 unsigned long flags;
113 spin_lock_irqsave(&uhci->lock, flags);
114 if (uhci->fsbr_expiring) {
115 uhci->fsbr_expiring = 0;
116 uhci_fsbr_off(uhci);
118 spin_unlock_irqrestore(&uhci->lock, flags);
122 static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci)
124 dma_addr_t dma_handle;
125 struct uhci_td *td;
127 td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle);
128 if (!td)
129 return NULL;
131 td->dma_handle = dma_handle;
132 td->frame = -1;
134 INIT_LIST_HEAD(&td->list);
135 INIT_LIST_HEAD(&td->fl_list);
137 return td;
140 static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td)
142 if (!list_empty(&td->list))
143 dev_warn(uhci_dev(uhci), "td %p still in list!\n", td);
144 if (!list_empty(&td->fl_list))
145 dev_warn(uhci_dev(uhci), "td %p still in fl_list!\n", td);
147 dma_pool_free(uhci->td_pool, td, td->dma_handle);
150 static inline void uhci_fill_td(struct uhci_td *td, u32 status,
151 u32 token, u32 buffer)
153 td->status = cpu_to_le32(status);
154 td->token = cpu_to_le32(token);
155 td->buffer = cpu_to_le32(buffer);
158 static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp)
160 list_add_tail(&td->list, &urbp->td_list);
163 static void uhci_remove_td_from_urbp(struct uhci_td *td)
165 list_del_init(&td->list);
169 * We insert Isochronous URBs directly into the frame list at the beginning
171 static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci,
172 struct uhci_td *td, unsigned framenum)
174 framenum &= (UHCI_NUMFRAMES - 1);
176 td->frame = framenum;
178 /* Is there a TD already mapped there? */
179 if (uhci->frame_cpu[framenum]) {
180 struct uhci_td *ftd, *ltd;
182 ftd = uhci->frame_cpu[framenum];
183 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
185 list_add_tail(&td->fl_list, &ftd->fl_list);
187 td->link = ltd->link;
188 wmb();
189 ltd->link = LINK_TO_TD(td);
190 } else {
191 td->link = uhci->frame[framenum];
192 wmb();
193 uhci->frame[framenum] = LINK_TO_TD(td);
194 uhci->frame_cpu[framenum] = td;
198 static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci,
199 struct uhci_td *td)
201 /* If it's not inserted, don't remove it */
202 if (td->frame == -1) {
203 WARN_ON(!list_empty(&td->fl_list));
204 return;
207 if (uhci->frame_cpu[td->frame] == td) {
208 if (list_empty(&td->fl_list)) {
209 uhci->frame[td->frame] = td->link;
210 uhci->frame_cpu[td->frame] = NULL;
211 } else {
212 struct uhci_td *ntd;
214 ntd = list_entry(td->fl_list.next, struct uhci_td, fl_list);
215 uhci->frame[td->frame] = LINK_TO_TD(ntd);
216 uhci->frame_cpu[td->frame] = ntd;
218 } else {
219 struct uhci_td *ptd;
221 ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list);
222 ptd->link = td->link;
225 list_del_init(&td->fl_list);
226 td->frame = -1;
229 static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci,
230 unsigned int framenum)
232 struct uhci_td *ftd, *ltd;
234 framenum &= (UHCI_NUMFRAMES - 1);
236 ftd = uhci->frame_cpu[framenum];
237 if (ftd) {
238 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
239 uhci->frame[framenum] = ltd->link;
240 uhci->frame_cpu[framenum] = NULL;
242 while (!list_empty(&ftd->fl_list))
243 list_del_init(ftd->fl_list.prev);
248 * Remove all the TDs for an Isochronous URB from the frame list
250 static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb)
252 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
253 struct uhci_td *td;
255 list_for_each_entry(td, &urbp->td_list, list)
256 uhci_remove_td_from_frame_list(uhci, td);
259 static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci,
260 struct usb_device *udev, struct usb_host_endpoint *hep)
262 dma_addr_t dma_handle;
263 struct uhci_qh *qh;
265 qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle);
266 if (!qh)
267 return NULL;
269 memset(qh, 0, sizeof(*qh));
270 qh->dma_handle = dma_handle;
272 qh->element = UHCI_PTR_TERM;
273 qh->link = UHCI_PTR_TERM;
275 INIT_LIST_HEAD(&qh->queue);
276 INIT_LIST_HEAD(&qh->node);
278 if (udev) { /* Normal QH */
279 qh->type = hep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
280 if (qh->type != USB_ENDPOINT_XFER_ISOC) {
281 qh->dummy_td = uhci_alloc_td(uhci);
282 if (!qh->dummy_td) {
283 dma_pool_free(uhci->qh_pool, qh, dma_handle);
284 return NULL;
287 qh->state = QH_STATE_IDLE;
288 qh->hep = hep;
289 qh->udev = udev;
290 hep->hcpriv = qh;
292 if (qh->type == USB_ENDPOINT_XFER_INT ||
293 qh->type == USB_ENDPOINT_XFER_ISOC)
294 qh->load = usb_calc_bus_time(udev->speed,
295 usb_endpoint_dir_in(&hep->desc),
296 qh->type == USB_ENDPOINT_XFER_ISOC,
297 le16_to_cpu(hep->desc.wMaxPacketSize))
298 / 1000 + 1;
300 } else { /* Skeleton QH */
301 qh->state = QH_STATE_ACTIVE;
302 qh->type = -1;
304 return qh;
307 static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
309 WARN_ON(qh->state != QH_STATE_IDLE && qh->udev);
310 if (!list_empty(&qh->queue))
311 dev_warn(uhci_dev(uhci), "qh %p list not empty!\n", qh);
313 list_del(&qh->node);
314 if (qh->udev) {
315 qh->hep->hcpriv = NULL;
316 if (qh->dummy_td)
317 uhci_free_td(uhci, qh->dummy_td);
319 dma_pool_free(uhci->qh_pool, qh, qh->dma_handle);
323 * When a queue is stopped and a dequeued URB is given back, adjust
324 * the previous TD link (if the URB isn't first on the queue) or
325 * save its toggle value (if it is first and is currently executing).
327 * Returns 0 if the URB should not yet be given back, 1 otherwise.
329 static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh,
330 struct urb *urb)
332 struct urb_priv *urbp = urb->hcpriv;
333 struct uhci_td *td;
334 int ret = 1;
336 /* Isochronous pipes don't use toggles and their TD link pointers
337 * get adjusted during uhci_urb_dequeue(). But since their queues
338 * cannot truly be stopped, we have to watch out for dequeues
339 * occurring after the nominal unlink frame. */
340 if (qh->type == USB_ENDPOINT_XFER_ISOC) {
341 ret = (uhci->frame_number + uhci->is_stopped !=
342 qh->unlink_frame);
343 goto done;
346 /* If the URB isn't first on its queue, adjust the link pointer
347 * of the last TD in the previous URB. The toggle doesn't need
348 * to be saved since this URB can't be executing yet. */
349 if (qh->queue.next != &urbp->node) {
350 struct urb_priv *purbp;
351 struct uhci_td *ptd;
353 purbp = list_entry(urbp->node.prev, struct urb_priv, node);
354 WARN_ON(list_empty(&purbp->td_list));
355 ptd = list_entry(purbp->td_list.prev, struct uhci_td,
356 list);
357 td = list_entry(urbp->td_list.prev, struct uhci_td,
358 list);
359 ptd->link = td->link;
360 goto done;
363 /* If the QH element pointer is UHCI_PTR_TERM then then currently
364 * executing URB has already been unlinked, so this one isn't it. */
365 if (qh_element(qh) == UHCI_PTR_TERM)
366 goto done;
367 qh->element = UHCI_PTR_TERM;
369 /* Control pipes don't have to worry about toggles */
370 if (qh->type == USB_ENDPOINT_XFER_CONTROL)
371 goto done;
373 /* Save the next toggle value */
374 WARN_ON(list_empty(&urbp->td_list));
375 td = list_entry(urbp->td_list.next, struct uhci_td, list);
376 qh->needs_fixup = 1;
377 qh->initial_toggle = uhci_toggle(td_token(td));
379 done:
380 return ret;
384 * Fix up the data toggles for URBs in a queue, when one of them
385 * terminates early (short transfer, error, or dequeued).
387 static void uhci_fixup_toggles(struct uhci_qh *qh, int skip_first)
389 struct urb_priv *urbp = NULL;
390 struct uhci_td *td;
391 unsigned int toggle = qh->initial_toggle;
392 unsigned int pipe;
394 /* Fixups for a short transfer start with the second URB in the
395 * queue (the short URB is the first). */
396 if (skip_first)
397 urbp = list_entry(qh->queue.next, struct urb_priv, node);
399 /* When starting with the first URB, if the QH element pointer is
400 * still valid then we know the URB's toggles are okay. */
401 else if (qh_element(qh) != UHCI_PTR_TERM)
402 toggle = 2;
404 /* Fix up the toggle for the URBs in the queue. Normally this
405 * loop won't run more than once: When an error or short transfer
406 * occurs, the queue usually gets emptied. */
407 urbp = list_prepare_entry(urbp, &qh->queue, node);
408 list_for_each_entry_continue(urbp, &qh->queue, node) {
410 /* If the first TD has the right toggle value, we don't
411 * need to change any toggles in this URB */
412 td = list_entry(urbp->td_list.next, struct uhci_td, list);
413 if (toggle > 1 || uhci_toggle(td_token(td)) == toggle) {
414 td = list_entry(urbp->td_list.prev, struct uhci_td,
415 list);
416 toggle = uhci_toggle(td_token(td)) ^ 1;
418 /* Otherwise all the toggles in the URB have to be switched */
419 } else {
420 list_for_each_entry(td, &urbp->td_list, list) {
421 td->token ^= __constant_cpu_to_le32(
422 TD_TOKEN_TOGGLE);
423 toggle ^= 1;
428 wmb();
429 pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe;
430 usb_settoggle(qh->udev, usb_pipeendpoint(pipe),
431 usb_pipeout(pipe), toggle);
432 qh->needs_fixup = 0;
436 * Link an Isochronous QH into its skeleton's list
438 static inline void link_iso(struct uhci_hcd *uhci, struct uhci_qh *qh)
440 list_add_tail(&qh->node, &uhci->skel_iso_qh->node);
442 /* Isochronous QHs aren't linked by the hardware */
446 * Link a high-period interrupt QH into the schedule at the end of its
447 * skeleton's list
449 static void link_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh)
451 struct uhci_qh *pqh;
453 list_add_tail(&qh->node, &uhci->skelqh[qh->skel]->node);
455 pqh = list_entry(qh->node.prev, struct uhci_qh, node);
456 qh->link = pqh->link;
457 wmb();
458 pqh->link = LINK_TO_QH(qh);
462 * Link a period-1 interrupt or async QH into the schedule at the
463 * correct spot in the async skeleton's list, and update the FSBR link
465 static void link_async(struct uhci_hcd *uhci, struct uhci_qh *qh)
467 struct uhci_qh *pqh, *lqh;
468 __le32 link_to_new_qh;
469 __le32 *extra_link = &link_to_new_qh;
471 /* Find the predecessor QH for our new one and insert it in the list.
472 * The list of QHs is expected to be short, so linear search won't
473 * take too long. */
474 list_for_each_entry_reverse(pqh, &uhci->skel_async_qh->node, node) {
475 if (pqh->skel <= qh->skel)
476 break;
478 list_add(&qh->node, &pqh->node);
479 qh->link = pqh->link;
481 link_to_new_qh = LINK_TO_QH(qh);
483 /* If this is now the first FSBR QH, take special action */
484 if (uhci->fsbr_is_on && pqh->skel < SKEL_FSBR &&
485 qh->skel >= SKEL_FSBR) {
486 lqh = list_entry(uhci->skel_async_qh->node.prev,
487 struct uhci_qh, node);
489 /* If the new QH is also the last one, we must unlink
490 * the terminating skeleton QH and make the new QH point
491 * back to itself. */
492 if (qh == lqh) {
493 qh->link = link_to_new_qh;
494 extra_link = &uhci->skel_term_qh->link;
496 /* Otherwise the last QH must point to the new QH */
497 } else
498 extra_link = &lqh->link;
501 /* Link it into the schedule */
502 wmb();
503 *extra_link = pqh->link = link_to_new_qh;
507 * Put a QH on the schedule in both hardware and software
509 static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
511 WARN_ON(list_empty(&qh->queue));
513 /* Set the element pointer if it isn't set already.
514 * This isn't needed for Isochronous queues, but it doesn't hurt. */
515 if (qh_element(qh) == UHCI_PTR_TERM) {
516 struct urb_priv *urbp = list_entry(qh->queue.next,
517 struct urb_priv, node);
518 struct uhci_td *td = list_entry(urbp->td_list.next,
519 struct uhci_td, list);
521 qh->element = LINK_TO_TD(td);
524 /* Treat the queue as if it has just advanced */
525 qh->wait_expired = 0;
526 qh->advance_jiffies = jiffies;
528 if (qh->state == QH_STATE_ACTIVE)
529 return;
530 qh->state = QH_STATE_ACTIVE;
532 /* Move the QH from its old list to the correct spot in the appropriate
533 * skeleton's list */
534 if (qh == uhci->next_qh)
535 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
536 node);
537 list_del(&qh->node);
539 if (qh->skel == SKEL_ISO)
540 link_iso(uhci, qh);
541 else if (qh->skel < SKEL_ASYNC)
542 link_interrupt(uhci, qh);
543 else
544 link_async(uhci, qh);
548 * Unlink a high-period interrupt QH from the schedule
550 static void unlink_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh)
552 struct uhci_qh *pqh;
554 pqh = list_entry(qh->node.prev, struct uhci_qh, node);
555 pqh->link = qh->link;
556 mb();
560 * Unlink a period-1 interrupt or async QH from the schedule
562 static void unlink_async(struct uhci_hcd *uhci, struct uhci_qh *qh)
564 struct uhci_qh *pqh, *lqh;
565 __le32 link_to_next_qh = qh->link;
567 pqh = list_entry(qh->node.prev, struct uhci_qh, node);
569 /* If this is the first FSBQ QH, take special action */
570 if (uhci->fsbr_is_on && pqh->skel < SKEL_FSBR &&
571 qh->skel >= SKEL_FSBR) {
572 lqh = list_entry(uhci->skel_async_qh->node.prev,
573 struct uhci_qh, node);
575 /* If this QH is also the last one, we must link in
576 * the terminating skeleton QH. */
577 if (qh == lqh) {
578 link_to_next_qh = LINK_TO_QH(uhci->skel_term_qh);
579 uhci->skel_term_qh->link = link_to_next_qh;
580 wmb();
581 qh->link = link_to_next_qh;
583 /* Otherwise the last QH must point to the new first FSBR QH */
584 } else
585 lqh->link = link_to_next_qh;
588 pqh->link = link_to_next_qh;
589 mb();
593 * Take a QH off the hardware schedule
595 static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
597 if (qh->state == QH_STATE_UNLINKING)
598 return;
599 WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev);
600 qh->state = QH_STATE_UNLINKING;
602 /* Unlink the QH from the schedule and record when we did it */
603 if (qh->skel == SKEL_ISO)
605 else if (qh->skel < SKEL_ASYNC)
606 unlink_interrupt(uhci, qh);
607 else
608 unlink_async(uhci, qh);
610 uhci_get_current_frame_number(uhci);
611 qh->unlink_frame = uhci->frame_number;
613 /* Force an interrupt so we know when the QH is fully unlinked */
614 if (list_empty(&uhci->skel_unlink_qh->node))
615 uhci_set_next_interrupt(uhci);
617 /* Move the QH from its old list to the end of the unlinking list */
618 if (qh == uhci->next_qh)
619 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
620 node);
621 list_move_tail(&qh->node, &uhci->skel_unlink_qh->node);
625 * When we and the controller are through with a QH, it becomes IDLE.
626 * This happens when a QH has been off the schedule (on the unlinking
627 * list) for more than one frame, or when an error occurs while adding
628 * the first URB onto a new QH.
630 static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh)
632 WARN_ON(qh->state == QH_STATE_ACTIVE);
634 if (qh == uhci->next_qh)
635 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
636 node);
637 list_move(&qh->node, &uhci->idle_qh_list);
638 qh->state = QH_STATE_IDLE;
640 /* Now that the QH is idle, its post_td isn't being used */
641 if (qh->post_td) {
642 uhci_free_td(uhci, qh->post_td);
643 qh->post_td = NULL;
646 /* If anyone is waiting for a QH to become idle, wake them up */
647 if (uhci->num_waiting)
648 wake_up_all(&uhci->waitqh);
652 * Find the highest existing bandwidth load for a given phase and period.
654 static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period)
656 int highest_load = uhci->load[phase];
658 for (phase += period; phase < MAX_PHASE; phase += period)
659 highest_load = max_t(int, highest_load, uhci->load[phase]);
660 return highest_load;
664 * Set qh->phase to the optimal phase for a periodic transfer and
665 * check whether the bandwidth requirement is acceptable.
667 static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
669 int minimax_load;
671 /* Find the optimal phase (unless it is already set) and get
672 * its load value. */
673 if (qh->phase >= 0)
674 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period);
675 else {
676 int phase, load;
677 int max_phase = min_t(int, MAX_PHASE, qh->period);
679 qh->phase = 0;
680 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period);
681 for (phase = 1; phase < max_phase; ++phase) {
682 load = uhci_highest_load(uhci, phase, qh->period);
683 if (load < minimax_load) {
684 minimax_load = load;
685 qh->phase = phase;
690 /* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */
691 if (minimax_load + qh->load > 900) {
692 dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: "
693 "period %d, phase %d, %d + %d us\n",
694 qh->period, qh->phase, minimax_load, qh->load);
695 return -ENOSPC;
697 return 0;
701 * Reserve a periodic QH's bandwidth in the schedule
703 static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
705 int i;
706 int load = qh->load;
707 char *p = "??";
709 for (i = qh->phase; i < MAX_PHASE; i += qh->period) {
710 uhci->load[i] += load;
711 uhci->total_load += load;
713 uhci_to_hcd(uhci)->self.bandwidth_allocated =
714 uhci->total_load / MAX_PHASE;
715 switch (qh->type) {
716 case USB_ENDPOINT_XFER_INT:
717 ++uhci_to_hcd(uhci)->self.bandwidth_int_reqs;
718 p = "INT";
719 break;
720 case USB_ENDPOINT_XFER_ISOC:
721 ++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs;
722 p = "ISO";
723 break;
725 qh->bandwidth_reserved = 1;
726 dev_dbg(uhci_dev(uhci),
727 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n",
728 "reserve", qh->udev->devnum,
729 qh->hep->desc.bEndpointAddress, p,
730 qh->period, qh->phase, load);
734 * Release a periodic QH's bandwidth reservation
736 static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
738 int i;
739 int load = qh->load;
740 char *p = "??";
742 for (i = qh->phase; i < MAX_PHASE; i += qh->period) {
743 uhci->load[i] -= load;
744 uhci->total_load -= load;
746 uhci_to_hcd(uhci)->self.bandwidth_allocated =
747 uhci->total_load / MAX_PHASE;
748 switch (qh->type) {
749 case USB_ENDPOINT_XFER_INT:
750 --uhci_to_hcd(uhci)->self.bandwidth_int_reqs;
751 p = "INT";
752 break;
753 case USB_ENDPOINT_XFER_ISOC:
754 --uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs;
755 p = "ISO";
756 break;
758 qh->bandwidth_reserved = 0;
759 dev_dbg(uhci_dev(uhci),
760 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n",
761 "release", qh->udev->devnum,
762 qh->hep->desc.bEndpointAddress, p,
763 qh->period, qh->phase, load);
766 static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci,
767 struct urb *urb)
769 struct urb_priv *urbp;
771 urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC);
772 if (!urbp)
773 return NULL;
775 urbp->urb = urb;
776 urb->hcpriv = urbp;
778 INIT_LIST_HEAD(&urbp->node);
779 INIT_LIST_HEAD(&urbp->td_list);
781 return urbp;
784 static void uhci_free_urb_priv(struct uhci_hcd *uhci,
785 struct urb_priv *urbp)
787 struct uhci_td *td, *tmp;
789 if (!list_empty(&urbp->node))
790 dev_warn(uhci_dev(uhci), "urb %p still on QH's list!\n",
791 urbp->urb);
793 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
794 uhci_remove_td_from_urbp(td);
795 uhci_free_td(uhci, td);
798 urbp->urb->hcpriv = NULL;
799 kmem_cache_free(uhci_up_cachep, urbp);
803 * Map status to standard result codes
805 * <status> is (td_status(td) & 0xF60000), a.k.a.
806 * uhci_status_bits(td_status(td)).
807 * Note: <status> does not include the TD_CTRL_NAK bit.
808 * <dir_out> is True for output TDs and False for input TDs.
810 static int uhci_map_status(int status, int dir_out)
812 if (!status)
813 return 0;
814 if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */
815 return -EPROTO;
816 if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */
817 if (dir_out)
818 return -EPROTO;
819 else
820 return -EILSEQ;
822 if (status & TD_CTRL_BABBLE) /* Babble */
823 return -EOVERFLOW;
824 if (status & TD_CTRL_DBUFERR) /* Buffer error */
825 return -ENOSR;
826 if (status & TD_CTRL_STALLED) /* Stalled */
827 return -EPIPE;
828 return 0;
832 * Control transfers
834 static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb,
835 struct uhci_qh *qh)
837 struct uhci_td *td;
838 unsigned long destination, status;
839 int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize);
840 int len = urb->transfer_buffer_length;
841 dma_addr_t data = urb->transfer_dma;
842 __le32 *plink;
843 struct urb_priv *urbp = urb->hcpriv;
844 int skel;
846 /* The "pipe" thing contains the destination in bits 8--18 */
847 destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP;
849 /* 3 errors, dummy TD remains inactive */
850 status = uhci_maxerr(3);
851 if (urb->dev->speed == USB_SPEED_LOW)
852 status |= TD_CTRL_LS;
855 * Build the TD for the control request setup packet
857 td = qh->dummy_td;
858 uhci_add_td_to_urbp(td, urbp);
859 uhci_fill_td(td, status, destination | uhci_explen(8),
860 urb->setup_dma);
861 plink = &td->link;
862 status |= TD_CTRL_ACTIVE;
865 * If direction is "send", change the packet ID from SETUP (0x2D)
866 * to OUT (0xE1). Else change it from SETUP to IN (0x69) and
867 * set Short Packet Detect (SPD) for all data packets.
869 if (usb_pipeout(urb->pipe))
870 destination ^= (USB_PID_SETUP ^ USB_PID_OUT);
871 else {
872 destination ^= (USB_PID_SETUP ^ USB_PID_IN);
873 status |= TD_CTRL_SPD;
877 * Build the DATA TDs
879 while (len > 0) {
880 int pktsze = min(len, maxsze);
882 td = uhci_alloc_td(uhci);
883 if (!td)
884 goto nomem;
885 *plink = LINK_TO_TD(td);
887 /* Alternate Data0/1 (start with Data1) */
888 destination ^= TD_TOKEN_TOGGLE;
890 uhci_add_td_to_urbp(td, urbp);
891 uhci_fill_td(td, status, destination | uhci_explen(pktsze),
892 data);
893 plink = &td->link;
895 data += pktsze;
896 len -= pktsze;
900 * Build the final TD for control status
902 td = uhci_alloc_td(uhci);
903 if (!td)
904 goto nomem;
905 *plink = LINK_TO_TD(td);
908 * It's IN if the pipe is an output pipe or we're not expecting
909 * data back.
911 destination &= ~TD_TOKEN_PID_MASK;
912 if (usb_pipeout(urb->pipe) || !urb->transfer_buffer_length)
913 destination |= USB_PID_IN;
914 else
915 destination |= USB_PID_OUT;
917 destination |= TD_TOKEN_TOGGLE; /* End in Data1 */
919 status &= ~TD_CTRL_SPD;
921 uhci_add_td_to_urbp(td, urbp);
922 uhci_fill_td(td, status | TD_CTRL_IOC,
923 destination | uhci_explen(0), 0);
924 plink = &td->link;
927 * Build the new dummy TD and activate the old one
929 td = uhci_alloc_td(uhci);
930 if (!td)
931 goto nomem;
932 *plink = LINK_TO_TD(td);
934 uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0);
935 wmb();
936 qh->dummy_td->status |= __constant_cpu_to_le32(TD_CTRL_ACTIVE);
937 qh->dummy_td = td;
939 /* Low-speed transfers get a different queue, and won't hog the bus.
940 * Also, some devices enumerate better without FSBR; the easiest way
941 * to do that is to put URBs on the low-speed queue while the device
942 * isn't in the CONFIGURED state. */
943 if (urb->dev->speed == USB_SPEED_LOW ||
944 urb->dev->state != USB_STATE_CONFIGURED)
945 skel = SKEL_LS_CONTROL;
946 else {
947 skel = SKEL_FS_CONTROL;
948 uhci_add_fsbr(uhci, urb);
950 if (qh->state != QH_STATE_ACTIVE)
951 qh->skel = skel;
953 urb->actual_length = -8; /* Account for the SETUP packet */
954 return 0;
956 nomem:
957 /* Remove the dummy TD from the td_list so it doesn't get freed */
958 uhci_remove_td_from_urbp(qh->dummy_td);
959 return -ENOMEM;
963 * Common submit for bulk and interrupt
965 static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb,
966 struct uhci_qh *qh)
968 struct uhci_td *td;
969 unsigned long destination, status;
970 int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize);
971 int len = urb->transfer_buffer_length;
972 dma_addr_t data = urb->transfer_dma;
973 __le32 *plink;
974 struct urb_priv *urbp = urb->hcpriv;
975 unsigned int toggle;
977 if (len < 0)
978 return -EINVAL;
980 /* The "pipe" thing contains the destination in bits 8--18 */
981 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
982 toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
983 usb_pipeout(urb->pipe));
985 /* 3 errors, dummy TD remains inactive */
986 status = uhci_maxerr(3);
987 if (urb->dev->speed == USB_SPEED_LOW)
988 status |= TD_CTRL_LS;
989 if (usb_pipein(urb->pipe))
990 status |= TD_CTRL_SPD;
993 * Build the DATA TDs
995 plink = NULL;
996 td = qh->dummy_td;
997 do { /* Allow zero length packets */
998 int pktsze = maxsze;
1000 if (len <= pktsze) { /* The last packet */
1001 pktsze = len;
1002 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1003 status &= ~TD_CTRL_SPD;
1006 if (plink) {
1007 td = uhci_alloc_td(uhci);
1008 if (!td)
1009 goto nomem;
1010 *plink = LINK_TO_TD(td);
1012 uhci_add_td_to_urbp(td, urbp);
1013 uhci_fill_td(td, status,
1014 destination | uhci_explen(pktsze) |
1015 (toggle << TD_TOKEN_TOGGLE_SHIFT),
1016 data);
1017 plink = &td->link;
1018 status |= TD_CTRL_ACTIVE;
1020 data += pktsze;
1021 len -= maxsze;
1022 toggle ^= 1;
1023 } while (len > 0);
1026 * URB_ZERO_PACKET means adding a 0-length packet, if direction
1027 * is OUT and the transfer_length was an exact multiple of maxsze,
1028 * hence (len = transfer_length - N * maxsze) == 0
1029 * however, if transfer_length == 0, the zero packet was already
1030 * prepared above.
1032 if ((urb->transfer_flags & URB_ZERO_PACKET) &&
1033 usb_pipeout(urb->pipe) && len == 0 &&
1034 urb->transfer_buffer_length > 0) {
1035 td = uhci_alloc_td(uhci);
1036 if (!td)
1037 goto nomem;
1038 *plink = LINK_TO_TD(td);
1040 uhci_add_td_to_urbp(td, urbp);
1041 uhci_fill_td(td, status,
1042 destination | uhci_explen(0) |
1043 (toggle << TD_TOKEN_TOGGLE_SHIFT),
1044 data);
1045 plink = &td->link;
1047 toggle ^= 1;
1050 /* Set the interrupt-on-completion flag on the last packet.
1051 * A more-or-less typical 4 KB URB (= size of one memory page)
1052 * will require about 3 ms to transfer; that's a little on the
1053 * fast side but not enough to justify delaying an interrupt
1054 * more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT
1055 * flag setting. */
1056 td->status |= __constant_cpu_to_le32(TD_CTRL_IOC);
1059 * Build the new dummy TD and activate the old one
1061 td = uhci_alloc_td(uhci);
1062 if (!td)
1063 goto nomem;
1064 *plink = LINK_TO_TD(td);
1066 uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0);
1067 wmb();
1068 qh->dummy_td->status |= __constant_cpu_to_le32(TD_CTRL_ACTIVE);
1069 qh->dummy_td = td;
1071 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
1072 usb_pipeout(urb->pipe), toggle);
1073 return 0;
1075 nomem:
1076 /* Remove the dummy TD from the td_list so it doesn't get freed */
1077 uhci_remove_td_from_urbp(qh->dummy_td);
1078 return -ENOMEM;
1081 static int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb,
1082 struct uhci_qh *qh)
1084 int ret;
1086 /* Can't have low-speed bulk transfers */
1087 if (urb->dev->speed == USB_SPEED_LOW)
1088 return -EINVAL;
1090 if (qh->state != QH_STATE_ACTIVE)
1091 qh->skel = SKEL_BULK;
1092 ret = uhci_submit_common(uhci, urb, qh);
1093 if (ret == 0)
1094 uhci_add_fsbr(uhci, urb);
1095 return ret;
1098 static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb,
1099 struct uhci_qh *qh)
1101 int ret;
1103 /* USB 1.1 interrupt transfers only involve one packet per interval.
1104 * Drivers can submit URBs of any length, but longer ones will need
1105 * multiple intervals to complete.
1108 if (!qh->bandwidth_reserved) {
1109 int exponent;
1111 /* Figure out which power-of-two queue to use */
1112 for (exponent = 7; exponent >= 0; --exponent) {
1113 if ((1 << exponent) <= urb->interval)
1114 break;
1116 if (exponent < 0)
1117 return -EINVAL;
1118 qh->period = 1 << exponent;
1119 qh->skel = SKEL_INDEX(exponent);
1121 /* For now, interrupt phase is fixed by the layout
1122 * of the QH lists. */
1123 qh->phase = (qh->period / 2) & (MAX_PHASE - 1);
1124 ret = uhci_check_bandwidth(uhci, qh);
1125 if (ret)
1126 return ret;
1127 } else if (qh->period > urb->interval)
1128 return -EINVAL; /* Can't decrease the period */
1130 ret = uhci_submit_common(uhci, urb, qh);
1131 if (ret == 0) {
1132 urb->interval = qh->period;
1133 if (!qh->bandwidth_reserved)
1134 uhci_reserve_bandwidth(uhci, qh);
1136 return ret;
1140 * Fix up the data structures following a short transfer
1142 static int uhci_fixup_short_transfer(struct uhci_hcd *uhci,
1143 struct uhci_qh *qh, struct urb_priv *urbp)
1145 struct uhci_td *td;
1146 struct list_head *tmp;
1147 int ret;
1149 td = list_entry(urbp->td_list.prev, struct uhci_td, list);
1150 if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
1152 /* When a control transfer is short, we have to restart
1153 * the queue at the status stage transaction, which is
1154 * the last TD. */
1155 WARN_ON(list_empty(&urbp->td_list));
1156 qh->element = LINK_TO_TD(td);
1157 tmp = td->list.prev;
1158 ret = -EINPROGRESS;
1160 } else {
1162 /* When a bulk/interrupt transfer is short, we have to
1163 * fix up the toggles of the following URBs on the queue
1164 * before restarting the queue at the next URB. */
1165 qh->initial_toggle = uhci_toggle(td_token(qh->post_td)) ^ 1;
1166 uhci_fixup_toggles(qh, 1);
1168 if (list_empty(&urbp->td_list))
1169 td = qh->post_td;
1170 qh->element = td->link;
1171 tmp = urbp->td_list.prev;
1172 ret = 0;
1175 /* Remove all the TDs we skipped over, from tmp back to the start */
1176 while (tmp != &urbp->td_list) {
1177 td = list_entry(tmp, struct uhci_td, list);
1178 tmp = tmp->prev;
1180 uhci_remove_td_from_urbp(td);
1181 uhci_free_td(uhci, td);
1183 return ret;
1187 * Common result for control, bulk, and interrupt
1189 static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb)
1191 struct urb_priv *urbp = urb->hcpriv;
1192 struct uhci_qh *qh = urbp->qh;
1193 struct uhci_td *td, *tmp;
1194 unsigned status;
1195 int ret = 0;
1197 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
1198 unsigned int ctrlstat;
1199 int len;
1201 ctrlstat = td_status(td);
1202 status = uhci_status_bits(ctrlstat);
1203 if (status & TD_CTRL_ACTIVE)
1204 return -EINPROGRESS;
1206 len = uhci_actual_length(ctrlstat);
1207 urb->actual_length += len;
1209 if (status) {
1210 ret = uhci_map_status(status,
1211 uhci_packetout(td_token(td)));
1212 if ((debug == 1 && ret != -EPIPE) || debug > 1) {
1213 /* Some debugging code */
1214 dev_dbg(&urb->dev->dev,
1215 "%s: failed with status %x\n",
1216 __FUNCTION__, status);
1218 if (debug > 1 && errbuf) {
1219 /* Print the chain for debugging */
1220 uhci_show_qh(urbp->qh, errbuf,
1221 ERRBUF_LEN, 0);
1222 lprintk(errbuf);
1226 } else if (len < uhci_expected_length(td_token(td))) {
1228 /* We received a short packet */
1229 if (urb->transfer_flags & URB_SHORT_NOT_OK)
1230 ret = -EREMOTEIO;
1232 /* Fixup needed only if this isn't the URB's last TD */
1233 else if (&td->list != urbp->td_list.prev)
1234 ret = 1;
1237 uhci_remove_td_from_urbp(td);
1238 if (qh->post_td)
1239 uhci_free_td(uhci, qh->post_td);
1240 qh->post_td = td;
1242 if (ret != 0)
1243 goto err;
1245 return ret;
1247 err:
1248 if (ret < 0) {
1249 /* In case a control transfer gets an error
1250 * during the setup stage */
1251 urb->actual_length = max(urb->actual_length, 0);
1253 /* Note that the queue has stopped and save
1254 * the next toggle value */
1255 qh->element = UHCI_PTR_TERM;
1256 qh->is_stopped = 1;
1257 qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL);
1258 qh->initial_toggle = uhci_toggle(td_token(td)) ^
1259 (ret == -EREMOTEIO);
1261 } else /* Short packet received */
1262 ret = uhci_fixup_short_transfer(uhci, qh, urbp);
1263 return ret;
1267 * Isochronous transfers
1269 static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb,
1270 struct uhci_qh *qh)
1272 struct uhci_td *td = NULL; /* Since urb->number_of_packets > 0 */
1273 int i, frame;
1274 unsigned long destination, status;
1275 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
1277 /* Values must not be too big (could overflow below) */
1278 if (urb->interval >= UHCI_NUMFRAMES ||
1279 urb->number_of_packets >= UHCI_NUMFRAMES)
1280 return -EFBIG;
1282 /* Check the period and figure out the starting frame number */
1283 if (!qh->bandwidth_reserved) {
1284 qh->period = urb->interval;
1285 if (urb->transfer_flags & URB_ISO_ASAP) {
1286 qh->phase = -1; /* Find the best phase */
1287 i = uhci_check_bandwidth(uhci, qh);
1288 if (i)
1289 return i;
1291 /* Allow a little time to allocate the TDs */
1292 uhci_get_current_frame_number(uhci);
1293 frame = uhci->frame_number + 10;
1295 /* Move forward to the first frame having the
1296 * correct phase */
1297 urb->start_frame = frame + ((qh->phase - frame) &
1298 (qh->period - 1));
1299 } else {
1300 i = urb->start_frame - uhci->last_iso_frame;
1301 if (i <= 0 || i >= UHCI_NUMFRAMES)
1302 return -EINVAL;
1303 qh->phase = urb->start_frame & (qh->period - 1);
1304 i = uhci_check_bandwidth(uhci, qh);
1305 if (i)
1306 return i;
1309 } else if (qh->period != urb->interval) {
1310 return -EINVAL; /* Can't change the period */
1312 } else { /* Pick up where the last URB leaves off */
1313 if (list_empty(&qh->queue)) {
1314 frame = qh->iso_frame;
1315 } else {
1316 struct urb *lurb;
1318 lurb = list_entry(qh->queue.prev,
1319 struct urb_priv, node)->urb;
1320 frame = lurb->start_frame +
1321 lurb->number_of_packets *
1322 lurb->interval;
1324 if (urb->transfer_flags & URB_ISO_ASAP)
1325 urb->start_frame = frame;
1326 else if (urb->start_frame != frame)
1327 return -EINVAL;
1330 /* Make sure we won't have to go too far into the future */
1331 if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES,
1332 urb->start_frame + urb->number_of_packets *
1333 urb->interval))
1334 return -EFBIG;
1336 status = TD_CTRL_ACTIVE | TD_CTRL_IOS;
1337 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
1339 for (i = 0; i < urb->number_of_packets; i++) {
1340 td = uhci_alloc_td(uhci);
1341 if (!td)
1342 return -ENOMEM;
1344 uhci_add_td_to_urbp(td, urbp);
1345 uhci_fill_td(td, status, destination |
1346 uhci_explen(urb->iso_frame_desc[i].length),
1347 urb->transfer_dma +
1348 urb->iso_frame_desc[i].offset);
1351 /* Set the interrupt-on-completion flag on the last packet. */
1352 td->status |= __constant_cpu_to_le32(TD_CTRL_IOC);
1354 /* Add the TDs to the frame list */
1355 frame = urb->start_frame;
1356 list_for_each_entry(td, &urbp->td_list, list) {
1357 uhci_insert_td_in_frame_list(uhci, td, frame);
1358 frame += qh->period;
1361 if (list_empty(&qh->queue)) {
1362 qh->iso_packet_desc = &urb->iso_frame_desc[0];
1363 qh->iso_frame = urb->start_frame;
1364 qh->iso_status = 0;
1367 qh->skel = SKEL_ISO;
1368 if (!qh->bandwidth_reserved)
1369 uhci_reserve_bandwidth(uhci, qh);
1370 return 0;
1373 static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb)
1375 struct uhci_td *td, *tmp;
1376 struct urb_priv *urbp = urb->hcpriv;
1377 struct uhci_qh *qh = urbp->qh;
1379 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
1380 unsigned int ctrlstat;
1381 int status;
1382 int actlength;
1384 if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame))
1385 return -EINPROGRESS;
1387 uhci_remove_tds_from_frame(uhci, qh->iso_frame);
1389 ctrlstat = td_status(td);
1390 if (ctrlstat & TD_CTRL_ACTIVE) {
1391 status = -EXDEV; /* TD was added too late? */
1392 } else {
1393 status = uhci_map_status(uhci_status_bits(ctrlstat),
1394 usb_pipeout(urb->pipe));
1395 actlength = uhci_actual_length(ctrlstat);
1397 urb->actual_length += actlength;
1398 qh->iso_packet_desc->actual_length = actlength;
1399 qh->iso_packet_desc->status = status;
1402 if (status) {
1403 urb->error_count++;
1404 qh->iso_status = status;
1407 uhci_remove_td_from_urbp(td);
1408 uhci_free_td(uhci, td);
1409 qh->iso_frame += qh->period;
1410 ++qh->iso_packet_desc;
1412 return qh->iso_status;
1415 static int uhci_urb_enqueue(struct usb_hcd *hcd,
1416 struct usb_host_endpoint *hep,
1417 struct urb *urb, gfp_t mem_flags)
1419 int ret;
1420 struct uhci_hcd *uhci = hcd_to_uhci(hcd);
1421 unsigned long flags;
1422 struct urb_priv *urbp;
1423 struct uhci_qh *qh;
1425 spin_lock_irqsave(&uhci->lock, flags);
1427 ret = urb->status;
1428 if (ret != -EINPROGRESS) /* URB already unlinked! */
1429 goto done;
1431 ret = -ENOMEM;
1432 urbp = uhci_alloc_urb_priv(uhci, urb);
1433 if (!urbp)
1434 goto done;
1436 if (hep->hcpriv)
1437 qh = (struct uhci_qh *) hep->hcpriv;
1438 else {
1439 qh = uhci_alloc_qh(uhci, urb->dev, hep);
1440 if (!qh)
1441 goto err_no_qh;
1443 urbp->qh = qh;
1445 switch (qh->type) {
1446 case USB_ENDPOINT_XFER_CONTROL:
1447 ret = uhci_submit_control(uhci, urb, qh);
1448 break;
1449 case USB_ENDPOINT_XFER_BULK:
1450 ret = uhci_submit_bulk(uhci, urb, qh);
1451 break;
1452 case USB_ENDPOINT_XFER_INT:
1453 ret = uhci_submit_interrupt(uhci, urb, qh);
1454 break;
1455 case USB_ENDPOINT_XFER_ISOC:
1456 urb->error_count = 0;
1457 ret = uhci_submit_isochronous(uhci, urb, qh);
1458 break;
1460 if (ret != 0)
1461 goto err_submit_failed;
1463 /* Add this URB to the QH */
1464 urbp->qh = qh;
1465 list_add_tail(&urbp->node, &qh->queue);
1467 /* If the new URB is the first and only one on this QH then either
1468 * the QH is new and idle or else it's unlinked and waiting to
1469 * become idle, so we can activate it right away. But only if the
1470 * queue isn't stopped. */
1471 if (qh->queue.next == &urbp->node && !qh->is_stopped) {
1472 uhci_activate_qh(uhci, qh);
1473 uhci_urbp_wants_fsbr(uhci, urbp);
1475 goto done;
1477 err_submit_failed:
1478 if (qh->state == QH_STATE_IDLE)
1479 uhci_make_qh_idle(uhci, qh); /* Reclaim unused QH */
1481 err_no_qh:
1482 uhci_free_urb_priv(uhci, urbp);
1484 done:
1485 spin_unlock_irqrestore(&uhci->lock, flags);
1486 return ret;
1489 static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb)
1491 struct uhci_hcd *uhci = hcd_to_uhci(hcd);
1492 unsigned long flags;
1493 struct urb_priv *urbp;
1494 struct uhci_qh *qh;
1496 spin_lock_irqsave(&uhci->lock, flags);
1497 urbp = urb->hcpriv;
1498 if (!urbp) /* URB was never linked! */
1499 goto done;
1500 qh = urbp->qh;
1502 /* Remove Isochronous TDs from the frame list ASAP */
1503 if (qh->type == USB_ENDPOINT_XFER_ISOC) {
1504 uhci_unlink_isochronous_tds(uhci, urb);
1505 mb();
1507 /* If the URB has already started, update the QH unlink time */
1508 uhci_get_current_frame_number(uhci);
1509 if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number))
1510 qh->unlink_frame = uhci->frame_number;
1513 uhci_unlink_qh(uhci, qh);
1515 done:
1516 spin_unlock_irqrestore(&uhci->lock, flags);
1517 return 0;
1521 * Finish unlinking an URB and give it back
1523 static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh,
1524 struct urb *urb)
1525 __releases(uhci->lock)
1526 __acquires(uhci->lock)
1528 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
1530 /* When giving back the first URB in an Isochronous queue,
1531 * reinitialize the QH's iso-related members for the next URB. */
1532 if (qh->type == USB_ENDPOINT_XFER_ISOC &&
1533 urbp->node.prev == &qh->queue &&
1534 urbp->node.next != &qh->queue) {
1535 struct urb *nurb = list_entry(urbp->node.next,
1536 struct urb_priv, node)->urb;
1538 qh->iso_packet_desc = &nurb->iso_frame_desc[0];
1539 qh->iso_frame = nurb->start_frame;
1540 qh->iso_status = 0;
1543 /* Take the URB off the QH's queue. If the queue is now empty,
1544 * this is a perfect time for a toggle fixup. */
1545 list_del_init(&urbp->node);
1546 if (list_empty(&qh->queue) && qh->needs_fixup) {
1547 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
1548 usb_pipeout(urb->pipe), qh->initial_toggle);
1549 qh->needs_fixup = 0;
1552 uhci_free_urb_priv(uhci, urbp);
1554 spin_unlock(&uhci->lock);
1555 usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb);
1556 spin_lock(&uhci->lock);
1558 /* If the queue is now empty, we can unlink the QH and give up its
1559 * reserved bandwidth. */
1560 if (list_empty(&qh->queue)) {
1561 uhci_unlink_qh(uhci, qh);
1562 if (qh->bandwidth_reserved)
1563 uhci_release_bandwidth(uhci, qh);
1568 * Scan the URBs in a QH's queue
1570 #define QH_FINISHED_UNLINKING(qh) \
1571 (qh->state == QH_STATE_UNLINKING && \
1572 uhci->frame_number + uhci->is_stopped != qh->unlink_frame)
1574 static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
1576 struct urb_priv *urbp;
1577 struct urb *urb;
1578 int status;
1580 while (!list_empty(&qh->queue)) {
1581 urbp = list_entry(qh->queue.next, struct urb_priv, node);
1582 urb = urbp->urb;
1584 if (qh->type == USB_ENDPOINT_XFER_ISOC)
1585 status = uhci_result_isochronous(uhci, urb);
1586 else
1587 status = uhci_result_common(uhci, urb);
1588 if (status == -EINPROGRESS)
1589 break;
1591 spin_lock(&urb->lock);
1592 if (urb->status == -EINPROGRESS) /* Not dequeued */
1593 urb->status = status;
1594 else
1595 status = ECONNRESET; /* Not -ECONNRESET */
1596 spin_unlock(&urb->lock);
1598 /* Dequeued but completed URBs can't be given back unless
1599 * the QH is stopped or has finished unlinking. */
1600 if (status == ECONNRESET) {
1601 if (QH_FINISHED_UNLINKING(qh))
1602 qh->is_stopped = 1;
1603 else if (!qh->is_stopped)
1604 return;
1607 uhci_giveback_urb(uhci, qh, urb);
1608 if (status < 0 && qh->type != USB_ENDPOINT_XFER_ISOC)
1609 break;
1612 /* If the QH is neither stopped nor finished unlinking (normal case),
1613 * our work here is done. */
1614 if (QH_FINISHED_UNLINKING(qh))
1615 qh->is_stopped = 1;
1616 else if (!qh->is_stopped)
1617 return;
1619 /* Otherwise give back each of the dequeued URBs */
1620 restart:
1621 list_for_each_entry(urbp, &qh->queue, node) {
1622 urb = urbp->urb;
1623 if (urb->status != -EINPROGRESS) {
1625 /* Fix up the TD links and save the toggles for
1626 * non-Isochronous queues. For Isochronous queues,
1627 * test for too-recent dequeues. */
1628 if (!uhci_cleanup_queue(uhci, qh, urb)) {
1629 qh->is_stopped = 0;
1630 return;
1632 uhci_giveback_urb(uhci, qh, urb);
1633 goto restart;
1636 qh->is_stopped = 0;
1638 /* There are no more dequeued URBs. If there are still URBs on the
1639 * queue, the QH can now be re-activated. */
1640 if (!list_empty(&qh->queue)) {
1641 if (qh->needs_fixup)
1642 uhci_fixup_toggles(qh, 0);
1644 /* If the first URB on the queue wants FSBR but its time
1645 * limit has expired, set the next TD to interrupt on
1646 * completion before reactivating the QH. */
1647 urbp = list_entry(qh->queue.next, struct urb_priv, node);
1648 if (urbp->fsbr && qh->wait_expired) {
1649 struct uhci_td *td = list_entry(urbp->td_list.next,
1650 struct uhci_td, list);
1652 td->status |= __cpu_to_le32(TD_CTRL_IOC);
1655 uhci_activate_qh(uhci, qh);
1658 /* The queue is empty. The QH can become idle if it is fully
1659 * unlinked. */
1660 else if (QH_FINISHED_UNLINKING(qh))
1661 uhci_make_qh_idle(uhci, qh);
1665 * Check for queues that have made some forward progress.
1666 * Returns 0 if the queue is not Isochronous, is ACTIVE, and
1667 * has not advanced since last examined; 1 otherwise.
1669 * Early Intel controllers have a bug which causes qh->element sometimes
1670 * not to advance when a TD completes successfully. The queue remains
1671 * stuck on the inactive completed TD. We detect such cases and advance
1672 * the element pointer by hand.
1674 static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh)
1676 struct urb_priv *urbp = NULL;
1677 struct uhci_td *td;
1678 int ret = 1;
1679 unsigned status;
1681 if (qh->type == USB_ENDPOINT_XFER_ISOC)
1682 goto done;
1684 /* Treat an UNLINKING queue as though it hasn't advanced.
1685 * This is okay because reactivation will treat it as though
1686 * it has advanced, and if it is going to become IDLE then
1687 * this doesn't matter anyway. Furthermore it's possible
1688 * for an UNLINKING queue not to have any URBs at all, or
1689 * for its first URB not to have any TDs (if it was dequeued
1690 * just as it completed). So it's not easy in any case to
1691 * test whether such queues have advanced. */
1692 if (qh->state != QH_STATE_ACTIVE) {
1693 urbp = NULL;
1694 status = 0;
1696 } else {
1697 urbp = list_entry(qh->queue.next, struct urb_priv, node);
1698 td = list_entry(urbp->td_list.next, struct uhci_td, list);
1699 status = td_status(td);
1700 if (!(status & TD_CTRL_ACTIVE)) {
1702 /* We're okay, the queue has advanced */
1703 qh->wait_expired = 0;
1704 qh->advance_jiffies = jiffies;
1705 goto done;
1707 ret = 0;
1710 /* The queue hasn't advanced; check for timeout */
1711 if (qh->wait_expired)
1712 goto done;
1714 if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) {
1716 /* Detect the Intel bug and work around it */
1717 if (qh->post_td && qh_element(qh) == LINK_TO_TD(qh->post_td)) {
1718 qh->element = qh->post_td->link;
1719 qh->advance_jiffies = jiffies;
1720 ret = 1;
1721 goto done;
1724 qh->wait_expired = 1;
1726 /* If the current URB wants FSBR, unlink it temporarily
1727 * so that we can safely set the next TD to interrupt on
1728 * completion. That way we'll know as soon as the queue
1729 * starts moving again. */
1730 if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC))
1731 uhci_unlink_qh(uhci, qh);
1733 } else {
1734 /* Unmoving but not-yet-expired queues keep FSBR alive */
1735 if (urbp)
1736 uhci_urbp_wants_fsbr(uhci, urbp);
1739 done:
1740 return ret;
1744 * Process events in the schedule, but only in one thread at a time
1746 static void uhci_scan_schedule(struct uhci_hcd *uhci)
1748 int i;
1749 struct uhci_qh *qh;
1751 /* Don't allow re-entrant calls */
1752 if (uhci->scan_in_progress) {
1753 uhci->need_rescan = 1;
1754 return;
1756 uhci->scan_in_progress = 1;
1757 rescan:
1758 uhci->need_rescan = 0;
1759 uhci->fsbr_is_wanted = 0;
1761 uhci_clear_next_interrupt(uhci);
1762 uhci_get_current_frame_number(uhci);
1763 uhci->cur_iso_frame = uhci->frame_number;
1765 /* Go through all the QH queues and process the URBs in each one */
1766 for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) {
1767 uhci->next_qh = list_entry(uhci->skelqh[i]->node.next,
1768 struct uhci_qh, node);
1769 while ((qh = uhci->next_qh) != uhci->skelqh[i]) {
1770 uhci->next_qh = list_entry(qh->node.next,
1771 struct uhci_qh, node);
1773 if (uhci_advance_check(uhci, qh)) {
1774 uhci_scan_qh(uhci, qh);
1775 if (qh->state == QH_STATE_ACTIVE) {
1776 uhci_urbp_wants_fsbr(uhci,
1777 list_entry(qh->queue.next, struct urb_priv, node));
1783 uhci->last_iso_frame = uhci->cur_iso_frame;
1784 if (uhci->need_rescan)
1785 goto rescan;
1786 uhci->scan_in_progress = 0;
1788 if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted &&
1789 !uhci->fsbr_expiring) {
1790 uhci->fsbr_expiring = 1;
1791 mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY);
1794 if (list_empty(&uhci->skel_unlink_qh->node))
1795 uhci_clear_next_interrupt(uhci);
1796 else
1797 uhci_set_next_interrupt(uhci);