2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
21 /* max queue in one round of service */
22 static const int cfq_quantum
= 4;
23 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max
= 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty
= 2;
28 static const int cfq_slice_sync
= HZ
/ 10;
29 static int cfq_slice_async
= HZ
/ 25;
30 static const int cfq_slice_async_rq
= 2;
31 static int cfq_slice_idle
= HZ
/ 125;
32 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
33 static const int cfq_hist_divisor
= 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
49 #define CFQQ_COOP_TOUT (HZ)
51 #define CFQ_SLICE_SCALE (5)
52 #define CFQ_HW_QUEUE_MIN (5)
53 #define CFQ_SERVICE_SHIFT 12
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 static struct kmem_cache
*cfq_pool
;
60 static struct kmem_cache
*cfq_ioc_pool
;
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
63 static struct completion
*ioc_gone
;
64 static DEFINE_SPINLOCK(ioc_gone_lock
);
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
84 struct rb_node
*active
;
85 unsigned total_weight
;
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
90 * Per process-grouping structure
95 /* various state flags, see below */
98 struct cfq_data
*cfqd
;
99 /* service_tree member */
100 struct rb_node rb_node
;
101 /* service_tree key */
102 unsigned long rb_key
;
103 /* prio tree member */
104 struct rb_node p_node
;
105 /* prio tree root we belong to, if any */
106 struct rb_root
*p_root
;
107 /* sorted list of pending requests */
108 struct rb_root sort_list
;
109 /* if fifo isn't expired, next request to serve */
110 struct request
*next_rq
;
111 /* requests queued in sort_list */
113 /* currently allocated requests */
115 /* fifo list of requests in sort_list */
116 struct list_head fifo
;
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start
;
120 unsigned int allocated_slice
;
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start
;
123 unsigned long slice_end
;
125 unsigned int slice_dispatch
;
127 /* pending metadata requests */
129 /* number of requests that are on the dispatch list or inside driver */
132 /* io prio of this group */
133 unsigned short ioprio
, org_ioprio
;
134 unsigned short ioprio_class
, org_ioprio_class
;
136 unsigned int seek_samples
;
139 sector_t last_request_pos
;
140 unsigned long seeky_start
;
144 struct cfq_rb_root
*service_tree
;
145 struct cfq_queue
*new_cfqq
;
146 struct cfq_group
*cfqg
;
147 struct cfq_group
*orig_cfqg
;
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors
;
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
163 * Second index in the service_trees.
167 SYNC_NOIDLE_WORKLOAD
= 1,
171 /* This is per cgroup per device grouping structure */
173 /* group service_tree member */
174 struct rb_node rb_node
;
176 /* group service_tree key */
181 /* number of cfqq currently on this group */
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg
[2];
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
190 struct cfq_rb_root service_trees
[2][3];
191 struct cfq_rb_root service_tree_idle
;
193 unsigned long saved_workload_slice
;
194 enum wl_type_t saved_workload
;
195 enum wl_prio_t saved_serving_prio
;
196 struct blkio_group blkg
;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node
;
204 * Per block device queue structure
207 struct request_queue
*queue
;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree
;
210 struct cfq_group root_group
;
213 * The priority currently being served
215 enum wl_prio_t serving_prio
;
216 enum wl_type_t serving_type
;
217 unsigned long workload_expires
;
218 struct cfq_group
*serving_group
;
219 bool noidle_tree_requires_idle
;
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
226 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
228 unsigned int busy_queues
;
234 * queue-depth detection
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244 int hw_tag_est_depth
;
245 unsigned int hw_tag_samples
;
248 * idle window management
250 struct timer_list idle_slice_timer
;
251 struct work_struct unplug_work
;
253 struct cfq_queue
*active_queue
;
254 struct cfq_io_context
*active_cic
;
257 * async queue for each priority case
259 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
260 struct cfq_queue
*async_idle_cfqq
;
262 sector_t last_position
;
265 * tunables, see top of file
267 unsigned int cfq_quantum
;
268 unsigned int cfq_fifo_expire
[2];
269 unsigned int cfq_back_penalty
;
270 unsigned int cfq_back_max
;
271 unsigned int cfq_slice
[2];
272 unsigned int cfq_slice_async_rq
;
273 unsigned int cfq_slice_idle
;
274 unsigned int cfq_latency
;
275 unsigned int cfq_group_isolation
;
277 struct list_head cic_list
;
280 * Fallback dummy cfqq for extreme OOM conditions
282 struct cfq_queue oom_cfqq
;
284 unsigned long last_delayed_sync
;
286 /* List of cfq groups being managed on this device*/
287 struct hlist_head cfqg_list
;
291 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
293 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
296 struct cfq_data
*cfqd
)
301 if (prio
== IDLE_WORKLOAD
)
302 return &cfqg
->service_tree_idle
;
304 return &cfqg
->service_trees
[prio
][type
];
307 enum cfqq_state_flags
{
308 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
310 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
311 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
312 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
315 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
316 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
317 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
318 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
319 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
322 #define CFQ_CFQQ_FNS(name) \
323 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
325 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
327 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
329 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
331 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
333 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
337 CFQ_CFQQ_FNS(wait_request
);
338 CFQ_CFQQ_FNS(must_dispatch
);
339 CFQ_CFQQ_FNS(must_alloc_slice
);
340 CFQ_CFQQ_FNS(fifo_expire
);
341 CFQ_CFQQ_FNS(idle_window
);
342 CFQ_CFQQ_FNS(prio_changed
);
343 CFQ_CFQQ_FNS(slice_new
);
347 CFQ_CFQQ_FNS(wait_busy
);
350 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
351 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
352 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
353 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
354 blkg_path(&(cfqq)->cfqg->blkg), ##args);
356 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
357 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
358 blkg_path(&(cfqg)->blkg), ##args); \
361 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
363 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
365 #define cfq_log(cfqd, fmt, args...) \
366 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
368 /* Traverses through cfq group service trees */
369 #define for_each_cfqg_st(cfqg, i, j, st) \
370 for (i = 0; i <= IDLE_WORKLOAD; i++) \
371 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
372 : &cfqg->service_tree_idle; \
373 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
374 (i == IDLE_WORKLOAD && j == 0); \
375 j++, st = i < IDLE_WORKLOAD ? \
376 &cfqg->service_trees[i][j]: NULL) \
379 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
381 if (cfq_class_idle(cfqq
))
382 return IDLE_WORKLOAD
;
383 if (cfq_class_rt(cfqq
))
389 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
391 if (!cfq_cfqq_sync(cfqq
))
392 return ASYNC_WORKLOAD
;
393 if (!cfq_cfqq_idle_window(cfqq
))
394 return SYNC_NOIDLE_WORKLOAD
;
395 return SYNC_WORKLOAD
;
398 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
399 struct cfq_data
*cfqd
,
400 struct cfq_group
*cfqg
)
402 if (wl
== IDLE_WORKLOAD
)
403 return cfqg
->service_tree_idle
.count
;
405 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
406 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
407 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
410 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
411 struct cfq_group
*cfqg
)
413 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
414 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
417 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
418 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
419 struct io_context
*, gfp_t
);
420 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
421 struct io_context
*);
423 static inline int rq_in_driver(struct cfq_data
*cfqd
)
425 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
428 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
431 return cic
->cfqq
[is_sync
];
434 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
435 struct cfq_queue
*cfqq
, bool is_sync
)
437 cic
->cfqq
[is_sync
] = cfqq
;
441 * We regard a request as SYNC, if it's either a read or has the SYNC bit
442 * set (in which case it could also be direct WRITE).
444 static inline bool cfq_bio_sync(struct bio
*bio
)
446 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
450 * scheduler run of queue, if there are requests pending and no one in the
451 * driver that will restart queueing
453 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
455 if (cfqd
->busy_queues
) {
456 cfq_log(cfqd
, "schedule dispatch");
457 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
461 static int cfq_queue_empty(struct request_queue
*q
)
463 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
465 return !cfqd
->rq_queued
;
469 * Scale schedule slice based on io priority. Use the sync time slice only
470 * if a queue is marked sync and has sync io queued. A sync queue with async
471 * io only, should not get full sync slice length.
473 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
476 const int base_slice
= cfqd
->cfq_slice
[sync
];
478 WARN_ON(prio
>= IOPRIO_BE_NR
);
480 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
484 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
486 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
489 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
491 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
493 d
= d
* BLKIO_WEIGHT_DEFAULT
;
494 do_div(d
, cfqg
->weight
);
498 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
500 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
502 min_vdisktime
= vdisktime
;
504 return min_vdisktime
;
507 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
509 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
511 min_vdisktime
= vdisktime
;
513 return min_vdisktime
;
516 static void update_min_vdisktime(struct cfq_rb_root
*st
)
518 u64 vdisktime
= st
->min_vdisktime
;
519 struct cfq_group
*cfqg
;
522 cfqg
= rb_entry_cfqg(st
->active
);
523 vdisktime
= cfqg
->vdisktime
;
527 cfqg
= rb_entry_cfqg(st
->left
);
528 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
531 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
535 * get averaged number of queues of RT/BE priority.
536 * average is updated, with a formula that gives more weight to higher numbers,
537 * to quickly follows sudden increases and decrease slowly
540 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
541 struct cfq_group
*cfqg
, bool rt
)
543 unsigned min_q
, max_q
;
544 unsigned mult
= cfq_hist_divisor
- 1;
545 unsigned round
= cfq_hist_divisor
/ 2;
546 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
548 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
549 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
550 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
552 return cfqg
->busy_queues_avg
[rt
];
555 static inline unsigned
556 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
558 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
560 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
564 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
566 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
567 if (cfqd
->cfq_latency
) {
569 * interested queues (we consider only the ones with the same
570 * priority class in the cfq group)
572 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
574 unsigned sync_slice
= cfqd
->cfq_slice
[1];
575 unsigned expect_latency
= sync_slice
* iq
;
576 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
578 if (expect_latency
> group_slice
) {
579 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
580 /* scale low_slice according to IO priority
581 * and sync vs async */
583 min(slice
, base_low_slice
* slice
/ sync_slice
);
584 /* the adapted slice value is scaled to fit all iqs
585 * into the target latency */
586 slice
= max(slice
* group_slice
/ expect_latency
,
590 cfqq
->slice_start
= jiffies
;
591 cfqq
->slice_end
= jiffies
+ slice
;
592 cfqq
->allocated_slice
= slice
;
593 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
597 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
598 * isn't valid until the first request from the dispatch is activated
599 * and the slice time set.
601 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
603 if (cfq_cfqq_slice_new(cfqq
))
605 if (time_before(jiffies
, cfqq
->slice_end
))
612 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
613 * We choose the request that is closest to the head right now. Distance
614 * behind the head is penalized and only allowed to a certain extent.
616 static struct request
*
617 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
619 sector_t s1
, s2
, d1
= 0, d2
= 0;
620 unsigned long back_max
;
621 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
622 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
623 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
625 if (rq1
== NULL
|| rq1
== rq2
)
630 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
632 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
634 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
636 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
639 s1
= blk_rq_pos(rq1
);
640 s2
= blk_rq_pos(rq2
);
643 * by definition, 1KiB is 2 sectors
645 back_max
= cfqd
->cfq_back_max
* 2;
648 * Strict one way elevator _except_ in the case where we allow
649 * short backward seeks which are biased as twice the cost of a
650 * similar forward seek.
654 else if (s1
+ back_max
>= last
)
655 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
657 wrap
|= CFQ_RQ1_WRAP
;
661 else if (s2
+ back_max
>= last
)
662 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
664 wrap
|= CFQ_RQ2_WRAP
;
666 /* Found required data */
669 * By doing switch() on the bit mask "wrap" we avoid having to
670 * check two variables for all permutations: --> faster!
673 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
689 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
692 * Since both rqs are wrapped,
693 * start with the one that's further behind head
694 * (--> only *one* back seek required),
695 * since back seek takes more time than forward.
705 * The below is leftmost cache rbtree addon
707 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
709 /* Service tree is empty */
714 root
->left
= rb_first(&root
->rb
);
717 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
722 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
725 root
->left
= rb_first(&root
->rb
);
728 return rb_entry_cfqg(root
->left
);
733 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
739 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
743 rb_erase_init(n
, &root
->rb
);
748 * would be nice to take fifo expire time into account as well
750 static struct request
*
751 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
752 struct request
*last
)
754 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
755 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
756 struct request
*next
= NULL
, *prev
= NULL
;
758 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
761 prev
= rb_entry_rq(rbprev
);
764 next
= rb_entry_rq(rbnext
);
766 rbnext
= rb_first(&cfqq
->sort_list
);
767 if (rbnext
&& rbnext
!= &last
->rb_node
)
768 next
= rb_entry_rq(rbnext
);
771 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
774 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
775 struct cfq_queue
*cfqq
)
778 * just an approximation, should be ok.
780 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
781 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
785 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
787 return cfqg
->vdisktime
- st
->min_vdisktime
;
791 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
793 struct rb_node
**node
= &st
->rb
.rb_node
;
794 struct rb_node
*parent
= NULL
;
795 struct cfq_group
*__cfqg
;
796 s64 key
= cfqg_key(st
, cfqg
);
799 while (*node
!= NULL
) {
801 __cfqg
= rb_entry_cfqg(parent
);
803 if (key
< cfqg_key(st
, __cfqg
))
804 node
= &parent
->rb_left
;
806 node
= &parent
->rb_right
;
812 st
->left
= &cfqg
->rb_node
;
814 rb_link_node(&cfqg
->rb_node
, parent
, node
);
815 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
819 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
821 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
822 struct cfq_group
*__cfqg
;
830 * Currently put the group at the end. Later implement something
831 * so that groups get lesser vtime based on their weights, so that
832 * if group does not loose all if it was not continously backlogged.
834 n
= rb_last(&st
->rb
);
836 __cfqg
= rb_entry_cfqg(n
);
837 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
839 cfqg
->vdisktime
= st
->min_vdisktime
;
841 __cfq_group_service_tree_add(st
, cfqg
);
843 st
->total_weight
+= cfqg
->weight
;
847 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
849 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
851 if (st
->active
== &cfqg
->rb_node
)
854 BUG_ON(cfqg
->nr_cfqq
< 1);
857 /* If there are other cfq queues under this group, don't delete it */
861 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
863 st
->total_weight
-= cfqg
->weight
;
864 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
865 cfq_rb_erase(&cfqg
->rb_node
, st
);
866 cfqg
->saved_workload_slice
= 0;
867 blkiocg_update_blkio_group_dequeue_stats(&cfqg
->blkg
, 1);
870 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
872 unsigned int slice_used
;
875 * Queue got expired before even a single request completed or
876 * got expired immediately after first request completion.
878 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
880 * Also charge the seek time incurred to the group, otherwise
881 * if there are mutiple queues in the group, each can dispatch
882 * a single request on seeky media and cause lots of seek time
883 * and group will never know it.
885 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
888 slice_used
= jiffies
- cfqq
->slice_start
;
889 if (slice_used
> cfqq
->allocated_slice
)
890 slice_used
= cfqq
->allocated_slice
;
893 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u sect=%lu", slice_used
,
898 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
899 struct cfq_queue
*cfqq
)
901 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
902 unsigned int used_sl
, charge_sl
;
903 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
904 - cfqg
->service_tree_idle
.count
;
907 used_sl
= charge_sl
= cfq_cfqq_slice_usage(cfqq
);
909 if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
910 charge_sl
= cfqq
->allocated_slice
;
912 /* Can't update vdisktime while group is on service tree */
913 cfq_rb_erase(&cfqg
->rb_node
, st
);
914 cfqg
->vdisktime
+= cfq_scale_slice(charge_sl
, cfqg
);
915 __cfq_group_service_tree_add(st
, cfqg
);
917 /* This group is being expired. Save the context */
918 if (time_after(cfqd
->workload_expires
, jiffies
)) {
919 cfqg
->saved_workload_slice
= cfqd
->workload_expires
921 cfqg
->saved_workload
= cfqd
->serving_type
;
922 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
924 cfqg
->saved_workload_slice
= 0;
926 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
928 blkiocg_update_blkio_group_stats(&cfqg
->blkg
, used_sl
,
932 #ifdef CONFIG_CFQ_GROUP_IOSCHED
933 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
936 return container_of(blkg
, struct cfq_group
, blkg
);
941 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
943 cfqg_of_blkg(blkg
)->weight
= weight
;
946 static struct cfq_group
*
947 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
949 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
950 struct cfq_group
*cfqg
= NULL
;
953 struct cfq_rb_root
*st
;
954 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
955 unsigned int major
, minor
;
957 /* Do we need to take this reference */
958 if (!blkiocg_css_tryget(blkcg
))
961 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
965 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
969 cfqg
->weight
= blkcg
->weight
;
970 for_each_cfqg_st(cfqg
, i
, j
, st
)
972 RB_CLEAR_NODE(&cfqg
->rb_node
);
975 * Take the initial reference that will be released on destroy
976 * This can be thought of a joint reference by cgroup and
977 * elevator which will be dropped by either elevator exit
978 * or cgroup deletion path depending on who is exiting first.
980 atomic_set(&cfqg
->ref
, 1);
982 /* Add group onto cgroup list */
983 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
984 blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
985 MKDEV(major
, minor
));
987 /* Add group on cfqd list */
988 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
991 blkiocg_css_put(blkcg
);
996 * Search for the cfq group current task belongs to. If create = 1, then also
997 * create the cfq group if it does not exist. request_queue lock must be held.
999 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1001 struct cgroup
*cgroup
;
1002 struct cfq_group
*cfqg
= NULL
;
1005 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1006 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1007 if (!cfqg
&& create
)
1008 cfqg
= &cfqd
->root_group
;
1013 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1015 /* Currently, all async queues are mapped to root group */
1016 if (!cfq_cfqq_sync(cfqq
))
1017 cfqg
= &cfqq
->cfqd
->root_group
;
1020 /* cfqq reference on cfqg */
1021 atomic_inc(&cfqq
->cfqg
->ref
);
1024 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1026 struct cfq_rb_root
*st
;
1029 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1030 if (!atomic_dec_and_test(&cfqg
->ref
))
1032 for_each_cfqg_st(cfqg
, i
, j
, st
)
1033 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1037 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1039 /* Something wrong if we are trying to remove same group twice */
1040 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1042 hlist_del_init(&cfqg
->cfqd_node
);
1045 * Put the reference taken at the time of creation so that when all
1046 * queues are gone, group can be destroyed.
1051 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1053 struct hlist_node
*pos
, *n
;
1054 struct cfq_group
*cfqg
;
1056 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1058 * If cgroup removal path got to blk_group first and removed
1059 * it from cgroup list, then it will take care of destroying
1062 if (!blkiocg_del_blkio_group(&cfqg
->blkg
))
1063 cfq_destroy_cfqg(cfqd
, cfqg
);
1068 * Blk cgroup controller notification saying that blkio_group object is being
1069 * delinked as associated cgroup object is going away. That also means that
1070 * no new IO will come in this group. So get rid of this group as soon as
1071 * any pending IO in the group is finished.
1073 * This function is called under rcu_read_lock(). key is the rcu protected
1074 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1077 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1078 * it should not be NULL as even if elevator was exiting, cgroup deltion
1079 * path got to it first.
1081 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1083 unsigned long flags
;
1084 struct cfq_data
*cfqd
= key
;
1086 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1087 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1088 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1091 #else /* GROUP_IOSCHED */
1092 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1094 return &cfqd
->root_group
;
1097 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1101 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1102 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1104 #endif /* GROUP_IOSCHED */
1107 * The cfqd->service_trees holds all pending cfq_queue's that have
1108 * requests waiting to be processed. It is sorted in the order that
1109 * we will service the queues.
1111 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1114 struct rb_node
**p
, *parent
;
1115 struct cfq_queue
*__cfqq
;
1116 unsigned long rb_key
;
1117 struct cfq_rb_root
*service_tree
;
1120 int group_changed
= 0;
1122 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1123 if (!cfqd
->cfq_group_isolation
1124 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1125 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1126 /* Move this cfq to root group */
1127 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1128 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1129 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1130 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1131 cfqq
->cfqg
= &cfqd
->root_group
;
1132 atomic_inc(&cfqd
->root_group
.ref
);
1134 } else if (!cfqd
->cfq_group_isolation
1135 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1136 /* cfqq is sequential now needs to go to its original group */
1137 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1138 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1139 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1140 cfq_put_cfqg(cfqq
->cfqg
);
1141 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1142 cfqq
->orig_cfqg
= NULL
;
1144 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1148 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1149 cfqq_type(cfqq
), cfqd
);
1150 if (cfq_class_idle(cfqq
)) {
1151 rb_key
= CFQ_IDLE_DELAY
;
1152 parent
= rb_last(&service_tree
->rb
);
1153 if (parent
&& parent
!= &cfqq
->rb_node
) {
1154 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1155 rb_key
+= __cfqq
->rb_key
;
1158 } else if (!add_front
) {
1160 * Get our rb key offset. Subtract any residual slice
1161 * value carried from last service. A negative resid
1162 * count indicates slice overrun, and this should position
1163 * the next service time further away in the tree.
1165 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1166 rb_key
-= cfqq
->slice_resid
;
1167 cfqq
->slice_resid
= 0;
1170 __cfqq
= cfq_rb_first(service_tree
);
1171 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1174 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1177 * same position, nothing more to do
1179 if (rb_key
== cfqq
->rb_key
&&
1180 cfqq
->service_tree
== service_tree
)
1183 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1184 cfqq
->service_tree
= NULL
;
1189 cfqq
->service_tree
= service_tree
;
1190 p
= &service_tree
->rb
.rb_node
;
1195 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1198 * sort by key, that represents service time.
1200 if (time_before(rb_key
, __cfqq
->rb_key
))
1203 n
= &(*p
)->rb_right
;
1211 service_tree
->left
= &cfqq
->rb_node
;
1213 cfqq
->rb_key
= rb_key
;
1214 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1215 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1216 service_tree
->count
++;
1217 if ((add_front
|| !new_cfqq
) && !group_changed
)
1219 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1222 static struct cfq_queue
*
1223 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1224 sector_t sector
, struct rb_node
**ret_parent
,
1225 struct rb_node
***rb_link
)
1227 struct rb_node
**p
, *parent
;
1228 struct cfq_queue
*cfqq
= NULL
;
1236 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1239 * Sort strictly based on sector. Smallest to the left,
1240 * largest to the right.
1242 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1243 n
= &(*p
)->rb_right
;
1244 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1252 *ret_parent
= parent
;
1258 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1260 struct rb_node
**p
, *parent
;
1261 struct cfq_queue
*__cfqq
;
1264 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1265 cfqq
->p_root
= NULL
;
1268 if (cfq_class_idle(cfqq
))
1273 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1274 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1275 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1277 rb_link_node(&cfqq
->p_node
, parent
, p
);
1278 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1280 cfqq
->p_root
= NULL
;
1284 * Update cfqq's position in the service tree.
1286 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1289 * Resorting requires the cfqq to be on the RR list already.
1291 if (cfq_cfqq_on_rr(cfqq
)) {
1292 cfq_service_tree_add(cfqd
, cfqq
, 0);
1293 cfq_prio_tree_add(cfqd
, cfqq
);
1298 * add to busy list of queues for service, trying to be fair in ordering
1299 * the pending list according to last request service
1301 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1303 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1304 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1305 cfq_mark_cfqq_on_rr(cfqq
);
1306 cfqd
->busy_queues
++;
1308 cfq_resort_rr_list(cfqd
, cfqq
);
1312 * Called when the cfqq no longer has requests pending, remove it from
1315 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1317 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1318 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1319 cfq_clear_cfqq_on_rr(cfqq
);
1321 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1322 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1323 cfqq
->service_tree
= NULL
;
1326 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1327 cfqq
->p_root
= NULL
;
1330 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1331 BUG_ON(!cfqd
->busy_queues
);
1332 cfqd
->busy_queues
--;
1336 * rb tree support functions
1338 static void cfq_del_rq_rb(struct request
*rq
)
1340 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1341 const int sync
= rq_is_sync(rq
);
1343 BUG_ON(!cfqq
->queued
[sync
]);
1344 cfqq
->queued
[sync
]--;
1346 elv_rb_del(&cfqq
->sort_list
, rq
);
1348 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1350 * Queue will be deleted from service tree when we actually
1351 * expire it later. Right now just remove it from prio tree
1355 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1356 cfqq
->p_root
= NULL
;
1361 static void cfq_add_rq_rb(struct request
*rq
)
1363 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1364 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1365 struct request
*__alias
, *prev
;
1367 cfqq
->queued
[rq_is_sync(rq
)]++;
1370 * looks a little odd, but the first insert might return an alias.
1371 * if that happens, put the alias on the dispatch list
1373 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1374 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1376 if (!cfq_cfqq_on_rr(cfqq
))
1377 cfq_add_cfqq_rr(cfqd
, cfqq
);
1380 * check if this request is a better next-serve candidate
1382 prev
= cfqq
->next_rq
;
1383 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1386 * adjust priority tree position, if ->next_rq changes
1388 if (prev
!= cfqq
->next_rq
)
1389 cfq_prio_tree_add(cfqd
, cfqq
);
1391 BUG_ON(!cfqq
->next_rq
);
1394 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1396 elv_rb_del(&cfqq
->sort_list
, rq
);
1397 cfqq
->queued
[rq_is_sync(rq
)]--;
1401 static struct request
*
1402 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1404 struct task_struct
*tsk
= current
;
1405 struct cfq_io_context
*cic
;
1406 struct cfq_queue
*cfqq
;
1408 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1412 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1414 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1416 return elv_rb_find(&cfqq
->sort_list
, sector
);
1422 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1424 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1426 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
1427 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1428 rq_in_driver(cfqd
));
1430 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1433 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1435 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1436 const int sync
= rq_is_sync(rq
);
1438 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
1439 cfqd
->rq_in_driver
[sync
]--;
1440 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1441 rq_in_driver(cfqd
));
1444 static void cfq_remove_request(struct request
*rq
)
1446 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1448 if (cfqq
->next_rq
== rq
)
1449 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1451 list_del_init(&rq
->queuelist
);
1454 cfqq
->cfqd
->rq_queued
--;
1455 if (rq_is_meta(rq
)) {
1456 WARN_ON(!cfqq
->meta_pending
);
1457 cfqq
->meta_pending
--;
1461 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1464 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1465 struct request
*__rq
;
1467 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1468 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1470 return ELEVATOR_FRONT_MERGE
;
1473 return ELEVATOR_NO_MERGE
;
1476 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1479 if (type
== ELEVATOR_FRONT_MERGE
) {
1480 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1482 cfq_reposition_rq_rb(cfqq
, req
);
1487 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1488 struct request
*next
)
1490 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1492 * reposition in fifo if next is older than rq
1494 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1495 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1496 list_move(&rq
->queuelist
, &next
->queuelist
);
1497 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1500 if (cfqq
->next_rq
== next
)
1502 cfq_remove_request(next
);
1505 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1508 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1509 struct cfq_io_context
*cic
;
1510 struct cfq_queue
*cfqq
;
1513 * Disallow merge of a sync bio into an async request.
1515 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1519 * Lookup the cfqq that this bio will be queued with. Allow
1520 * merge only if rq is queued there.
1522 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1526 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1527 return cfqq
== RQ_CFQQ(rq
);
1530 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1531 struct cfq_queue
*cfqq
)
1534 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
1535 cfqq
->slice_start
= 0;
1536 cfqq
->dispatch_start
= jiffies
;
1537 cfqq
->allocated_slice
= 0;
1538 cfqq
->slice_end
= 0;
1539 cfqq
->slice_dispatch
= 0;
1540 cfqq
->nr_sectors
= 0;
1542 cfq_clear_cfqq_wait_request(cfqq
);
1543 cfq_clear_cfqq_must_dispatch(cfqq
);
1544 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1545 cfq_clear_cfqq_fifo_expire(cfqq
);
1546 cfq_mark_cfqq_slice_new(cfqq
);
1548 del_timer(&cfqd
->idle_slice_timer
);
1551 cfqd
->active_queue
= cfqq
;
1555 * current cfqq expired its slice (or was too idle), select new one
1558 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1561 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1563 if (cfq_cfqq_wait_request(cfqq
))
1564 del_timer(&cfqd
->idle_slice_timer
);
1566 cfq_clear_cfqq_wait_request(cfqq
);
1567 cfq_clear_cfqq_wait_busy(cfqq
);
1570 * store what was left of this slice, if the queue idled/timed out
1572 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1573 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1574 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1577 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1579 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1580 cfq_del_cfqq_rr(cfqd
, cfqq
);
1582 cfq_resort_rr_list(cfqd
, cfqq
);
1584 if (cfqq
== cfqd
->active_queue
)
1585 cfqd
->active_queue
= NULL
;
1587 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1588 cfqd
->grp_service_tree
.active
= NULL
;
1590 if (cfqd
->active_cic
) {
1591 put_io_context(cfqd
->active_cic
->ioc
);
1592 cfqd
->active_cic
= NULL
;
1596 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1598 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1601 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1605 * Get next queue for service. Unless we have a queue preemption,
1606 * we'll simply select the first cfqq in the service tree.
1608 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1610 struct cfq_rb_root
*service_tree
=
1611 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1612 cfqd
->serving_type
, cfqd
);
1614 if (!cfqd
->rq_queued
)
1617 /* There is nothing to dispatch */
1620 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1622 return cfq_rb_first(service_tree
);
1625 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1627 struct cfq_group
*cfqg
;
1628 struct cfq_queue
*cfqq
;
1630 struct cfq_rb_root
*st
;
1632 if (!cfqd
->rq_queued
)
1635 cfqg
= cfq_get_next_cfqg(cfqd
);
1639 for_each_cfqg_st(cfqg
, i
, j
, st
)
1640 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1646 * Get and set a new active queue for service.
1648 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1649 struct cfq_queue
*cfqq
)
1652 cfqq
= cfq_get_next_queue(cfqd
);
1654 __cfq_set_active_queue(cfqd
, cfqq
);
1658 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1661 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1662 return blk_rq_pos(rq
) - cfqd
->last_position
;
1664 return cfqd
->last_position
- blk_rq_pos(rq
);
1667 #define CFQQ_SEEK_THR 8 * 1024
1668 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1670 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1673 sector_t sdist
= cfqq
->seek_mean
;
1675 if (!sample_valid(cfqq
->seek_samples
))
1676 sdist
= CFQQ_SEEK_THR
;
1678 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
1681 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1682 struct cfq_queue
*cur_cfqq
)
1684 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1685 struct rb_node
*parent
, *node
;
1686 struct cfq_queue
*__cfqq
;
1687 sector_t sector
= cfqd
->last_position
;
1689 if (RB_EMPTY_ROOT(root
))
1693 * First, if we find a request starting at the end of the last
1694 * request, choose it.
1696 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1701 * If the exact sector wasn't found, the parent of the NULL leaf
1702 * will contain the closest sector.
1704 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1705 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1708 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1709 node
= rb_next(&__cfqq
->p_node
);
1711 node
= rb_prev(&__cfqq
->p_node
);
1715 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1716 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1724 * cur_cfqq - passed in so that we don't decide that the current queue is
1725 * closely cooperating with itself.
1727 * So, basically we're assuming that that cur_cfqq has dispatched at least
1728 * one request, and that cfqd->last_position reflects a position on the disk
1729 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1732 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1733 struct cfq_queue
*cur_cfqq
)
1735 struct cfq_queue
*cfqq
;
1737 if (!cfq_cfqq_sync(cur_cfqq
))
1739 if (CFQQ_SEEKY(cur_cfqq
))
1743 * Don't search priority tree if it's the only queue in the group.
1745 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1749 * We should notice if some of the queues are cooperating, eg
1750 * working closely on the same area of the disk. In that case,
1751 * we can group them together and don't waste time idling.
1753 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1757 /* If new queue belongs to different cfq_group, don't choose it */
1758 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1762 * It only makes sense to merge sync queues.
1764 if (!cfq_cfqq_sync(cfqq
))
1766 if (CFQQ_SEEKY(cfqq
))
1770 * Do not merge queues of different priority classes
1772 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1779 * Determine whether we should enforce idle window for this queue.
1782 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1784 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1785 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1787 BUG_ON(!service_tree
);
1788 BUG_ON(!service_tree
->count
);
1790 /* We never do for idle class queues. */
1791 if (prio
== IDLE_WORKLOAD
)
1794 /* We do for queues that were marked with idle window flag. */
1795 if (cfq_cfqq_idle_window(cfqq
) &&
1796 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1800 * Otherwise, we do only if they are the last ones
1801 * in their service tree.
1803 return service_tree
->count
== 1;
1806 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1808 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1809 struct cfq_io_context
*cic
;
1813 * SSD device without seek penalty, disable idling. But only do so
1814 * for devices that support queuing, otherwise we still have a problem
1815 * with sync vs async workloads.
1817 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1820 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1821 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1824 * idle is disabled, either manually or by past process history
1826 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1830 * still active requests from this queue, don't idle
1832 if (cfqq
->dispatched
)
1836 * task has exited, don't wait
1838 cic
= cfqd
->active_cic
;
1839 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1843 * If our average think time is larger than the remaining time
1844 * slice, then don't idle. This avoids overrunning the allotted
1847 if (sample_valid(cic
->ttime_samples
) &&
1848 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1851 cfq_mark_cfqq_wait_request(cfqq
);
1853 sl
= cfqd
->cfq_slice_idle
;
1855 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1856 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1860 * Move request from internal lists to the request queue dispatch list.
1862 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1864 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1865 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1867 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1869 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1870 cfq_remove_request(rq
);
1872 elv_dispatch_sort(q
, rq
);
1874 if (cfq_cfqq_sync(cfqq
))
1875 cfqd
->sync_flight
++;
1876 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1880 * return expired entry, or NULL to just start from scratch in rbtree
1882 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1884 struct request
*rq
= NULL
;
1886 if (cfq_cfqq_fifo_expire(cfqq
))
1889 cfq_mark_cfqq_fifo_expire(cfqq
);
1891 if (list_empty(&cfqq
->fifo
))
1894 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1895 if (time_before(jiffies
, rq_fifo_time(rq
)))
1898 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1903 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1905 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1907 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1909 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1913 * Must be called with the queue_lock held.
1915 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1917 int process_refs
, io_refs
;
1919 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1920 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1921 BUG_ON(process_refs
< 0);
1922 return process_refs
;
1925 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1927 int process_refs
, new_process_refs
;
1928 struct cfq_queue
*__cfqq
;
1930 /* Avoid a circular list and skip interim queue merges */
1931 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1937 process_refs
= cfqq_process_refs(cfqq
);
1939 * If the process for the cfqq has gone away, there is no
1940 * sense in merging the queues.
1942 if (process_refs
== 0)
1946 * Merge in the direction of the lesser amount of work.
1948 new_process_refs
= cfqq_process_refs(new_cfqq
);
1949 if (new_process_refs
>= process_refs
) {
1950 cfqq
->new_cfqq
= new_cfqq
;
1951 atomic_add(process_refs
, &new_cfqq
->ref
);
1953 new_cfqq
->new_cfqq
= cfqq
;
1954 atomic_add(new_process_refs
, &cfqq
->ref
);
1958 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
1959 struct cfq_group
*cfqg
, enum wl_prio_t prio
,
1962 struct cfq_queue
*queue
;
1964 bool key_valid
= false;
1965 unsigned long lowest_key
= 0;
1966 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
1970 * When priorities switched, we prefer starting
1971 * from SYNC_NOIDLE (first choice), or just SYNC
1974 if (service_tree_for(cfqg
, prio
, cur_best
, cfqd
)->count
)
1976 cur_best
= SYNC_WORKLOAD
;
1977 if (service_tree_for(cfqg
, prio
, cur_best
, cfqd
)->count
)
1980 return ASYNC_WORKLOAD
;
1983 for (i
= 0; i
< 3; ++i
) {
1984 /* otherwise, select the one with lowest rb_key */
1985 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
, cfqd
));
1987 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
1988 lowest_key
= queue
->rb_key
;
1997 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1999 enum wl_prio_t previous_prio
= cfqd
->serving_prio
;
2003 struct cfq_rb_root
*st
;
2004 unsigned group_slice
;
2007 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2008 cfqd
->workload_expires
= jiffies
+ 1;
2012 /* Choose next priority. RT > BE > IDLE */
2013 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2014 cfqd
->serving_prio
= RT_WORKLOAD
;
2015 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2016 cfqd
->serving_prio
= BE_WORKLOAD
;
2018 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2019 cfqd
->workload_expires
= jiffies
+ 1;
2024 * For RT and BE, we have to choose also the type
2025 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2028 prio_changed
= (cfqd
->serving_prio
!= previous_prio
);
2029 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
,
2034 * If priority didn't change, check workload expiration,
2035 * and that we still have other queues ready
2037 if (!prio_changed
&& count
&&
2038 !time_after(jiffies
, cfqd
->workload_expires
))
2041 /* otherwise select new workload type */
2042 cfqd
->serving_type
=
2043 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
, prio_changed
);
2044 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
,
2049 * the workload slice is computed as a fraction of target latency
2050 * proportional to the number of queues in that workload, over
2051 * all the queues in the same priority class
2053 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2055 slice
= group_slice
* count
/
2056 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2057 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2059 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2063 * Async queues are currently system wide. Just taking
2064 * proportion of queues with-in same group will lead to higher
2065 * async ratio system wide as generally root group is going
2066 * to have higher weight. A more accurate thing would be to
2067 * calculate system wide asnc/sync ratio.
2069 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2070 tmp
= tmp
/cfqd
->busy_queues
;
2071 slice
= min_t(unsigned, slice
, tmp
);
2073 /* async workload slice is scaled down according to
2074 * the sync/async slice ratio. */
2075 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2077 /* sync workload slice is at least 2 * cfq_slice_idle */
2078 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2080 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2081 cfqd
->workload_expires
= jiffies
+ slice
;
2082 cfqd
->noidle_tree_requires_idle
= false;
2085 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2087 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2088 struct cfq_group
*cfqg
;
2090 if (RB_EMPTY_ROOT(&st
->rb
))
2092 cfqg
= cfq_rb_first_group(st
);
2093 st
->active
= &cfqg
->rb_node
;
2094 update_min_vdisktime(st
);
2098 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2100 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2102 cfqd
->serving_group
= cfqg
;
2104 /* Restore the workload type data */
2105 if (cfqg
->saved_workload_slice
) {
2106 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2107 cfqd
->serving_type
= cfqg
->saved_workload
;
2108 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2110 cfqd
->workload_expires
= jiffies
- 1;
2112 choose_service_tree(cfqd
, cfqg
);
2116 * Select a queue for service. If we have a current active queue,
2117 * check whether to continue servicing it, or retrieve and set a new one.
2119 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2121 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2123 cfqq
= cfqd
->active_queue
;
2127 if (!cfqd
->rq_queued
)
2131 * We were waiting for group to get backlogged. Expire the queue
2133 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2137 * The active queue has run out of time, expire it and select new.
2139 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2141 * If slice had not expired at the completion of last request
2142 * we might not have turned on wait_busy flag. Don't expire
2143 * the queue yet. Allow the group to get backlogged.
2145 * The very fact that we have used the slice, that means we
2146 * have been idling all along on this queue and it should be
2147 * ok to wait for this request to complete.
2149 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2150 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2158 * The active queue has requests and isn't expired, allow it to
2161 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2165 * If another queue has a request waiting within our mean seek
2166 * distance, let it run. The expire code will check for close
2167 * cooperators and put the close queue at the front of the service
2168 * tree. If possible, merge the expiring queue with the new cfqq.
2170 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2172 if (!cfqq
->new_cfqq
)
2173 cfq_setup_merge(cfqq
, new_cfqq
);
2178 * No requests pending. If the active queue still has requests in
2179 * flight or is idling for a new request, allow either of these
2180 * conditions to happen (or time out) before selecting a new queue.
2182 if (timer_pending(&cfqd
->idle_slice_timer
) ||
2183 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
2189 cfq_slice_expired(cfqd
, 0);
2192 * Current queue expired. Check if we have to switch to a new
2196 cfq_choose_cfqg(cfqd
);
2198 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2203 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2207 while (cfqq
->next_rq
) {
2208 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2212 BUG_ON(!list_empty(&cfqq
->fifo
));
2214 /* By default cfqq is not expired if it is empty. Do it explicitly */
2215 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2220 * Drain our current requests. Used for barriers and when switching
2221 * io schedulers on-the-fly.
2223 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2225 struct cfq_queue
*cfqq
;
2228 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
)
2229 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2231 cfq_slice_expired(cfqd
, 0);
2232 BUG_ON(cfqd
->busy_queues
);
2234 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2238 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2240 unsigned int max_dispatch
;
2243 * Drain async requests before we start sync IO
2245 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
2249 * If this is an async queue and we have sync IO in flight, let it wait
2251 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
2254 max_dispatch
= cfqd
->cfq_quantum
;
2255 if (cfq_class_idle(cfqq
))
2259 * Does this cfqq already have too much IO in flight?
2261 if (cfqq
->dispatched
>= max_dispatch
) {
2263 * idle queue must always only have a single IO in flight
2265 if (cfq_class_idle(cfqq
))
2269 * We have other queues, don't allow more IO from this one
2271 if (cfqd
->busy_queues
> 1)
2275 * Sole queue user, no limit
2281 * Async queues must wait a bit before being allowed dispatch.
2282 * We also ramp up the dispatch depth gradually for async IO,
2283 * based on the last sync IO we serviced
2285 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2286 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2289 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2290 if (!depth
&& !cfqq
->dispatched
)
2292 if (depth
< max_dispatch
)
2293 max_dispatch
= depth
;
2297 * If we're below the current max, allow a dispatch
2299 return cfqq
->dispatched
< max_dispatch
;
2303 * Dispatch a request from cfqq, moving them to the request queue
2306 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2310 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2312 if (!cfq_may_dispatch(cfqd
, cfqq
))
2316 * follow expired path, else get first next available
2318 rq
= cfq_check_fifo(cfqq
);
2323 * insert request into driver dispatch list
2325 cfq_dispatch_insert(cfqd
->queue
, rq
);
2327 if (!cfqd
->active_cic
) {
2328 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2330 atomic_long_inc(&cic
->ioc
->refcount
);
2331 cfqd
->active_cic
= cic
;
2338 * Find the cfqq that we need to service and move a request from that to the
2341 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2343 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2344 struct cfq_queue
*cfqq
;
2346 if (!cfqd
->busy_queues
)
2349 if (unlikely(force
))
2350 return cfq_forced_dispatch(cfqd
);
2352 cfqq
= cfq_select_queue(cfqd
);
2357 * Dispatch a request from this cfqq, if it is allowed
2359 if (!cfq_dispatch_request(cfqd
, cfqq
))
2362 cfqq
->slice_dispatch
++;
2363 cfq_clear_cfqq_must_dispatch(cfqq
);
2366 * expire an async queue immediately if it has used up its slice. idle
2367 * queue always expire after 1 dispatch round.
2369 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2370 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2371 cfq_class_idle(cfqq
))) {
2372 cfqq
->slice_end
= jiffies
+ 1;
2373 cfq_slice_expired(cfqd
, 0);
2376 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2381 * task holds one reference to the queue, dropped when task exits. each rq
2382 * in-flight on this queue also holds a reference, dropped when rq is freed.
2384 * Each cfq queue took a reference on the parent group. Drop it now.
2385 * queue lock must be held here.
2387 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2389 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2390 struct cfq_group
*cfqg
, *orig_cfqg
;
2392 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2394 if (!atomic_dec_and_test(&cfqq
->ref
))
2397 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2398 BUG_ON(rb_first(&cfqq
->sort_list
));
2399 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2401 orig_cfqg
= cfqq
->orig_cfqg
;
2403 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2404 __cfq_slice_expired(cfqd
, cfqq
, 0);
2405 cfq_schedule_dispatch(cfqd
);
2408 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2409 kmem_cache_free(cfq_pool
, cfqq
);
2412 cfq_put_cfqg(orig_cfqg
);
2416 * Must always be called with the rcu_read_lock() held
2419 __call_for_each_cic(struct io_context
*ioc
,
2420 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2422 struct cfq_io_context
*cic
;
2423 struct hlist_node
*n
;
2425 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2430 * Call func for each cic attached to this ioc.
2433 call_for_each_cic(struct io_context
*ioc
,
2434 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2437 __call_for_each_cic(ioc
, func
);
2441 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2443 struct cfq_io_context
*cic
;
2445 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2447 kmem_cache_free(cfq_ioc_pool
, cic
);
2448 elv_ioc_count_dec(cfq_ioc_count
);
2452 * CFQ scheduler is exiting, grab exit lock and check
2453 * the pending io context count. If it hits zero,
2454 * complete ioc_gone and set it back to NULL
2456 spin_lock(&ioc_gone_lock
);
2457 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2461 spin_unlock(&ioc_gone_lock
);
2465 static void cfq_cic_free(struct cfq_io_context
*cic
)
2467 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2470 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2472 unsigned long flags
;
2474 BUG_ON(!cic
->dead_key
);
2476 spin_lock_irqsave(&ioc
->lock
, flags
);
2477 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
2478 hlist_del_rcu(&cic
->cic_list
);
2479 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2485 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2486 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2487 * and ->trim() which is called with the task lock held
2489 static void cfq_free_io_context(struct io_context
*ioc
)
2492 * ioc->refcount is zero here, or we are called from elv_unregister(),
2493 * so no more cic's are allowed to be linked into this ioc. So it
2494 * should be ok to iterate over the known list, we will see all cic's
2495 * since no new ones are added.
2497 __call_for_each_cic(ioc
, cic_free_func
);
2500 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2502 struct cfq_queue
*__cfqq
, *next
;
2504 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2505 __cfq_slice_expired(cfqd
, cfqq
, 0);
2506 cfq_schedule_dispatch(cfqd
);
2510 * If this queue was scheduled to merge with another queue, be
2511 * sure to drop the reference taken on that queue (and others in
2512 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2514 __cfqq
= cfqq
->new_cfqq
;
2516 if (__cfqq
== cfqq
) {
2517 WARN(1, "cfqq->new_cfqq loop detected\n");
2520 next
= __cfqq
->new_cfqq
;
2521 cfq_put_queue(__cfqq
);
2525 cfq_put_queue(cfqq
);
2528 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2529 struct cfq_io_context
*cic
)
2531 struct io_context
*ioc
= cic
->ioc
;
2533 list_del_init(&cic
->queue_list
);
2536 * Make sure key == NULL is seen for dead queues
2539 cic
->dead_key
= (unsigned long) cic
->key
;
2542 if (ioc
->ioc_data
== cic
)
2543 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2545 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2546 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2547 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2550 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2551 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2552 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2556 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2557 struct cfq_io_context
*cic
)
2559 struct cfq_data
*cfqd
= cic
->key
;
2562 struct request_queue
*q
= cfqd
->queue
;
2563 unsigned long flags
;
2565 spin_lock_irqsave(q
->queue_lock
, flags
);
2568 * Ensure we get a fresh copy of the ->key to prevent
2569 * race between exiting task and queue
2571 smp_read_barrier_depends();
2573 __cfq_exit_single_io_context(cfqd
, cic
);
2575 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2580 * The process that ioc belongs to has exited, we need to clean up
2581 * and put the internal structures we have that belongs to that process.
2583 static void cfq_exit_io_context(struct io_context
*ioc
)
2585 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2588 static struct cfq_io_context
*
2589 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2591 struct cfq_io_context
*cic
;
2593 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2596 cic
->last_end_request
= jiffies
;
2597 INIT_LIST_HEAD(&cic
->queue_list
);
2598 INIT_HLIST_NODE(&cic
->cic_list
);
2599 cic
->dtor
= cfq_free_io_context
;
2600 cic
->exit
= cfq_exit_io_context
;
2601 elv_ioc_count_inc(cfq_ioc_count
);
2607 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2609 struct task_struct
*tsk
= current
;
2612 if (!cfq_cfqq_prio_changed(cfqq
))
2615 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2616 switch (ioprio_class
) {
2618 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2619 case IOPRIO_CLASS_NONE
:
2621 * no prio set, inherit CPU scheduling settings
2623 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2624 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2626 case IOPRIO_CLASS_RT
:
2627 cfqq
->ioprio
= task_ioprio(ioc
);
2628 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2630 case IOPRIO_CLASS_BE
:
2631 cfqq
->ioprio
= task_ioprio(ioc
);
2632 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2634 case IOPRIO_CLASS_IDLE
:
2635 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2637 cfq_clear_cfqq_idle_window(cfqq
);
2642 * keep track of original prio settings in case we have to temporarily
2643 * elevate the priority of this queue
2645 cfqq
->org_ioprio
= cfqq
->ioprio
;
2646 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2647 cfq_clear_cfqq_prio_changed(cfqq
);
2650 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2652 struct cfq_data
*cfqd
= cic
->key
;
2653 struct cfq_queue
*cfqq
;
2654 unsigned long flags
;
2656 if (unlikely(!cfqd
))
2659 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2661 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2663 struct cfq_queue
*new_cfqq
;
2664 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2667 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2668 cfq_put_queue(cfqq
);
2672 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2674 cfq_mark_cfqq_prio_changed(cfqq
);
2676 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2679 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2681 call_for_each_cic(ioc
, changed_ioprio
);
2682 ioc
->ioprio_changed
= 0;
2685 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2686 pid_t pid
, bool is_sync
)
2688 RB_CLEAR_NODE(&cfqq
->rb_node
);
2689 RB_CLEAR_NODE(&cfqq
->p_node
);
2690 INIT_LIST_HEAD(&cfqq
->fifo
);
2692 atomic_set(&cfqq
->ref
, 0);
2695 cfq_mark_cfqq_prio_changed(cfqq
);
2698 if (!cfq_class_idle(cfqq
))
2699 cfq_mark_cfqq_idle_window(cfqq
);
2700 cfq_mark_cfqq_sync(cfqq
);
2705 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2706 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2708 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2709 struct cfq_data
*cfqd
= cic
->key
;
2710 unsigned long flags
;
2711 struct request_queue
*q
;
2713 if (unlikely(!cfqd
))
2718 spin_lock_irqsave(q
->queue_lock
, flags
);
2722 * Drop reference to sync queue. A new sync queue will be
2723 * assigned in new group upon arrival of a fresh request.
2725 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2726 cic_set_cfqq(cic
, NULL
, 1);
2727 cfq_put_queue(sync_cfqq
);
2730 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2733 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2735 call_for_each_cic(ioc
, changed_cgroup
);
2736 ioc
->cgroup_changed
= 0;
2738 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2740 static struct cfq_queue
*
2741 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2742 struct io_context
*ioc
, gfp_t gfp_mask
)
2744 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2745 struct cfq_io_context
*cic
;
2746 struct cfq_group
*cfqg
;
2749 cfqg
= cfq_get_cfqg(cfqd
, 1);
2750 cic
= cfq_cic_lookup(cfqd
, ioc
);
2751 /* cic always exists here */
2752 cfqq
= cic_to_cfqq(cic
, is_sync
);
2755 * Always try a new alloc if we fell back to the OOM cfqq
2756 * originally, since it should just be a temporary situation.
2758 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2763 } else if (gfp_mask
& __GFP_WAIT
) {
2764 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2765 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2766 gfp_mask
| __GFP_ZERO
,
2768 spin_lock_irq(cfqd
->queue
->queue_lock
);
2772 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2773 gfp_mask
| __GFP_ZERO
,
2778 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2779 cfq_init_prio_data(cfqq
, ioc
);
2780 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2781 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2783 cfqq
= &cfqd
->oom_cfqq
;
2787 kmem_cache_free(cfq_pool
, new_cfqq
);
2792 static struct cfq_queue
**
2793 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2795 switch (ioprio_class
) {
2796 case IOPRIO_CLASS_RT
:
2797 return &cfqd
->async_cfqq
[0][ioprio
];
2798 case IOPRIO_CLASS_BE
:
2799 return &cfqd
->async_cfqq
[1][ioprio
];
2800 case IOPRIO_CLASS_IDLE
:
2801 return &cfqd
->async_idle_cfqq
;
2807 static struct cfq_queue
*
2808 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2811 const int ioprio
= task_ioprio(ioc
);
2812 const int ioprio_class
= task_ioprio_class(ioc
);
2813 struct cfq_queue
**async_cfqq
= NULL
;
2814 struct cfq_queue
*cfqq
= NULL
;
2817 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2822 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2825 * pin the queue now that it's allocated, scheduler exit will prune it
2827 if (!is_sync
&& !(*async_cfqq
)) {
2828 atomic_inc(&cfqq
->ref
);
2832 atomic_inc(&cfqq
->ref
);
2837 * We drop cfq io contexts lazily, so we may find a dead one.
2840 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2841 struct cfq_io_context
*cic
)
2843 unsigned long flags
;
2845 WARN_ON(!list_empty(&cic
->queue_list
));
2847 spin_lock_irqsave(&ioc
->lock
, flags
);
2849 BUG_ON(ioc
->ioc_data
== cic
);
2851 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
2852 hlist_del_rcu(&cic
->cic_list
);
2853 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2858 static struct cfq_io_context
*
2859 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2861 struct cfq_io_context
*cic
;
2862 unsigned long flags
;
2871 * we maintain a last-hit cache, to avoid browsing over the tree
2873 cic
= rcu_dereference(ioc
->ioc_data
);
2874 if (cic
&& cic
->key
== cfqd
) {
2880 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
2884 /* ->key must be copied to avoid race with cfq_exit_queue() */
2887 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2892 spin_lock_irqsave(&ioc
->lock
, flags
);
2893 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2894 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2902 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2903 * the process specific cfq io context when entered from the block layer.
2904 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2906 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2907 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2909 unsigned long flags
;
2912 ret
= radix_tree_preload(gfp_mask
);
2917 spin_lock_irqsave(&ioc
->lock
, flags
);
2918 ret
= radix_tree_insert(&ioc
->radix_root
,
2919 (unsigned long) cfqd
, cic
);
2921 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2922 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2924 radix_tree_preload_end();
2927 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2928 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
2929 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2934 printk(KERN_ERR
"cfq: cic link failed!\n");
2940 * Setup general io context and cfq io context. There can be several cfq
2941 * io contexts per general io context, if this process is doing io to more
2942 * than one device managed by cfq.
2944 static struct cfq_io_context
*
2945 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2947 struct io_context
*ioc
= NULL
;
2948 struct cfq_io_context
*cic
;
2950 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2952 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2956 cic
= cfq_cic_lookup(cfqd
, ioc
);
2960 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2964 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2968 smp_read_barrier_depends();
2969 if (unlikely(ioc
->ioprio_changed
))
2970 cfq_ioc_set_ioprio(ioc
);
2972 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2973 if (unlikely(ioc
->cgroup_changed
))
2974 cfq_ioc_set_cgroup(ioc
);
2980 put_io_context(ioc
);
2985 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2987 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2988 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2990 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2991 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2992 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
2996 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3002 if (!cfqq
->last_request_pos
)
3004 else if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3005 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3007 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3010 * Don't allow the seek distance to get too large from the
3011 * odd fragment, pagein, etc
3013 if (cfqq
->seek_samples
<= 60) /* second&third seek */
3014 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*1024);
3016 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*64);
3018 cfqq
->seek_samples
= (7*cfqq
->seek_samples
+ 256) / 8;
3019 cfqq
->seek_total
= (7*cfqq
->seek_total
+ (u64
)256*sdist
) / 8;
3020 total
= cfqq
->seek_total
+ (cfqq
->seek_samples
/2);
3021 do_div(total
, cfqq
->seek_samples
);
3022 cfqq
->seek_mean
= (sector_t
)total
;
3025 * If this cfqq is shared between multiple processes, check to
3026 * make sure that those processes are still issuing I/Os within
3027 * the mean seek distance. If not, it may be time to break the
3028 * queues apart again.
3030 if (cfq_cfqq_coop(cfqq
)) {
3031 if (CFQQ_SEEKY(cfqq
) && !cfqq
->seeky_start
)
3032 cfqq
->seeky_start
= jiffies
;
3033 else if (!CFQQ_SEEKY(cfqq
))
3034 cfqq
->seeky_start
= 0;
3039 * Disable idle window if the process thinks too long or seeks so much that
3043 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3044 struct cfq_io_context
*cic
)
3046 int old_idle
, enable_idle
;
3049 * Don't idle for async or idle io prio class
3051 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3054 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3056 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3057 cfq_mark_cfqq_deep(cfqq
);
3059 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3060 (!cfq_cfqq_deep(cfqq
) && sample_valid(cfqq
->seek_samples
)
3061 && CFQQ_SEEKY(cfqq
)))
3063 else if (sample_valid(cic
->ttime_samples
)) {
3064 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3070 if (old_idle
!= enable_idle
) {
3071 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3073 cfq_mark_cfqq_idle_window(cfqq
);
3075 cfq_clear_cfqq_idle_window(cfqq
);
3080 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3081 * no or if we aren't sure, a 1 will cause a preempt.
3084 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3087 struct cfq_queue
*cfqq
;
3089 cfqq
= cfqd
->active_queue
;
3093 if (cfq_class_idle(new_cfqq
))
3096 if (cfq_class_idle(cfqq
))
3100 * if the new request is sync, but the currently running queue is
3101 * not, let the sync request have priority.
3103 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3106 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3109 if (cfq_slice_used(cfqq
))
3112 /* Allow preemption only if we are idling on sync-noidle tree */
3113 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3114 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3115 new_cfqq
->service_tree
->count
== 2 &&
3116 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3120 * So both queues are sync. Let the new request get disk time if
3121 * it's a metadata request and the current queue is doing regular IO.
3123 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
3127 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3129 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3132 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3136 * if this request is as-good as one we would expect from the
3137 * current cfqq, let it preempt
3139 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3146 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3147 * let it have half of its nominal slice.
3149 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3151 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3152 cfq_slice_expired(cfqd
, 1);
3155 * Put the new queue at the front of the of the current list,
3156 * so we know that it will be selected next.
3158 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3160 cfq_service_tree_add(cfqd
, cfqq
, 1);
3162 cfqq
->slice_end
= 0;
3163 cfq_mark_cfqq_slice_new(cfqq
);
3167 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3168 * something we should do about it
3171 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3174 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3178 cfqq
->meta_pending
++;
3180 cfq_update_io_thinktime(cfqd
, cic
);
3181 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3182 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3184 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3186 if (cfqq
== cfqd
->active_queue
) {
3188 * Remember that we saw a request from this process, but
3189 * don't start queuing just yet. Otherwise we risk seeing lots
3190 * of tiny requests, because we disrupt the normal plugging
3191 * and merging. If the request is already larger than a single
3192 * page, let it rip immediately. For that case we assume that
3193 * merging is already done. Ditto for a busy system that
3194 * has other work pending, don't risk delaying until the
3195 * idle timer unplug to continue working.
3197 if (cfq_cfqq_wait_request(cfqq
)) {
3198 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3199 cfqd
->busy_queues
> 1) {
3200 del_timer(&cfqd
->idle_slice_timer
);
3201 cfq_clear_cfqq_wait_request(cfqq
);
3202 __blk_run_queue(cfqd
->queue
);
3204 cfq_mark_cfqq_must_dispatch(cfqq
);
3206 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3208 * not the active queue - expire current slice if it is
3209 * idle and has expired it's mean thinktime or this new queue
3210 * has some old slice time left and is of higher priority or
3211 * this new queue is RT and the current one is BE
3213 cfq_preempt_queue(cfqd
, cfqq
);
3214 __blk_run_queue(cfqd
->queue
);
3218 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3220 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3221 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3223 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3224 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3226 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3227 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3230 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3234 * Update hw_tag based on peak queue depth over 50 samples under
3237 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3239 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3241 if (rq_in_driver(cfqd
) > cfqd
->hw_tag_est_depth
)
3242 cfqd
->hw_tag_est_depth
= rq_in_driver(cfqd
);
3244 if (cfqd
->hw_tag
== 1)
3247 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3248 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
3252 * If active queue hasn't enough requests and can idle, cfq might not
3253 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3256 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3257 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3258 CFQ_HW_QUEUE_MIN
&& rq_in_driver(cfqd
) < CFQ_HW_QUEUE_MIN
)
3261 if (cfqd
->hw_tag_samples
++ < 50)
3264 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3270 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3272 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3274 /* If there are other queues in the group, don't wait */
3275 if (cfqq
->cfqg
->nr_cfqq
> 1)
3278 if (cfq_slice_used(cfqq
))
3281 /* if slice left is less than think time, wait busy */
3282 if (cic
&& sample_valid(cic
->ttime_samples
)
3283 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3287 * If think times is less than a jiffy than ttime_mean=0 and above
3288 * will not be true. It might happen that slice has not expired yet
3289 * but will expire soon (4-5 ns) during select_queue(). To cover the
3290 * case where think time is less than a jiffy, mark the queue wait
3291 * busy if only 1 jiffy is left in the slice.
3293 if (cfqq
->slice_end
- jiffies
== 1)
3299 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3301 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3302 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3303 const int sync
= rq_is_sync(rq
);
3307 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", !!rq_noidle(rq
));
3309 cfq_update_hw_tag(cfqd
);
3311 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
3312 WARN_ON(!cfqq
->dispatched
);
3313 cfqd
->rq_in_driver
[sync
]--;
3316 if (cfq_cfqq_sync(cfqq
))
3317 cfqd
->sync_flight
--;
3320 RQ_CIC(rq
)->last_end_request
= now
;
3321 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3322 cfqd
->last_delayed_sync
= now
;
3326 * If this is the active queue, check if it needs to be expired,
3327 * or if we want to idle in case it has no pending requests.
3329 if (cfqd
->active_queue
== cfqq
) {
3330 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3332 if (cfq_cfqq_slice_new(cfqq
)) {
3333 cfq_set_prio_slice(cfqd
, cfqq
);
3334 cfq_clear_cfqq_slice_new(cfqq
);
3338 * Should we wait for next request to come in before we expire
3341 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3342 cfqq
->slice_end
= jiffies
+ cfqd
->cfq_slice_idle
;
3343 cfq_mark_cfqq_wait_busy(cfqq
);
3347 * Idling is not enabled on:
3349 * - idle-priority queues
3351 * - queues with still some requests queued
3352 * - when there is a close cooperator
3354 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3355 cfq_slice_expired(cfqd
, 1);
3356 else if (sync
&& cfqq_empty
&&
3357 !cfq_close_cooperator(cfqd
, cfqq
)) {
3358 cfqd
->noidle_tree_requires_idle
|= !rq_noidle(rq
);
3360 * Idling is enabled for SYNC_WORKLOAD.
3361 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3362 * only if we processed at least one !rq_noidle request
3364 if (cfqd
->serving_type
== SYNC_WORKLOAD
3365 || cfqd
->noidle_tree_requires_idle
3366 || cfqq
->cfqg
->nr_cfqq
== 1)
3367 cfq_arm_slice_timer(cfqd
);
3371 if (!rq_in_driver(cfqd
))
3372 cfq_schedule_dispatch(cfqd
);
3376 * we temporarily boost lower priority queues if they are holding fs exclusive
3377 * resources. they are boosted to normal prio (CLASS_BE/4)
3379 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3381 if (has_fs_excl()) {
3383 * boost idle prio on transactions that would lock out other
3384 * users of the filesystem
3386 if (cfq_class_idle(cfqq
))
3387 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3388 if (cfqq
->ioprio
> IOPRIO_NORM
)
3389 cfqq
->ioprio
= IOPRIO_NORM
;
3392 * unboost the queue (if needed)
3394 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3395 cfqq
->ioprio
= cfqq
->org_ioprio
;
3399 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3401 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3402 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3403 return ELV_MQUEUE_MUST
;
3406 return ELV_MQUEUE_MAY
;
3409 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3411 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3412 struct task_struct
*tsk
= current
;
3413 struct cfq_io_context
*cic
;
3414 struct cfq_queue
*cfqq
;
3417 * don't force setup of a queue from here, as a call to may_queue
3418 * does not necessarily imply that a request actually will be queued.
3419 * so just lookup a possibly existing queue, or return 'may queue'
3422 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3424 return ELV_MQUEUE_MAY
;
3426 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3428 cfq_init_prio_data(cfqq
, cic
->ioc
);
3429 cfq_prio_boost(cfqq
);
3431 return __cfq_may_queue(cfqq
);
3434 return ELV_MQUEUE_MAY
;
3438 * queue lock held here
3440 static void cfq_put_request(struct request
*rq
)
3442 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3445 const int rw
= rq_data_dir(rq
);
3447 BUG_ON(!cfqq
->allocated
[rw
]);
3448 cfqq
->allocated
[rw
]--;
3450 put_io_context(RQ_CIC(rq
)->ioc
);
3452 rq
->elevator_private
= NULL
;
3453 rq
->elevator_private2
= NULL
;
3455 cfq_put_queue(cfqq
);
3459 static struct cfq_queue
*
3460 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3461 struct cfq_queue
*cfqq
)
3463 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3464 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3465 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3466 cfq_put_queue(cfqq
);
3467 return cic_to_cfqq(cic
, 1);
3470 static int should_split_cfqq(struct cfq_queue
*cfqq
)
3472 if (cfqq
->seeky_start
&&
3473 time_after(jiffies
, cfqq
->seeky_start
+ CFQQ_COOP_TOUT
))
3479 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3480 * was the last process referring to said cfqq.
3482 static struct cfq_queue
*
3483 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3485 if (cfqq_process_refs(cfqq
) == 1) {
3486 cfqq
->seeky_start
= 0;
3487 cfqq
->pid
= current
->pid
;
3488 cfq_clear_cfqq_coop(cfqq
);
3492 cic_set_cfqq(cic
, NULL
, 1);
3493 cfq_put_queue(cfqq
);
3497 * Allocate cfq data structures associated with this request.
3500 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3502 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3503 struct cfq_io_context
*cic
;
3504 const int rw
= rq_data_dir(rq
);
3505 const bool is_sync
= rq_is_sync(rq
);
3506 struct cfq_queue
*cfqq
;
3507 unsigned long flags
;
3509 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3511 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3513 spin_lock_irqsave(q
->queue_lock
, flags
);
3519 cfqq
= cic_to_cfqq(cic
, is_sync
);
3520 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3521 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3522 cic_set_cfqq(cic
, cfqq
, is_sync
);
3525 * If the queue was seeky for too long, break it apart.
3527 if (cfq_cfqq_coop(cfqq
) && should_split_cfqq(cfqq
)) {
3528 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3529 cfqq
= split_cfqq(cic
, cfqq
);
3535 * Check to see if this queue is scheduled to merge with
3536 * another, closely cooperating queue. The merging of
3537 * queues happens here as it must be done in process context.
3538 * The reference on new_cfqq was taken in merge_cfqqs.
3541 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3544 cfqq
->allocated
[rw
]++;
3545 atomic_inc(&cfqq
->ref
);
3547 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3549 rq
->elevator_private
= cic
;
3550 rq
->elevator_private2
= cfqq
;
3555 put_io_context(cic
->ioc
);
3557 cfq_schedule_dispatch(cfqd
);
3558 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3559 cfq_log(cfqd
, "set_request fail");
3563 static void cfq_kick_queue(struct work_struct
*work
)
3565 struct cfq_data
*cfqd
=
3566 container_of(work
, struct cfq_data
, unplug_work
);
3567 struct request_queue
*q
= cfqd
->queue
;
3569 spin_lock_irq(q
->queue_lock
);
3570 __blk_run_queue(cfqd
->queue
);
3571 spin_unlock_irq(q
->queue_lock
);
3575 * Timer running if the active_queue is currently idling inside its time slice
3577 static void cfq_idle_slice_timer(unsigned long data
)
3579 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3580 struct cfq_queue
*cfqq
;
3581 unsigned long flags
;
3584 cfq_log(cfqd
, "idle timer fired");
3586 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3588 cfqq
= cfqd
->active_queue
;
3593 * We saw a request before the queue expired, let it through
3595 if (cfq_cfqq_must_dispatch(cfqq
))
3601 if (cfq_slice_used(cfqq
))
3605 * only expire and reinvoke request handler, if there are
3606 * other queues with pending requests
3608 if (!cfqd
->busy_queues
)
3612 * not expired and it has a request pending, let it dispatch
3614 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3618 * Queue depth flag is reset only when the idle didn't succeed
3620 cfq_clear_cfqq_deep(cfqq
);
3623 cfq_slice_expired(cfqd
, timed_out
);
3625 cfq_schedule_dispatch(cfqd
);
3627 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3630 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3632 del_timer_sync(&cfqd
->idle_slice_timer
);
3633 cancel_work_sync(&cfqd
->unplug_work
);
3636 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3640 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3641 if (cfqd
->async_cfqq
[0][i
])
3642 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3643 if (cfqd
->async_cfqq
[1][i
])
3644 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3647 if (cfqd
->async_idle_cfqq
)
3648 cfq_put_queue(cfqd
->async_idle_cfqq
);
3651 static void cfq_cfqd_free(struct rcu_head
*head
)
3653 kfree(container_of(head
, struct cfq_data
, rcu
));
3656 static void cfq_exit_queue(struct elevator_queue
*e
)
3658 struct cfq_data
*cfqd
= e
->elevator_data
;
3659 struct request_queue
*q
= cfqd
->queue
;
3661 cfq_shutdown_timer_wq(cfqd
);
3663 spin_lock_irq(q
->queue_lock
);
3665 if (cfqd
->active_queue
)
3666 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3668 while (!list_empty(&cfqd
->cic_list
)) {
3669 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3670 struct cfq_io_context
,
3673 __cfq_exit_single_io_context(cfqd
, cic
);
3676 cfq_put_async_queues(cfqd
);
3677 cfq_release_cfq_groups(cfqd
);
3678 blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3680 spin_unlock_irq(q
->queue_lock
);
3682 cfq_shutdown_timer_wq(cfqd
);
3684 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3685 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3688 static void *cfq_init_queue(struct request_queue
*q
)
3690 struct cfq_data
*cfqd
;
3692 struct cfq_group
*cfqg
;
3693 struct cfq_rb_root
*st
;
3695 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3699 /* Init root service tree */
3700 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3702 /* Init root group */
3703 cfqg
= &cfqd
->root_group
;
3704 for_each_cfqg_st(cfqg
, i
, j
, st
)
3706 RB_CLEAR_NODE(&cfqg
->rb_node
);
3708 /* Give preference to root group over other groups */
3709 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3711 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3713 * Take a reference to root group which we never drop. This is just
3714 * to make sure that cfq_put_cfqg() does not try to kfree root group
3716 atomic_set(&cfqg
->ref
, 1);
3717 blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
, (void *)cfqd
,
3721 * Not strictly needed (since RB_ROOT just clears the node and we
3722 * zeroed cfqd on alloc), but better be safe in case someone decides
3723 * to add magic to the rb code
3725 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3726 cfqd
->prio_trees
[i
] = RB_ROOT
;
3729 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3730 * Grab a permanent reference to it, so that the normal code flow
3731 * will not attempt to free it.
3733 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3734 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3735 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3737 INIT_LIST_HEAD(&cfqd
->cic_list
);
3741 init_timer(&cfqd
->idle_slice_timer
);
3742 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3743 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3745 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3747 cfqd
->cfq_quantum
= cfq_quantum
;
3748 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3749 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3750 cfqd
->cfq_back_max
= cfq_back_max
;
3751 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3752 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3753 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3754 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3755 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3756 cfqd
->cfq_latency
= 1;
3757 cfqd
->cfq_group_isolation
= 0;
3760 * we optimistically start assuming sync ops weren't delayed in last
3761 * second, in order to have larger depth for async operations.
3763 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3764 INIT_RCU_HEAD(&cfqd
->rcu
);
3768 static void cfq_slab_kill(void)
3771 * Caller already ensured that pending RCU callbacks are completed,
3772 * so we should have no busy allocations at this point.
3775 kmem_cache_destroy(cfq_pool
);
3777 kmem_cache_destroy(cfq_ioc_pool
);
3780 static int __init
cfq_slab_setup(void)
3782 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3786 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3797 * sysfs parts below -->
3800 cfq_var_show(unsigned int var
, char *page
)
3802 return sprintf(page
, "%d\n", var
);
3806 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3808 char *p
= (char *) page
;
3810 *var
= simple_strtoul(p
, &p
, 10);
3814 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3815 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3817 struct cfq_data *cfqd = e->elevator_data; \
3818 unsigned int __data = __VAR; \
3820 __data = jiffies_to_msecs(__data); \
3821 return cfq_var_show(__data, (page)); \
3823 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3824 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3825 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3826 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3827 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3828 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3829 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3830 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3831 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3832 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3833 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3834 #undef SHOW_FUNCTION
3836 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3837 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3839 struct cfq_data *cfqd = e->elevator_data; \
3840 unsigned int __data; \
3841 int ret = cfq_var_store(&__data, (page), count); \
3842 if (__data < (MIN)) \
3844 else if (__data > (MAX)) \
3847 *(__PTR) = msecs_to_jiffies(__data); \
3849 *(__PTR) = __data; \
3852 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3853 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3855 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3857 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3858 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3860 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3861 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3862 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3863 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3865 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3866 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
3867 #undef STORE_FUNCTION
3869 #define CFQ_ATTR(name) \
3870 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3872 static struct elv_fs_entry cfq_attrs
[] = {
3874 CFQ_ATTR(fifo_expire_sync
),
3875 CFQ_ATTR(fifo_expire_async
),
3876 CFQ_ATTR(back_seek_max
),
3877 CFQ_ATTR(back_seek_penalty
),
3878 CFQ_ATTR(slice_sync
),
3879 CFQ_ATTR(slice_async
),
3880 CFQ_ATTR(slice_async_rq
),
3881 CFQ_ATTR(slice_idle
),
3882 CFQ_ATTR(low_latency
),
3883 CFQ_ATTR(group_isolation
),
3887 static struct elevator_type iosched_cfq
= {
3889 .elevator_merge_fn
= cfq_merge
,
3890 .elevator_merged_fn
= cfq_merged_request
,
3891 .elevator_merge_req_fn
= cfq_merged_requests
,
3892 .elevator_allow_merge_fn
= cfq_allow_merge
,
3893 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3894 .elevator_add_req_fn
= cfq_insert_request
,
3895 .elevator_activate_req_fn
= cfq_activate_request
,
3896 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3897 .elevator_queue_empty_fn
= cfq_queue_empty
,
3898 .elevator_completed_req_fn
= cfq_completed_request
,
3899 .elevator_former_req_fn
= elv_rb_former_request
,
3900 .elevator_latter_req_fn
= elv_rb_latter_request
,
3901 .elevator_set_req_fn
= cfq_set_request
,
3902 .elevator_put_req_fn
= cfq_put_request
,
3903 .elevator_may_queue_fn
= cfq_may_queue
,
3904 .elevator_init_fn
= cfq_init_queue
,
3905 .elevator_exit_fn
= cfq_exit_queue
,
3906 .trim
= cfq_free_io_context
,
3908 .elevator_attrs
= cfq_attrs
,
3909 .elevator_name
= "cfq",
3910 .elevator_owner
= THIS_MODULE
,
3913 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3914 static struct blkio_policy_type blkio_policy_cfq
= {
3916 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
3917 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
3921 static struct blkio_policy_type blkio_policy_cfq
;
3924 static int __init
cfq_init(void)
3927 * could be 0 on HZ < 1000 setups
3929 if (!cfq_slice_async
)
3930 cfq_slice_async
= 1;
3931 if (!cfq_slice_idle
)
3934 if (cfq_slab_setup())
3937 elv_register(&iosched_cfq
);
3938 blkio_policy_register(&blkio_policy_cfq
);
3943 static void __exit
cfq_exit(void)
3945 DECLARE_COMPLETION_ONSTACK(all_gone
);
3946 blkio_policy_unregister(&blkio_policy_cfq
);
3947 elv_unregister(&iosched_cfq
);
3948 ioc_gone
= &all_gone
;
3949 /* ioc_gone's update must be visible before reading ioc_count */
3953 * this also protects us from entering cfq_slab_kill() with
3954 * pending RCU callbacks
3956 if (elv_ioc_count_read(cfq_ioc_count
))
3957 wait_for_completion(&all_gone
);
3961 module_init(cfq_init
);
3962 module_exit(cfq_exit
);
3964 MODULE_AUTHOR("Jens Axboe");
3965 MODULE_LICENSE("GPL");
3966 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");