1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Perry Melange <pmelange@null.cc.uic.edu>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Jon Grimm <jgrimm@us.ibm.com>
45 * Any bugs reported given to us we will try to fix... any fixes shared will
46 * be incorporated into the next SCTP release.
49 #include <linux/types.h>
50 #include <linux/list.h> /* For struct list_head */
51 #include <linux/socket.h>
53 #include <linux/slab.h>
54 #include <net/sock.h> /* For skb_set_owner_w */
56 #include <net/sctp/sctp.h>
57 #include <net/sctp/sm.h>
59 /* Declare internal functions here. */
60 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
);
61 static void sctp_check_transmitted(struct sctp_outq
*q
,
62 struct list_head
*transmitted_queue
,
63 struct sctp_transport
*transport
,
64 struct sctp_sackhdr
*sack
,
65 __u32
*highest_new_tsn
);
67 static void sctp_mark_missing(struct sctp_outq
*q
,
68 struct list_head
*transmitted_queue
,
69 struct sctp_transport
*transport
,
70 __u32 highest_new_tsn
,
71 int count_of_newacks
);
73 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 sack_ctsn
);
75 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
);
77 /* Add data to the front of the queue. */
78 static inline void sctp_outq_head_data(struct sctp_outq
*q
,
79 struct sctp_chunk
*ch
)
81 list_add(&ch
->list
, &q
->out_chunk_list
);
82 q
->out_qlen
+= ch
->skb
->len
;
85 /* Take data from the front of the queue. */
86 static inline struct sctp_chunk
*sctp_outq_dequeue_data(struct sctp_outq
*q
)
88 struct sctp_chunk
*ch
= NULL
;
90 if (!list_empty(&q
->out_chunk_list
)) {
91 struct list_head
*entry
= q
->out_chunk_list
.next
;
93 ch
= list_entry(entry
, struct sctp_chunk
, list
);
95 q
->out_qlen
-= ch
->skb
->len
;
99 /* Add data chunk to the end of the queue. */
100 static inline void sctp_outq_tail_data(struct sctp_outq
*q
,
101 struct sctp_chunk
*ch
)
103 list_add_tail(&ch
->list
, &q
->out_chunk_list
);
104 q
->out_qlen
+= ch
->skb
->len
;
108 * SFR-CACC algorithm:
109 * D) If count_of_newacks is greater than or equal to 2
110 * and t was not sent to the current primary then the
111 * sender MUST NOT increment missing report count for t.
113 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport
*primary
,
114 struct sctp_transport
*transport
,
115 int count_of_newacks
)
117 if (count_of_newacks
>=2 && transport
!= primary
)
123 * SFR-CACC algorithm:
124 * F) If count_of_newacks is less than 2, let d be the
125 * destination to which t was sent. If cacc_saw_newack
126 * is 0 for destination d, then the sender MUST NOT
127 * increment missing report count for t.
129 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport
*transport
,
130 int count_of_newacks
)
132 if (count_of_newacks
< 2 && !transport
->cacc
.cacc_saw_newack
)
138 * SFR-CACC algorithm:
139 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
140 * execute steps C, D, F.
142 * C has been implemented in sctp_outq_sack
144 static inline int sctp_cacc_skip_3_1(struct sctp_transport
*primary
,
145 struct sctp_transport
*transport
,
146 int count_of_newacks
)
148 if (!primary
->cacc
.cycling_changeover
) {
149 if (sctp_cacc_skip_3_1_d(primary
, transport
, count_of_newacks
))
151 if (sctp_cacc_skip_3_1_f(transport
, count_of_newacks
))
159 * SFR-CACC algorithm:
160 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
161 * than next_tsn_at_change of the current primary, then
162 * the sender MUST NOT increment missing report count
165 static inline int sctp_cacc_skip_3_2(struct sctp_transport
*primary
, __u32 tsn
)
167 if (primary
->cacc
.cycling_changeover
&&
168 TSN_lt(tsn
, primary
->cacc
.next_tsn_at_change
))
174 * SFR-CACC algorithm:
175 * 3) If the missing report count for TSN t is to be
176 * incremented according to [RFC2960] and
177 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
178 * then the sender MUST futher execute steps 3.1 and
179 * 3.2 to determine if the missing report count for
180 * TSN t SHOULD NOT be incremented.
182 * 3.3) If 3.1 and 3.2 do not dictate that the missing
183 * report count for t should not be incremented, then
184 * the sender SOULD increment missing report count for
185 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
187 static inline int sctp_cacc_skip(struct sctp_transport
*primary
,
188 struct sctp_transport
*transport
,
189 int count_of_newacks
,
192 if (primary
->cacc
.changeover_active
&&
193 (sctp_cacc_skip_3_1(primary
, transport
, count_of_newacks
) ||
194 sctp_cacc_skip_3_2(primary
, tsn
)))
199 /* Initialize an existing sctp_outq. This does the boring stuff.
200 * You still need to define handlers if you really want to DO
201 * something with this structure...
203 void sctp_outq_init(struct sctp_association
*asoc
, struct sctp_outq
*q
)
206 INIT_LIST_HEAD(&q
->out_chunk_list
);
207 INIT_LIST_HEAD(&q
->control_chunk_list
);
208 INIT_LIST_HEAD(&q
->retransmit
);
209 INIT_LIST_HEAD(&q
->sacked
);
210 INIT_LIST_HEAD(&q
->abandoned
);
213 q
->outstanding_bytes
= 0;
221 /* Free the outqueue structure and any related pending chunks.
223 void sctp_outq_teardown(struct sctp_outq
*q
)
225 struct sctp_transport
*transport
;
226 struct list_head
*lchunk
, *temp
;
227 struct sctp_chunk
*chunk
, *tmp
;
229 /* Throw away unacknowledged chunks. */
230 list_for_each_entry(transport
, &q
->asoc
->peer
.transport_addr_list
,
232 while ((lchunk
= sctp_list_dequeue(&transport
->transmitted
)) != NULL
) {
233 chunk
= list_entry(lchunk
, struct sctp_chunk
,
235 /* Mark as part of a failed message. */
236 sctp_chunk_fail(chunk
, q
->error
);
237 sctp_chunk_free(chunk
);
241 /* Throw away chunks that have been gap ACKed. */
242 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
243 list_del_init(lchunk
);
244 chunk
= list_entry(lchunk
, struct sctp_chunk
,
246 sctp_chunk_fail(chunk
, q
->error
);
247 sctp_chunk_free(chunk
);
250 /* Throw away any chunks in the retransmit queue. */
251 list_for_each_safe(lchunk
, temp
, &q
->retransmit
) {
252 list_del_init(lchunk
);
253 chunk
= list_entry(lchunk
, struct sctp_chunk
,
255 sctp_chunk_fail(chunk
, q
->error
);
256 sctp_chunk_free(chunk
);
259 /* Throw away any chunks that are in the abandoned queue. */
260 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
261 list_del_init(lchunk
);
262 chunk
= list_entry(lchunk
, struct sctp_chunk
,
264 sctp_chunk_fail(chunk
, q
->error
);
265 sctp_chunk_free(chunk
);
268 /* Throw away any leftover data chunks. */
269 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
271 /* Mark as send failure. */
272 sctp_chunk_fail(chunk
, q
->error
);
273 sctp_chunk_free(chunk
);
278 /* Throw away any leftover control chunks. */
279 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
280 list_del_init(&chunk
->list
);
281 sctp_chunk_free(chunk
);
285 /* Free the outqueue structure and any related pending chunks. */
286 void sctp_outq_free(struct sctp_outq
*q
)
288 /* Throw away leftover chunks. */
289 sctp_outq_teardown(q
);
291 /* If we were kmalloc()'d, free the memory. */
296 /* Put a new chunk in an sctp_outq. */
297 int sctp_outq_tail(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
301 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
302 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
303 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
306 /* If it is data, queue it up, otherwise, send it
309 if (sctp_chunk_is_data(chunk
)) {
310 /* Is it OK to queue data chunks? */
311 /* From 9. Termination of Association
313 * When either endpoint performs a shutdown, the
314 * association on each peer will stop accepting new
315 * data from its user and only deliver data in queue
316 * at the time of sending or receiving the SHUTDOWN
319 switch (q
->asoc
->state
) {
320 case SCTP_STATE_EMPTY
:
321 case SCTP_STATE_CLOSED
:
322 case SCTP_STATE_SHUTDOWN_PENDING
:
323 case SCTP_STATE_SHUTDOWN_SENT
:
324 case SCTP_STATE_SHUTDOWN_RECEIVED
:
325 case SCTP_STATE_SHUTDOWN_ACK_SENT
:
326 /* Cannot send after transport endpoint shutdown */
331 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
332 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
333 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
336 sctp_outq_tail_data(q
, chunk
);
337 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
338 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS
);
340 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS
);
345 list_add_tail(&chunk
->list
, &q
->control_chunk_list
);
346 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS
);
353 error
= sctp_outq_flush(q
, 0);
358 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
359 * and the abandoned list are in ascending order.
361 static void sctp_insert_list(struct list_head
*head
, struct list_head
*new)
363 struct list_head
*pos
;
364 struct sctp_chunk
*nchunk
, *lchunk
;
368 nchunk
= list_entry(new, struct sctp_chunk
, transmitted_list
);
369 ntsn
= ntohl(nchunk
->subh
.data_hdr
->tsn
);
371 list_for_each(pos
, head
) {
372 lchunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
373 ltsn
= ntohl(lchunk
->subh
.data_hdr
->tsn
);
374 if (TSN_lt(ntsn
, ltsn
)) {
375 list_add(new, pos
->prev
);
381 list_add_tail(new, head
);
384 /* Mark all the eligible packets on a transport for retransmission. */
385 void sctp_retransmit_mark(struct sctp_outq
*q
,
386 struct sctp_transport
*transport
,
389 struct list_head
*lchunk
, *ltemp
;
390 struct sctp_chunk
*chunk
;
392 /* Walk through the specified transmitted queue. */
393 list_for_each_safe(lchunk
, ltemp
, &transport
->transmitted
) {
394 chunk
= list_entry(lchunk
, struct sctp_chunk
,
397 /* If the chunk is abandoned, move it to abandoned list. */
398 if (sctp_chunk_abandoned(chunk
)) {
399 list_del_init(lchunk
);
400 sctp_insert_list(&q
->abandoned
, lchunk
);
402 /* If this chunk has not been previousely acked,
403 * stop considering it 'outstanding'. Our peer
404 * will most likely never see it since it will
405 * not be retransmitted
407 if (!chunk
->tsn_gap_acked
) {
408 if (chunk
->transport
)
409 chunk
->transport
->flight_size
-=
410 sctp_data_size(chunk
);
411 q
->outstanding_bytes
-= sctp_data_size(chunk
);
412 q
->asoc
->peer
.rwnd
+= (sctp_data_size(chunk
) +
413 sizeof(struct sk_buff
));
418 /* If we are doing retransmission due to a timeout or pmtu
419 * discovery, only the chunks that are not yet acked should
420 * be added to the retransmit queue.
422 if ((reason
== SCTP_RTXR_FAST_RTX
&&
423 (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)) ||
424 (reason
!= SCTP_RTXR_FAST_RTX
&& !chunk
->tsn_gap_acked
)) {
425 /* RFC 2960 6.2.1 Processing a Received SACK
427 * C) Any time a DATA chunk is marked for
428 * retransmission (via either T3-rtx timer expiration
429 * (Section 6.3.3) or via fast retransmit
430 * (Section 7.2.4)), add the data size of those
431 * chunks to the rwnd.
433 q
->asoc
->peer
.rwnd
+= (sctp_data_size(chunk
) +
434 sizeof(struct sk_buff
));
435 q
->outstanding_bytes
-= sctp_data_size(chunk
);
436 if (chunk
->transport
)
437 transport
->flight_size
-= sctp_data_size(chunk
);
439 /* sctpimpguide-05 Section 2.8.2
440 * M5) If a T3-rtx timer expires, the
441 * 'TSN.Missing.Report' of all affected TSNs is set
444 chunk
->tsn_missing_report
= 0;
446 /* If a chunk that is being used for RTT measurement
447 * has to be retransmitted, we cannot use this chunk
448 * anymore for RTT measurements. Reset rto_pending so
449 * that a new RTT measurement is started when a new
450 * data chunk is sent.
452 if (chunk
->rtt_in_progress
) {
453 chunk
->rtt_in_progress
= 0;
454 transport
->rto_pending
= 0;
457 /* Move the chunk to the retransmit queue. The chunks
458 * on the retransmit queue are always kept in order.
460 list_del_init(lchunk
);
461 sctp_insert_list(&q
->retransmit
, lchunk
);
465 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
466 "cwnd: %d, ssthresh: %d, flight_size: %d, "
467 "pba: %d\n", __func__
,
469 transport
->cwnd
, transport
->ssthresh
,
470 transport
->flight_size
,
471 transport
->partial_bytes_acked
);
475 /* Mark all the eligible packets on a transport for retransmission and force
478 void sctp_retransmit(struct sctp_outq
*q
, struct sctp_transport
*transport
,
479 sctp_retransmit_reason_t reason
)
484 case SCTP_RTXR_T3_RTX
:
485 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS
);
486 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_T3_RTX
);
487 /* Update the retran path if the T3-rtx timer has expired for
488 * the current retran path.
490 if (transport
== transport
->asoc
->peer
.retran_path
)
491 sctp_assoc_update_retran_path(transport
->asoc
);
492 transport
->asoc
->rtx_data_chunks
+=
493 transport
->asoc
->unack_data
;
495 case SCTP_RTXR_FAST_RTX
:
496 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS
);
497 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_FAST_RTX
);
500 case SCTP_RTXR_PMTUD
:
501 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS
);
503 case SCTP_RTXR_T1_RTX
:
504 SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS
);
505 transport
->asoc
->init_retries
++;
511 sctp_retransmit_mark(q
, transport
, reason
);
513 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
514 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
515 * following the procedures outlined in C1 - C5.
517 if (reason
== SCTP_RTXR_T3_RTX
)
518 sctp_generate_fwdtsn(q
, q
->asoc
->ctsn_ack_point
);
520 /* Flush the queues only on timeout, since fast_rtx is only
521 * triggered during sack processing and the queue
522 * will be flushed at the end.
524 if (reason
!= SCTP_RTXR_FAST_RTX
)
525 error
= sctp_outq_flush(q
, /* rtx_timeout */ 1);
528 q
->asoc
->base
.sk
->sk_err
= -error
;
532 * Transmit DATA chunks on the retransmit queue. Upon return from
533 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
534 * need to be transmitted by the caller.
535 * We assume that pkt->transport has already been set.
537 * The return value is a normal kernel error return value.
539 static int sctp_outq_flush_rtx(struct sctp_outq
*q
, struct sctp_packet
*pkt
,
540 int rtx_timeout
, int *start_timer
)
542 struct list_head
*lqueue
;
543 struct sctp_transport
*transport
= pkt
->transport
;
545 struct sctp_chunk
*chunk
, *chunk1
;
546 struct sctp_association
*asoc
;
553 lqueue
= &q
->retransmit
;
554 fast_rtx
= q
->fast_rtx
;
556 /* This loop handles time-out retransmissions, fast retransmissions,
557 * and retransmissions due to opening of whindow.
559 * RFC 2960 6.3.3 Handle T3-rtx Expiration
561 * E3) Determine how many of the earliest (i.e., lowest TSN)
562 * outstanding DATA chunks for the address for which the
563 * T3-rtx has expired will fit into a single packet, subject
564 * to the MTU constraint for the path corresponding to the
565 * destination transport address to which the retransmission
566 * is being sent (this may be different from the address for
567 * which the timer expires [see Section 6.4]). Call this value
568 * K. Bundle and retransmit those K DATA chunks in a single
569 * packet to the destination endpoint.
571 * [Just to be painfully clear, if we are retransmitting
572 * because a timeout just happened, we should send only ONE
573 * packet of retransmitted data.]
575 * For fast retransmissions we also send only ONE packet. However,
576 * if we are just flushing the queue due to open window, we'll
577 * try to send as much as possible.
579 list_for_each_entry_safe(chunk
, chunk1
, lqueue
, transmitted_list
) {
581 /* Make sure that Gap Acked TSNs are not retransmitted. A
582 * simple approach is just to move such TSNs out of the
583 * way and into a 'transmitted' queue and skip to the
586 if (chunk
->tsn_gap_acked
) {
587 list_del(&chunk
->transmitted_list
);
588 list_add_tail(&chunk
->transmitted_list
,
589 &transport
->transmitted
);
593 /* If we are doing fast retransmit, ignore non-fast_rtransmit
596 if (fast_rtx
&& !chunk
->fast_retransmit
)
600 /* Attempt to append this chunk to the packet. */
601 status
= sctp_packet_append_chunk(pkt
, chunk
);
604 case SCTP_XMIT_PMTU_FULL
:
605 if (!pkt
->has_data
&& !pkt
->has_cookie_echo
) {
606 /* If this packet did not contain DATA then
607 * retransmission did not happen, so do it
608 * again. We'll ignore the error here since
609 * control chunks are already freed so there
610 * is nothing we can do.
612 sctp_packet_transmit(pkt
);
616 /* Send this packet. */
617 error
= sctp_packet_transmit(pkt
);
619 /* If we are retransmitting, we should only
620 * send a single packet.
622 if (rtx_timeout
|| fast_rtx
)
625 /* Bundle next chunk in the next round. */
628 case SCTP_XMIT_RWND_FULL
:
629 /* Send this packet. */
630 error
= sctp_packet_transmit(pkt
);
632 /* Stop sending DATA as there is no more room
638 case SCTP_XMIT_NAGLE_DELAY
:
639 /* Send this packet. */
640 error
= sctp_packet_transmit(pkt
);
642 /* Stop sending DATA because of nagle delay. */
647 /* The append was successful, so add this chunk to
648 * the transmitted list.
650 list_del(&chunk
->transmitted_list
);
651 list_add_tail(&chunk
->transmitted_list
,
652 &transport
->transmitted
);
654 /* Mark the chunk as ineligible for fast retransmit
655 * after it is retransmitted.
657 if (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)
658 chunk
->fast_retransmit
= SCTP_DONT_FRTX
;
664 /* Set the timer if there were no errors */
665 if (!error
&& !timer
)
672 /* If we are here due to a retransmit timeout or a fast
673 * retransmit and if there are any chunks left in the retransmit
674 * queue that could not fit in the PMTU sized packet, they need
675 * to be marked as ineligible for a subsequent fast retransmit.
677 if (rtx_timeout
|| fast_rtx
) {
678 list_for_each_entry(chunk1
, lqueue
, transmitted_list
) {
679 if (chunk1
->fast_retransmit
== SCTP_NEED_FRTX
)
680 chunk1
->fast_retransmit
= SCTP_DONT_FRTX
;
684 *start_timer
= timer
;
686 /* Clear fast retransmit hint */
693 /* Cork the outqueue so queued chunks are really queued. */
694 int sctp_outq_uncork(struct sctp_outq
*q
)
699 error
= sctp_outq_flush(q
, 0);
705 * Try to flush an outqueue.
707 * Description: Send everything in q which we legally can, subject to
708 * congestion limitations.
709 * * Note: This function can be called from multiple contexts so appropriate
710 * locking concerns must be made. Today we use the sock lock to protect
713 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
)
715 struct sctp_packet
*packet
;
716 struct sctp_packet singleton
;
717 struct sctp_association
*asoc
= q
->asoc
;
718 __u16 sport
= asoc
->base
.bind_addr
.port
;
719 __u16 dport
= asoc
->peer
.port
;
720 __u32 vtag
= asoc
->peer
.i
.init_tag
;
721 struct sctp_transport
*transport
= NULL
;
722 struct sctp_transport
*new_transport
;
723 struct sctp_chunk
*chunk
, *tmp
;
729 /* These transports have chunks to send. */
730 struct list_head transport_list
;
731 struct list_head
*ltransport
;
733 INIT_LIST_HEAD(&transport_list
);
739 * When bundling control chunks with DATA chunks, an
740 * endpoint MUST place control chunks first in the outbound
741 * SCTP packet. The transmitter MUST transmit DATA chunks
742 * within a SCTP packet in increasing order of TSN.
746 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
747 list_del_init(&chunk
->list
);
749 /* Pick the right transport to use. */
750 new_transport
= chunk
->transport
;
752 if (!new_transport
) {
754 * If we have a prior transport pointer, see if
755 * the destination address of the chunk
756 * matches the destination address of the
757 * current transport. If not a match, then
758 * try to look up the transport with a given
759 * destination address. We do this because
760 * after processing ASCONFs, we may have new
761 * transports created.
764 sctp_cmp_addr_exact(&chunk
->dest
,
766 new_transport
= transport
;
768 new_transport
= sctp_assoc_lookup_paddr(asoc
,
771 /* if we still don't have a new transport, then
772 * use the current active path.
775 new_transport
= asoc
->peer
.active_path
;
776 } else if ((new_transport
->state
== SCTP_INACTIVE
) ||
777 (new_transport
->state
== SCTP_UNCONFIRMED
)) {
778 /* If the chunk is Heartbeat or Heartbeat Ack,
779 * send it to chunk->transport, even if it's
782 * 3.3.6 Heartbeat Acknowledgement:
784 * A HEARTBEAT ACK is always sent to the source IP
785 * address of the IP datagram containing the
786 * HEARTBEAT chunk to which this ack is responding.
789 * ASCONF_ACKs also must be sent to the source.
791 if (chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT
&&
792 chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT_ACK
&&
793 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF_ACK
)
794 new_transport
= asoc
->peer
.active_path
;
797 /* Are we switching transports?
798 * Take care of transport locks.
800 if (new_transport
!= transport
) {
801 transport
= new_transport
;
802 if (list_empty(&transport
->send_ready
)) {
803 list_add_tail(&transport
->send_ready
,
806 packet
= &transport
->packet
;
807 sctp_packet_config(packet
, vtag
,
808 asoc
->peer
.ecn_capable
);
811 switch (chunk
->chunk_hdr
->type
) {
815 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
816 * COMPLETE with any other chunks. [Send them immediately.]
819 case SCTP_CID_INIT_ACK
:
820 case SCTP_CID_SHUTDOWN_COMPLETE
:
821 sctp_packet_init(&singleton
, transport
, sport
, dport
);
822 sctp_packet_config(&singleton
, vtag
, 0);
823 sctp_packet_append_chunk(&singleton
, chunk
);
824 error
= sctp_packet_transmit(&singleton
);
830 if (sctp_test_T_bit(chunk
)) {
831 packet
->vtag
= asoc
->c
.my_vtag
;
833 /* The following chunks are "response" chunks, i.e.
834 * they are generated in response to something we
835 * received. If we are sending these, then we can
836 * send only 1 packet containing these chunks.
838 case SCTP_CID_HEARTBEAT_ACK
:
839 case SCTP_CID_SHUTDOWN_ACK
:
840 case SCTP_CID_COOKIE_ACK
:
841 case SCTP_CID_COOKIE_ECHO
:
843 case SCTP_CID_ECN_CWR
:
844 case SCTP_CID_ASCONF_ACK
:
849 case SCTP_CID_HEARTBEAT
:
850 case SCTP_CID_SHUTDOWN
:
851 case SCTP_CID_ECN_ECNE
:
852 case SCTP_CID_ASCONF
:
853 case SCTP_CID_FWD_TSN
:
854 status
= sctp_packet_transmit_chunk(packet
, chunk
,
856 if (status
!= SCTP_XMIT_OK
) {
857 /* put the chunk back */
858 list_add(&chunk
->list
, &q
->control_chunk_list
);
859 } else if (chunk
->chunk_hdr
->type
== SCTP_CID_FWD_TSN
) {
860 /* PR-SCTP C5) If a FORWARD TSN is sent, the
861 * sender MUST assure that at least one T3-rtx
864 sctp_transport_reset_timers(transport
);
869 /* We built a chunk with an illegal type! */
874 /* Is it OK to send data chunks? */
875 switch (asoc
->state
) {
876 case SCTP_STATE_COOKIE_ECHOED
:
877 /* Only allow bundling when this packet has a COOKIE-ECHO
880 if (!packet
|| !packet
->has_cookie_echo
)
884 case SCTP_STATE_ESTABLISHED
:
885 case SCTP_STATE_SHUTDOWN_PENDING
:
886 case SCTP_STATE_SHUTDOWN_RECEIVED
:
888 * RFC 2960 6.1 Transmission of DATA Chunks
890 * C) When the time comes for the sender to transmit,
891 * before sending new DATA chunks, the sender MUST
892 * first transmit any outstanding DATA chunks which
893 * are marked for retransmission (limited by the
896 if (!list_empty(&q
->retransmit
)) {
897 if (transport
== asoc
->peer
.retran_path
)
900 /* Switch transports & prepare the packet. */
902 transport
= asoc
->peer
.retran_path
;
904 if (list_empty(&transport
->send_ready
)) {
905 list_add_tail(&transport
->send_ready
,
909 packet
= &transport
->packet
;
910 sctp_packet_config(packet
, vtag
,
911 asoc
->peer
.ecn_capable
);
913 error
= sctp_outq_flush_rtx(q
, packet
,
914 rtx_timeout
, &start_timer
);
917 sctp_transport_reset_timers(transport
);
919 /* This can happen on COOKIE-ECHO resend. Only
920 * one chunk can get bundled with a COOKIE-ECHO.
922 if (packet
->has_cookie_echo
)
925 /* Don't send new data if there is still data
926 * waiting to retransmit.
928 if (!list_empty(&q
->retransmit
))
932 /* Apply Max.Burst limitation to the current transport in
933 * case it will be used for new data. We are going to
934 * rest it before we return, but we want to apply the limit
935 * to the currently queued data.
938 sctp_transport_burst_limited(transport
);
940 /* Finally, transmit new packets. */
941 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
942 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
945 if (chunk
->sinfo
.sinfo_stream
>=
946 asoc
->c
.sinit_num_ostreams
) {
948 /* Mark as failed send. */
949 sctp_chunk_fail(chunk
, SCTP_ERROR_INV_STRM
);
950 sctp_chunk_free(chunk
);
954 /* Has this chunk expired? */
955 if (sctp_chunk_abandoned(chunk
)) {
956 sctp_chunk_fail(chunk
, 0);
957 sctp_chunk_free(chunk
);
961 /* If there is a specified transport, use it.
962 * Otherwise, we want to use the active path.
964 new_transport
= chunk
->transport
;
965 if (!new_transport
||
966 ((new_transport
->state
== SCTP_INACTIVE
) ||
967 (new_transport
->state
== SCTP_UNCONFIRMED
)))
968 new_transport
= asoc
->peer
.active_path
;
970 /* Change packets if necessary. */
971 if (new_transport
!= transport
) {
972 transport
= new_transport
;
974 /* Schedule to have this transport's
977 if (list_empty(&transport
->send_ready
)) {
978 list_add_tail(&transport
->send_ready
,
982 packet
= &transport
->packet
;
983 sctp_packet_config(packet
, vtag
,
984 asoc
->peer
.ecn_capable
);
985 /* We've switched transports, so apply the
986 * Burst limit to the new transport.
988 sctp_transport_burst_limited(transport
);
991 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
993 chunk
&& chunk
->chunk_hdr
?
994 sctp_cname(SCTP_ST_CHUNK(
995 chunk
->chunk_hdr
->type
))
998 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
999 "%p skb->users %d.\n",
1000 ntohl(chunk
->subh
.data_hdr
->tsn
),
1001 chunk
->skb
?chunk
->skb
->head
: NULL
,
1003 atomic_read(&chunk
->skb
->users
) : -1);
1005 /* Add the chunk to the packet. */
1006 status
= sctp_packet_transmit_chunk(packet
, chunk
, 0);
1009 case SCTP_XMIT_PMTU_FULL
:
1010 case SCTP_XMIT_RWND_FULL
:
1011 case SCTP_XMIT_NAGLE_DELAY
:
1012 /* We could not append this chunk, so put
1013 * the chunk back on the output queue.
1015 SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1016 "not transmit TSN: 0x%x, status: %d\n",
1017 ntohl(chunk
->subh
.data_hdr
->tsn
),
1019 sctp_outq_head_data(q
, chunk
);
1020 goto sctp_flush_out
;
1024 /* The sender is in the SHUTDOWN-PENDING state,
1025 * The sender MAY set the I-bit in the DATA
1028 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
)
1029 chunk
->chunk_hdr
->flags
|= SCTP_DATA_SACK_IMM
;
1037 /* BUG: We assume that the sctp_packet_transmit()
1038 * call below will succeed all the time and add the
1039 * chunk to the transmitted list and restart the
1041 * It is possible that the call can fail under OOM
1044 * Is this really a problem? Won't this behave
1047 list_add_tail(&chunk
->transmitted_list
,
1048 &transport
->transmitted
);
1050 sctp_transport_reset_timers(transport
);
1054 /* Only let one DATA chunk get bundled with a
1055 * COOKIE-ECHO chunk.
1057 if (packet
->has_cookie_echo
)
1058 goto sctp_flush_out
;
1069 /* Before returning, examine all the transports touched in
1070 * this call. Right now, we bluntly force clear all the
1071 * transports. Things might change after we implement Nagle.
1072 * But such an examination is still required.
1076 while ((ltransport
= sctp_list_dequeue(&transport_list
)) != NULL
) {
1077 struct sctp_transport
*t
= list_entry(ltransport
,
1078 struct sctp_transport
,
1080 packet
= &t
->packet
;
1081 if (!sctp_packet_empty(packet
))
1082 error
= sctp_packet_transmit(packet
);
1084 /* Clear the burst limited state, if any */
1085 sctp_transport_burst_reset(t
);
1091 /* Update unack_data based on the incoming SACK chunk */
1092 static void sctp_sack_update_unack_data(struct sctp_association
*assoc
,
1093 struct sctp_sackhdr
*sack
)
1095 sctp_sack_variable_t
*frags
;
1099 unack_data
= assoc
->next_tsn
- assoc
->ctsn_ack_point
- 1;
1101 frags
= sack
->variable
;
1102 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); i
++) {
1103 unack_data
-= ((ntohs(frags
[i
].gab
.end
) -
1104 ntohs(frags
[i
].gab
.start
) + 1));
1107 assoc
->unack_data
= unack_data
;
1110 /* This is where we REALLY process a SACK.
1112 * Process the SACK against the outqueue. Mostly, this just frees
1113 * things off the transmitted queue.
1115 int sctp_outq_sack(struct sctp_outq
*q
, struct sctp_sackhdr
*sack
)
1117 struct sctp_association
*asoc
= q
->asoc
;
1118 struct sctp_transport
*transport
;
1119 struct sctp_chunk
*tchunk
= NULL
;
1120 struct list_head
*lchunk
, *transport_list
, *temp
;
1121 sctp_sack_variable_t
*frags
= sack
->variable
;
1122 __u32 sack_ctsn
, ctsn
, tsn
;
1123 __u32 highest_tsn
, highest_new_tsn
;
1125 unsigned outstanding
;
1126 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1127 int count_of_newacks
= 0;
1131 /* Grab the association's destination address list. */
1132 transport_list
= &asoc
->peer
.transport_addr_list
;
1134 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1135 gap_ack_blocks
= ntohs(sack
->num_gap_ack_blocks
);
1137 * SFR-CACC algorithm:
1138 * On receipt of a SACK the sender SHOULD execute the
1139 * following statements.
1141 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1142 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1143 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1145 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1146 * is set the receiver of the SACK MUST take the following actions:
1148 * A) Initialize the cacc_saw_newack to 0 for all destination
1151 * Only bother if changeover_active is set. Otherwise, this is
1152 * totally suboptimal to do on every SACK.
1154 if (primary
->cacc
.changeover_active
) {
1155 u8 clear_cycling
= 0;
1157 if (TSN_lte(primary
->cacc
.next_tsn_at_change
, sack_ctsn
)) {
1158 primary
->cacc
.changeover_active
= 0;
1162 if (clear_cycling
|| gap_ack_blocks
) {
1163 list_for_each_entry(transport
, transport_list
,
1166 transport
->cacc
.cycling_changeover
= 0;
1168 transport
->cacc
.cacc_saw_newack
= 0;
1173 /* Get the highest TSN in the sack. */
1174 highest_tsn
= sack_ctsn
;
1176 highest_tsn
+= ntohs(frags
[gap_ack_blocks
- 1].gab
.end
);
1178 if (TSN_lt(asoc
->highest_sacked
, highest_tsn
))
1179 asoc
->highest_sacked
= highest_tsn
;
1181 highest_new_tsn
= sack_ctsn
;
1183 /* Run through the retransmit queue. Credit bytes received
1184 * and free those chunks that we can.
1186 sctp_check_transmitted(q
, &q
->retransmit
, NULL
, sack
, &highest_new_tsn
);
1188 /* Run through the transmitted queue.
1189 * Credit bytes received and free those chunks which we can.
1191 * This is a MASSIVE candidate for optimization.
1193 list_for_each_entry(transport
, transport_list
, transports
) {
1194 sctp_check_transmitted(q
, &transport
->transmitted
,
1195 transport
, sack
, &highest_new_tsn
);
1197 * SFR-CACC algorithm:
1198 * C) Let count_of_newacks be the number of
1199 * destinations for which cacc_saw_newack is set.
1201 if (transport
->cacc
.cacc_saw_newack
)
1202 count_of_newacks
++;
1205 /* Move the Cumulative TSN Ack Point if appropriate. */
1206 if (TSN_lt(asoc
->ctsn_ack_point
, sack_ctsn
)) {
1207 asoc
->ctsn_ack_point
= sack_ctsn
;
1211 if (gap_ack_blocks
) {
1213 if (asoc
->fast_recovery
&& accum_moved
)
1214 highest_new_tsn
= highest_tsn
;
1216 list_for_each_entry(transport
, transport_list
, transports
)
1217 sctp_mark_missing(q
, &transport
->transmitted
, transport
,
1218 highest_new_tsn
, count_of_newacks
);
1221 /* Update unack_data field in the assoc. */
1222 sctp_sack_update_unack_data(asoc
, sack
);
1224 ctsn
= asoc
->ctsn_ack_point
;
1226 /* Throw away stuff rotting on the sack queue. */
1227 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
1228 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1230 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1231 if (TSN_lte(tsn
, ctsn
)) {
1232 list_del_init(&tchunk
->transmitted_list
);
1233 sctp_chunk_free(tchunk
);
1237 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1238 * number of bytes still outstanding after processing the
1239 * Cumulative TSN Ack and the Gap Ack Blocks.
1242 sack_a_rwnd
= ntohl(sack
->a_rwnd
);
1243 outstanding
= q
->outstanding_bytes
;
1245 if (outstanding
< sack_a_rwnd
)
1246 sack_a_rwnd
-= outstanding
;
1250 asoc
->peer
.rwnd
= sack_a_rwnd
;
1252 sctp_generate_fwdtsn(q
, sack_ctsn
);
1254 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1255 __func__
, sack_ctsn
);
1256 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1257 "%p is 0x%x. Adv peer ack point: 0x%x\n",
1258 __func__
, asoc
, ctsn
, asoc
->adv_peer_ack_point
);
1260 /* See if all chunks are acked.
1261 * Make sure the empty queue handler will get run later.
1263 q
->empty
= (list_empty(&q
->out_chunk_list
) &&
1264 list_empty(&q
->retransmit
));
1268 list_for_each_entry(transport
, transport_list
, transports
) {
1269 q
->empty
= q
->empty
&& list_empty(&transport
->transmitted
);
1274 SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1279 /* Is the outqueue empty? */
1280 int sctp_outq_is_empty(const struct sctp_outq
*q
)
1285 /********************************************************************
1286 * 2nd Level Abstractions
1287 ********************************************************************/
1289 /* Go through a transport's transmitted list or the association's retransmit
1290 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1291 * The retransmit list will not have an associated transport.
1293 * I added coherent debug information output. --xguo
1295 * Instead of printing 'sacked' or 'kept' for each TSN on the
1296 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1297 * KEPT TSN6-TSN7, etc.
1299 static void sctp_check_transmitted(struct sctp_outq
*q
,
1300 struct list_head
*transmitted_queue
,
1301 struct sctp_transport
*transport
,
1302 struct sctp_sackhdr
*sack
,
1303 __u32
*highest_new_tsn_in_sack
)
1305 struct list_head
*lchunk
;
1306 struct sctp_chunk
*tchunk
;
1307 struct list_head tlist
;
1311 __u8 restart_timer
= 0;
1312 int bytes_acked
= 0;
1313 int migrate_bytes
= 0;
1315 /* These state variables are for coherent debug output. --xguo */
1318 __u32 dbg_ack_tsn
= 0; /* An ACKed TSN range starts here... */
1319 __u32 dbg_last_ack_tsn
= 0; /* ...and finishes here. */
1320 __u32 dbg_kept_tsn
= 0; /* An un-ACKed range starts here... */
1321 __u32 dbg_last_kept_tsn
= 0; /* ...and finishes here. */
1323 /* 0 : The last TSN was ACKed.
1324 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1325 * -1: We need to initialize.
1327 int dbg_prt_state
= -1;
1328 #endif /* SCTP_DEBUG */
1330 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1332 INIT_LIST_HEAD(&tlist
);
1334 /* The while loop will skip empty transmitted queues. */
1335 while (NULL
!= (lchunk
= sctp_list_dequeue(transmitted_queue
))) {
1336 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1339 if (sctp_chunk_abandoned(tchunk
)) {
1340 /* Move the chunk to abandoned list. */
1341 sctp_insert_list(&q
->abandoned
, lchunk
);
1343 /* If this chunk has not been acked, stop
1344 * considering it as 'outstanding'.
1346 if (!tchunk
->tsn_gap_acked
) {
1347 if (tchunk
->transport
)
1348 tchunk
->transport
->flight_size
-=
1349 sctp_data_size(tchunk
);
1350 q
->outstanding_bytes
-= sctp_data_size(tchunk
);
1355 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1356 if (sctp_acked(sack
, tsn
)) {
1357 /* If this queue is the retransmit queue, the
1358 * retransmit timer has already reclaimed
1359 * the outstanding bytes for this chunk, so only
1360 * count bytes associated with a transport.
1363 /* If this chunk is being used for RTT
1364 * measurement, calculate the RTT and update
1365 * the RTO using this value.
1367 * 6.3.1 C5) Karn's algorithm: RTT measurements
1368 * MUST NOT be made using packets that were
1369 * retransmitted (and thus for which it is
1370 * ambiguous whether the reply was for the
1371 * first instance of the packet or a later
1374 if (!tchunk
->tsn_gap_acked
&&
1375 tchunk
->rtt_in_progress
) {
1376 tchunk
->rtt_in_progress
= 0;
1377 rtt
= jiffies
- tchunk
->sent_at
;
1378 sctp_transport_update_rto(transport
,
1383 /* If the chunk hasn't been marked as ACKED,
1384 * mark it and account bytes_acked if the
1385 * chunk had a valid transport (it will not
1386 * have a transport if ASCONF had deleted it
1387 * while DATA was outstanding).
1389 if (!tchunk
->tsn_gap_acked
) {
1390 tchunk
->tsn_gap_acked
= 1;
1391 *highest_new_tsn_in_sack
= tsn
;
1392 bytes_acked
+= sctp_data_size(tchunk
);
1393 if (!tchunk
->transport
)
1394 migrate_bytes
+= sctp_data_size(tchunk
);
1397 if (TSN_lte(tsn
, sack_ctsn
)) {
1398 /* RFC 2960 6.3.2 Retransmission Timer Rules
1400 * R3) Whenever a SACK is received
1401 * that acknowledges the DATA chunk
1402 * with the earliest outstanding TSN
1403 * for that address, restart T3-rtx
1404 * timer for that address with its
1409 if (!tchunk
->tsn_gap_acked
) {
1411 * SFR-CACC algorithm:
1412 * 2) If the SACK contains gap acks
1413 * and the flag CHANGEOVER_ACTIVE is
1414 * set the receiver of the SACK MUST
1415 * take the following action:
1417 * B) For each TSN t being acked that
1418 * has not been acked in any SACK so
1419 * far, set cacc_saw_newack to 1 for
1420 * the destination that the TSN was
1424 sack
->num_gap_ack_blocks
&&
1425 q
->asoc
->peer
.primary_path
->cacc
.
1427 transport
->cacc
.cacc_saw_newack
1431 list_add_tail(&tchunk
->transmitted_list
,
1434 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1435 * M2) Each time a SACK arrives reporting
1436 * 'Stray DATA chunk(s)' record the highest TSN
1437 * reported as newly acknowledged, call this
1438 * value 'HighestTSNinSack'. A newly
1439 * acknowledged DATA chunk is one not
1440 * previously acknowledged in a SACK.
1442 * When the SCTP sender of data receives a SACK
1443 * chunk that acknowledges, for the first time,
1444 * the receipt of a DATA chunk, all the still
1445 * unacknowledged DATA chunks whose TSN is
1446 * older than that newly acknowledged DATA
1447 * chunk, are qualified as 'Stray DATA chunks'.
1449 list_add_tail(lchunk
, &tlist
);
1453 switch (dbg_prt_state
) {
1454 case 0: /* last TSN was ACKed */
1455 if (dbg_last_ack_tsn
+ 1 == tsn
) {
1456 /* This TSN belongs to the
1457 * current ACK range.
1462 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1463 /* Display the end of the
1466 SCTP_DEBUG_PRINTK("-%08x",
1470 /* Start a new range. */
1471 SCTP_DEBUG_PRINTK(",%08x", tsn
);
1475 case 1: /* The last TSN was NOT ACKed. */
1476 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1477 /* Display the end of current range. */
1478 SCTP_DEBUG_PRINTK("-%08x",
1482 SCTP_DEBUG_PRINTK("\n");
1484 /* FALL THROUGH... */
1486 /* This is the first-ever TSN we examined. */
1487 /* Start a new range of ACK-ed TSNs. */
1488 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn
);
1493 dbg_last_ack_tsn
= tsn
;
1494 #endif /* SCTP_DEBUG */
1497 if (tchunk
->tsn_gap_acked
) {
1498 SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1502 tchunk
->tsn_gap_acked
= 0;
1504 if (tchunk
->transport
)
1505 bytes_acked
-= sctp_data_size(tchunk
);
1507 /* RFC 2960 6.3.2 Retransmission Timer Rules
1509 * R4) Whenever a SACK is received missing a
1510 * TSN that was previously acknowledged via a
1511 * Gap Ack Block, start T3-rtx for the
1512 * destination address to which the DATA
1513 * chunk was originally
1514 * transmitted if it is not already running.
1519 list_add_tail(lchunk
, &tlist
);
1522 /* See the above comments on ACK-ed TSNs. */
1523 switch (dbg_prt_state
) {
1525 if (dbg_last_kept_tsn
+ 1 == tsn
)
1528 if (dbg_last_kept_tsn
!= dbg_kept_tsn
)
1529 SCTP_DEBUG_PRINTK("-%08x",
1532 SCTP_DEBUG_PRINTK(",%08x", tsn
);
1537 if (dbg_last_ack_tsn
!= dbg_ack_tsn
)
1538 SCTP_DEBUG_PRINTK("-%08x",
1540 SCTP_DEBUG_PRINTK("\n");
1542 /* FALL THROUGH... */
1544 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn
);
1549 dbg_last_kept_tsn
= tsn
;
1550 #endif /* SCTP_DEBUG */
1555 /* Finish off the last range, displaying its ending TSN. */
1556 switch (dbg_prt_state
) {
1558 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1559 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn
);
1561 SCTP_DEBUG_PRINTK("\n");
1566 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1567 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn
);
1569 SCTP_DEBUG_PRINTK("\n");
1572 #endif /* SCTP_DEBUG */
1575 /* We may have counted DATA that was migrated
1576 * to this transport due to DEL-IP operation.
1577 * Subtract those bytes, since the were never
1578 * send on this transport and shouldn't be
1579 * credited to this transport.
1581 bytes_acked
-= migrate_bytes
;
1583 /* 8.2. When an outstanding TSN is acknowledged,
1584 * the endpoint shall clear the error counter of
1585 * the destination transport address to which the
1586 * DATA chunk was last sent.
1587 * The association's overall error counter is
1590 transport
->error_count
= 0;
1591 transport
->asoc
->overall_error_count
= 0;
1593 /* Mark the destination transport address as
1594 * active if it is not so marked.
1596 if ((transport
->state
== SCTP_INACTIVE
) ||
1597 (transport
->state
== SCTP_UNCONFIRMED
)) {
1598 sctp_assoc_control_transport(
1602 SCTP_RECEIVED_SACK
);
1605 sctp_transport_raise_cwnd(transport
, sack_ctsn
,
1608 transport
->flight_size
-= bytes_acked
;
1609 if (transport
->flight_size
== 0)
1610 transport
->partial_bytes_acked
= 0;
1611 q
->outstanding_bytes
-= bytes_acked
+ migrate_bytes
;
1613 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1614 * When a sender is doing zero window probing, it
1615 * should not timeout the association if it continues
1616 * to receive new packets from the receiver. The
1617 * reason is that the receiver MAY keep its window
1618 * closed for an indefinite time.
1619 * A sender is doing zero window probing when the
1620 * receiver's advertised window is zero, and there is
1621 * only one data chunk in flight to the receiver.
1623 if (!q
->asoc
->peer
.rwnd
&&
1624 !list_empty(&tlist
) &&
1625 (sack_ctsn
+2 == q
->asoc
->next_tsn
)) {
1626 SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1627 "window probe: %u\n",
1628 __func__
, sack_ctsn
);
1629 q
->asoc
->overall_error_count
= 0;
1630 transport
->error_count
= 0;
1634 /* RFC 2960 6.3.2 Retransmission Timer Rules
1636 * R2) Whenever all outstanding data sent to an address have
1637 * been acknowledged, turn off the T3-rtx timer of that
1640 if (!transport
->flight_size
) {
1641 if (timer_pending(&transport
->T3_rtx_timer
) &&
1642 del_timer(&transport
->T3_rtx_timer
)) {
1643 sctp_transport_put(transport
);
1645 } else if (restart_timer
) {
1646 if (!mod_timer(&transport
->T3_rtx_timer
,
1647 jiffies
+ transport
->rto
))
1648 sctp_transport_hold(transport
);
1652 list_splice(&tlist
, transmitted_queue
);
1655 /* Mark chunks as missing and consequently may get retransmitted. */
1656 static void sctp_mark_missing(struct sctp_outq
*q
,
1657 struct list_head
*transmitted_queue
,
1658 struct sctp_transport
*transport
,
1659 __u32 highest_new_tsn_in_sack
,
1660 int count_of_newacks
)
1662 struct sctp_chunk
*chunk
;
1664 char do_fast_retransmit
= 0;
1665 struct sctp_association
*asoc
= q
->asoc
;
1666 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1668 list_for_each_entry(chunk
, transmitted_queue
, transmitted_list
) {
1670 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1672 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1673 * 'Unacknowledged TSN's', if the TSN number of an
1674 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1675 * value, increment the 'TSN.Missing.Report' count on that
1676 * chunk if it has NOT been fast retransmitted or marked for
1677 * fast retransmit already.
1679 if (chunk
->fast_retransmit
== SCTP_CAN_FRTX
&&
1680 !chunk
->tsn_gap_acked
&&
1681 TSN_lt(tsn
, highest_new_tsn_in_sack
)) {
1683 /* SFR-CACC may require us to skip marking
1684 * this chunk as missing.
1686 if (!transport
|| !sctp_cacc_skip(primary
, transport
,
1687 count_of_newacks
, tsn
)) {
1688 chunk
->tsn_missing_report
++;
1691 "%s: TSN 0x%x missing counter: %d\n",
1693 chunk
->tsn_missing_report
);
1697 * M4) If any DATA chunk is found to have a
1698 * 'TSN.Missing.Report'
1699 * value larger than or equal to 3, mark that chunk for
1700 * retransmission and start the fast retransmit procedure.
1703 if (chunk
->tsn_missing_report
>= 3) {
1704 chunk
->fast_retransmit
= SCTP_NEED_FRTX
;
1705 do_fast_retransmit
= 1;
1710 if (do_fast_retransmit
)
1711 sctp_retransmit(q
, transport
, SCTP_RTXR_FAST_RTX
);
1713 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1714 "ssthresh: %d, flight_size: %d, pba: %d\n",
1715 __func__
, transport
, transport
->cwnd
,
1716 transport
->ssthresh
, transport
->flight_size
,
1717 transport
->partial_bytes_acked
);
1721 /* Is the given TSN acked by this packet? */
1722 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
)
1725 sctp_sack_variable_t
*frags
;
1727 __u32 ctsn
= ntohl(sack
->cum_tsn_ack
);
1729 if (TSN_lte(tsn
, ctsn
))
1732 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1735 * These fields contain the Gap Ack Blocks. They are repeated
1736 * for each Gap Ack Block up to the number of Gap Ack Blocks
1737 * defined in the Number of Gap Ack Blocks field. All DATA
1738 * chunks with TSNs greater than or equal to (Cumulative TSN
1739 * Ack + Gap Ack Block Start) and less than or equal to
1740 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1741 * Block are assumed to have been received correctly.
1744 frags
= sack
->variable
;
1746 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); ++i
) {
1747 if (TSN_lte(ntohs(frags
[i
].gab
.start
), gap
) &&
1748 TSN_lte(gap
, ntohs(frags
[i
].gab
.end
)))
1757 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip
*skiplist
,
1758 int nskips
, __be16 stream
)
1762 for (i
= 0; i
< nskips
; i
++) {
1763 if (skiplist
[i
].stream
== stream
)
1769 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1770 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 ctsn
)
1772 struct sctp_association
*asoc
= q
->asoc
;
1773 struct sctp_chunk
*ftsn_chunk
= NULL
;
1774 struct sctp_fwdtsn_skip ftsn_skip_arr
[10];
1778 struct sctp_chunk
*chunk
;
1779 struct list_head
*lchunk
, *temp
;
1781 if (!asoc
->peer
.prsctp_capable
)
1784 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1787 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1788 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1790 if (TSN_lt(asoc
->adv_peer_ack_point
, ctsn
))
1791 asoc
->adv_peer_ack_point
= ctsn
;
1793 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1794 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1795 * the chunk next in the out-queue space is marked as "abandoned" as
1796 * shown in the following example:
1798 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1799 * and the Advanced.Peer.Ack.Point is updated to this value:
1801 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1802 * normal SACK processing local advancement
1804 * Adv.Ack.Pt-> 102 acked 102 acked
1805 * 103 abandoned 103 abandoned
1806 * 104 abandoned Adv.Ack.P-> 104 abandoned
1808 * 106 acked 106 acked
1811 * In this example, the data sender successfully advanced the
1812 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1814 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
1815 chunk
= list_entry(lchunk
, struct sctp_chunk
,
1817 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1819 /* Remove any chunks in the abandoned queue that are acked by
1822 if (TSN_lte(tsn
, ctsn
)) {
1823 list_del_init(lchunk
);
1824 sctp_chunk_free(chunk
);
1826 if (TSN_lte(tsn
, asoc
->adv_peer_ack_point
+1)) {
1827 asoc
->adv_peer_ack_point
= tsn
;
1828 if (chunk
->chunk_hdr
->flags
&
1829 SCTP_DATA_UNORDERED
)
1831 skip_pos
= sctp_get_skip_pos(&ftsn_skip_arr
[0],
1833 chunk
->subh
.data_hdr
->stream
);
1834 ftsn_skip_arr
[skip_pos
].stream
=
1835 chunk
->subh
.data_hdr
->stream
;
1836 ftsn_skip_arr
[skip_pos
].ssn
=
1837 chunk
->subh
.data_hdr
->ssn
;
1838 if (skip_pos
== nskips
)
1847 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1848 * is greater than the Cumulative TSN ACK carried in the received
1849 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1850 * chunk containing the latest value of the
1851 * "Advanced.Peer.Ack.Point".
1853 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1854 * list each stream and sequence number in the forwarded TSN. This
1855 * information will enable the receiver to easily find any
1856 * stranded TSN's waiting on stream reorder queues. Each stream
1857 * SHOULD only be reported once; this means that if multiple
1858 * abandoned messages occur in the same stream then only the
1859 * highest abandoned stream sequence number is reported. If the
1860 * total size of the FORWARD TSN does NOT fit in a single MTU then
1861 * the sender of the FORWARD TSN SHOULD lower the
1862 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1865 if (asoc
->adv_peer_ack_point
> ctsn
)
1866 ftsn_chunk
= sctp_make_fwdtsn(asoc
, asoc
->adv_peer_ack_point
,
1867 nskips
, &ftsn_skip_arr
[0]);
1870 list_add_tail(&ftsn_chunk
->list
, &q
->control_chunk_list
);
1871 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS
);