cfq-iosched: Get rid of nr_groups
[linux-2.6/next.git] / block / cfq-iosched.c
blobd9bfa09e68c1f23f5e527f286e9701a44f75fbb5
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
19 * tunables
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
49 #define CFQQ_COOP_TOUT (HZ)
51 #define CFQ_SLICE_SCALE (5)
52 #define CFQ_HW_QUEUE_MIN (5)
53 #define CFQ_SERVICE_SHIFT 12
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
79 struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 unsigned total_weight;
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
90 * Per process-grouping structure
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start;
123 unsigned long slice_end;
124 long slice_resid;
125 unsigned int slice_dispatch;
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
136 unsigned int seek_samples;
137 u64 seek_total;
138 sector_t seek_mean;
139 sector_t last_request_pos;
140 unsigned long seeky_start;
142 pid_t pid;
144 struct cfq_rb_root *service_tree;
145 struct cfq_queue *new_cfqq;
146 struct cfq_group *cfqg;
147 struct cfq_group *orig_cfqg;
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors;
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
163 * Second index in the service_trees.
165 enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173 /* group service_tree member */
174 struct rb_node rb_node;
176 /* group service_tree key */
177 u64 vdisktime;
178 unsigned int weight;
179 bool on_st;
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
196 struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
199 atomic_t ref;
200 #endif
204 * Per block device queue structure
206 struct cfq_data {
207 struct request_queue *queue;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
210 struct cfq_group root_group;
213 * The priority currently being served
215 enum wl_prio_t serving_prio;
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
218 struct cfq_group *serving_group;
219 bool noidle_tree_requires_idle;
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
228 unsigned int busy_queues;
230 int rq_in_driver[2];
231 int sync_flight;
234 * queue-depth detection
236 int rq_queued;
237 int hw_tag;
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
248 * idle window management
250 struct timer_list idle_slice_timer;
251 struct work_struct unplug_work;
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
257 * async queue for each priority case
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
262 sector_t last_position;
265 * tunables, see top of file
267 unsigned int cfq_quantum;
268 unsigned int cfq_fifo_expire[2];
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
274 unsigned int cfq_latency;
275 unsigned int cfq_group_isolation;
277 struct list_head cic_list;
280 * Fallback dummy cfqq for extreme OOM conditions
282 struct cfq_queue oom_cfqq;
284 unsigned long last_delayed_sync;
286 /* List of cfq groups being managed on this device*/
287 struct hlist_head cfqg_list;
288 struct rcu_head rcu;
291 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
293 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
294 enum wl_prio_t prio,
295 enum wl_type_t type,
296 struct cfq_data *cfqd)
298 if (!cfqg)
299 return NULL;
301 if (prio == IDLE_WORKLOAD)
302 return &cfqg->service_tree_idle;
304 return &cfqg->service_trees[prio][type];
307 enum cfqq_state_flags {
308 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
309 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
310 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
311 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
312 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
313 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
314 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
315 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
316 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
317 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
318 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
319 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
322 #define CFQ_CFQQ_FNS(name) \
323 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
325 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
327 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
329 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
331 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
333 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
336 CFQ_CFQQ_FNS(on_rr);
337 CFQ_CFQQ_FNS(wait_request);
338 CFQ_CFQQ_FNS(must_dispatch);
339 CFQ_CFQQ_FNS(must_alloc_slice);
340 CFQ_CFQQ_FNS(fifo_expire);
341 CFQ_CFQQ_FNS(idle_window);
342 CFQ_CFQQ_FNS(prio_changed);
343 CFQ_CFQQ_FNS(slice_new);
344 CFQ_CFQQ_FNS(sync);
345 CFQ_CFQQ_FNS(coop);
346 CFQ_CFQQ_FNS(deep);
347 CFQ_CFQQ_FNS(wait_busy);
348 #undef CFQ_CFQQ_FNS
350 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
351 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
352 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
353 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
354 blkg_path(&(cfqq)->cfqg->blkg), ##args);
356 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
357 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
358 blkg_path(&(cfqg)->blkg), ##args); \
360 #else
361 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
363 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
364 #endif
365 #define cfq_log(cfqd, fmt, args...) \
366 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
368 /* Traverses through cfq group service trees */
369 #define for_each_cfqg_st(cfqg, i, j, st) \
370 for (i = 0; i <= IDLE_WORKLOAD; i++) \
371 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
372 : &cfqg->service_tree_idle; \
373 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
374 (i == IDLE_WORKLOAD && j == 0); \
375 j++, st = i < IDLE_WORKLOAD ? \
376 &cfqg->service_trees[i][j]: NULL) \
379 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
381 if (cfq_class_idle(cfqq))
382 return IDLE_WORKLOAD;
383 if (cfq_class_rt(cfqq))
384 return RT_WORKLOAD;
385 return BE_WORKLOAD;
389 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
391 if (!cfq_cfqq_sync(cfqq))
392 return ASYNC_WORKLOAD;
393 if (!cfq_cfqq_idle_window(cfqq))
394 return SYNC_NOIDLE_WORKLOAD;
395 return SYNC_WORKLOAD;
398 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
399 struct cfq_data *cfqd,
400 struct cfq_group *cfqg)
402 if (wl == IDLE_WORKLOAD)
403 return cfqg->service_tree_idle.count;
405 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
406 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
407 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
410 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
411 struct cfq_group *cfqg)
413 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
414 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
417 static void cfq_dispatch_insert(struct request_queue *, struct request *);
418 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
419 struct io_context *, gfp_t);
420 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
421 struct io_context *);
423 static inline int rq_in_driver(struct cfq_data *cfqd)
425 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
428 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
429 bool is_sync)
431 return cic->cfqq[is_sync];
434 static inline void cic_set_cfqq(struct cfq_io_context *cic,
435 struct cfq_queue *cfqq, bool is_sync)
437 cic->cfqq[is_sync] = cfqq;
441 * We regard a request as SYNC, if it's either a read or has the SYNC bit
442 * set (in which case it could also be direct WRITE).
444 static inline bool cfq_bio_sync(struct bio *bio)
446 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
450 * scheduler run of queue, if there are requests pending and no one in the
451 * driver that will restart queueing
453 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
455 if (cfqd->busy_queues) {
456 cfq_log(cfqd, "schedule dispatch");
457 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
461 static int cfq_queue_empty(struct request_queue *q)
463 struct cfq_data *cfqd = q->elevator->elevator_data;
465 return !cfqd->rq_queued;
469 * Scale schedule slice based on io priority. Use the sync time slice only
470 * if a queue is marked sync and has sync io queued. A sync queue with async
471 * io only, should not get full sync slice length.
473 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
474 unsigned short prio)
476 const int base_slice = cfqd->cfq_slice[sync];
478 WARN_ON(prio >= IOPRIO_BE_NR);
480 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
483 static inline int
484 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
486 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
489 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
491 u64 d = delta << CFQ_SERVICE_SHIFT;
493 d = d * BLKIO_WEIGHT_DEFAULT;
494 do_div(d, cfqg->weight);
495 return d;
498 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
500 s64 delta = (s64)(vdisktime - min_vdisktime);
501 if (delta > 0)
502 min_vdisktime = vdisktime;
504 return min_vdisktime;
507 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
509 s64 delta = (s64)(vdisktime - min_vdisktime);
510 if (delta < 0)
511 min_vdisktime = vdisktime;
513 return min_vdisktime;
516 static void update_min_vdisktime(struct cfq_rb_root *st)
518 u64 vdisktime = st->min_vdisktime;
519 struct cfq_group *cfqg;
521 if (st->active) {
522 cfqg = rb_entry_cfqg(st->active);
523 vdisktime = cfqg->vdisktime;
526 if (st->left) {
527 cfqg = rb_entry_cfqg(st->left);
528 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
531 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
535 * get averaged number of queues of RT/BE priority.
536 * average is updated, with a formula that gives more weight to higher numbers,
537 * to quickly follows sudden increases and decrease slowly
540 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
541 struct cfq_group *cfqg, bool rt)
543 unsigned min_q, max_q;
544 unsigned mult = cfq_hist_divisor - 1;
545 unsigned round = cfq_hist_divisor / 2;
546 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
548 min_q = min(cfqg->busy_queues_avg[rt], busy);
549 max_q = max(cfqg->busy_queues_avg[rt], busy);
550 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
551 cfq_hist_divisor;
552 return cfqg->busy_queues_avg[rt];
555 static inline unsigned
556 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
558 struct cfq_rb_root *st = &cfqd->grp_service_tree;
560 return cfq_target_latency * cfqg->weight / st->total_weight;
563 static inline void
564 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
566 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
567 if (cfqd->cfq_latency) {
569 * interested queues (we consider only the ones with the same
570 * priority class in the cfq group)
572 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
573 cfq_class_rt(cfqq));
574 unsigned sync_slice = cfqd->cfq_slice[1];
575 unsigned expect_latency = sync_slice * iq;
576 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
578 if (expect_latency > group_slice) {
579 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
580 /* scale low_slice according to IO priority
581 * and sync vs async */
582 unsigned low_slice =
583 min(slice, base_low_slice * slice / sync_slice);
584 /* the adapted slice value is scaled to fit all iqs
585 * into the target latency */
586 slice = max(slice * group_slice / expect_latency,
587 low_slice);
590 cfqq->slice_start = jiffies;
591 cfqq->slice_end = jiffies + slice;
592 cfqq->allocated_slice = slice;
593 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
597 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
598 * isn't valid until the first request from the dispatch is activated
599 * and the slice time set.
601 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
603 if (cfq_cfqq_slice_new(cfqq))
604 return 0;
605 if (time_before(jiffies, cfqq->slice_end))
606 return 0;
608 return 1;
612 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
613 * We choose the request that is closest to the head right now. Distance
614 * behind the head is penalized and only allowed to a certain extent.
616 static struct request *
617 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
619 sector_t s1, s2, d1 = 0, d2 = 0;
620 unsigned long back_max;
621 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
622 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
623 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
625 if (rq1 == NULL || rq1 == rq2)
626 return rq2;
627 if (rq2 == NULL)
628 return rq1;
630 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
631 return rq1;
632 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
633 return rq2;
634 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
635 return rq1;
636 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
637 return rq2;
639 s1 = blk_rq_pos(rq1);
640 s2 = blk_rq_pos(rq2);
643 * by definition, 1KiB is 2 sectors
645 back_max = cfqd->cfq_back_max * 2;
648 * Strict one way elevator _except_ in the case where we allow
649 * short backward seeks which are biased as twice the cost of a
650 * similar forward seek.
652 if (s1 >= last)
653 d1 = s1 - last;
654 else if (s1 + back_max >= last)
655 d1 = (last - s1) * cfqd->cfq_back_penalty;
656 else
657 wrap |= CFQ_RQ1_WRAP;
659 if (s2 >= last)
660 d2 = s2 - last;
661 else if (s2 + back_max >= last)
662 d2 = (last - s2) * cfqd->cfq_back_penalty;
663 else
664 wrap |= CFQ_RQ2_WRAP;
666 /* Found required data */
669 * By doing switch() on the bit mask "wrap" we avoid having to
670 * check two variables for all permutations: --> faster!
672 switch (wrap) {
673 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
674 if (d1 < d2)
675 return rq1;
676 else if (d2 < d1)
677 return rq2;
678 else {
679 if (s1 >= s2)
680 return rq1;
681 else
682 return rq2;
685 case CFQ_RQ2_WRAP:
686 return rq1;
687 case CFQ_RQ1_WRAP:
688 return rq2;
689 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
690 default:
692 * Since both rqs are wrapped,
693 * start with the one that's further behind head
694 * (--> only *one* back seek required),
695 * since back seek takes more time than forward.
697 if (s1 <= s2)
698 return rq1;
699 else
700 return rq2;
705 * The below is leftmost cache rbtree addon
707 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
709 /* Service tree is empty */
710 if (!root->count)
711 return NULL;
713 if (!root->left)
714 root->left = rb_first(&root->rb);
716 if (root->left)
717 return rb_entry(root->left, struct cfq_queue, rb_node);
719 return NULL;
722 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
724 if (!root->left)
725 root->left = rb_first(&root->rb);
727 if (root->left)
728 return rb_entry_cfqg(root->left);
730 return NULL;
733 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
735 rb_erase(n, root);
736 RB_CLEAR_NODE(n);
739 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
741 if (root->left == n)
742 root->left = NULL;
743 rb_erase_init(n, &root->rb);
744 --root->count;
748 * would be nice to take fifo expire time into account as well
750 static struct request *
751 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
752 struct request *last)
754 struct rb_node *rbnext = rb_next(&last->rb_node);
755 struct rb_node *rbprev = rb_prev(&last->rb_node);
756 struct request *next = NULL, *prev = NULL;
758 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
760 if (rbprev)
761 prev = rb_entry_rq(rbprev);
763 if (rbnext)
764 next = rb_entry_rq(rbnext);
765 else {
766 rbnext = rb_first(&cfqq->sort_list);
767 if (rbnext && rbnext != &last->rb_node)
768 next = rb_entry_rq(rbnext);
771 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
774 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
775 struct cfq_queue *cfqq)
778 * just an approximation, should be ok.
780 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
781 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
784 static inline s64
785 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
787 return cfqg->vdisktime - st->min_vdisktime;
790 static void
791 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
793 struct rb_node **node = &st->rb.rb_node;
794 struct rb_node *parent = NULL;
795 struct cfq_group *__cfqg;
796 s64 key = cfqg_key(st, cfqg);
797 int left = 1;
799 while (*node != NULL) {
800 parent = *node;
801 __cfqg = rb_entry_cfqg(parent);
803 if (key < cfqg_key(st, __cfqg))
804 node = &parent->rb_left;
805 else {
806 node = &parent->rb_right;
807 left = 0;
811 if (left)
812 st->left = &cfqg->rb_node;
814 rb_link_node(&cfqg->rb_node, parent, node);
815 rb_insert_color(&cfqg->rb_node, &st->rb);
818 static void
819 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
821 struct cfq_rb_root *st = &cfqd->grp_service_tree;
822 struct cfq_group *__cfqg;
823 struct rb_node *n;
825 cfqg->nr_cfqq++;
826 if (cfqg->on_st)
827 return;
830 * Currently put the group at the end. Later implement something
831 * so that groups get lesser vtime based on their weights, so that
832 * if group does not loose all if it was not continously backlogged.
834 n = rb_last(&st->rb);
835 if (n) {
836 __cfqg = rb_entry_cfqg(n);
837 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
838 } else
839 cfqg->vdisktime = st->min_vdisktime;
841 __cfq_group_service_tree_add(st, cfqg);
842 cfqg->on_st = true;
843 st->total_weight += cfqg->weight;
846 static void
847 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
849 struct cfq_rb_root *st = &cfqd->grp_service_tree;
851 if (st->active == &cfqg->rb_node)
852 st->active = NULL;
854 BUG_ON(cfqg->nr_cfqq < 1);
855 cfqg->nr_cfqq--;
857 /* If there are other cfq queues under this group, don't delete it */
858 if (cfqg->nr_cfqq)
859 return;
861 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
862 cfqg->on_st = false;
863 st->total_weight -= cfqg->weight;
864 if (!RB_EMPTY_NODE(&cfqg->rb_node))
865 cfq_rb_erase(&cfqg->rb_node, st);
866 cfqg->saved_workload_slice = 0;
867 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
870 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
872 unsigned int slice_used;
875 * Queue got expired before even a single request completed or
876 * got expired immediately after first request completion.
878 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
880 * Also charge the seek time incurred to the group, otherwise
881 * if there are mutiple queues in the group, each can dispatch
882 * a single request on seeky media and cause lots of seek time
883 * and group will never know it.
885 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
887 } else {
888 slice_used = jiffies - cfqq->slice_start;
889 if (slice_used > cfqq->allocated_slice)
890 slice_used = cfqq->allocated_slice;
893 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
894 cfqq->nr_sectors);
895 return slice_used;
898 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
899 struct cfq_queue *cfqq)
901 struct cfq_rb_root *st = &cfqd->grp_service_tree;
902 unsigned int used_sl, charge_sl;
903 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
904 - cfqg->service_tree_idle.count;
906 BUG_ON(nr_sync < 0);
907 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
909 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
910 charge_sl = cfqq->allocated_slice;
912 /* Can't update vdisktime while group is on service tree */
913 cfq_rb_erase(&cfqg->rb_node, st);
914 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
915 __cfq_group_service_tree_add(st, cfqg);
917 /* This group is being expired. Save the context */
918 if (time_after(cfqd->workload_expires, jiffies)) {
919 cfqg->saved_workload_slice = cfqd->workload_expires
920 - jiffies;
921 cfqg->saved_workload = cfqd->serving_type;
922 cfqg->saved_serving_prio = cfqd->serving_prio;
923 } else
924 cfqg->saved_workload_slice = 0;
926 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
927 st->min_vdisktime);
928 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
929 cfqq->nr_sectors);
932 #ifdef CONFIG_CFQ_GROUP_IOSCHED
933 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
935 if (blkg)
936 return container_of(blkg, struct cfq_group, blkg);
937 return NULL;
940 void
941 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
943 cfqg_of_blkg(blkg)->weight = weight;
946 static struct cfq_group *
947 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
949 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
950 struct cfq_group *cfqg = NULL;
951 void *key = cfqd;
952 int i, j;
953 struct cfq_rb_root *st;
954 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
955 unsigned int major, minor;
957 /* Do we need to take this reference */
958 if (!blkiocg_css_tryget(blkcg))
959 return NULL;;
961 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
962 if (cfqg || !create)
963 goto done;
965 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
966 if (!cfqg)
967 goto done;
969 cfqg->weight = blkcg->weight;
970 for_each_cfqg_st(cfqg, i, j, st)
971 *st = CFQ_RB_ROOT;
972 RB_CLEAR_NODE(&cfqg->rb_node);
975 * Take the initial reference that will be released on destroy
976 * This can be thought of a joint reference by cgroup and
977 * elevator which will be dropped by either elevator exit
978 * or cgroup deletion path depending on who is exiting first.
980 atomic_set(&cfqg->ref, 1);
982 /* Add group onto cgroup list */
983 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
984 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
985 MKDEV(major, minor));
987 /* Add group on cfqd list */
988 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
990 done:
991 blkiocg_css_put(blkcg);
992 return cfqg;
996 * Search for the cfq group current task belongs to. If create = 1, then also
997 * create the cfq group if it does not exist. request_queue lock must be held.
999 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1001 struct cgroup *cgroup;
1002 struct cfq_group *cfqg = NULL;
1004 rcu_read_lock();
1005 cgroup = task_cgroup(current, blkio_subsys_id);
1006 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1007 if (!cfqg && create)
1008 cfqg = &cfqd->root_group;
1009 rcu_read_unlock();
1010 return cfqg;
1013 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1015 /* Currently, all async queues are mapped to root group */
1016 if (!cfq_cfqq_sync(cfqq))
1017 cfqg = &cfqq->cfqd->root_group;
1019 cfqq->cfqg = cfqg;
1020 /* cfqq reference on cfqg */
1021 atomic_inc(&cfqq->cfqg->ref);
1024 static void cfq_put_cfqg(struct cfq_group *cfqg)
1026 struct cfq_rb_root *st;
1027 int i, j;
1029 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1030 if (!atomic_dec_and_test(&cfqg->ref))
1031 return;
1032 for_each_cfqg_st(cfqg, i, j, st)
1033 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1034 kfree(cfqg);
1037 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1039 /* Something wrong if we are trying to remove same group twice */
1040 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1042 hlist_del_init(&cfqg->cfqd_node);
1045 * Put the reference taken at the time of creation so that when all
1046 * queues are gone, group can be destroyed.
1048 cfq_put_cfqg(cfqg);
1051 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1053 struct hlist_node *pos, *n;
1054 struct cfq_group *cfqg;
1056 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1058 * If cgroup removal path got to blk_group first and removed
1059 * it from cgroup list, then it will take care of destroying
1060 * cfqg also.
1062 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1063 cfq_destroy_cfqg(cfqd, cfqg);
1068 * Blk cgroup controller notification saying that blkio_group object is being
1069 * delinked as associated cgroup object is going away. That also means that
1070 * no new IO will come in this group. So get rid of this group as soon as
1071 * any pending IO in the group is finished.
1073 * This function is called under rcu_read_lock(). key is the rcu protected
1074 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1075 * read lock.
1077 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1078 * it should not be NULL as even if elevator was exiting, cgroup deltion
1079 * path got to it first.
1081 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1083 unsigned long flags;
1084 struct cfq_data *cfqd = key;
1086 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1087 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1088 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1091 #else /* GROUP_IOSCHED */
1092 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1094 return &cfqd->root_group;
1096 static inline void
1097 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1098 cfqq->cfqg = cfqg;
1101 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1102 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1104 #endif /* GROUP_IOSCHED */
1107 * The cfqd->service_trees holds all pending cfq_queue's that have
1108 * requests waiting to be processed. It is sorted in the order that
1109 * we will service the queues.
1111 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1112 bool add_front)
1114 struct rb_node **p, *parent;
1115 struct cfq_queue *__cfqq;
1116 unsigned long rb_key;
1117 struct cfq_rb_root *service_tree;
1118 int left;
1119 int new_cfqq = 1;
1120 int group_changed = 0;
1122 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1123 if (!cfqd->cfq_group_isolation
1124 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1125 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1126 /* Move this cfq to root group */
1127 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1128 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1129 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1130 cfqq->orig_cfqg = cfqq->cfqg;
1131 cfqq->cfqg = &cfqd->root_group;
1132 atomic_inc(&cfqd->root_group.ref);
1133 group_changed = 1;
1134 } else if (!cfqd->cfq_group_isolation
1135 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1136 /* cfqq is sequential now needs to go to its original group */
1137 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1138 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1139 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1140 cfq_put_cfqg(cfqq->cfqg);
1141 cfqq->cfqg = cfqq->orig_cfqg;
1142 cfqq->orig_cfqg = NULL;
1143 group_changed = 1;
1144 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1146 #endif
1148 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1149 cfqq_type(cfqq), cfqd);
1150 if (cfq_class_idle(cfqq)) {
1151 rb_key = CFQ_IDLE_DELAY;
1152 parent = rb_last(&service_tree->rb);
1153 if (parent && parent != &cfqq->rb_node) {
1154 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1155 rb_key += __cfqq->rb_key;
1156 } else
1157 rb_key += jiffies;
1158 } else if (!add_front) {
1160 * Get our rb key offset. Subtract any residual slice
1161 * value carried from last service. A negative resid
1162 * count indicates slice overrun, and this should position
1163 * the next service time further away in the tree.
1165 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1166 rb_key -= cfqq->slice_resid;
1167 cfqq->slice_resid = 0;
1168 } else {
1169 rb_key = -HZ;
1170 __cfqq = cfq_rb_first(service_tree);
1171 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1174 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1175 new_cfqq = 0;
1177 * same position, nothing more to do
1179 if (rb_key == cfqq->rb_key &&
1180 cfqq->service_tree == service_tree)
1181 return;
1183 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1184 cfqq->service_tree = NULL;
1187 left = 1;
1188 parent = NULL;
1189 cfqq->service_tree = service_tree;
1190 p = &service_tree->rb.rb_node;
1191 while (*p) {
1192 struct rb_node **n;
1194 parent = *p;
1195 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1198 * sort by key, that represents service time.
1200 if (time_before(rb_key, __cfqq->rb_key))
1201 n = &(*p)->rb_left;
1202 else {
1203 n = &(*p)->rb_right;
1204 left = 0;
1207 p = n;
1210 if (left)
1211 service_tree->left = &cfqq->rb_node;
1213 cfqq->rb_key = rb_key;
1214 rb_link_node(&cfqq->rb_node, parent, p);
1215 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1216 service_tree->count++;
1217 if ((add_front || !new_cfqq) && !group_changed)
1218 return;
1219 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1222 static struct cfq_queue *
1223 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1224 sector_t sector, struct rb_node **ret_parent,
1225 struct rb_node ***rb_link)
1227 struct rb_node **p, *parent;
1228 struct cfq_queue *cfqq = NULL;
1230 parent = NULL;
1231 p = &root->rb_node;
1232 while (*p) {
1233 struct rb_node **n;
1235 parent = *p;
1236 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1239 * Sort strictly based on sector. Smallest to the left,
1240 * largest to the right.
1242 if (sector > blk_rq_pos(cfqq->next_rq))
1243 n = &(*p)->rb_right;
1244 else if (sector < blk_rq_pos(cfqq->next_rq))
1245 n = &(*p)->rb_left;
1246 else
1247 break;
1248 p = n;
1249 cfqq = NULL;
1252 *ret_parent = parent;
1253 if (rb_link)
1254 *rb_link = p;
1255 return cfqq;
1258 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1260 struct rb_node **p, *parent;
1261 struct cfq_queue *__cfqq;
1263 if (cfqq->p_root) {
1264 rb_erase(&cfqq->p_node, cfqq->p_root);
1265 cfqq->p_root = NULL;
1268 if (cfq_class_idle(cfqq))
1269 return;
1270 if (!cfqq->next_rq)
1271 return;
1273 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1274 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1275 blk_rq_pos(cfqq->next_rq), &parent, &p);
1276 if (!__cfqq) {
1277 rb_link_node(&cfqq->p_node, parent, p);
1278 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1279 } else
1280 cfqq->p_root = NULL;
1284 * Update cfqq's position in the service tree.
1286 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1289 * Resorting requires the cfqq to be on the RR list already.
1291 if (cfq_cfqq_on_rr(cfqq)) {
1292 cfq_service_tree_add(cfqd, cfqq, 0);
1293 cfq_prio_tree_add(cfqd, cfqq);
1298 * add to busy list of queues for service, trying to be fair in ordering
1299 * the pending list according to last request service
1301 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1303 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1304 BUG_ON(cfq_cfqq_on_rr(cfqq));
1305 cfq_mark_cfqq_on_rr(cfqq);
1306 cfqd->busy_queues++;
1308 cfq_resort_rr_list(cfqd, cfqq);
1312 * Called when the cfqq no longer has requests pending, remove it from
1313 * the service tree.
1315 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1317 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1318 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1319 cfq_clear_cfqq_on_rr(cfqq);
1321 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1322 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1323 cfqq->service_tree = NULL;
1325 if (cfqq->p_root) {
1326 rb_erase(&cfqq->p_node, cfqq->p_root);
1327 cfqq->p_root = NULL;
1330 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1331 BUG_ON(!cfqd->busy_queues);
1332 cfqd->busy_queues--;
1336 * rb tree support functions
1338 static void cfq_del_rq_rb(struct request *rq)
1340 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1341 const int sync = rq_is_sync(rq);
1343 BUG_ON(!cfqq->queued[sync]);
1344 cfqq->queued[sync]--;
1346 elv_rb_del(&cfqq->sort_list, rq);
1348 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1350 * Queue will be deleted from service tree when we actually
1351 * expire it later. Right now just remove it from prio tree
1352 * as it is empty.
1354 if (cfqq->p_root) {
1355 rb_erase(&cfqq->p_node, cfqq->p_root);
1356 cfqq->p_root = NULL;
1361 static void cfq_add_rq_rb(struct request *rq)
1363 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1364 struct cfq_data *cfqd = cfqq->cfqd;
1365 struct request *__alias, *prev;
1367 cfqq->queued[rq_is_sync(rq)]++;
1370 * looks a little odd, but the first insert might return an alias.
1371 * if that happens, put the alias on the dispatch list
1373 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1374 cfq_dispatch_insert(cfqd->queue, __alias);
1376 if (!cfq_cfqq_on_rr(cfqq))
1377 cfq_add_cfqq_rr(cfqd, cfqq);
1380 * check if this request is a better next-serve candidate
1382 prev = cfqq->next_rq;
1383 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1386 * adjust priority tree position, if ->next_rq changes
1388 if (prev != cfqq->next_rq)
1389 cfq_prio_tree_add(cfqd, cfqq);
1391 BUG_ON(!cfqq->next_rq);
1394 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1396 elv_rb_del(&cfqq->sort_list, rq);
1397 cfqq->queued[rq_is_sync(rq)]--;
1398 cfq_add_rq_rb(rq);
1401 static struct request *
1402 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1404 struct task_struct *tsk = current;
1405 struct cfq_io_context *cic;
1406 struct cfq_queue *cfqq;
1408 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1409 if (!cic)
1410 return NULL;
1412 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1413 if (cfqq) {
1414 sector_t sector = bio->bi_sector + bio_sectors(bio);
1416 return elv_rb_find(&cfqq->sort_list, sector);
1419 return NULL;
1422 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1424 struct cfq_data *cfqd = q->elevator->elevator_data;
1426 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1427 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1428 rq_in_driver(cfqd));
1430 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1433 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1435 struct cfq_data *cfqd = q->elevator->elevator_data;
1436 const int sync = rq_is_sync(rq);
1438 WARN_ON(!cfqd->rq_in_driver[sync]);
1439 cfqd->rq_in_driver[sync]--;
1440 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1441 rq_in_driver(cfqd));
1444 static void cfq_remove_request(struct request *rq)
1446 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1448 if (cfqq->next_rq == rq)
1449 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1451 list_del_init(&rq->queuelist);
1452 cfq_del_rq_rb(rq);
1454 cfqq->cfqd->rq_queued--;
1455 if (rq_is_meta(rq)) {
1456 WARN_ON(!cfqq->meta_pending);
1457 cfqq->meta_pending--;
1461 static int cfq_merge(struct request_queue *q, struct request **req,
1462 struct bio *bio)
1464 struct cfq_data *cfqd = q->elevator->elevator_data;
1465 struct request *__rq;
1467 __rq = cfq_find_rq_fmerge(cfqd, bio);
1468 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1469 *req = __rq;
1470 return ELEVATOR_FRONT_MERGE;
1473 return ELEVATOR_NO_MERGE;
1476 static void cfq_merged_request(struct request_queue *q, struct request *req,
1477 int type)
1479 if (type == ELEVATOR_FRONT_MERGE) {
1480 struct cfq_queue *cfqq = RQ_CFQQ(req);
1482 cfq_reposition_rq_rb(cfqq, req);
1486 static void
1487 cfq_merged_requests(struct request_queue *q, struct request *rq,
1488 struct request *next)
1490 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1492 * reposition in fifo if next is older than rq
1494 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1495 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1496 list_move(&rq->queuelist, &next->queuelist);
1497 rq_set_fifo_time(rq, rq_fifo_time(next));
1500 if (cfqq->next_rq == next)
1501 cfqq->next_rq = rq;
1502 cfq_remove_request(next);
1505 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1506 struct bio *bio)
1508 struct cfq_data *cfqd = q->elevator->elevator_data;
1509 struct cfq_io_context *cic;
1510 struct cfq_queue *cfqq;
1513 * Disallow merge of a sync bio into an async request.
1515 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1516 return false;
1519 * Lookup the cfqq that this bio will be queued with. Allow
1520 * merge only if rq is queued there.
1522 cic = cfq_cic_lookup(cfqd, current->io_context);
1523 if (!cic)
1524 return false;
1526 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1527 return cfqq == RQ_CFQQ(rq);
1530 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1531 struct cfq_queue *cfqq)
1533 if (cfqq) {
1534 cfq_log_cfqq(cfqd, cfqq, "set_active");
1535 cfqq->slice_start = 0;
1536 cfqq->dispatch_start = jiffies;
1537 cfqq->allocated_slice = 0;
1538 cfqq->slice_end = 0;
1539 cfqq->slice_dispatch = 0;
1540 cfqq->nr_sectors = 0;
1542 cfq_clear_cfqq_wait_request(cfqq);
1543 cfq_clear_cfqq_must_dispatch(cfqq);
1544 cfq_clear_cfqq_must_alloc_slice(cfqq);
1545 cfq_clear_cfqq_fifo_expire(cfqq);
1546 cfq_mark_cfqq_slice_new(cfqq);
1548 del_timer(&cfqd->idle_slice_timer);
1551 cfqd->active_queue = cfqq;
1555 * current cfqq expired its slice (or was too idle), select new one
1557 static void
1558 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1559 bool timed_out)
1561 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1563 if (cfq_cfqq_wait_request(cfqq))
1564 del_timer(&cfqd->idle_slice_timer);
1566 cfq_clear_cfqq_wait_request(cfqq);
1567 cfq_clear_cfqq_wait_busy(cfqq);
1570 * store what was left of this slice, if the queue idled/timed out
1572 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1573 cfqq->slice_resid = cfqq->slice_end - jiffies;
1574 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1577 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1579 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1580 cfq_del_cfqq_rr(cfqd, cfqq);
1582 cfq_resort_rr_list(cfqd, cfqq);
1584 if (cfqq == cfqd->active_queue)
1585 cfqd->active_queue = NULL;
1587 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1588 cfqd->grp_service_tree.active = NULL;
1590 if (cfqd->active_cic) {
1591 put_io_context(cfqd->active_cic->ioc);
1592 cfqd->active_cic = NULL;
1596 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1598 struct cfq_queue *cfqq = cfqd->active_queue;
1600 if (cfqq)
1601 __cfq_slice_expired(cfqd, cfqq, timed_out);
1605 * Get next queue for service. Unless we have a queue preemption,
1606 * we'll simply select the first cfqq in the service tree.
1608 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1610 struct cfq_rb_root *service_tree =
1611 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1612 cfqd->serving_type, cfqd);
1614 if (!cfqd->rq_queued)
1615 return NULL;
1617 /* There is nothing to dispatch */
1618 if (!service_tree)
1619 return NULL;
1620 if (RB_EMPTY_ROOT(&service_tree->rb))
1621 return NULL;
1622 return cfq_rb_first(service_tree);
1625 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1627 struct cfq_group *cfqg;
1628 struct cfq_queue *cfqq;
1629 int i, j;
1630 struct cfq_rb_root *st;
1632 if (!cfqd->rq_queued)
1633 return NULL;
1635 cfqg = cfq_get_next_cfqg(cfqd);
1636 if (!cfqg)
1637 return NULL;
1639 for_each_cfqg_st(cfqg, i, j, st)
1640 if ((cfqq = cfq_rb_first(st)) != NULL)
1641 return cfqq;
1642 return NULL;
1646 * Get and set a new active queue for service.
1648 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1649 struct cfq_queue *cfqq)
1651 if (!cfqq)
1652 cfqq = cfq_get_next_queue(cfqd);
1654 __cfq_set_active_queue(cfqd, cfqq);
1655 return cfqq;
1658 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1659 struct request *rq)
1661 if (blk_rq_pos(rq) >= cfqd->last_position)
1662 return blk_rq_pos(rq) - cfqd->last_position;
1663 else
1664 return cfqd->last_position - blk_rq_pos(rq);
1667 #define CFQQ_SEEK_THR 8 * 1024
1668 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1670 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1671 struct request *rq)
1673 sector_t sdist = cfqq->seek_mean;
1675 if (!sample_valid(cfqq->seek_samples))
1676 sdist = CFQQ_SEEK_THR;
1678 return cfq_dist_from_last(cfqd, rq) <= sdist;
1681 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1682 struct cfq_queue *cur_cfqq)
1684 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1685 struct rb_node *parent, *node;
1686 struct cfq_queue *__cfqq;
1687 sector_t sector = cfqd->last_position;
1689 if (RB_EMPTY_ROOT(root))
1690 return NULL;
1693 * First, if we find a request starting at the end of the last
1694 * request, choose it.
1696 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1697 if (__cfqq)
1698 return __cfqq;
1701 * If the exact sector wasn't found, the parent of the NULL leaf
1702 * will contain the closest sector.
1704 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1705 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1706 return __cfqq;
1708 if (blk_rq_pos(__cfqq->next_rq) < sector)
1709 node = rb_next(&__cfqq->p_node);
1710 else
1711 node = rb_prev(&__cfqq->p_node);
1712 if (!node)
1713 return NULL;
1715 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1716 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1717 return __cfqq;
1719 return NULL;
1723 * cfqd - obvious
1724 * cur_cfqq - passed in so that we don't decide that the current queue is
1725 * closely cooperating with itself.
1727 * So, basically we're assuming that that cur_cfqq has dispatched at least
1728 * one request, and that cfqd->last_position reflects a position on the disk
1729 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1730 * assumption.
1732 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1733 struct cfq_queue *cur_cfqq)
1735 struct cfq_queue *cfqq;
1737 if (!cfq_cfqq_sync(cur_cfqq))
1738 return NULL;
1739 if (CFQQ_SEEKY(cur_cfqq))
1740 return NULL;
1743 * Don't search priority tree if it's the only queue in the group.
1745 if (cur_cfqq->cfqg->nr_cfqq == 1)
1746 return NULL;
1749 * We should notice if some of the queues are cooperating, eg
1750 * working closely on the same area of the disk. In that case,
1751 * we can group them together and don't waste time idling.
1753 cfqq = cfqq_close(cfqd, cur_cfqq);
1754 if (!cfqq)
1755 return NULL;
1757 /* If new queue belongs to different cfq_group, don't choose it */
1758 if (cur_cfqq->cfqg != cfqq->cfqg)
1759 return NULL;
1762 * It only makes sense to merge sync queues.
1764 if (!cfq_cfqq_sync(cfqq))
1765 return NULL;
1766 if (CFQQ_SEEKY(cfqq))
1767 return NULL;
1770 * Do not merge queues of different priority classes
1772 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1773 return NULL;
1775 return cfqq;
1779 * Determine whether we should enforce idle window for this queue.
1782 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1784 enum wl_prio_t prio = cfqq_prio(cfqq);
1785 struct cfq_rb_root *service_tree = cfqq->service_tree;
1787 BUG_ON(!service_tree);
1788 BUG_ON(!service_tree->count);
1790 /* We never do for idle class queues. */
1791 if (prio == IDLE_WORKLOAD)
1792 return false;
1794 /* We do for queues that were marked with idle window flag. */
1795 if (cfq_cfqq_idle_window(cfqq) &&
1796 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1797 return true;
1800 * Otherwise, we do only if they are the last ones
1801 * in their service tree.
1803 return service_tree->count == 1;
1806 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1808 struct cfq_queue *cfqq = cfqd->active_queue;
1809 struct cfq_io_context *cic;
1810 unsigned long sl;
1813 * SSD device without seek penalty, disable idling. But only do so
1814 * for devices that support queuing, otherwise we still have a problem
1815 * with sync vs async workloads.
1817 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1818 return;
1820 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1821 WARN_ON(cfq_cfqq_slice_new(cfqq));
1824 * idle is disabled, either manually or by past process history
1826 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1827 return;
1830 * still active requests from this queue, don't idle
1832 if (cfqq->dispatched)
1833 return;
1836 * task has exited, don't wait
1838 cic = cfqd->active_cic;
1839 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1840 return;
1843 * If our average think time is larger than the remaining time
1844 * slice, then don't idle. This avoids overrunning the allotted
1845 * time slice.
1847 if (sample_valid(cic->ttime_samples) &&
1848 (cfqq->slice_end - jiffies < cic->ttime_mean))
1849 return;
1851 cfq_mark_cfqq_wait_request(cfqq);
1853 sl = cfqd->cfq_slice_idle;
1855 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1856 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1860 * Move request from internal lists to the request queue dispatch list.
1862 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1864 struct cfq_data *cfqd = q->elevator->elevator_data;
1865 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1867 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1869 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1870 cfq_remove_request(rq);
1871 cfqq->dispatched++;
1872 elv_dispatch_sort(q, rq);
1874 if (cfq_cfqq_sync(cfqq))
1875 cfqd->sync_flight++;
1876 cfqq->nr_sectors += blk_rq_sectors(rq);
1880 * return expired entry, or NULL to just start from scratch in rbtree
1882 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1884 struct request *rq = NULL;
1886 if (cfq_cfqq_fifo_expire(cfqq))
1887 return NULL;
1889 cfq_mark_cfqq_fifo_expire(cfqq);
1891 if (list_empty(&cfqq->fifo))
1892 return NULL;
1894 rq = rq_entry_fifo(cfqq->fifo.next);
1895 if (time_before(jiffies, rq_fifo_time(rq)))
1896 rq = NULL;
1898 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1899 return rq;
1902 static inline int
1903 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1905 const int base_rq = cfqd->cfq_slice_async_rq;
1907 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1909 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1913 * Must be called with the queue_lock held.
1915 static int cfqq_process_refs(struct cfq_queue *cfqq)
1917 int process_refs, io_refs;
1919 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1920 process_refs = atomic_read(&cfqq->ref) - io_refs;
1921 BUG_ON(process_refs < 0);
1922 return process_refs;
1925 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1927 int process_refs, new_process_refs;
1928 struct cfq_queue *__cfqq;
1930 /* Avoid a circular list and skip interim queue merges */
1931 while ((__cfqq = new_cfqq->new_cfqq)) {
1932 if (__cfqq == cfqq)
1933 return;
1934 new_cfqq = __cfqq;
1937 process_refs = cfqq_process_refs(cfqq);
1939 * If the process for the cfqq has gone away, there is no
1940 * sense in merging the queues.
1942 if (process_refs == 0)
1943 return;
1946 * Merge in the direction of the lesser amount of work.
1948 new_process_refs = cfqq_process_refs(new_cfqq);
1949 if (new_process_refs >= process_refs) {
1950 cfqq->new_cfqq = new_cfqq;
1951 atomic_add(process_refs, &new_cfqq->ref);
1952 } else {
1953 new_cfqq->new_cfqq = cfqq;
1954 atomic_add(new_process_refs, &cfqq->ref);
1958 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1959 struct cfq_group *cfqg, enum wl_prio_t prio,
1960 bool prio_changed)
1962 struct cfq_queue *queue;
1963 int i;
1964 bool key_valid = false;
1965 unsigned long lowest_key = 0;
1966 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1968 if (prio_changed) {
1970 * When priorities switched, we prefer starting
1971 * from SYNC_NOIDLE (first choice), or just SYNC
1972 * over ASYNC
1974 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1975 return cur_best;
1976 cur_best = SYNC_WORKLOAD;
1977 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1978 return cur_best;
1980 return ASYNC_WORKLOAD;
1983 for (i = 0; i < 3; ++i) {
1984 /* otherwise, select the one with lowest rb_key */
1985 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1986 if (queue &&
1987 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1988 lowest_key = queue->rb_key;
1989 cur_best = i;
1990 key_valid = true;
1994 return cur_best;
1997 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1999 enum wl_prio_t previous_prio = cfqd->serving_prio;
2000 bool prio_changed;
2001 unsigned slice;
2002 unsigned count;
2003 struct cfq_rb_root *st;
2004 unsigned group_slice;
2006 if (!cfqg) {
2007 cfqd->serving_prio = IDLE_WORKLOAD;
2008 cfqd->workload_expires = jiffies + 1;
2009 return;
2012 /* Choose next priority. RT > BE > IDLE */
2013 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2014 cfqd->serving_prio = RT_WORKLOAD;
2015 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2016 cfqd->serving_prio = BE_WORKLOAD;
2017 else {
2018 cfqd->serving_prio = IDLE_WORKLOAD;
2019 cfqd->workload_expires = jiffies + 1;
2020 return;
2024 * For RT and BE, we have to choose also the type
2025 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2026 * expiration time
2028 prio_changed = (cfqd->serving_prio != previous_prio);
2029 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2030 cfqd);
2031 count = st->count;
2034 * If priority didn't change, check workload expiration,
2035 * and that we still have other queues ready
2037 if (!prio_changed && count &&
2038 !time_after(jiffies, cfqd->workload_expires))
2039 return;
2041 /* otherwise select new workload type */
2042 cfqd->serving_type =
2043 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2044 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2045 cfqd);
2046 count = st->count;
2049 * the workload slice is computed as a fraction of target latency
2050 * proportional to the number of queues in that workload, over
2051 * all the queues in the same priority class
2053 group_slice = cfq_group_slice(cfqd, cfqg);
2055 slice = group_slice * count /
2056 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2057 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2059 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2060 unsigned int tmp;
2063 * Async queues are currently system wide. Just taking
2064 * proportion of queues with-in same group will lead to higher
2065 * async ratio system wide as generally root group is going
2066 * to have higher weight. A more accurate thing would be to
2067 * calculate system wide asnc/sync ratio.
2069 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2070 tmp = tmp/cfqd->busy_queues;
2071 slice = min_t(unsigned, slice, tmp);
2073 /* async workload slice is scaled down according to
2074 * the sync/async slice ratio. */
2075 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2076 } else
2077 /* sync workload slice is at least 2 * cfq_slice_idle */
2078 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2080 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2081 cfqd->workload_expires = jiffies + slice;
2082 cfqd->noidle_tree_requires_idle = false;
2085 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2087 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2088 struct cfq_group *cfqg;
2090 if (RB_EMPTY_ROOT(&st->rb))
2091 return NULL;
2092 cfqg = cfq_rb_first_group(st);
2093 st->active = &cfqg->rb_node;
2094 update_min_vdisktime(st);
2095 return cfqg;
2098 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2100 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2102 cfqd->serving_group = cfqg;
2104 /* Restore the workload type data */
2105 if (cfqg->saved_workload_slice) {
2106 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2107 cfqd->serving_type = cfqg->saved_workload;
2108 cfqd->serving_prio = cfqg->saved_serving_prio;
2109 } else
2110 cfqd->workload_expires = jiffies - 1;
2112 choose_service_tree(cfqd, cfqg);
2116 * Select a queue for service. If we have a current active queue,
2117 * check whether to continue servicing it, or retrieve and set a new one.
2119 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2121 struct cfq_queue *cfqq, *new_cfqq = NULL;
2123 cfqq = cfqd->active_queue;
2124 if (!cfqq)
2125 goto new_queue;
2127 if (!cfqd->rq_queued)
2128 return NULL;
2131 * We were waiting for group to get backlogged. Expire the queue
2133 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2134 goto expire;
2137 * The active queue has run out of time, expire it and select new.
2139 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2141 * If slice had not expired at the completion of last request
2142 * we might not have turned on wait_busy flag. Don't expire
2143 * the queue yet. Allow the group to get backlogged.
2145 * The very fact that we have used the slice, that means we
2146 * have been idling all along on this queue and it should be
2147 * ok to wait for this request to complete.
2149 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2150 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2151 cfqq = NULL;
2152 goto keep_queue;
2153 } else
2154 goto expire;
2158 * The active queue has requests and isn't expired, allow it to
2159 * dispatch.
2161 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2162 goto keep_queue;
2165 * If another queue has a request waiting within our mean seek
2166 * distance, let it run. The expire code will check for close
2167 * cooperators and put the close queue at the front of the service
2168 * tree. If possible, merge the expiring queue with the new cfqq.
2170 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2171 if (new_cfqq) {
2172 if (!cfqq->new_cfqq)
2173 cfq_setup_merge(cfqq, new_cfqq);
2174 goto expire;
2178 * No requests pending. If the active queue still has requests in
2179 * flight or is idling for a new request, allow either of these
2180 * conditions to happen (or time out) before selecting a new queue.
2182 if (timer_pending(&cfqd->idle_slice_timer) ||
2183 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2184 cfqq = NULL;
2185 goto keep_queue;
2188 expire:
2189 cfq_slice_expired(cfqd, 0);
2190 new_queue:
2192 * Current queue expired. Check if we have to switch to a new
2193 * service tree
2195 if (!new_cfqq)
2196 cfq_choose_cfqg(cfqd);
2198 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2199 keep_queue:
2200 return cfqq;
2203 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2205 int dispatched = 0;
2207 while (cfqq->next_rq) {
2208 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2209 dispatched++;
2212 BUG_ON(!list_empty(&cfqq->fifo));
2214 /* By default cfqq is not expired if it is empty. Do it explicitly */
2215 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2216 return dispatched;
2220 * Drain our current requests. Used for barriers and when switching
2221 * io schedulers on-the-fly.
2223 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2225 struct cfq_queue *cfqq;
2226 int dispatched = 0;
2228 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2229 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2231 cfq_slice_expired(cfqd, 0);
2232 BUG_ON(cfqd->busy_queues);
2234 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2235 return dispatched;
2238 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2240 unsigned int max_dispatch;
2243 * Drain async requests before we start sync IO
2245 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2246 return false;
2249 * If this is an async queue and we have sync IO in flight, let it wait
2251 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2252 return false;
2254 max_dispatch = cfqd->cfq_quantum;
2255 if (cfq_class_idle(cfqq))
2256 max_dispatch = 1;
2259 * Does this cfqq already have too much IO in flight?
2261 if (cfqq->dispatched >= max_dispatch) {
2263 * idle queue must always only have a single IO in flight
2265 if (cfq_class_idle(cfqq))
2266 return false;
2269 * We have other queues, don't allow more IO from this one
2271 if (cfqd->busy_queues > 1)
2272 return false;
2275 * Sole queue user, no limit
2277 max_dispatch = -1;
2281 * Async queues must wait a bit before being allowed dispatch.
2282 * We also ramp up the dispatch depth gradually for async IO,
2283 * based on the last sync IO we serviced
2285 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2286 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2287 unsigned int depth;
2289 depth = last_sync / cfqd->cfq_slice[1];
2290 if (!depth && !cfqq->dispatched)
2291 depth = 1;
2292 if (depth < max_dispatch)
2293 max_dispatch = depth;
2297 * If we're below the current max, allow a dispatch
2299 return cfqq->dispatched < max_dispatch;
2303 * Dispatch a request from cfqq, moving them to the request queue
2304 * dispatch list.
2306 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2308 struct request *rq;
2310 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2312 if (!cfq_may_dispatch(cfqd, cfqq))
2313 return false;
2316 * follow expired path, else get first next available
2318 rq = cfq_check_fifo(cfqq);
2319 if (!rq)
2320 rq = cfqq->next_rq;
2323 * insert request into driver dispatch list
2325 cfq_dispatch_insert(cfqd->queue, rq);
2327 if (!cfqd->active_cic) {
2328 struct cfq_io_context *cic = RQ_CIC(rq);
2330 atomic_long_inc(&cic->ioc->refcount);
2331 cfqd->active_cic = cic;
2334 return true;
2338 * Find the cfqq that we need to service and move a request from that to the
2339 * dispatch list
2341 static int cfq_dispatch_requests(struct request_queue *q, int force)
2343 struct cfq_data *cfqd = q->elevator->elevator_data;
2344 struct cfq_queue *cfqq;
2346 if (!cfqd->busy_queues)
2347 return 0;
2349 if (unlikely(force))
2350 return cfq_forced_dispatch(cfqd);
2352 cfqq = cfq_select_queue(cfqd);
2353 if (!cfqq)
2354 return 0;
2357 * Dispatch a request from this cfqq, if it is allowed
2359 if (!cfq_dispatch_request(cfqd, cfqq))
2360 return 0;
2362 cfqq->slice_dispatch++;
2363 cfq_clear_cfqq_must_dispatch(cfqq);
2366 * expire an async queue immediately if it has used up its slice. idle
2367 * queue always expire after 1 dispatch round.
2369 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2370 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2371 cfq_class_idle(cfqq))) {
2372 cfqq->slice_end = jiffies + 1;
2373 cfq_slice_expired(cfqd, 0);
2376 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2377 return 1;
2381 * task holds one reference to the queue, dropped when task exits. each rq
2382 * in-flight on this queue also holds a reference, dropped when rq is freed.
2384 * Each cfq queue took a reference on the parent group. Drop it now.
2385 * queue lock must be held here.
2387 static void cfq_put_queue(struct cfq_queue *cfqq)
2389 struct cfq_data *cfqd = cfqq->cfqd;
2390 struct cfq_group *cfqg, *orig_cfqg;
2392 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2394 if (!atomic_dec_and_test(&cfqq->ref))
2395 return;
2397 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2398 BUG_ON(rb_first(&cfqq->sort_list));
2399 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2400 cfqg = cfqq->cfqg;
2401 orig_cfqg = cfqq->orig_cfqg;
2403 if (unlikely(cfqd->active_queue == cfqq)) {
2404 __cfq_slice_expired(cfqd, cfqq, 0);
2405 cfq_schedule_dispatch(cfqd);
2408 BUG_ON(cfq_cfqq_on_rr(cfqq));
2409 kmem_cache_free(cfq_pool, cfqq);
2410 cfq_put_cfqg(cfqg);
2411 if (orig_cfqg)
2412 cfq_put_cfqg(orig_cfqg);
2416 * Must always be called with the rcu_read_lock() held
2418 static void
2419 __call_for_each_cic(struct io_context *ioc,
2420 void (*func)(struct io_context *, struct cfq_io_context *))
2422 struct cfq_io_context *cic;
2423 struct hlist_node *n;
2425 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2426 func(ioc, cic);
2430 * Call func for each cic attached to this ioc.
2432 static void
2433 call_for_each_cic(struct io_context *ioc,
2434 void (*func)(struct io_context *, struct cfq_io_context *))
2436 rcu_read_lock();
2437 __call_for_each_cic(ioc, func);
2438 rcu_read_unlock();
2441 static void cfq_cic_free_rcu(struct rcu_head *head)
2443 struct cfq_io_context *cic;
2445 cic = container_of(head, struct cfq_io_context, rcu_head);
2447 kmem_cache_free(cfq_ioc_pool, cic);
2448 elv_ioc_count_dec(cfq_ioc_count);
2450 if (ioc_gone) {
2452 * CFQ scheduler is exiting, grab exit lock and check
2453 * the pending io context count. If it hits zero,
2454 * complete ioc_gone and set it back to NULL
2456 spin_lock(&ioc_gone_lock);
2457 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2458 complete(ioc_gone);
2459 ioc_gone = NULL;
2461 spin_unlock(&ioc_gone_lock);
2465 static void cfq_cic_free(struct cfq_io_context *cic)
2467 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2470 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2472 unsigned long flags;
2474 BUG_ON(!cic->dead_key);
2476 spin_lock_irqsave(&ioc->lock, flags);
2477 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2478 hlist_del_rcu(&cic->cic_list);
2479 spin_unlock_irqrestore(&ioc->lock, flags);
2481 cfq_cic_free(cic);
2485 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2486 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2487 * and ->trim() which is called with the task lock held
2489 static void cfq_free_io_context(struct io_context *ioc)
2492 * ioc->refcount is zero here, or we are called from elv_unregister(),
2493 * so no more cic's are allowed to be linked into this ioc. So it
2494 * should be ok to iterate over the known list, we will see all cic's
2495 * since no new ones are added.
2497 __call_for_each_cic(ioc, cic_free_func);
2500 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2502 struct cfq_queue *__cfqq, *next;
2504 if (unlikely(cfqq == cfqd->active_queue)) {
2505 __cfq_slice_expired(cfqd, cfqq, 0);
2506 cfq_schedule_dispatch(cfqd);
2510 * If this queue was scheduled to merge with another queue, be
2511 * sure to drop the reference taken on that queue (and others in
2512 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2514 __cfqq = cfqq->new_cfqq;
2515 while (__cfqq) {
2516 if (__cfqq == cfqq) {
2517 WARN(1, "cfqq->new_cfqq loop detected\n");
2518 break;
2520 next = __cfqq->new_cfqq;
2521 cfq_put_queue(__cfqq);
2522 __cfqq = next;
2525 cfq_put_queue(cfqq);
2528 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2529 struct cfq_io_context *cic)
2531 struct io_context *ioc = cic->ioc;
2533 list_del_init(&cic->queue_list);
2536 * Make sure key == NULL is seen for dead queues
2538 smp_wmb();
2539 cic->dead_key = (unsigned long) cic->key;
2540 cic->key = NULL;
2542 if (ioc->ioc_data == cic)
2543 rcu_assign_pointer(ioc->ioc_data, NULL);
2545 if (cic->cfqq[BLK_RW_ASYNC]) {
2546 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2547 cic->cfqq[BLK_RW_ASYNC] = NULL;
2550 if (cic->cfqq[BLK_RW_SYNC]) {
2551 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2552 cic->cfqq[BLK_RW_SYNC] = NULL;
2556 static void cfq_exit_single_io_context(struct io_context *ioc,
2557 struct cfq_io_context *cic)
2559 struct cfq_data *cfqd = cic->key;
2561 if (cfqd) {
2562 struct request_queue *q = cfqd->queue;
2563 unsigned long flags;
2565 spin_lock_irqsave(q->queue_lock, flags);
2568 * Ensure we get a fresh copy of the ->key to prevent
2569 * race between exiting task and queue
2571 smp_read_barrier_depends();
2572 if (cic->key)
2573 __cfq_exit_single_io_context(cfqd, cic);
2575 spin_unlock_irqrestore(q->queue_lock, flags);
2580 * The process that ioc belongs to has exited, we need to clean up
2581 * and put the internal structures we have that belongs to that process.
2583 static void cfq_exit_io_context(struct io_context *ioc)
2585 call_for_each_cic(ioc, cfq_exit_single_io_context);
2588 static struct cfq_io_context *
2589 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2591 struct cfq_io_context *cic;
2593 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2594 cfqd->queue->node);
2595 if (cic) {
2596 cic->last_end_request = jiffies;
2597 INIT_LIST_HEAD(&cic->queue_list);
2598 INIT_HLIST_NODE(&cic->cic_list);
2599 cic->dtor = cfq_free_io_context;
2600 cic->exit = cfq_exit_io_context;
2601 elv_ioc_count_inc(cfq_ioc_count);
2604 return cic;
2607 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2609 struct task_struct *tsk = current;
2610 int ioprio_class;
2612 if (!cfq_cfqq_prio_changed(cfqq))
2613 return;
2615 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2616 switch (ioprio_class) {
2617 default:
2618 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2619 case IOPRIO_CLASS_NONE:
2621 * no prio set, inherit CPU scheduling settings
2623 cfqq->ioprio = task_nice_ioprio(tsk);
2624 cfqq->ioprio_class = task_nice_ioclass(tsk);
2625 break;
2626 case IOPRIO_CLASS_RT:
2627 cfqq->ioprio = task_ioprio(ioc);
2628 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2629 break;
2630 case IOPRIO_CLASS_BE:
2631 cfqq->ioprio = task_ioprio(ioc);
2632 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2633 break;
2634 case IOPRIO_CLASS_IDLE:
2635 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2636 cfqq->ioprio = 7;
2637 cfq_clear_cfqq_idle_window(cfqq);
2638 break;
2642 * keep track of original prio settings in case we have to temporarily
2643 * elevate the priority of this queue
2645 cfqq->org_ioprio = cfqq->ioprio;
2646 cfqq->org_ioprio_class = cfqq->ioprio_class;
2647 cfq_clear_cfqq_prio_changed(cfqq);
2650 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2652 struct cfq_data *cfqd = cic->key;
2653 struct cfq_queue *cfqq;
2654 unsigned long flags;
2656 if (unlikely(!cfqd))
2657 return;
2659 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2661 cfqq = cic->cfqq[BLK_RW_ASYNC];
2662 if (cfqq) {
2663 struct cfq_queue *new_cfqq;
2664 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2665 GFP_ATOMIC);
2666 if (new_cfqq) {
2667 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2668 cfq_put_queue(cfqq);
2672 cfqq = cic->cfqq[BLK_RW_SYNC];
2673 if (cfqq)
2674 cfq_mark_cfqq_prio_changed(cfqq);
2676 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2679 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2681 call_for_each_cic(ioc, changed_ioprio);
2682 ioc->ioprio_changed = 0;
2685 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2686 pid_t pid, bool is_sync)
2688 RB_CLEAR_NODE(&cfqq->rb_node);
2689 RB_CLEAR_NODE(&cfqq->p_node);
2690 INIT_LIST_HEAD(&cfqq->fifo);
2692 atomic_set(&cfqq->ref, 0);
2693 cfqq->cfqd = cfqd;
2695 cfq_mark_cfqq_prio_changed(cfqq);
2697 if (is_sync) {
2698 if (!cfq_class_idle(cfqq))
2699 cfq_mark_cfqq_idle_window(cfqq);
2700 cfq_mark_cfqq_sync(cfqq);
2702 cfqq->pid = pid;
2705 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2706 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2708 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2709 struct cfq_data *cfqd = cic->key;
2710 unsigned long flags;
2711 struct request_queue *q;
2713 if (unlikely(!cfqd))
2714 return;
2716 q = cfqd->queue;
2718 spin_lock_irqsave(q->queue_lock, flags);
2720 if (sync_cfqq) {
2722 * Drop reference to sync queue. A new sync queue will be
2723 * assigned in new group upon arrival of a fresh request.
2725 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2726 cic_set_cfqq(cic, NULL, 1);
2727 cfq_put_queue(sync_cfqq);
2730 spin_unlock_irqrestore(q->queue_lock, flags);
2733 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2735 call_for_each_cic(ioc, changed_cgroup);
2736 ioc->cgroup_changed = 0;
2738 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2740 static struct cfq_queue *
2741 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2742 struct io_context *ioc, gfp_t gfp_mask)
2744 struct cfq_queue *cfqq, *new_cfqq = NULL;
2745 struct cfq_io_context *cic;
2746 struct cfq_group *cfqg;
2748 retry:
2749 cfqg = cfq_get_cfqg(cfqd, 1);
2750 cic = cfq_cic_lookup(cfqd, ioc);
2751 /* cic always exists here */
2752 cfqq = cic_to_cfqq(cic, is_sync);
2755 * Always try a new alloc if we fell back to the OOM cfqq
2756 * originally, since it should just be a temporary situation.
2758 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2759 cfqq = NULL;
2760 if (new_cfqq) {
2761 cfqq = new_cfqq;
2762 new_cfqq = NULL;
2763 } else if (gfp_mask & __GFP_WAIT) {
2764 spin_unlock_irq(cfqd->queue->queue_lock);
2765 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2766 gfp_mask | __GFP_ZERO,
2767 cfqd->queue->node);
2768 spin_lock_irq(cfqd->queue->queue_lock);
2769 if (new_cfqq)
2770 goto retry;
2771 } else {
2772 cfqq = kmem_cache_alloc_node(cfq_pool,
2773 gfp_mask | __GFP_ZERO,
2774 cfqd->queue->node);
2777 if (cfqq) {
2778 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2779 cfq_init_prio_data(cfqq, ioc);
2780 cfq_link_cfqq_cfqg(cfqq, cfqg);
2781 cfq_log_cfqq(cfqd, cfqq, "alloced");
2782 } else
2783 cfqq = &cfqd->oom_cfqq;
2786 if (new_cfqq)
2787 kmem_cache_free(cfq_pool, new_cfqq);
2789 return cfqq;
2792 static struct cfq_queue **
2793 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2795 switch (ioprio_class) {
2796 case IOPRIO_CLASS_RT:
2797 return &cfqd->async_cfqq[0][ioprio];
2798 case IOPRIO_CLASS_BE:
2799 return &cfqd->async_cfqq[1][ioprio];
2800 case IOPRIO_CLASS_IDLE:
2801 return &cfqd->async_idle_cfqq;
2802 default:
2803 BUG();
2807 static struct cfq_queue *
2808 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2809 gfp_t gfp_mask)
2811 const int ioprio = task_ioprio(ioc);
2812 const int ioprio_class = task_ioprio_class(ioc);
2813 struct cfq_queue **async_cfqq = NULL;
2814 struct cfq_queue *cfqq = NULL;
2816 if (!is_sync) {
2817 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2818 cfqq = *async_cfqq;
2821 if (!cfqq)
2822 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2825 * pin the queue now that it's allocated, scheduler exit will prune it
2827 if (!is_sync && !(*async_cfqq)) {
2828 atomic_inc(&cfqq->ref);
2829 *async_cfqq = cfqq;
2832 atomic_inc(&cfqq->ref);
2833 return cfqq;
2837 * We drop cfq io contexts lazily, so we may find a dead one.
2839 static void
2840 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2841 struct cfq_io_context *cic)
2843 unsigned long flags;
2845 WARN_ON(!list_empty(&cic->queue_list));
2847 spin_lock_irqsave(&ioc->lock, flags);
2849 BUG_ON(ioc->ioc_data == cic);
2851 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2852 hlist_del_rcu(&cic->cic_list);
2853 spin_unlock_irqrestore(&ioc->lock, flags);
2855 cfq_cic_free(cic);
2858 static struct cfq_io_context *
2859 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2861 struct cfq_io_context *cic;
2862 unsigned long flags;
2863 void *k;
2865 if (unlikely(!ioc))
2866 return NULL;
2868 rcu_read_lock();
2871 * we maintain a last-hit cache, to avoid browsing over the tree
2873 cic = rcu_dereference(ioc->ioc_data);
2874 if (cic && cic->key == cfqd) {
2875 rcu_read_unlock();
2876 return cic;
2879 do {
2880 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2881 rcu_read_unlock();
2882 if (!cic)
2883 break;
2884 /* ->key must be copied to avoid race with cfq_exit_queue() */
2885 k = cic->key;
2886 if (unlikely(!k)) {
2887 cfq_drop_dead_cic(cfqd, ioc, cic);
2888 rcu_read_lock();
2889 continue;
2892 spin_lock_irqsave(&ioc->lock, flags);
2893 rcu_assign_pointer(ioc->ioc_data, cic);
2894 spin_unlock_irqrestore(&ioc->lock, flags);
2895 break;
2896 } while (1);
2898 return cic;
2902 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2903 * the process specific cfq io context when entered from the block layer.
2904 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2906 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2907 struct cfq_io_context *cic, gfp_t gfp_mask)
2909 unsigned long flags;
2910 int ret;
2912 ret = radix_tree_preload(gfp_mask);
2913 if (!ret) {
2914 cic->ioc = ioc;
2915 cic->key = cfqd;
2917 spin_lock_irqsave(&ioc->lock, flags);
2918 ret = radix_tree_insert(&ioc->radix_root,
2919 (unsigned long) cfqd, cic);
2920 if (!ret)
2921 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2922 spin_unlock_irqrestore(&ioc->lock, flags);
2924 radix_tree_preload_end();
2926 if (!ret) {
2927 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2928 list_add(&cic->queue_list, &cfqd->cic_list);
2929 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2933 if (ret)
2934 printk(KERN_ERR "cfq: cic link failed!\n");
2936 return ret;
2940 * Setup general io context and cfq io context. There can be several cfq
2941 * io contexts per general io context, if this process is doing io to more
2942 * than one device managed by cfq.
2944 static struct cfq_io_context *
2945 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2947 struct io_context *ioc = NULL;
2948 struct cfq_io_context *cic;
2950 might_sleep_if(gfp_mask & __GFP_WAIT);
2952 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2953 if (!ioc)
2954 return NULL;
2956 cic = cfq_cic_lookup(cfqd, ioc);
2957 if (cic)
2958 goto out;
2960 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2961 if (cic == NULL)
2962 goto err;
2964 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2965 goto err_free;
2967 out:
2968 smp_read_barrier_depends();
2969 if (unlikely(ioc->ioprio_changed))
2970 cfq_ioc_set_ioprio(ioc);
2972 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2973 if (unlikely(ioc->cgroup_changed))
2974 cfq_ioc_set_cgroup(ioc);
2975 #endif
2976 return cic;
2977 err_free:
2978 cfq_cic_free(cic);
2979 err:
2980 put_io_context(ioc);
2981 return NULL;
2984 static void
2985 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2987 unsigned long elapsed = jiffies - cic->last_end_request;
2988 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2990 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2991 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2992 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2995 static void
2996 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2997 struct request *rq)
2999 sector_t sdist;
3000 u64 total;
3002 if (!cfqq->last_request_pos)
3003 sdist = 0;
3004 else if (cfqq->last_request_pos < blk_rq_pos(rq))
3005 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3006 else
3007 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3010 * Don't allow the seek distance to get too large from the
3011 * odd fragment, pagein, etc
3013 if (cfqq->seek_samples <= 60) /* second&third seek */
3014 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
3015 else
3016 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
3018 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
3019 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3020 total = cfqq->seek_total + (cfqq->seek_samples/2);
3021 do_div(total, cfqq->seek_samples);
3022 cfqq->seek_mean = (sector_t)total;
3025 * If this cfqq is shared between multiple processes, check to
3026 * make sure that those processes are still issuing I/Os within
3027 * the mean seek distance. If not, it may be time to break the
3028 * queues apart again.
3030 if (cfq_cfqq_coop(cfqq)) {
3031 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3032 cfqq->seeky_start = jiffies;
3033 else if (!CFQQ_SEEKY(cfqq))
3034 cfqq->seeky_start = 0;
3039 * Disable idle window if the process thinks too long or seeks so much that
3040 * it doesn't matter
3042 static void
3043 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3044 struct cfq_io_context *cic)
3046 int old_idle, enable_idle;
3049 * Don't idle for async or idle io prio class
3051 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3052 return;
3054 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3056 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3057 cfq_mark_cfqq_deep(cfqq);
3059 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3060 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3061 && CFQQ_SEEKY(cfqq)))
3062 enable_idle = 0;
3063 else if (sample_valid(cic->ttime_samples)) {
3064 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3065 enable_idle = 0;
3066 else
3067 enable_idle = 1;
3070 if (old_idle != enable_idle) {
3071 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3072 if (enable_idle)
3073 cfq_mark_cfqq_idle_window(cfqq);
3074 else
3075 cfq_clear_cfqq_idle_window(cfqq);
3080 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3081 * no or if we aren't sure, a 1 will cause a preempt.
3083 static bool
3084 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3085 struct request *rq)
3087 struct cfq_queue *cfqq;
3089 cfqq = cfqd->active_queue;
3090 if (!cfqq)
3091 return false;
3093 if (cfq_class_idle(new_cfqq))
3094 return false;
3096 if (cfq_class_idle(cfqq))
3097 return true;
3100 * if the new request is sync, but the currently running queue is
3101 * not, let the sync request have priority.
3103 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3104 return true;
3106 if (new_cfqq->cfqg != cfqq->cfqg)
3107 return false;
3109 if (cfq_slice_used(cfqq))
3110 return true;
3112 /* Allow preemption only if we are idling on sync-noidle tree */
3113 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3114 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3115 new_cfqq->service_tree->count == 2 &&
3116 RB_EMPTY_ROOT(&cfqq->sort_list))
3117 return true;
3120 * So both queues are sync. Let the new request get disk time if
3121 * it's a metadata request and the current queue is doing regular IO.
3123 if (rq_is_meta(rq) && !cfqq->meta_pending)
3124 return true;
3127 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3129 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3130 return true;
3132 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3133 return false;
3136 * if this request is as-good as one we would expect from the
3137 * current cfqq, let it preempt
3139 if (cfq_rq_close(cfqd, cfqq, rq))
3140 return true;
3142 return false;
3146 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3147 * let it have half of its nominal slice.
3149 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3151 cfq_log_cfqq(cfqd, cfqq, "preempt");
3152 cfq_slice_expired(cfqd, 1);
3155 * Put the new queue at the front of the of the current list,
3156 * so we know that it will be selected next.
3158 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3160 cfq_service_tree_add(cfqd, cfqq, 1);
3162 cfqq->slice_end = 0;
3163 cfq_mark_cfqq_slice_new(cfqq);
3167 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3168 * something we should do about it
3170 static void
3171 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3172 struct request *rq)
3174 struct cfq_io_context *cic = RQ_CIC(rq);
3176 cfqd->rq_queued++;
3177 if (rq_is_meta(rq))
3178 cfqq->meta_pending++;
3180 cfq_update_io_thinktime(cfqd, cic);
3181 cfq_update_io_seektime(cfqd, cfqq, rq);
3182 cfq_update_idle_window(cfqd, cfqq, cic);
3184 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3186 if (cfqq == cfqd->active_queue) {
3188 * Remember that we saw a request from this process, but
3189 * don't start queuing just yet. Otherwise we risk seeing lots
3190 * of tiny requests, because we disrupt the normal plugging
3191 * and merging. If the request is already larger than a single
3192 * page, let it rip immediately. For that case we assume that
3193 * merging is already done. Ditto for a busy system that
3194 * has other work pending, don't risk delaying until the
3195 * idle timer unplug to continue working.
3197 if (cfq_cfqq_wait_request(cfqq)) {
3198 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3199 cfqd->busy_queues > 1) {
3200 del_timer(&cfqd->idle_slice_timer);
3201 cfq_clear_cfqq_wait_request(cfqq);
3202 __blk_run_queue(cfqd->queue);
3203 } else
3204 cfq_mark_cfqq_must_dispatch(cfqq);
3206 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3208 * not the active queue - expire current slice if it is
3209 * idle and has expired it's mean thinktime or this new queue
3210 * has some old slice time left and is of higher priority or
3211 * this new queue is RT and the current one is BE
3213 cfq_preempt_queue(cfqd, cfqq);
3214 __blk_run_queue(cfqd->queue);
3218 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3220 struct cfq_data *cfqd = q->elevator->elevator_data;
3221 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3223 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3224 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3226 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3227 list_add_tail(&rq->queuelist, &cfqq->fifo);
3228 cfq_add_rq_rb(rq);
3230 cfq_rq_enqueued(cfqd, cfqq, rq);
3234 * Update hw_tag based on peak queue depth over 50 samples under
3235 * sufficient load.
3237 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3239 struct cfq_queue *cfqq = cfqd->active_queue;
3241 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3242 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3244 if (cfqd->hw_tag == 1)
3245 return;
3247 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3248 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3249 return;
3252 * If active queue hasn't enough requests and can idle, cfq might not
3253 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3254 * case
3256 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3257 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3258 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3259 return;
3261 if (cfqd->hw_tag_samples++ < 50)
3262 return;
3264 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3265 cfqd->hw_tag = 1;
3266 else
3267 cfqd->hw_tag = 0;
3270 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3272 struct cfq_io_context *cic = cfqd->active_cic;
3274 /* If there are other queues in the group, don't wait */
3275 if (cfqq->cfqg->nr_cfqq > 1)
3276 return false;
3278 if (cfq_slice_used(cfqq))
3279 return true;
3281 /* if slice left is less than think time, wait busy */
3282 if (cic && sample_valid(cic->ttime_samples)
3283 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3284 return true;
3287 * If think times is less than a jiffy than ttime_mean=0 and above
3288 * will not be true. It might happen that slice has not expired yet
3289 * but will expire soon (4-5 ns) during select_queue(). To cover the
3290 * case where think time is less than a jiffy, mark the queue wait
3291 * busy if only 1 jiffy is left in the slice.
3293 if (cfqq->slice_end - jiffies == 1)
3294 return true;
3296 return false;
3299 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3301 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3302 struct cfq_data *cfqd = cfqq->cfqd;
3303 const int sync = rq_is_sync(rq);
3304 unsigned long now;
3306 now = jiffies;
3307 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3309 cfq_update_hw_tag(cfqd);
3311 WARN_ON(!cfqd->rq_in_driver[sync]);
3312 WARN_ON(!cfqq->dispatched);
3313 cfqd->rq_in_driver[sync]--;
3314 cfqq->dispatched--;
3316 if (cfq_cfqq_sync(cfqq))
3317 cfqd->sync_flight--;
3319 if (sync) {
3320 RQ_CIC(rq)->last_end_request = now;
3321 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3322 cfqd->last_delayed_sync = now;
3326 * If this is the active queue, check if it needs to be expired,
3327 * or if we want to idle in case it has no pending requests.
3329 if (cfqd->active_queue == cfqq) {
3330 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3332 if (cfq_cfqq_slice_new(cfqq)) {
3333 cfq_set_prio_slice(cfqd, cfqq);
3334 cfq_clear_cfqq_slice_new(cfqq);
3338 * Should we wait for next request to come in before we expire
3339 * the queue.
3341 if (cfq_should_wait_busy(cfqd, cfqq)) {
3342 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3343 cfq_mark_cfqq_wait_busy(cfqq);
3347 * Idling is not enabled on:
3348 * - expired queues
3349 * - idle-priority queues
3350 * - async queues
3351 * - queues with still some requests queued
3352 * - when there is a close cooperator
3354 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3355 cfq_slice_expired(cfqd, 1);
3356 else if (sync && cfqq_empty &&
3357 !cfq_close_cooperator(cfqd, cfqq)) {
3358 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3360 * Idling is enabled for SYNC_WORKLOAD.
3361 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3362 * only if we processed at least one !rq_noidle request
3364 if (cfqd->serving_type == SYNC_WORKLOAD
3365 || cfqd->noidle_tree_requires_idle
3366 || cfqq->cfqg->nr_cfqq == 1)
3367 cfq_arm_slice_timer(cfqd);
3371 if (!rq_in_driver(cfqd))
3372 cfq_schedule_dispatch(cfqd);
3376 * we temporarily boost lower priority queues if they are holding fs exclusive
3377 * resources. they are boosted to normal prio (CLASS_BE/4)
3379 static void cfq_prio_boost(struct cfq_queue *cfqq)
3381 if (has_fs_excl()) {
3383 * boost idle prio on transactions that would lock out other
3384 * users of the filesystem
3386 if (cfq_class_idle(cfqq))
3387 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3388 if (cfqq->ioprio > IOPRIO_NORM)
3389 cfqq->ioprio = IOPRIO_NORM;
3390 } else {
3392 * unboost the queue (if needed)
3394 cfqq->ioprio_class = cfqq->org_ioprio_class;
3395 cfqq->ioprio = cfqq->org_ioprio;
3399 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3401 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3402 cfq_mark_cfqq_must_alloc_slice(cfqq);
3403 return ELV_MQUEUE_MUST;
3406 return ELV_MQUEUE_MAY;
3409 static int cfq_may_queue(struct request_queue *q, int rw)
3411 struct cfq_data *cfqd = q->elevator->elevator_data;
3412 struct task_struct *tsk = current;
3413 struct cfq_io_context *cic;
3414 struct cfq_queue *cfqq;
3417 * don't force setup of a queue from here, as a call to may_queue
3418 * does not necessarily imply that a request actually will be queued.
3419 * so just lookup a possibly existing queue, or return 'may queue'
3420 * if that fails
3422 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3423 if (!cic)
3424 return ELV_MQUEUE_MAY;
3426 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3427 if (cfqq) {
3428 cfq_init_prio_data(cfqq, cic->ioc);
3429 cfq_prio_boost(cfqq);
3431 return __cfq_may_queue(cfqq);
3434 return ELV_MQUEUE_MAY;
3438 * queue lock held here
3440 static void cfq_put_request(struct request *rq)
3442 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3444 if (cfqq) {
3445 const int rw = rq_data_dir(rq);
3447 BUG_ON(!cfqq->allocated[rw]);
3448 cfqq->allocated[rw]--;
3450 put_io_context(RQ_CIC(rq)->ioc);
3452 rq->elevator_private = NULL;
3453 rq->elevator_private2 = NULL;
3455 cfq_put_queue(cfqq);
3459 static struct cfq_queue *
3460 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3461 struct cfq_queue *cfqq)
3463 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3464 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3465 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3466 cfq_put_queue(cfqq);
3467 return cic_to_cfqq(cic, 1);
3470 static int should_split_cfqq(struct cfq_queue *cfqq)
3472 if (cfqq->seeky_start &&
3473 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3474 return 1;
3475 return 0;
3479 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3480 * was the last process referring to said cfqq.
3482 static struct cfq_queue *
3483 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3485 if (cfqq_process_refs(cfqq) == 1) {
3486 cfqq->seeky_start = 0;
3487 cfqq->pid = current->pid;
3488 cfq_clear_cfqq_coop(cfqq);
3489 return cfqq;
3492 cic_set_cfqq(cic, NULL, 1);
3493 cfq_put_queue(cfqq);
3494 return NULL;
3497 * Allocate cfq data structures associated with this request.
3499 static int
3500 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3502 struct cfq_data *cfqd = q->elevator->elevator_data;
3503 struct cfq_io_context *cic;
3504 const int rw = rq_data_dir(rq);
3505 const bool is_sync = rq_is_sync(rq);
3506 struct cfq_queue *cfqq;
3507 unsigned long flags;
3509 might_sleep_if(gfp_mask & __GFP_WAIT);
3511 cic = cfq_get_io_context(cfqd, gfp_mask);
3513 spin_lock_irqsave(q->queue_lock, flags);
3515 if (!cic)
3516 goto queue_fail;
3518 new_queue:
3519 cfqq = cic_to_cfqq(cic, is_sync);
3520 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3521 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3522 cic_set_cfqq(cic, cfqq, is_sync);
3523 } else {
3525 * If the queue was seeky for too long, break it apart.
3527 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3528 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3529 cfqq = split_cfqq(cic, cfqq);
3530 if (!cfqq)
3531 goto new_queue;
3535 * Check to see if this queue is scheduled to merge with
3536 * another, closely cooperating queue. The merging of
3537 * queues happens here as it must be done in process context.
3538 * The reference on new_cfqq was taken in merge_cfqqs.
3540 if (cfqq->new_cfqq)
3541 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3544 cfqq->allocated[rw]++;
3545 atomic_inc(&cfqq->ref);
3547 spin_unlock_irqrestore(q->queue_lock, flags);
3549 rq->elevator_private = cic;
3550 rq->elevator_private2 = cfqq;
3551 return 0;
3553 queue_fail:
3554 if (cic)
3555 put_io_context(cic->ioc);
3557 cfq_schedule_dispatch(cfqd);
3558 spin_unlock_irqrestore(q->queue_lock, flags);
3559 cfq_log(cfqd, "set_request fail");
3560 return 1;
3563 static void cfq_kick_queue(struct work_struct *work)
3565 struct cfq_data *cfqd =
3566 container_of(work, struct cfq_data, unplug_work);
3567 struct request_queue *q = cfqd->queue;
3569 spin_lock_irq(q->queue_lock);
3570 __blk_run_queue(cfqd->queue);
3571 spin_unlock_irq(q->queue_lock);
3575 * Timer running if the active_queue is currently idling inside its time slice
3577 static void cfq_idle_slice_timer(unsigned long data)
3579 struct cfq_data *cfqd = (struct cfq_data *) data;
3580 struct cfq_queue *cfqq;
3581 unsigned long flags;
3582 int timed_out = 1;
3584 cfq_log(cfqd, "idle timer fired");
3586 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3588 cfqq = cfqd->active_queue;
3589 if (cfqq) {
3590 timed_out = 0;
3593 * We saw a request before the queue expired, let it through
3595 if (cfq_cfqq_must_dispatch(cfqq))
3596 goto out_kick;
3599 * expired
3601 if (cfq_slice_used(cfqq))
3602 goto expire;
3605 * only expire and reinvoke request handler, if there are
3606 * other queues with pending requests
3608 if (!cfqd->busy_queues)
3609 goto out_cont;
3612 * not expired and it has a request pending, let it dispatch
3614 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3615 goto out_kick;
3618 * Queue depth flag is reset only when the idle didn't succeed
3620 cfq_clear_cfqq_deep(cfqq);
3622 expire:
3623 cfq_slice_expired(cfqd, timed_out);
3624 out_kick:
3625 cfq_schedule_dispatch(cfqd);
3626 out_cont:
3627 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3630 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3632 del_timer_sync(&cfqd->idle_slice_timer);
3633 cancel_work_sync(&cfqd->unplug_work);
3636 static void cfq_put_async_queues(struct cfq_data *cfqd)
3638 int i;
3640 for (i = 0; i < IOPRIO_BE_NR; i++) {
3641 if (cfqd->async_cfqq[0][i])
3642 cfq_put_queue(cfqd->async_cfqq[0][i]);
3643 if (cfqd->async_cfqq[1][i])
3644 cfq_put_queue(cfqd->async_cfqq[1][i]);
3647 if (cfqd->async_idle_cfqq)
3648 cfq_put_queue(cfqd->async_idle_cfqq);
3651 static void cfq_cfqd_free(struct rcu_head *head)
3653 kfree(container_of(head, struct cfq_data, rcu));
3656 static void cfq_exit_queue(struct elevator_queue *e)
3658 struct cfq_data *cfqd = e->elevator_data;
3659 struct request_queue *q = cfqd->queue;
3661 cfq_shutdown_timer_wq(cfqd);
3663 spin_lock_irq(q->queue_lock);
3665 if (cfqd->active_queue)
3666 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3668 while (!list_empty(&cfqd->cic_list)) {
3669 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3670 struct cfq_io_context,
3671 queue_list);
3673 __cfq_exit_single_io_context(cfqd, cic);
3676 cfq_put_async_queues(cfqd);
3677 cfq_release_cfq_groups(cfqd);
3678 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3680 spin_unlock_irq(q->queue_lock);
3682 cfq_shutdown_timer_wq(cfqd);
3684 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3685 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3688 static void *cfq_init_queue(struct request_queue *q)
3690 struct cfq_data *cfqd;
3691 int i, j;
3692 struct cfq_group *cfqg;
3693 struct cfq_rb_root *st;
3695 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3696 if (!cfqd)
3697 return NULL;
3699 /* Init root service tree */
3700 cfqd->grp_service_tree = CFQ_RB_ROOT;
3702 /* Init root group */
3703 cfqg = &cfqd->root_group;
3704 for_each_cfqg_st(cfqg, i, j, st)
3705 *st = CFQ_RB_ROOT;
3706 RB_CLEAR_NODE(&cfqg->rb_node);
3708 /* Give preference to root group over other groups */
3709 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3711 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3713 * Take a reference to root group which we never drop. This is just
3714 * to make sure that cfq_put_cfqg() does not try to kfree root group
3716 atomic_set(&cfqg->ref, 1);
3717 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3719 #endif
3721 * Not strictly needed (since RB_ROOT just clears the node and we
3722 * zeroed cfqd on alloc), but better be safe in case someone decides
3723 * to add magic to the rb code
3725 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3726 cfqd->prio_trees[i] = RB_ROOT;
3729 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3730 * Grab a permanent reference to it, so that the normal code flow
3731 * will not attempt to free it.
3733 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3734 atomic_inc(&cfqd->oom_cfqq.ref);
3735 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3737 INIT_LIST_HEAD(&cfqd->cic_list);
3739 cfqd->queue = q;
3741 init_timer(&cfqd->idle_slice_timer);
3742 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3743 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3745 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3747 cfqd->cfq_quantum = cfq_quantum;
3748 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3749 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3750 cfqd->cfq_back_max = cfq_back_max;
3751 cfqd->cfq_back_penalty = cfq_back_penalty;
3752 cfqd->cfq_slice[0] = cfq_slice_async;
3753 cfqd->cfq_slice[1] = cfq_slice_sync;
3754 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3755 cfqd->cfq_slice_idle = cfq_slice_idle;
3756 cfqd->cfq_latency = 1;
3757 cfqd->cfq_group_isolation = 0;
3758 cfqd->hw_tag = -1;
3760 * we optimistically start assuming sync ops weren't delayed in last
3761 * second, in order to have larger depth for async operations.
3763 cfqd->last_delayed_sync = jiffies - HZ;
3764 INIT_RCU_HEAD(&cfqd->rcu);
3765 return cfqd;
3768 static void cfq_slab_kill(void)
3771 * Caller already ensured that pending RCU callbacks are completed,
3772 * so we should have no busy allocations at this point.
3774 if (cfq_pool)
3775 kmem_cache_destroy(cfq_pool);
3776 if (cfq_ioc_pool)
3777 kmem_cache_destroy(cfq_ioc_pool);
3780 static int __init cfq_slab_setup(void)
3782 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3783 if (!cfq_pool)
3784 goto fail;
3786 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3787 if (!cfq_ioc_pool)
3788 goto fail;
3790 return 0;
3791 fail:
3792 cfq_slab_kill();
3793 return -ENOMEM;
3797 * sysfs parts below -->
3799 static ssize_t
3800 cfq_var_show(unsigned int var, char *page)
3802 return sprintf(page, "%d\n", var);
3805 static ssize_t
3806 cfq_var_store(unsigned int *var, const char *page, size_t count)
3808 char *p = (char *) page;
3810 *var = simple_strtoul(p, &p, 10);
3811 return count;
3814 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3815 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3817 struct cfq_data *cfqd = e->elevator_data; \
3818 unsigned int __data = __VAR; \
3819 if (__CONV) \
3820 __data = jiffies_to_msecs(__data); \
3821 return cfq_var_show(__data, (page)); \
3823 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3824 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3825 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3826 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3827 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3828 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3829 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3830 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3831 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3832 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3833 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3834 #undef SHOW_FUNCTION
3836 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3837 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3839 struct cfq_data *cfqd = e->elevator_data; \
3840 unsigned int __data; \
3841 int ret = cfq_var_store(&__data, (page), count); \
3842 if (__data < (MIN)) \
3843 __data = (MIN); \
3844 else if (__data > (MAX)) \
3845 __data = (MAX); \
3846 if (__CONV) \
3847 *(__PTR) = msecs_to_jiffies(__data); \
3848 else \
3849 *(__PTR) = __data; \
3850 return ret; \
3852 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3853 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3854 UINT_MAX, 1);
3855 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3856 UINT_MAX, 1);
3857 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3858 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3859 UINT_MAX, 0);
3860 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3861 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3862 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3863 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3864 UINT_MAX, 0);
3865 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3866 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3867 #undef STORE_FUNCTION
3869 #define CFQ_ATTR(name) \
3870 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3872 static struct elv_fs_entry cfq_attrs[] = {
3873 CFQ_ATTR(quantum),
3874 CFQ_ATTR(fifo_expire_sync),
3875 CFQ_ATTR(fifo_expire_async),
3876 CFQ_ATTR(back_seek_max),
3877 CFQ_ATTR(back_seek_penalty),
3878 CFQ_ATTR(slice_sync),
3879 CFQ_ATTR(slice_async),
3880 CFQ_ATTR(slice_async_rq),
3881 CFQ_ATTR(slice_idle),
3882 CFQ_ATTR(low_latency),
3883 CFQ_ATTR(group_isolation),
3884 __ATTR_NULL
3887 static struct elevator_type iosched_cfq = {
3888 .ops = {
3889 .elevator_merge_fn = cfq_merge,
3890 .elevator_merged_fn = cfq_merged_request,
3891 .elevator_merge_req_fn = cfq_merged_requests,
3892 .elevator_allow_merge_fn = cfq_allow_merge,
3893 .elevator_dispatch_fn = cfq_dispatch_requests,
3894 .elevator_add_req_fn = cfq_insert_request,
3895 .elevator_activate_req_fn = cfq_activate_request,
3896 .elevator_deactivate_req_fn = cfq_deactivate_request,
3897 .elevator_queue_empty_fn = cfq_queue_empty,
3898 .elevator_completed_req_fn = cfq_completed_request,
3899 .elevator_former_req_fn = elv_rb_former_request,
3900 .elevator_latter_req_fn = elv_rb_latter_request,
3901 .elevator_set_req_fn = cfq_set_request,
3902 .elevator_put_req_fn = cfq_put_request,
3903 .elevator_may_queue_fn = cfq_may_queue,
3904 .elevator_init_fn = cfq_init_queue,
3905 .elevator_exit_fn = cfq_exit_queue,
3906 .trim = cfq_free_io_context,
3908 .elevator_attrs = cfq_attrs,
3909 .elevator_name = "cfq",
3910 .elevator_owner = THIS_MODULE,
3913 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3914 static struct blkio_policy_type blkio_policy_cfq = {
3915 .ops = {
3916 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3917 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3920 #else
3921 static struct blkio_policy_type blkio_policy_cfq;
3922 #endif
3924 static int __init cfq_init(void)
3927 * could be 0 on HZ < 1000 setups
3929 if (!cfq_slice_async)
3930 cfq_slice_async = 1;
3931 if (!cfq_slice_idle)
3932 cfq_slice_idle = 1;
3934 if (cfq_slab_setup())
3935 return -ENOMEM;
3937 elv_register(&iosched_cfq);
3938 blkio_policy_register(&blkio_policy_cfq);
3940 return 0;
3943 static void __exit cfq_exit(void)
3945 DECLARE_COMPLETION_ONSTACK(all_gone);
3946 blkio_policy_unregister(&blkio_policy_cfq);
3947 elv_unregister(&iosched_cfq);
3948 ioc_gone = &all_gone;
3949 /* ioc_gone's update must be visible before reading ioc_count */
3950 smp_wmb();
3953 * this also protects us from entering cfq_slab_kill() with
3954 * pending RCU callbacks
3956 if (elv_ioc_count_read(cfq_ioc_count))
3957 wait_for_completion(&all_gone);
3958 cfq_slab_kill();
3961 module_init(cfq_init);
3962 module_exit(cfq_exit);
3964 MODULE_AUTHOR("Jens Axboe");
3965 MODULE_LICENSE("GPL");
3966 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");