slub,rcu: don't assume the size of struct rcu_head
[linux-2.6/next.git] / mm / slub.c
blobebba3eb193692cac5cdd3af0e472fa3c1800f80c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
31 #include <trace/events/kmem.h>
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache *s)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
138 #define MIN_PARTIAL 5
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
145 #define MAX_PARTIAL 10
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
158 * Set of flags that will prevent slab merging
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 SLAB_CACHE_DMA | SLAB_NOTRACK)
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000UL /* Poison object */
174 static int kmem_size = sizeof(struct kmem_cache);
176 #ifdef CONFIG_SMP
177 static struct notifier_block slab_notifier;
178 #endif
180 static enum {
181 DOWN, /* No slab functionality available */
182 PARTIAL, /* Kmem_cache_node works */
183 UP, /* Everything works but does not show up in sysfs */
184 SYSFS /* Sysfs up */
185 } slab_state = DOWN;
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
192 * Tracking user of a slab.
194 struct track {
195 unsigned long addr; /* Called from address */
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
203 #ifdef CONFIG_SYSFS
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 kfree(s->name);
215 kfree(s);
218 #endif
220 static inline void stat(struct kmem_cache *s, enum stat_item si)
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
231 int slab_is_available(void)
233 return slab_state >= UP;
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238 return s->node[node];
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
245 void *base;
247 if (!object)
248 return 1;
250 base = page_address(page);
251 if (object < base || object >= base + page->objects * s->size ||
252 (object - base) % s->size) {
253 return 0;
256 return 1;
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
261 return *(void **)(object + s->offset);
264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
266 *(void **)(object + s->offset) = fp;
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272 __p += (__s)->size)
274 /* Scan freelist */
275 #define for_each_free_object(__p, __s, __free) \
276 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281 return (p - addr) / s->size;
284 static inline int order_objects(int order, unsigned long size, int reserved)
286 return ((PAGE_SIZE << order) - reserved) / size;
289 static inline struct kmem_cache_order_objects oo_make(int order,
290 unsigned long size, int reserved)
292 struct kmem_cache_order_objects x = {
293 (order << OO_SHIFT) + order_objects(order, size, reserved)
296 return x;
299 static inline int oo_order(struct kmem_cache_order_objects x)
301 return x.x >> OO_SHIFT;
304 static inline int oo_objects(struct kmem_cache_order_objects x)
306 return x.x & OO_MASK;
309 #ifdef CONFIG_SLUB_DEBUG
311 * Debug settings:
313 #ifdef CONFIG_SLUB_DEBUG_ON
314 static int slub_debug = DEBUG_DEFAULT_FLAGS;
315 #else
316 static int slub_debug;
317 #endif
319 static char *slub_debug_slabs;
320 static int disable_higher_order_debug;
323 * Object debugging
325 static void print_section(char *text, u8 *addr, unsigned int length)
327 int i, offset;
328 int newline = 1;
329 char ascii[17];
331 ascii[16] = 0;
333 for (i = 0; i < length; i++) {
334 if (newline) {
335 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
336 newline = 0;
338 printk(KERN_CONT " %02x", addr[i]);
339 offset = i % 16;
340 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
341 if (offset == 15) {
342 printk(KERN_CONT " %s\n", ascii);
343 newline = 1;
346 if (!newline) {
347 i %= 16;
348 while (i < 16) {
349 printk(KERN_CONT " ");
350 ascii[i] = ' ';
351 i++;
353 printk(KERN_CONT " %s\n", ascii);
357 static struct track *get_track(struct kmem_cache *s, void *object,
358 enum track_item alloc)
360 struct track *p;
362 if (s->offset)
363 p = object + s->offset + sizeof(void *);
364 else
365 p = object + s->inuse;
367 return p + alloc;
370 static void set_track(struct kmem_cache *s, void *object,
371 enum track_item alloc, unsigned long addr)
373 struct track *p = get_track(s, object, alloc);
375 if (addr) {
376 p->addr = addr;
377 p->cpu = smp_processor_id();
378 p->pid = current->pid;
379 p->when = jiffies;
380 } else
381 memset(p, 0, sizeof(struct track));
384 static void init_tracking(struct kmem_cache *s, void *object)
386 if (!(s->flags & SLAB_STORE_USER))
387 return;
389 set_track(s, object, TRACK_FREE, 0UL);
390 set_track(s, object, TRACK_ALLOC, 0UL);
393 static void print_track(const char *s, struct track *t)
395 if (!t->addr)
396 return;
398 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
399 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
402 static void print_tracking(struct kmem_cache *s, void *object)
404 if (!(s->flags & SLAB_STORE_USER))
405 return;
407 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
408 print_track("Freed", get_track(s, object, TRACK_FREE));
411 static void print_page_info(struct page *page)
413 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
414 page, page->objects, page->inuse, page->freelist, page->flags);
418 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
420 va_list args;
421 char buf[100];
423 va_start(args, fmt);
424 vsnprintf(buf, sizeof(buf), fmt, args);
425 va_end(args);
426 printk(KERN_ERR "========================================"
427 "=====================================\n");
428 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
429 printk(KERN_ERR "----------------------------------------"
430 "-------------------------------------\n\n");
433 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
435 va_list args;
436 char buf[100];
438 va_start(args, fmt);
439 vsnprintf(buf, sizeof(buf), fmt, args);
440 va_end(args);
441 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
444 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
446 unsigned int off; /* Offset of last byte */
447 u8 *addr = page_address(page);
449 print_tracking(s, p);
451 print_page_info(page);
453 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
454 p, p - addr, get_freepointer(s, p));
456 if (p > addr + 16)
457 print_section("Bytes b4", p - 16, 16);
459 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
461 if (s->flags & SLAB_RED_ZONE)
462 print_section("Redzone", p + s->objsize,
463 s->inuse - s->objsize);
465 if (s->offset)
466 off = s->offset + sizeof(void *);
467 else
468 off = s->inuse;
470 if (s->flags & SLAB_STORE_USER)
471 off += 2 * sizeof(struct track);
473 if (off != s->size)
474 /* Beginning of the filler is the free pointer */
475 print_section("Padding", p + off, s->size - off);
477 dump_stack();
480 static void object_err(struct kmem_cache *s, struct page *page,
481 u8 *object, char *reason)
483 slab_bug(s, "%s", reason);
484 print_trailer(s, page, object);
487 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
489 va_list args;
490 char buf[100];
492 va_start(args, fmt);
493 vsnprintf(buf, sizeof(buf), fmt, args);
494 va_end(args);
495 slab_bug(s, "%s", buf);
496 print_page_info(page);
497 dump_stack();
500 static void init_object(struct kmem_cache *s, void *object, u8 val)
502 u8 *p = object;
504 if (s->flags & __OBJECT_POISON) {
505 memset(p, POISON_FREE, s->objsize - 1);
506 p[s->objsize - 1] = POISON_END;
509 if (s->flags & SLAB_RED_ZONE)
510 memset(p + s->objsize, val, s->inuse - s->objsize);
513 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
515 while (bytes) {
516 if (*start != (u8)value)
517 return start;
518 start++;
519 bytes--;
521 return NULL;
524 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
525 void *from, void *to)
527 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
528 memset(from, data, to - from);
531 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
532 u8 *object, char *what,
533 u8 *start, unsigned int value, unsigned int bytes)
535 u8 *fault;
536 u8 *end;
538 fault = check_bytes(start, value, bytes);
539 if (!fault)
540 return 1;
542 end = start + bytes;
543 while (end > fault && end[-1] == value)
544 end--;
546 slab_bug(s, "%s overwritten", what);
547 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
548 fault, end - 1, fault[0], value);
549 print_trailer(s, page, object);
551 restore_bytes(s, what, value, fault, end);
552 return 0;
556 * Object layout:
558 * object address
559 * Bytes of the object to be managed.
560 * If the freepointer may overlay the object then the free
561 * pointer is the first word of the object.
563 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
564 * 0xa5 (POISON_END)
566 * object + s->objsize
567 * Padding to reach word boundary. This is also used for Redzoning.
568 * Padding is extended by another word if Redzoning is enabled and
569 * objsize == inuse.
571 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
572 * 0xcc (RED_ACTIVE) for objects in use.
574 * object + s->inuse
575 * Meta data starts here.
577 * A. Free pointer (if we cannot overwrite object on free)
578 * B. Tracking data for SLAB_STORE_USER
579 * C. Padding to reach required alignment boundary or at mininum
580 * one word if debugging is on to be able to detect writes
581 * before the word boundary.
583 * Padding is done using 0x5a (POISON_INUSE)
585 * object + s->size
586 * Nothing is used beyond s->size.
588 * If slabcaches are merged then the objsize and inuse boundaries are mostly
589 * ignored. And therefore no slab options that rely on these boundaries
590 * may be used with merged slabcaches.
593 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
595 unsigned long off = s->inuse; /* The end of info */
597 if (s->offset)
598 /* Freepointer is placed after the object. */
599 off += sizeof(void *);
601 if (s->flags & SLAB_STORE_USER)
602 /* We also have user information there */
603 off += 2 * sizeof(struct track);
605 if (s->size == off)
606 return 1;
608 return check_bytes_and_report(s, page, p, "Object padding",
609 p + off, POISON_INUSE, s->size - off);
612 /* Check the pad bytes at the end of a slab page */
613 static int slab_pad_check(struct kmem_cache *s, struct page *page)
615 u8 *start;
616 u8 *fault;
617 u8 *end;
618 int length;
619 int remainder;
621 if (!(s->flags & SLAB_POISON))
622 return 1;
624 start = page_address(page);
625 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
626 end = start + length;
627 remainder = length % s->size;
628 if (!remainder)
629 return 1;
631 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
632 if (!fault)
633 return 1;
634 while (end > fault && end[-1] == POISON_INUSE)
635 end--;
637 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
638 print_section("Padding", end - remainder, remainder);
640 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
641 return 0;
644 static int check_object(struct kmem_cache *s, struct page *page,
645 void *object, u8 val)
647 u8 *p = object;
648 u8 *endobject = object + s->objsize;
650 if (s->flags & SLAB_RED_ZONE) {
651 if (!check_bytes_and_report(s, page, object, "Redzone",
652 endobject, val, s->inuse - s->objsize))
653 return 0;
654 } else {
655 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
656 check_bytes_and_report(s, page, p, "Alignment padding",
657 endobject, POISON_INUSE, s->inuse - s->objsize);
661 if (s->flags & SLAB_POISON) {
662 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
663 (!check_bytes_and_report(s, page, p, "Poison", p,
664 POISON_FREE, s->objsize - 1) ||
665 !check_bytes_and_report(s, page, p, "Poison",
666 p + s->objsize - 1, POISON_END, 1)))
667 return 0;
669 * check_pad_bytes cleans up on its own.
671 check_pad_bytes(s, page, p);
674 if (!s->offset && val == SLUB_RED_ACTIVE)
676 * Object and freepointer overlap. Cannot check
677 * freepointer while object is allocated.
679 return 1;
681 /* Check free pointer validity */
682 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
683 object_err(s, page, p, "Freepointer corrupt");
685 * No choice but to zap it and thus lose the remainder
686 * of the free objects in this slab. May cause
687 * another error because the object count is now wrong.
689 set_freepointer(s, p, NULL);
690 return 0;
692 return 1;
695 static int check_slab(struct kmem_cache *s, struct page *page)
697 int maxobj;
699 VM_BUG_ON(!irqs_disabled());
701 if (!PageSlab(page)) {
702 slab_err(s, page, "Not a valid slab page");
703 return 0;
706 maxobj = order_objects(compound_order(page), s->size, s->reserved);
707 if (page->objects > maxobj) {
708 slab_err(s, page, "objects %u > max %u",
709 s->name, page->objects, maxobj);
710 return 0;
712 if (page->inuse > page->objects) {
713 slab_err(s, page, "inuse %u > max %u",
714 s->name, page->inuse, page->objects);
715 return 0;
717 /* Slab_pad_check fixes things up after itself */
718 slab_pad_check(s, page);
719 return 1;
723 * Determine if a certain object on a page is on the freelist. Must hold the
724 * slab lock to guarantee that the chains are in a consistent state.
726 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
728 int nr = 0;
729 void *fp = page->freelist;
730 void *object = NULL;
731 unsigned long max_objects;
733 while (fp && nr <= page->objects) {
734 if (fp == search)
735 return 1;
736 if (!check_valid_pointer(s, page, fp)) {
737 if (object) {
738 object_err(s, page, object,
739 "Freechain corrupt");
740 set_freepointer(s, object, NULL);
741 break;
742 } else {
743 slab_err(s, page, "Freepointer corrupt");
744 page->freelist = NULL;
745 page->inuse = page->objects;
746 slab_fix(s, "Freelist cleared");
747 return 0;
749 break;
751 object = fp;
752 fp = get_freepointer(s, object);
753 nr++;
756 max_objects = order_objects(compound_order(page), s->size, s->reserved);
757 if (max_objects > MAX_OBJS_PER_PAGE)
758 max_objects = MAX_OBJS_PER_PAGE;
760 if (page->objects != max_objects) {
761 slab_err(s, page, "Wrong number of objects. Found %d but "
762 "should be %d", page->objects, max_objects);
763 page->objects = max_objects;
764 slab_fix(s, "Number of objects adjusted.");
766 if (page->inuse != page->objects - nr) {
767 slab_err(s, page, "Wrong object count. Counter is %d but "
768 "counted were %d", page->inuse, page->objects - nr);
769 page->inuse = page->objects - nr;
770 slab_fix(s, "Object count adjusted.");
772 return search == NULL;
775 static void trace(struct kmem_cache *s, struct page *page, void *object,
776 int alloc)
778 if (s->flags & SLAB_TRACE) {
779 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
780 s->name,
781 alloc ? "alloc" : "free",
782 object, page->inuse,
783 page->freelist);
785 if (!alloc)
786 print_section("Object", (void *)object, s->objsize);
788 dump_stack();
793 * Hooks for other subsystems that check memory allocations. In a typical
794 * production configuration these hooks all should produce no code at all.
796 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
798 flags &= gfp_allowed_mask;
799 lockdep_trace_alloc(flags);
800 might_sleep_if(flags & __GFP_WAIT);
802 return should_failslab(s->objsize, flags, s->flags);
805 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
807 flags &= gfp_allowed_mask;
808 kmemcheck_slab_alloc(s, flags, object, s->objsize);
809 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
812 static inline void slab_free_hook(struct kmem_cache *s, void *x)
814 kmemleak_free_recursive(x, s->flags);
817 static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
819 kmemcheck_slab_free(s, object, s->objsize);
820 debug_check_no_locks_freed(object, s->objsize);
821 if (!(s->flags & SLAB_DEBUG_OBJECTS))
822 debug_check_no_obj_freed(object, s->objsize);
826 * Tracking of fully allocated slabs for debugging purposes.
828 static void add_full(struct kmem_cache_node *n, struct page *page)
830 spin_lock(&n->list_lock);
831 list_add(&page->lru, &n->full);
832 spin_unlock(&n->list_lock);
835 static void remove_full(struct kmem_cache *s, struct page *page)
837 struct kmem_cache_node *n;
839 if (!(s->flags & SLAB_STORE_USER))
840 return;
842 n = get_node(s, page_to_nid(page));
844 spin_lock(&n->list_lock);
845 list_del(&page->lru);
846 spin_unlock(&n->list_lock);
849 /* Tracking of the number of slabs for debugging purposes */
850 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
852 struct kmem_cache_node *n = get_node(s, node);
854 return atomic_long_read(&n->nr_slabs);
857 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
859 return atomic_long_read(&n->nr_slabs);
862 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
864 struct kmem_cache_node *n = get_node(s, node);
867 * May be called early in order to allocate a slab for the
868 * kmem_cache_node structure. Solve the chicken-egg
869 * dilemma by deferring the increment of the count during
870 * bootstrap (see early_kmem_cache_node_alloc).
872 if (n) {
873 atomic_long_inc(&n->nr_slabs);
874 atomic_long_add(objects, &n->total_objects);
877 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
879 struct kmem_cache_node *n = get_node(s, node);
881 atomic_long_dec(&n->nr_slabs);
882 atomic_long_sub(objects, &n->total_objects);
885 /* Object debug checks for alloc/free paths */
886 static void setup_object_debug(struct kmem_cache *s, struct page *page,
887 void *object)
889 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
890 return;
892 init_object(s, object, SLUB_RED_INACTIVE);
893 init_tracking(s, object);
896 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
897 void *object, unsigned long addr)
899 if (!check_slab(s, page))
900 goto bad;
902 if (!on_freelist(s, page, object)) {
903 object_err(s, page, object, "Object already allocated");
904 goto bad;
907 if (!check_valid_pointer(s, page, object)) {
908 object_err(s, page, object, "Freelist Pointer check fails");
909 goto bad;
912 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
913 goto bad;
915 /* Success perform special debug activities for allocs */
916 if (s->flags & SLAB_STORE_USER)
917 set_track(s, object, TRACK_ALLOC, addr);
918 trace(s, page, object, 1);
919 init_object(s, object, SLUB_RED_ACTIVE);
920 return 1;
922 bad:
923 if (PageSlab(page)) {
925 * If this is a slab page then lets do the best we can
926 * to avoid issues in the future. Marking all objects
927 * as used avoids touching the remaining objects.
929 slab_fix(s, "Marking all objects used");
930 page->inuse = page->objects;
931 page->freelist = NULL;
933 return 0;
936 static noinline int free_debug_processing(struct kmem_cache *s,
937 struct page *page, void *object, unsigned long addr)
939 if (!check_slab(s, page))
940 goto fail;
942 if (!check_valid_pointer(s, page, object)) {
943 slab_err(s, page, "Invalid object pointer 0x%p", object);
944 goto fail;
947 if (on_freelist(s, page, object)) {
948 object_err(s, page, object, "Object already free");
949 goto fail;
952 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
953 return 0;
955 if (unlikely(s != page->slab)) {
956 if (!PageSlab(page)) {
957 slab_err(s, page, "Attempt to free object(0x%p) "
958 "outside of slab", object);
959 } else if (!page->slab) {
960 printk(KERN_ERR
961 "SLUB <none>: no slab for object 0x%p.\n",
962 object);
963 dump_stack();
964 } else
965 object_err(s, page, object,
966 "page slab pointer corrupt.");
967 goto fail;
970 /* Special debug activities for freeing objects */
971 if (!PageSlubFrozen(page) && !page->freelist)
972 remove_full(s, page);
973 if (s->flags & SLAB_STORE_USER)
974 set_track(s, object, TRACK_FREE, addr);
975 trace(s, page, object, 0);
976 init_object(s, object, SLUB_RED_INACTIVE);
977 return 1;
979 fail:
980 slab_fix(s, "Object at 0x%p not freed", object);
981 return 0;
984 static int __init setup_slub_debug(char *str)
986 slub_debug = DEBUG_DEFAULT_FLAGS;
987 if (*str++ != '=' || !*str)
989 * No options specified. Switch on full debugging.
991 goto out;
993 if (*str == ',')
995 * No options but restriction on slabs. This means full
996 * debugging for slabs matching a pattern.
998 goto check_slabs;
1000 if (tolower(*str) == 'o') {
1002 * Avoid enabling debugging on caches if its minimum order
1003 * would increase as a result.
1005 disable_higher_order_debug = 1;
1006 goto out;
1009 slub_debug = 0;
1010 if (*str == '-')
1012 * Switch off all debugging measures.
1014 goto out;
1017 * Determine which debug features should be switched on
1019 for (; *str && *str != ','; str++) {
1020 switch (tolower(*str)) {
1021 case 'f':
1022 slub_debug |= SLAB_DEBUG_FREE;
1023 break;
1024 case 'z':
1025 slub_debug |= SLAB_RED_ZONE;
1026 break;
1027 case 'p':
1028 slub_debug |= SLAB_POISON;
1029 break;
1030 case 'u':
1031 slub_debug |= SLAB_STORE_USER;
1032 break;
1033 case 't':
1034 slub_debug |= SLAB_TRACE;
1035 break;
1036 case 'a':
1037 slub_debug |= SLAB_FAILSLAB;
1038 break;
1039 default:
1040 printk(KERN_ERR "slub_debug option '%c' "
1041 "unknown. skipped\n", *str);
1045 check_slabs:
1046 if (*str == ',')
1047 slub_debug_slabs = str + 1;
1048 out:
1049 return 1;
1052 __setup("slub_debug", setup_slub_debug);
1054 static unsigned long kmem_cache_flags(unsigned long objsize,
1055 unsigned long flags, const char *name,
1056 void (*ctor)(void *))
1059 * Enable debugging if selected on the kernel commandline.
1061 if (slub_debug && (!slub_debug_slabs ||
1062 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1063 flags |= slub_debug;
1065 return flags;
1067 #else
1068 static inline void setup_object_debug(struct kmem_cache *s,
1069 struct page *page, void *object) {}
1071 static inline int alloc_debug_processing(struct kmem_cache *s,
1072 struct page *page, void *object, unsigned long addr) { return 0; }
1074 static inline int free_debug_processing(struct kmem_cache *s,
1075 struct page *page, void *object, unsigned long addr) { return 0; }
1077 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1078 { return 1; }
1079 static inline int check_object(struct kmem_cache *s, struct page *page,
1080 void *object, u8 val) { return 1; }
1081 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1082 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1083 unsigned long flags, const char *name,
1084 void (*ctor)(void *))
1086 return flags;
1088 #define slub_debug 0
1090 #define disable_higher_order_debug 0
1092 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1093 { return 0; }
1094 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1095 { return 0; }
1096 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1097 int objects) {}
1098 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1099 int objects) {}
1101 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1102 { return 0; }
1104 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1105 void *object) {}
1107 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1109 static inline void slab_free_hook_irq(struct kmem_cache *s,
1110 void *object) {}
1112 #endif /* CONFIG_SLUB_DEBUG */
1115 * Slab allocation and freeing
1117 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1118 struct kmem_cache_order_objects oo)
1120 int order = oo_order(oo);
1122 flags |= __GFP_NOTRACK;
1124 if (node == NUMA_NO_NODE)
1125 return alloc_pages(flags, order);
1126 else
1127 return alloc_pages_exact_node(node, flags, order);
1130 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1132 struct page *page;
1133 struct kmem_cache_order_objects oo = s->oo;
1134 gfp_t alloc_gfp;
1136 flags |= s->allocflags;
1139 * Let the initial higher-order allocation fail under memory pressure
1140 * so we fall-back to the minimum order allocation.
1142 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1144 page = alloc_slab_page(alloc_gfp, node, oo);
1145 if (unlikely(!page)) {
1146 oo = s->min;
1148 * Allocation may have failed due to fragmentation.
1149 * Try a lower order alloc if possible
1151 page = alloc_slab_page(flags, node, oo);
1152 if (!page)
1153 return NULL;
1155 stat(s, ORDER_FALLBACK);
1158 if (kmemcheck_enabled
1159 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1160 int pages = 1 << oo_order(oo);
1162 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1165 * Objects from caches that have a constructor don't get
1166 * cleared when they're allocated, so we need to do it here.
1168 if (s->ctor)
1169 kmemcheck_mark_uninitialized_pages(page, pages);
1170 else
1171 kmemcheck_mark_unallocated_pages(page, pages);
1174 page->objects = oo_objects(oo);
1175 mod_zone_page_state(page_zone(page),
1176 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1177 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1178 1 << oo_order(oo));
1180 return page;
1183 static void setup_object(struct kmem_cache *s, struct page *page,
1184 void *object)
1186 setup_object_debug(s, page, object);
1187 if (unlikely(s->ctor))
1188 s->ctor(object);
1191 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1193 struct page *page;
1194 void *start;
1195 void *last;
1196 void *p;
1198 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1200 page = allocate_slab(s,
1201 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1202 if (!page)
1203 goto out;
1205 inc_slabs_node(s, page_to_nid(page), page->objects);
1206 page->slab = s;
1207 page->flags |= 1 << PG_slab;
1209 start = page_address(page);
1211 if (unlikely(s->flags & SLAB_POISON))
1212 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1214 last = start;
1215 for_each_object(p, s, start, page->objects) {
1216 setup_object(s, page, last);
1217 set_freepointer(s, last, p);
1218 last = p;
1220 setup_object(s, page, last);
1221 set_freepointer(s, last, NULL);
1223 page->freelist = start;
1224 page->inuse = 0;
1225 out:
1226 return page;
1229 static void __free_slab(struct kmem_cache *s, struct page *page)
1231 int order = compound_order(page);
1232 int pages = 1 << order;
1234 if (kmem_cache_debug(s)) {
1235 void *p;
1237 slab_pad_check(s, page);
1238 for_each_object(p, s, page_address(page),
1239 page->objects)
1240 check_object(s, page, p, SLUB_RED_INACTIVE);
1243 kmemcheck_free_shadow(page, compound_order(page));
1245 mod_zone_page_state(page_zone(page),
1246 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1247 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1248 -pages);
1250 __ClearPageSlab(page);
1251 reset_page_mapcount(page);
1252 if (current->reclaim_state)
1253 current->reclaim_state->reclaimed_slab += pages;
1254 __free_pages(page, order);
1257 #define need_reserve_slab_rcu \
1258 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1260 static void rcu_free_slab(struct rcu_head *h)
1262 struct page *page;
1264 if (need_reserve_slab_rcu)
1265 page = virt_to_head_page(h);
1266 else
1267 page = container_of((struct list_head *)h, struct page, lru);
1269 __free_slab(page->slab, page);
1272 static void free_slab(struct kmem_cache *s, struct page *page)
1274 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1275 struct rcu_head *head;
1277 if (need_reserve_slab_rcu) {
1278 int order = compound_order(page);
1279 int offset = (PAGE_SIZE << order) - s->reserved;
1281 VM_BUG_ON(s->reserved != sizeof(*head));
1282 head = page_address(page) + offset;
1283 } else {
1285 * RCU free overloads the RCU head over the LRU
1287 head = (void *)&page->lru;
1290 call_rcu(head, rcu_free_slab);
1291 } else
1292 __free_slab(s, page);
1295 static void discard_slab(struct kmem_cache *s, struct page *page)
1297 dec_slabs_node(s, page_to_nid(page), page->objects);
1298 free_slab(s, page);
1302 * Per slab locking using the pagelock
1304 static __always_inline void slab_lock(struct page *page)
1306 bit_spin_lock(PG_locked, &page->flags);
1309 static __always_inline void slab_unlock(struct page *page)
1311 __bit_spin_unlock(PG_locked, &page->flags);
1314 static __always_inline int slab_trylock(struct page *page)
1316 int rc = 1;
1318 rc = bit_spin_trylock(PG_locked, &page->flags);
1319 return rc;
1323 * Management of partially allocated slabs
1325 static void add_partial(struct kmem_cache_node *n,
1326 struct page *page, int tail)
1328 spin_lock(&n->list_lock);
1329 n->nr_partial++;
1330 if (tail)
1331 list_add_tail(&page->lru, &n->partial);
1332 else
1333 list_add(&page->lru, &n->partial);
1334 spin_unlock(&n->list_lock);
1337 static inline void __remove_partial(struct kmem_cache_node *n,
1338 struct page *page)
1340 list_del(&page->lru);
1341 n->nr_partial--;
1344 static void remove_partial(struct kmem_cache *s, struct page *page)
1346 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1348 spin_lock(&n->list_lock);
1349 __remove_partial(n, page);
1350 spin_unlock(&n->list_lock);
1354 * Lock slab and remove from the partial list.
1356 * Must hold list_lock.
1358 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1359 struct page *page)
1361 if (slab_trylock(page)) {
1362 __remove_partial(n, page);
1363 __SetPageSlubFrozen(page);
1364 return 1;
1366 return 0;
1370 * Try to allocate a partial slab from a specific node.
1372 static struct page *get_partial_node(struct kmem_cache_node *n)
1374 struct page *page;
1377 * Racy check. If we mistakenly see no partial slabs then we
1378 * just allocate an empty slab. If we mistakenly try to get a
1379 * partial slab and there is none available then get_partials()
1380 * will return NULL.
1382 if (!n || !n->nr_partial)
1383 return NULL;
1385 spin_lock(&n->list_lock);
1386 list_for_each_entry(page, &n->partial, lru)
1387 if (lock_and_freeze_slab(n, page))
1388 goto out;
1389 page = NULL;
1390 out:
1391 spin_unlock(&n->list_lock);
1392 return page;
1396 * Get a page from somewhere. Search in increasing NUMA distances.
1398 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1400 #ifdef CONFIG_NUMA
1401 struct zonelist *zonelist;
1402 struct zoneref *z;
1403 struct zone *zone;
1404 enum zone_type high_zoneidx = gfp_zone(flags);
1405 struct page *page;
1408 * The defrag ratio allows a configuration of the tradeoffs between
1409 * inter node defragmentation and node local allocations. A lower
1410 * defrag_ratio increases the tendency to do local allocations
1411 * instead of attempting to obtain partial slabs from other nodes.
1413 * If the defrag_ratio is set to 0 then kmalloc() always
1414 * returns node local objects. If the ratio is higher then kmalloc()
1415 * may return off node objects because partial slabs are obtained
1416 * from other nodes and filled up.
1418 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1419 * defrag_ratio = 1000) then every (well almost) allocation will
1420 * first attempt to defrag slab caches on other nodes. This means
1421 * scanning over all nodes to look for partial slabs which may be
1422 * expensive if we do it every time we are trying to find a slab
1423 * with available objects.
1425 if (!s->remote_node_defrag_ratio ||
1426 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1427 return NULL;
1429 get_mems_allowed();
1430 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1431 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1432 struct kmem_cache_node *n;
1434 n = get_node(s, zone_to_nid(zone));
1436 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1437 n->nr_partial > s->min_partial) {
1438 page = get_partial_node(n);
1439 if (page) {
1440 put_mems_allowed();
1441 return page;
1445 put_mems_allowed();
1446 #endif
1447 return NULL;
1451 * Get a partial page, lock it and return it.
1453 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1455 struct page *page;
1456 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1458 page = get_partial_node(get_node(s, searchnode));
1459 if (page || node != -1)
1460 return page;
1462 return get_any_partial(s, flags);
1466 * Move a page back to the lists.
1468 * Must be called with the slab lock held.
1470 * On exit the slab lock will have been dropped.
1472 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1473 __releases(bitlock)
1475 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1477 __ClearPageSlubFrozen(page);
1478 if (page->inuse) {
1480 if (page->freelist) {
1481 add_partial(n, page, tail);
1482 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1483 } else {
1484 stat(s, DEACTIVATE_FULL);
1485 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1486 add_full(n, page);
1488 slab_unlock(page);
1489 } else {
1490 stat(s, DEACTIVATE_EMPTY);
1491 if (n->nr_partial < s->min_partial) {
1493 * Adding an empty slab to the partial slabs in order
1494 * to avoid page allocator overhead. This slab needs
1495 * to come after the other slabs with objects in
1496 * so that the others get filled first. That way the
1497 * size of the partial list stays small.
1499 * kmem_cache_shrink can reclaim any empty slabs from
1500 * the partial list.
1502 add_partial(n, page, 1);
1503 slab_unlock(page);
1504 } else {
1505 slab_unlock(page);
1506 stat(s, FREE_SLAB);
1507 discard_slab(s, page);
1513 * Remove the cpu slab
1515 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1516 __releases(bitlock)
1518 struct page *page = c->page;
1519 int tail = 1;
1521 if (page->freelist)
1522 stat(s, DEACTIVATE_REMOTE_FREES);
1524 * Merge cpu freelist into slab freelist. Typically we get here
1525 * because both freelists are empty. So this is unlikely
1526 * to occur.
1528 while (unlikely(c->freelist)) {
1529 void **object;
1531 tail = 0; /* Hot objects. Put the slab first */
1533 /* Retrieve object from cpu_freelist */
1534 object = c->freelist;
1535 c->freelist = get_freepointer(s, c->freelist);
1537 /* And put onto the regular freelist */
1538 set_freepointer(s, object, page->freelist);
1539 page->freelist = object;
1540 page->inuse--;
1542 c->page = NULL;
1543 unfreeze_slab(s, page, tail);
1546 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1548 stat(s, CPUSLAB_FLUSH);
1549 slab_lock(c->page);
1550 deactivate_slab(s, c);
1554 * Flush cpu slab.
1556 * Called from IPI handler with interrupts disabled.
1558 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1560 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1562 if (likely(c && c->page))
1563 flush_slab(s, c);
1566 static void flush_cpu_slab(void *d)
1568 struct kmem_cache *s = d;
1570 __flush_cpu_slab(s, smp_processor_id());
1573 static void flush_all(struct kmem_cache *s)
1575 on_each_cpu(flush_cpu_slab, s, 1);
1579 * Check if the objects in a per cpu structure fit numa
1580 * locality expectations.
1582 static inline int node_match(struct kmem_cache_cpu *c, int node)
1584 #ifdef CONFIG_NUMA
1585 if (node != NUMA_NO_NODE && c->node != node)
1586 return 0;
1587 #endif
1588 return 1;
1591 static int count_free(struct page *page)
1593 return page->objects - page->inuse;
1596 static unsigned long count_partial(struct kmem_cache_node *n,
1597 int (*get_count)(struct page *))
1599 unsigned long flags;
1600 unsigned long x = 0;
1601 struct page *page;
1603 spin_lock_irqsave(&n->list_lock, flags);
1604 list_for_each_entry(page, &n->partial, lru)
1605 x += get_count(page);
1606 spin_unlock_irqrestore(&n->list_lock, flags);
1607 return x;
1610 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1612 #ifdef CONFIG_SLUB_DEBUG
1613 return atomic_long_read(&n->total_objects);
1614 #else
1615 return 0;
1616 #endif
1619 static noinline void
1620 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1622 int node;
1624 printk(KERN_WARNING
1625 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1626 nid, gfpflags);
1627 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1628 "default order: %d, min order: %d\n", s->name, s->objsize,
1629 s->size, oo_order(s->oo), oo_order(s->min));
1631 if (oo_order(s->min) > get_order(s->objsize))
1632 printk(KERN_WARNING " %s debugging increased min order, use "
1633 "slub_debug=O to disable.\n", s->name);
1635 for_each_online_node(node) {
1636 struct kmem_cache_node *n = get_node(s, node);
1637 unsigned long nr_slabs;
1638 unsigned long nr_objs;
1639 unsigned long nr_free;
1641 if (!n)
1642 continue;
1644 nr_free = count_partial(n, count_free);
1645 nr_slabs = node_nr_slabs(n);
1646 nr_objs = node_nr_objs(n);
1648 printk(KERN_WARNING
1649 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1650 node, nr_slabs, nr_objs, nr_free);
1655 * Slow path. The lockless freelist is empty or we need to perform
1656 * debugging duties.
1658 * Interrupts are disabled.
1660 * Processing is still very fast if new objects have been freed to the
1661 * regular freelist. In that case we simply take over the regular freelist
1662 * as the lockless freelist and zap the regular freelist.
1664 * If that is not working then we fall back to the partial lists. We take the
1665 * first element of the freelist as the object to allocate now and move the
1666 * rest of the freelist to the lockless freelist.
1668 * And if we were unable to get a new slab from the partial slab lists then
1669 * we need to allocate a new slab. This is the slowest path since it involves
1670 * a call to the page allocator and the setup of a new slab.
1672 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1673 unsigned long addr, struct kmem_cache_cpu *c)
1675 void **object;
1676 struct page *new;
1678 /* We handle __GFP_ZERO in the caller */
1679 gfpflags &= ~__GFP_ZERO;
1681 if (!c->page)
1682 goto new_slab;
1684 slab_lock(c->page);
1685 if (unlikely(!node_match(c, node)))
1686 goto another_slab;
1688 stat(s, ALLOC_REFILL);
1690 load_freelist:
1691 object = c->page->freelist;
1692 if (unlikely(!object))
1693 goto another_slab;
1694 if (kmem_cache_debug(s))
1695 goto debug;
1697 c->freelist = get_freepointer(s, object);
1698 c->page->inuse = c->page->objects;
1699 c->page->freelist = NULL;
1700 c->node = page_to_nid(c->page);
1701 unlock_out:
1702 slab_unlock(c->page);
1703 stat(s, ALLOC_SLOWPATH);
1704 return object;
1706 another_slab:
1707 deactivate_slab(s, c);
1709 new_slab:
1710 new = get_partial(s, gfpflags, node);
1711 if (new) {
1712 c->page = new;
1713 stat(s, ALLOC_FROM_PARTIAL);
1714 goto load_freelist;
1717 gfpflags &= gfp_allowed_mask;
1718 if (gfpflags & __GFP_WAIT)
1719 local_irq_enable();
1721 new = new_slab(s, gfpflags, node);
1723 if (gfpflags & __GFP_WAIT)
1724 local_irq_disable();
1726 if (new) {
1727 c = __this_cpu_ptr(s->cpu_slab);
1728 stat(s, ALLOC_SLAB);
1729 if (c->page)
1730 flush_slab(s, c);
1731 slab_lock(new);
1732 __SetPageSlubFrozen(new);
1733 c->page = new;
1734 goto load_freelist;
1736 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1737 slab_out_of_memory(s, gfpflags, node);
1738 return NULL;
1739 debug:
1740 if (!alloc_debug_processing(s, c->page, object, addr))
1741 goto another_slab;
1743 c->page->inuse++;
1744 c->page->freelist = get_freepointer(s, object);
1745 c->node = NUMA_NO_NODE;
1746 goto unlock_out;
1750 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1751 * have the fastpath folded into their functions. So no function call
1752 * overhead for requests that can be satisfied on the fastpath.
1754 * The fastpath works by first checking if the lockless freelist can be used.
1755 * If not then __slab_alloc is called for slow processing.
1757 * Otherwise we can simply pick the next object from the lockless free list.
1759 static __always_inline void *slab_alloc(struct kmem_cache *s,
1760 gfp_t gfpflags, int node, unsigned long addr)
1762 void **object;
1763 struct kmem_cache_cpu *c;
1764 unsigned long flags;
1766 if (slab_pre_alloc_hook(s, gfpflags))
1767 return NULL;
1769 local_irq_save(flags);
1770 c = __this_cpu_ptr(s->cpu_slab);
1771 object = c->freelist;
1772 if (unlikely(!object || !node_match(c, node)))
1774 object = __slab_alloc(s, gfpflags, node, addr, c);
1776 else {
1777 c->freelist = get_freepointer(s, object);
1778 stat(s, ALLOC_FASTPATH);
1780 local_irq_restore(flags);
1782 if (unlikely(gfpflags & __GFP_ZERO) && object)
1783 memset(object, 0, s->objsize);
1785 slab_post_alloc_hook(s, gfpflags, object);
1787 return object;
1790 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1792 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1794 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1796 return ret;
1798 EXPORT_SYMBOL(kmem_cache_alloc);
1800 #ifdef CONFIG_TRACING
1801 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1803 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1804 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1805 return ret;
1807 EXPORT_SYMBOL(kmem_cache_alloc_trace);
1809 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1811 void *ret = kmalloc_order(size, flags, order);
1812 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1813 return ret;
1815 EXPORT_SYMBOL(kmalloc_order_trace);
1816 #endif
1818 #ifdef CONFIG_NUMA
1819 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1821 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1823 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1824 s->objsize, s->size, gfpflags, node);
1826 return ret;
1828 EXPORT_SYMBOL(kmem_cache_alloc_node);
1830 #ifdef CONFIG_TRACING
1831 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
1832 gfp_t gfpflags,
1833 int node, size_t size)
1835 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1837 trace_kmalloc_node(_RET_IP_, ret,
1838 size, s->size, gfpflags, node);
1839 return ret;
1841 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
1842 #endif
1843 #endif
1846 * Slow patch handling. This may still be called frequently since objects
1847 * have a longer lifetime than the cpu slabs in most processing loads.
1849 * So we still attempt to reduce cache line usage. Just take the slab
1850 * lock and free the item. If there is no additional partial page
1851 * handling required then we can return immediately.
1853 static void __slab_free(struct kmem_cache *s, struct page *page,
1854 void *x, unsigned long addr)
1856 void *prior;
1857 void **object = (void *)x;
1859 stat(s, FREE_SLOWPATH);
1860 slab_lock(page);
1862 if (kmem_cache_debug(s))
1863 goto debug;
1865 checks_ok:
1866 prior = page->freelist;
1867 set_freepointer(s, object, prior);
1868 page->freelist = object;
1869 page->inuse--;
1871 if (unlikely(PageSlubFrozen(page))) {
1872 stat(s, FREE_FROZEN);
1873 goto out_unlock;
1876 if (unlikely(!page->inuse))
1877 goto slab_empty;
1880 * Objects left in the slab. If it was not on the partial list before
1881 * then add it.
1883 if (unlikely(!prior)) {
1884 add_partial(get_node(s, page_to_nid(page)), page, 1);
1885 stat(s, FREE_ADD_PARTIAL);
1888 out_unlock:
1889 slab_unlock(page);
1890 return;
1892 slab_empty:
1893 if (prior) {
1895 * Slab still on the partial list.
1897 remove_partial(s, page);
1898 stat(s, FREE_REMOVE_PARTIAL);
1900 slab_unlock(page);
1901 stat(s, FREE_SLAB);
1902 discard_slab(s, page);
1903 return;
1905 debug:
1906 if (!free_debug_processing(s, page, x, addr))
1907 goto out_unlock;
1908 goto checks_ok;
1912 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1913 * can perform fastpath freeing without additional function calls.
1915 * The fastpath is only possible if we are freeing to the current cpu slab
1916 * of this processor. This typically the case if we have just allocated
1917 * the item before.
1919 * If fastpath is not possible then fall back to __slab_free where we deal
1920 * with all sorts of special processing.
1922 static __always_inline void slab_free(struct kmem_cache *s,
1923 struct page *page, void *x, unsigned long addr)
1925 void **object = (void *)x;
1926 struct kmem_cache_cpu *c;
1927 unsigned long flags;
1929 slab_free_hook(s, x);
1931 local_irq_save(flags);
1932 c = __this_cpu_ptr(s->cpu_slab);
1934 slab_free_hook_irq(s, x);
1936 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
1937 set_freepointer(s, object, c->freelist);
1938 c->freelist = object;
1939 stat(s, FREE_FASTPATH);
1940 } else
1941 __slab_free(s, page, x, addr);
1943 local_irq_restore(flags);
1946 void kmem_cache_free(struct kmem_cache *s, void *x)
1948 struct page *page;
1950 page = virt_to_head_page(x);
1952 slab_free(s, page, x, _RET_IP_);
1954 trace_kmem_cache_free(_RET_IP_, x);
1956 EXPORT_SYMBOL(kmem_cache_free);
1959 * Object placement in a slab is made very easy because we always start at
1960 * offset 0. If we tune the size of the object to the alignment then we can
1961 * get the required alignment by putting one properly sized object after
1962 * another.
1964 * Notice that the allocation order determines the sizes of the per cpu
1965 * caches. Each processor has always one slab available for allocations.
1966 * Increasing the allocation order reduces the number of times that slabs
1967 * must be moved on and off the partial lists and is therefore a factor in
1968 * locking overhead.
1972 * Mininum / Maximum order of slab pages. This influences locking overhead
1973 * and slab fragmentation. A higher order reduces the number of partial slabs
1974 * and increases the number of allocations possible without having to
1975 * take the list_lock.
1977 static int slub_min_order;
1978 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1979 static int slub_min_objects;
1982 * Merge control. If this is set then no merging of slab caches will occur.
1983 * (Could be removed. This was introduced to pacify the merge skeptics.)
1985 static int slub_nomerge;
1988 * Calculate the order of allocation given an slab object size.
1990 * The order of allocation has significant impact on performance and other
1991 * system components. Generally order 0 allocations should be preferred since
1992 * order 0 does not cause fragmentation in the page allocator. Larger objects
1993 * be problematic to put into order 0 slabs because there may be too much
1994 * unused space left. We go to a higher order if more than 1/16th of the slab
1995 * would be wasted.
1997 * In order to reach satisfactory performance we must ensure that a minimum
1998 * number of objects is in one slab. Otherwise we may generate too much
1999 * activity on the partial lists which requires taking the list_lock. This is
2000 * less a concern for large slabs though which are rarely used.
2002 * slub_max_order specifies the order where we begin to stop considering the
2003 * number of objects in a slab as critical. If we reach slub_max_order then
2004 * we try to keep the page order as low as possible. So we accept more waste
2005 * of space in favor of a small page order.
2007 * Higher order allocations also allow the placement of more objects in a
2008 * slab and thereby reduce object handling overhead. If the user has
2009 * requested a higher mininum order then we start with that one instead of
2010 * the smallest order which will fit the object.
2012 static inline int slab_order(int size, int min_objects,
2013 int max_order, int fract_leftover, int reserved)
2015 int order;
2016 int rem;
2017 int min_order = slub_min_order;
2019 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2020 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2022 for (order = max(min_order,
2023 fls(min_objects * size - 1) - PAGE_SHIFT);
2024 order <= max_order; order++) {
2026 unsigned long slab_size = PAGE_SIZE << order;
2028 if (slab_size < min_objects * size + reserved)
2029 continue;
2031 rem = (slab_size - reserved) % size;
2033 if (rem <= slab_size / fract_leftover)
2034 break;
2038 return order;
2041 static inline int calculate_order(int size, int reserved)
2043 int order;
2044 int min_objects;
2045 int fraction;
2046 int max_objects;
2049 * Attempt to find best configuration for a slab. This
2050 * works by first attempting to generate a layout with
2051 * the best configuration and backing off gradually.
2053 * First we reduce the acceptable waste in a slab. Then
2054 * we reduce the minimum objects required in a slab.
2056 min_objects = slub_min_objects;
2057 if (!min_objects)
2058 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2059 max_objects = order_objects(slub_max_order, size, reserved);
2060 min_objects = min(min_objects, max_objects);
2062 while (min_objects > 1) {
2063 fraction = 16;
2064 while (fraction >= 4) {
2065 order = slab_order(size, min_objects,
2066 slub_max_order, fraction, reserved);
2067 if (order <= slub_max_order)
2068 return order;
2069 fraction /= 2;
2071 min_objects--;
2075 * We were unable to place multiple objects in a slab. Now
2076 * lets see if we can place a single object there.
2078 order = slab_order(size, 1, slub_max_order, 1, reserved);
2079 if (order <= slub_max_order)
2080 return order;
2083 * Doh this slab cannot be placed using slub_max_order.
2085 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2086 if (order < MAX_ORDER)
2087 return order;
2088 return -ENOSYS;
2092 * Figure out what the alignment of the objects will be.
2094 static unsigned long calculate_alignment(unsigned long flags,
2095 unsigned long align, unsigned long size)
2098 * If the user wants hardware cache aligned objects then follow that
2099 * suggestion if the object is sufficiently large.
2101 * The hardware cache alignment cannot override the specified
2102 * alignment though. If that is greater then use it.
2104 if (flags & SLAB_HWCACHE_ALIGN) {
2105 unsigned long ralign = cache_line_size();
2106 while (size <= ralign / 2)
2107 ralign /= 2;
2108 align = max(align, ralign);
2111 if (align < ARCH_SLAB_MINALIGN)
2112 align = ARCH_SLAB_MINALIGN;
2114 return ALIGN(align, sizeof(void *));
2117 static void
2118 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2120 n->nr_partial = 0;
2121 spin_lock_init(&n->list_lock);
2122 INIT_LIST_HEAD(&n->partial);
2123 #ifdef CONFIG_SLUB_DEBUG
2124 atomic_long_set(&n->nr_slabs, 0);
2125 atomic_long_set(&n->total_objects, 0);
2126 INIT_LIST_HEAD(&n->full);
2127 #endif
2130 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2132 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2133 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2135 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2137 return s->cpu_slab != NULL;
2140 static struct kmem_cache *kmem_cache_node;
2143 * No kmalloc_node yet so do it by hand. We know that this is the first
2144 * slab on the node for this slabcache. There are no concurrent accesses
2145 * possible.
2147 * Note that this function only works on the kmalloc_node_cache
2148 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2149 * memory on a fresh node that has no slab structures yet.
2151 static void early_kmem_cache_node_alloc(int node)
2153 struct page *page;
2154 struct kmem_cache_node *n;
2155 unsigned long flags;
2157 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2159 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2161 BUG_ON(!page);
2162 if (page_to_nid(page) != node) {
2163 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2164 "node %d\n", node);
2165 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2166 "in order to be able to continue\n");
2169 n = page->freelist;
2170 BUG_ON(!n);
2171 page->freelist = get_freepointer(kmem_cache_node, n);
2172 page->inuse++;
2173 kmem_cache_node->node[node] = n;
2174 #ifdef CONFIG_SLUB_DEBUG
2175 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2176 init_tracking(kmem_cache_node, n);
2177 #endif
2178 init_kmem_cache_node(n, kmem_cache_node);
2179 inc_slabs_node(kmem_cache_node, node, page->objects);
2182 * lockdep requires consistent irq usage for each lock
2183 * so even though there cannot be a race this early in
2184 * the boot sequence, we still disable irqs.
2186 local_irq_save(flags);
2187 add_partial(n, page, 0);
2188 local_irq_restore(flags);
2191 static void free_kmem_cache_nodes(struct kmem_cache *s)
2193 int node;
2195 for_each_node_state(node, N_NORMAL_MEMORY) {
2196 struct kmem_cache_node *n = s->node[node];
2198 if (n)
2199 kmem_cache_free(kmem_cache_node, n);
2201 s->node[node] = NULL;
2205 static int init_kmem_cache_nodes(struct kmem_cache *s)
2207 int node;
2209 for_each_node_state(node, N_NORMAL_MEMORY) {
2210 struct kmem_cache_node *n;
2212 if (slab_state == DOWN) {
2213 early_kmem_cache_node_alloc(node);
2214 continue;
2216 n = kmem_cache_alloc_node(kmem_cache_node,
2217 GFP_KERNEL, node);
2219 if (!n) {
2220 free_kmem_cache_nodes(s);
2221 return 0;
2224 s->node[node] = n;
2225 init_kmem_cache_node(n, s);
2227 return 1;
2230 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2232 if (min < MIN_PARTIAL)
2233 min = MIN_PARTIAL;
2234 else if (min > MAX_PARTIAL)
2235 min = MAX_PARTIAL;
2236 s->min_partial = min;
2240 * calculate_sizes() determines the order and the distribution of data within
2241 * a slab object.
2243 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2245 unsigned long flags = s->flags;
2246 unsigned long size = s->objsize;
2247 unsigned long align = s->align;
2248 int order;
2251 * Round up object size to the next word boundary. We can only
2252 * place the free pointer at word boundaries and this determines
2253 * the possible location of the free pointer.
2255 size = ALIGN(size, sizeof(void *));
2257 #ifdef CONFIG_SLUB_DEBUG
2259 * Determine if we can poison the object itself. If the user of
2260 * the slab may touch the object after free or before allocation
2261 * then we should never poison the object itself.
2263 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2264 !s->ctor)
2265 s->flags |= __OBJECT_POISON;
2266 else
2267 s->flags &= ~__OBJECT_POISON;
2271 * If we are Redzoning then check if there is some space between the
2272 * end of the object and the free pointer. If not then add an
2273 * additional word to have some bytes to store Redzone information.
2275 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2276 size += sizeof(void *);
2277 #endif
2280 * With that we have determined the number of bytes in actual use
2281 * by the object. This is the potential offset to the free pointer.
2283 s->inuse = size;
2285 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2286 s->ctor)) {
2288 * Relocate free pointer after the object if it is not
2289 * permitted to overwrite the first word of the object on
2290 * kmem_cache_free.
2292 * This is the case if we do RCU, have a constructor or
2293 * destructor or are poisoning the objects.
2295 s->offset = size;
2296 size += sizeof(void *);
2299 #ifdef CONFIG_SLUB_DEBUG
2300 if (flags & SLAB_STORE_USER)
2302 * Need to store information about allocs and frees after
2303 * the object.
2305 size += 2 * sizeof(struct track);
2307 if (flags & SLAB_RED_ZONE)
2309 * Add some empty padding so that we can catch
2310 * overwrites from earlier objects rather than let
2311 * tracking information or the free pointer be
2312 * corrupted if a user writes before the start
2313 * of the object.
2315 size += sizeof(void *);
2316 #endif
2319 * Determine the alignment based on various parameters that the
2320 * user specified and the dynamic determination of cache line size
2321 * on bootup.
2323 align = calculate_alignment(flags, align, s->objsize);
2324 s->align = align;
2327 * SLUB stores one object immediately after another beginning from
2328 * offset 0. In order to align the objects we have to simply size
2329 * each object to conform to the alignment.
2331 size = ALIGN(size, align);
2332 s->size = size;
2333 if (forced_order >= 0)
2334 order = forced_order;
2335 else
2336 order = calculate_order(size, s->reserved);
2338 if (order < 0)
2339 return 0;
2341 s->allocflags = 0;
2342 if (order)
2343 s->allocflags |= __GFP_COMP;
2345 if (s->flags & SLAB_CACHE_DMA)
2346 s->allocflags |= SLUB_DMA;
2348 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2349 s->allocflags |= __GFP_RECLAIMABLE;
2352 * Determine the number of objects per slab
2354 s->oo = oo_make(order, size, s->reserved);
2355 s->min = oo_make(get_order(size), size, s->reserved);
2356 if (oo_objects(s->oo) > oo_objects(s->max))
2357 s->max = s->oo;
2359 return !!oo_objects(s->oo);
2363 static int kmem_cache_open(struct kmem_cache *s,
2364 const char *name, size_t size,
2365 size_t align, unsigned long flags,
2366 void (*ctor)(void *))
2368 memset(s, 0, kmem_size);
2369 s->name = name;
2370 s->ctor = ctor;
2371 s->objsize = size;
2372 s->align = align;
2373 s->flags = kmem_cache_flags(size, flags, name, ctor);
2374 s->reserved = 0;
2376 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2377 s->reserved = sizeof(struct rcu_head);
2379 if (!calculate_sizes(s, -1))
2380 goto error;
2381 if (disable_higher_order_debug) {
2383 * Disable debugging flags that store metadata if the min slab
2384 * order increased.
2386 if (get_order(s->size) > get_order(s->objsize)) {
2387 s->flags &= ~DEBUG_METADATA_FLAGS;
2388 s->offset = 0;
2389 if (!calculate_sizes(s, -1))
2390 goto error;
2395 * The larger the object size is, the more pages we want on the partial
2396 * list to avoid pounding the page allocator excessively.
2398 set_min_partial(s, ilog2(s->size));
2399 s->refcount = 1;
2400 #ifdef CONFIG_NUMA
2401 s->remote_node_defrag_ratio = 1000;
2402 #endif
2403 if (!init_kmem_cache_nodes(s))
2404 goto error;
2406 if (alloc_kmem_cache_cpus(s))
2407 return 1;
2409 free_kmem_cache_nodes(s);
2410 error:
2411 if (flags & SLAB_PANIC)
2412 panic("Cannot create slab %s size=%lu realsize=%u "
2413 "order=%u offset=%u flags=%lx\n",
2414 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2415 s->offset, flags);
2416 return 0;
2420 * Determine the size of a slab object
2422 unsigned int kmem_cache_size(struct kmem_cache *s)
2424 return s->objsize;
2426 EXPORT_SYMBOL(kmem_cache_size);
2428 const char *kmem_cache_name(struct kmem_cache *s)
2430 return s->name;
2432 EXPORT_SYMBOL(kmem_cache_name);
2434 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2435 const char *text)
2437 #ifdef CONFIG_SLUB_DEBUG
2438 void *addr = page_address(page);
2439 void *p;
2440 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2441 sizeof(long), GFP_ATOMIC);
2442 if (!map)
2443 return;
2444 slab_err(s, page, "%s", text);
2445 slab_lock(page);
2446 for_each_free_object(p, s, page->freelist)
2447 set_bit(slab_index(p, s, addr), map);
2449 for_each_object(p, s, addr, page->objects) {
2451 if (!test_bit(slab_index(p, s, addr), map)) {
2452 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2453 p, p - addr);
2454 print_tracking(s, p);
2457 slab_unlock(page);
2458 kfree(map);
2459 #endif
2463 * Attempt to free all partial slabs on a node.
2465 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2467 unsigned long flags;
2468 struct page *page, *h;
2470 spin_lock_irqsave(&n->list_lock, flags);
2471 list_for_each_entry_safe(page, h, &n->partial, lru) {
2472 if (!page->inuse) {
2473 __remove_partial(n, page);
2474 discard_slab(s, page);
2475 } else {
2476 list_slab_objects(s, page,
2477 "Objects remaining on kmem_cache_close()");
2480 spin_unlock_irqrestore(&n->list_lock, flags);
2484 * Release all resources used by a slab cache.
2486 static inline int kmem_cache_close(struct kmem_cache *s)
2488 int node;
2490 flush_all(s);
2491 free_percpu(s->cpu_slab);
2492 /* Attempt to free all objects */
2493 for_each_node_state(node, N_NORMAL_MEMORY) {
2494 struct kmem_cache_node *n = get_node(s, node);
2496 free_partial(s, n);
2497 if (n->nr_partial || slabs_node(s, node))
2498 return 1;
2500 free_kmem_cache_nodes(s);
2501 return 0;
2505 * Close a cache and release the kmem_cache structure
2506 * (must be used for caches created using kmem_cache_create)
2508 void kmem_cache_destroy(struct kmem_cache *s)
2510 down_write(&slub_lock);
2511 s->refcount--;
2512 if (!s->refcount) {
2513 list_del(&s->list);
2514 if (kmem_cache_close(s)) {
2515 printk(KERN_ERR "SLUB %s: %s called for cache that "
2516 "still has objects.\n", s->name, __func__);
2517 dump_stack();
2519 if (s->flags & SLAB_DESTROY_BY_RCU)
2520 rcu_barrier();
2521 sysfs_slab_remove(s);
2523 up_write(&slub_lock);
2525 EXPORT_SYMBOL(kmem_cache_destroy);
2527 /********************************************************************
2528 * Kmalloc subsystem
2529 *******************************************************************/
2531 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2532 EXPORT_SYMBOL(kmalloc_caches);
2534 static struct kmem_cache *kmem_cache;
2536 #ifdef CONFIG_ZONE_DMA
2537 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2538 #endif
2540 static int __init setup_slub_min_order(char *str)
2542 get_option(&str, &slub_min_order);
2544 return 1;
2547 __setup("slub_min_order=", setup_slub_min_order);
2549 static int __init setup_slub_max_order(char *str)
2551 get_option(&str, &slub_max_order);
2552 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2554 return 1;
2557 __setup("slub_max_order=", setup_slub_max_order);
2559 static int __init setup_slub_min_objects(char *str)
2561 get_option(&str, &slub_min_objects);
2563 return 1;
2566 __setup("slub_min_objects=", setup_slub_min_objects);
2568 static int __init setup_slub_nomerge(char *str)
2570 slub_nomerge = 1;
2571 return 1;
2574 __setup("slub_nomerge", setup_slub_nomerge);
2576 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2577 int size, unsigned int flags)
2579 struct kmem_cache *s;
2581 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2584 * This function is called with IRQs disabled during early-boot on
2585 * single CPU so there's no need to take slub_lock here.
2587 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2588 flags, NULL))
2589 goto panic;
2591 list_add(&s->list, &slab_caches);
2592 return s;
2594 panic:
2595 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2596 return NULL;
2600 * Conversion table for small slabs sizes / 8 to the index in the
2601 * kmalloc array. This is necessary for slabs < 192 since we have non power
2602 * of two cache sizes there. The size of larger slabs can be determined using
2603 * fls.
2605 static s8 size_index[24] = {
2606 3, /* 8 */
2607 4, /* 16 */
2608 5, /* 24 */
2609 5, /* 32 */
2610 6, /* 40 */
2611 6, /* 48 */
2612 6, /* 56 */
2613 6, /* 64 */
2614 1, /* 72 */
2615 1, /* 80 */
2616 1, /* 88 */
2617 1, /* 96 */
2618 7, /* 104 */
2619 7, /* 112 */
2620 7, /* 120 */
2621 7, /* 128 */
2622 2, /* 136 */
2623 2, /* 144 */
2624 2, /* 152 */
2625 2, /* 160 */
2626 2, /* 168 */
2627 2, /* 176 */
2628 2, /* 184 */
2629 2 /* 192 */
2632 static inline int size_index_elem(size_t bytes)
2634 return (bytes - 1) / 8;
2637 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2639 int index;
2641 if (size <= 192) {
2642 if (!size)
2643 return ZERO_SIZE_PTR;
2645 index = size_index[size_index_elem(size)];
2646 } else
2647 index = fls(size - 1);
2649 #ifdef CONFIG_ZONE_DMA
2650 if (unlikely((flags & SLUB_DMA)))
2651 return kmalloc_dma_caches[index];
2653 #endif
2654 return kmalloc_caches[index];
2657 void *__kmalloc(size_t size, gfp_t flags)
2659 struct kmem_cache *s;
2660 void *ret;
2662 if (unlikely(size > SLUB_MAX_SIZE))
2663 return kmalloc_large(size, flags);
2665 s = get_slab(size, flags);
2667 if (unlikely(ZERO_OR_NULL_PTR(s)))
2668 return s;
2670 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2672 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2674 return ret;
2676 EXPORT_SYMBOL(__kmalloc);
2678 #ifdef CONFIG_NUMA
2679 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2681 struct page *page;
2682 void *ptr = NULL;
2684 flags |= __GFP_COMP | __GFP_NOTRACK;
2685 page = alloc_pages_node(node, flags, get_order(size));
2686 if (page)
2687 ptr = page_address(page);
2689 kmemleak_alloc(ptr, size, 1, flags);
2690 return ptr;
2693 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2695 struct kmem_cache *s;
2696 void *ret;
2698 if (unlikely(size > SLUB_MAX_SIZE)) {
2699 ret = kmalloc_large_node(size, flags, node);
2701 trace_kmalloc_node(_RET_IP_, ret,
2702 size, PAGE_SIZE << get_order(size),
2703 flags, node);
2705 return ret;
2708 s = get_slab(size, flags);
2710 if (unlikely(ZERO_OR_NULL_PTR(s)))
2711 return s;
2713 ret = slab_alloc(s, flags, node, _RET_IP_);
2715 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2717 return ret;
2719 EXPORT_SYMBOL(__kmalloc_node);
2720 #endif
2722 size_t ksize(const void *object)
2724 struct page *page;
2725 struct kmem_cache *s;
2727 if (unlikely(object == ZERO_SIZE_PTR))
2728 return 0;
2730 page = virt_to_head_page(object);
2732 if (unlikely(!PageSlab(page))) {
2733 WARN_ON(!PageCompound(page));
2734 return PAGE_SIZE << compound_order(page);
2736 s = page->slab;
2738 #ifdef CONFIG_SLUB_DEBUG
2740 * Debugging requires use of the padding between object
2741 * and whatever may come after it.
2743 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2744 return s->objsize;
2746 #endif
2748 * If we have the need to store the freelist pointer
2749 * back there or track user information then we can
2750 * only use the space before that information.
2752 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2753 return s->inuse;
2755 * Else we can use all the padding etc for the allocation
2757 return s->size;
2759 EXPORT_SYMBOL(ksize);
2761 void kfree(const void *x)
2763 struct page *page;
2764 void *object = (void *)x;
2766 trace_kfree(_RET_IP_, x);
2768 if (unlikely(ZERO_OR_NULL_PTR(x)))
2769 return;
2771 page = virt_to_head_page(x);
2772 if (unlikely(!PageSlab(page))) {
2773 BUG_ON(!PageCompound(page));
2774 kmemleak_free(x);
2775 put_page(page);
2776 return;
2778 slab_free(page->slab, page, object, _RET_IP_);
2780 EXPORT_SYMBOL(kfree);
2783 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2784 * the remaining slabs by the number of items in use. The slabs with the
2785 * most items in use come first. New allocations will then fill those up
2786 * and thus they can be removed from the partial lists.
2788 * The slabs with the least items are placed last. This results in them
2789 * being allocated from last increasing the chance that the last objects
2790 * are freed in them.
2792 int kmem_cache_shrink(struct kmem_cache *s)
2794 int node;
2795 int i;
2796 struct kmem_cache_node *n;
2797 struct page *page;
2798 struct page *t;
2799 int objects = oo_objects(s->max);
2800 struct list_head *slabs_by_inuse =
2801 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2802 unsigned long flags;
2804 if (!slabs_by_inuse)
2805 return -ENOMEM;
2807 flush_all(s);
2808 for_each_node_state(node, N_NORMAL_MEMORY) {
2809 n = get_node(s, node);
2811 if (!n->nr_partial)
2812 continue;
2814 for (i = 0; i < objects; i++)
2815 INIT_LIST_HEAD(slabs_by_inuse + i);
2817 spin_lock_irqsave(&n->list_lock, flags);
2820 * Build lists indexed by the items in use in each slab.
2822 * Note that concurrent frees may occur while we hold the
2823 * list_lock. page->inuse here is the upper limit.
2825 list_for_each_entry_safe(page, t, &n->partial, lru) {
2826 if (!page->inuse && slab_trylock(page)) {
2828 * Must hold slab lock here because slab_free
2829 * may have freed the last object and be
2830 * waiting to release the slab.
2832 __remove_partial(n, page);
2833 slab_unlock(page);
2834 discard_slab(s, page);
2835 } else {
2836 list_move(&page->lru,
2837 slabs_by_inuse + page->inuse);
2842 * Rebuild the partial list with the slabs filled up most
2843 * first and the least used slabs at the end.
2845 for (i = objects - 1; i >= 0; i--)
2846 list_splice(slabs_by_inuse + i, n->partial.prev);
2848 spin_unlock_irqrestore(&n->list_lock, flags);
2851 kfree(slabs_by_inuse);
2852 return 0;
2854 EXPORT_SYMBOL(kmem_cache_shrink);
2856 #if defined(CONFIG_MEMORY_HOTPLUG)
2857 static int slab_mem_going_offline_callback(void *arg)
2859 struct kmem_cache *s;
2861 down_read(&slub_lock);
2862 list_for_each_entry(s, &slab_caches, list)
2863 kmem_cache_shrink(s);
2864 up_read(&slub_lock);
2866 return 0;
2869 static void slab_mem_offline_callback(void *arg)
2871 struct kmem_cache_node *n;
2872 struct kmem_cache *s;
2873 struct memory_notify *marg = arg;
2874 int offline_node;
2876 offline_node = marg->status_change_nid;
2879 * If the node still has available memory. we need kmem_cache_node
2880 * for it yet.
2882 if (offline_node < 0)
2883 return;
2885 down_read(&slub_lock);
2886 list_for_each_entry(s, &slab_caches, list) {
2887 n = get_node(s, offline_node);
2888 if (n) {
2890 * if n->nr_slabs > 0, slabs still exist on the node
2891 * that is going down. We were unable to free them,
2892 * and offline_pages() function shouldn't call this
2893 * callback. So, we must fail.
2895 BUG_ON(slabs_node(s, offline_node));
2897 s->node[offline_node] = NULL;
2898 kmem_cache_free(kmem_cache_node, n);
2901 up_read(&slub_lock);
2904 static int slab_mem_going_online_callback(void *arg)
2906 struct kmem_cache_node *n;
2907 struct kmem_cache *s;
2908 struct memory_notify *marg = arg;
2909 int nid = marg->status_change_nid;
2910 int ret = 0;
2913 * If the node's memory is already available, then kmem_cache_node is
2914 * already created. Nothing to do.
2916 if (nid < 0)
2917 return 0;
2920 * We are bringing a node online. No memory is available yet. We must
2921 * allocate a kmem_cache_node structure in order to bring the node
2922 * online.
2924 down_read(&slub_lock);
2925 list_for_each_entry(s, &slab_caches, list) {
2927 * XXX: kmem_cache_alloc_node will fallback to other nodes
2928 * since memory is not yet available from the node that
2929 * is brought up.
2931 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2932 if (!n) {
2933 ret = -ENOMEM;
2934 goto out;
2936 init_kmem_cache_node(n, s);
2937 s->node[nid] = n;
2939 out:
2940 up_read(&slub_lock);
2941 return ret;
2944 static int slab_memory_callback(struct notifier_block *self,
2945 unsigned long action, void *arg)
2947 int ret = 0;
2949 switch (action) {
2950 case MEM_GOING_ONLINE:
2951 ret = slab_mem_going_online_callback(arg);
2952 break;
2953 case MEM_GOING_OFFLINE:
2954 ret = slab_mem_going_offline_callback(arg);
2955 break;
2956 case MEM_OFFLINE:
2957 case MEM_CANCEL_ONLINE:
2958 slab_mem_offline_callback(arg);
2959 break;
2960 case MEM_ONLINE:
2961 case MEM_CANCEL_OFFLINE:
2962 break;
2964 if (ret)
2965 ret = notifier_from_errno(ret);
2966 else
2967 ret = NOTIFY_OK;
2968 return ret;
2971 #endif /* CONFIG_MEMORY_HOTPLUG */
2973 /********************************************************************
2974 * Basic setup of slabs
2975 *******************************************************************/
2978 * Used for early kmem_cache structures that were allocated using
2979 * the page allocator
2982 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2984 int node;
2986 list_add(&s->list, &slab_caches);
2987 s->refcount = -1;
2989 for_each_node_state(node, N_NORMAL_MEMORY) {
2990 struct kmem_cache_node *n = get_node(s, node);
2991 struct page *p;
2993 if (n) {
2994 list_for_each_entry(p, &n->partial, lru)
2995 p->slab = s;
2997 #ifdef CONFIG_SLAB_DEBUG
2998 list_for_each_entry(p, &n->full, lru)
2999 p->slab = s;
3000 #endif
3005 void __init kmem_cache_init(void)
3007 int i;
3008 int caches = 0;
3009 struct kmem_cache *temp_kmem_cache;
3010 int order;
3011 struct kmem_cache *temp_kmem_cache_node;
3012 unsigned long kmalloc_size;
3014 kmem_size = offsetof(struct kmem_cache, node) +
3015 nr_node_ids * sizeof(struct kmem_cache_node *);
3017 /* Allocate two kmem_caches from the page allocator */
3018 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3019 order = get_order(2 * kmalloc_size);
3020 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3023 * Must first have the slab cache available for the allocations of the
3024 * struct kmem_cache_node's. There is special bootstrap code in
3025 * kmem_cache_open for slab_state == DOWN.
3027 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3029 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3030 sizeof(struct kmem_cache_node),
3031 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3033 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3035 /* Able to allocate the per node structures */
3036 slab_state = PARTIAL;
3038 temp_kmem_cache = kmem_cache;
3039 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3040 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3041 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3042 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3045 * Allocate kmem_cache_node properly from the kmem_cache slab.
3046 * kmem_cache_node is separately allocated so no need to
3047 * update any list pointers.
3049 temp_kmem_cache_node = kmem_cache_node;
3051 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3052 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3054 kmem_cache_bootstrap_fixup(kmem_cache_node);
3056 caches++;
3057 kmem_cache_bootstrap_fixup(kmem_cache);
3058 caches++;
3059 /* Free temporary boot structure */
3060 free_pages((unsigned long)temp_kmem_cache, order);
3062 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3065 * Patch up the size_index table if we have strange large alignment
3066 * requirements for the kmalloc array. This is only the case for
3067 * MIPS it seems. The standard arches will not generate any code here.
3069 * Largest permitted alignment is 256 bytes due to the way we
3070 * handle the index determination for the smaller caches.
3072 * Make sure that nothing crazy happens if someone starts tinkering
3073 * around with ARCH_KMALLOC_MINALIGN
3075 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3076 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3078 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3079 int elem = size_index_elem(i);
3080 if (elem >= ARRAY_SIZE(size_index))
3081 break;
3082 size_index[elem] = KMALLOC_SHIFT_LOW;
3085 if (KMALLOC_MIN_SIZE == 64) {
3087 * The 96 byte size cache is not used if the alignment
3088 * is 64 byte.
3090 for (i = 64 + 8; i <= 96; i += 8)
3091 size_index[size_index_elem(i)] = 7;
3092 } else if (KMALLOC_MIN_SIZE == 128) {
3094 * The 192 byte sized cache is not used if the alignment
3095 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3096 * instead.
3098 for (i = 128 + 8; i <= 192; i += 8)
3099 size_index[size_index_elem(i)] = 8;
3102 /* Caches that are not of the two-to-the-power-of size */
3103 if (KMALLOC_MIN_SIZE <= 32) {
3104 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3105 caches++;
3108 if (KMALLOC_MIN_SIZE <= 64) {
3109 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3110 caches++;
3113 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3114 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3115 caches++;
3118 slab_state = UP;
3120 /* Provide the correct kmalloc names now that the caches are up */
3121 if (KMALLOC_MIN_SIZE <= 32) {
3122 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3123 BUG_ON(!kmalloc_caches[1]->name);
3126 if (KMALLOC_MIN_SIZE <= 64) {
3127 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3128 BUG_ON(!kmalloc_caches[2]->name);
3131 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3132 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3134 BUG_ON(!s);
3135 kmalloc_caches[i]->name = s;
3138 #ifdef CONFIG_SMP
3139 register_cpu_notifier(&slab_notifier);
3140 #endif
3142 #ifdef CONFIG_ZONE_DMA
3143 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3144 struct kmem_cache *s = kmalloc_caches[i];
3146 if (s && s->size) {
3147 char *name = kasprintf(GFP_NOWAIT,
3148 "dma-kmalloc-%d", s->objsize);
3150 BUG_ON(!name);
3151 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3152 s->objsize, SLAB_CACHE_DMA);
3155 #endif
3156 printk(KERN_INFO
3157 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3158 " CPUs=%d, Nodes=%d\n",
3159 caches, cache_line_size(),
3160 slub_min_order, slub_max_order, slub_min_objects,
3161 nr_cpu_ids, nr_node_ids);
3164 void __init kmem_cache_init_late(void)
3169 * Find a mergeable slab cache
3171 static int slab_unmergeable(struct kmem_cache *s)
3173 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3174 return 1;
3176 if (s->ctor)
3177 return 1;
3180 * We may have set a slab to be unmergeable during bootstrap.
3182 if (s->refcount < 0)
3183 return 1;
3185 return 0;
3188 static struct kmem_cache *find_mergeable(size_t size,
3189 size_t align, unsigned long flags, const char *name,
3190 void (*ctor)(void *))
3192 struct kmem_cache *s;
3194 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3195 return NULL;
3197 if (ctor)
3198 return NULL;
3200 size = ALIGN(size, sizeof(void *));
3201 align = calculate_alignment(flags, align, size);
3202 size = ALIGN(size, align);
3203 flags = kmem_cache_flags(size, flags, name, NULL);
3205 list_for_each_entry(s, &slab_caches, list) {
3206 if (slab_unmergeable(s))
3207 continue;
3209 if (size > s->size)
3210 continue;
3212 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3213 continue;
3215 * Check if alignment is compatible.
3216 * Courtesy of Adrian Drzewiecki
3218 if ((s->size & ~(align - 1)) != s->size)
3219 continue;
3221 if (s->size - size >= sizeof(void *))
3222 continue;
3224 return s;
3226 return NULL;
3229 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3230 size_t align, unsigned long flags, void (*ctor)(void *))
3232 struct kmem_cache *s;
3233 char *n;
3235 if (WARN_ON(!name))
3236 return NULL;
3238 down_write(&slub_lock);
3239 s = find_mergeable(size, align, flags, name, ctor);
3240 if (s) {
3241 s->refcount++;
3243 * Adjust the object sizes so that we clear
3244 * the complete object on kzalloc.
3246 s->objsize = max(s->objsize, (int)size);
3247 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3249 if (sysfs_slab_alias(s, name)) {
3250 s->refcount--;
3251 goto err;
3253 up_write(&slub_lock);
3254 return s;
3257 n = kstrdup(name, GFP_KERNEL);
3258 if (!n)
3259 goto err;
3261 s = kmalloc(kmem_size, GFP_KERNEL);
3262 if (s) {
3263 if (kmem_cache_open(s, n,
3264 size, align, flags, ctor)) {
3265 list_add(&s->list, &slab_caches);
3266 if (sysfs_slab_add(s)) {
3267 list_del(&s->list);
3268 kfree(n);
3269 kfree(s);
3270 goto err;
3272 up_write(&slub_lock);
3273 return s;
3275 kfree(n);
3276 kfree(s);
3278 err:
3279 up_write(&slub_lock);
3281 if (flags & SLAB_PANIC)
3282 panic("Cannot create slabcache %s\n", name);
3283 else
3284 s = NULL;
3285 return s;
3287 EXPORT_SYMBOL(kmem_cache_create);
3289 #ifdef CONFIG_SMP
3291 * Use the cpu notifier to insure that the cpu slabs are flushed when
3292 * necessary.
3294 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3295 unsigned long action, void *hcpu)
3297 long cpu = (long)hcpu;
3298 struct kmem_cache *s;
3299 unsigned long flags;
3301 switch (action) {
3302 case CPU_UP_CANCELED:
3303 case CPU_UP_CANCELED_FROZEN:
3304 case CPU_DEAD:
3305 case CPU_DEAD_FROZEN:
3306 down_read(&slub_lock);
3307 list_for_each_entry(s, &slab_caches, list) {
3308 local_irq_save(flags);
3309 __flush_cpu_slab(s, cpu);
3310 local_irq_restore(flags);
3312 up_read(&slub_lock);
3313 break;
3314 default:
3315 break;
3317 return NOTIFY_OK;
3320 static struct notifier_block __cpuinitdata slab_notifier = {
3321 .notifier_call = slab_cpuup_callback
3324 #endif
3326 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3328 struct kmem_cache *s;
3329 void *ret;
3331 if (unlikely(size > SLUB_MAX_SIZE))
3332 return kmalloc_large(size, gfpflags);
3334 s = get_slab(size, gfpflags);
3336 if (unlikely(ZERO_OR_NULL_PTR(s)))
3337 return s;
3339 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3341 /* Honor the call site pointer we recieved. */
3342 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3344 return ret;
3347 #ifdef CONFIG_NUMA
3348 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3349 int node, unsigned long caller)
3351 struct kmem_cache *s;
3352 void *ret;
3354 if (unlikely(size > SLUB_MAX_SIZE)) {
3355 ret = kmalloc_large_node(size, gfpflags, node);
3357 trace_kmalloc_node(caller, ret,
3358 size, PAGE_SIZE << get_order(size),
3359 gfpflags, node);
3361 return ret;
3364 s = get_slab(size, gfpflags);
3366 if (unlikely(ZERO_OR_NULL_PTR(s)))
3367 return s;
3369 ret = slab_alloc(s, gfpflags, node, caller);
3371 /* Honor the call site pointer we recieved. */
3372 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3374 return ret;
3376 #endif
3378 #ifdef CONFIG_SYSFS
3379 static int count_inuse(struct page *page)
3381 return page->inuse;
3384 static int count_total(struct page *page)
3386 return page->objects;
3388 #endif
3390 #ifdef CONFIG_SLUB_DEBUG
3391 static int validate_slab(struct kmem_cache *s, struct page *page,
3392 unsigned long *map)
3394 void *p;
3395 void *addr = page_address(page);
3397 if (!check_slab(s, page) ||
3398 !on_freelist(s, page, NULL))
3399 return 0;
3401 /* Now we know that a valid freelist exists */
3402 bitmap_zero(map, page->objects);
3404 for_each_free_object(p, s, page->freelist) {
3405 set_bit(slab_index(p, s, addr), map);
3406 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3407 return 0;
3410 for_each_object(p, s, addr, page->objects)
3411 if (!test_bit(slab_index(p, s, addr), map))
3412 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3413 return 0;
3414 return 1;
3417 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3418 unsigned long *map)
3420 if (slab_trylock(page)) {
3421 validate_slab(s, page, map);
3422 slab_unlock(page);
3423 } else
3424 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3425 s->name, page);
3428 static int validate_slab_node(struct kmem_cache *s,
3429 struct kmem_cache_node *n, unsigned long *map)
3431 unsigned long count = 0;
3432 struct page *page;
3433 unsigned long flags;
3435 spin_lock_irqsave(&n->list_lock, flags);
3437 list_for_each_entry(page, &n->partial, lru) {
3438 validate_slab_slab(s, page, map);
3439 count++;
3441 if (count != n->nr_partial)
3442 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3443 "counter=%ld\n", s->name, count, n->nr_partial);
3445 if (!(s->flags & SLAB_STORE_USER))
3446 goto out;
3448 list_for_each_entry(page, &n->full, lru) {
3449 validate_slab_slab(s, page, map);
3450 count++;
3452 if (count != atomic_long_read(&n->nr_slabs))
3453 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3454 "counter=%ld\n", s->name, count,
3455 atomic_long_read(&n->nr_slabs));
3457 out:
3458 spin_unlock_irqrestore(&n->list_lock, flags);
3459 return count;
3462 static long validate_slab_cache(struct kmem_cache *s)
3464 int node;
3465 unsigned long count = 0;
3466 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3467 sizeof(unsigned long), GFP_KERNEL);
3469 if (!map)
3470 return -ENOMEM;
3472 flush_all(s);
3473 for_each_node_state(node, N_NORMAL_MEMORY) {
3474 struct kmem_cache_node *n = get_node(s, node);
3476 count += validate_slab_node(s, n, map);
3478 kfree(map);
3479 return count;
3482 * Generate lists of code addresses where slabcache objects are allocated
3483 * and freed.
3486 struct location {
3487 unsigned long count;
3488 unsigned long addr;
3489 long long sum_time;
3490 long min_time;
3491 long max_time;
3492 long min_pid;
3493 long max_pid;
3494 DECLARE_BITMAP(cpus, NR_CPUS);
3495 nodemask_t nodes;
3498 struct loc_track {
3499 unsigned long max;
3500 unsigned long count;
3501 struct location *loc;
3504 static void free_loc_track(struct loc_track *t)
3506 if (t->max)
3507 free_pages((unsigned long)t->loc,
3508 get_order(sizeof(struct location) * t->max));
3511 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3513 struct location *l;
3514 int order;
3516 order = get_order(sizeof(struct location) * max);
3518 l = (void *)__get_free_pages(flags, order);
3519 if (!l)
3520 return 0;
3522 if (t->count) {
3523 memcpy(l, t->loc, sizeof(struct location) * t->count);
3524 free_loc_track(t);
3526 t->max = max;
3527 t->loc = l;
3528 return 1;
3531 static int add_location(struct loc_track *t, struct kmem_cache *s,
3532 const struct track *track)
3534 long start, end, pos;
3535 struct location *l;
3536 unsigned long caddr;
3537 unsigned long age = jiffies - track->when;
3539 start = -1;
3540 end = t->count;
3542 for ( ; ; ) {
3543 pos = start + (end - start + 1) / 2;
3546 * There is nothing at "end". If we end up there
3547 * we need to add something to before end.
3549 if (pos == end)
3550 break;
3552 caddr = t->loc[pos].addr;
3553 if (track->addr == caddr) {
3555 l = &t->loc[pos];
3556 l->count++;
3557 if (track->when) {
3558 l->sum_time += age;
3559 if (age < l->min_time)
3560 l->min_time = age;
3561 if (age > l->max_time)
3562 l->max_time = age;
3564 if (track->pid < l->min_pid)
3565 l->min_pid = track->pid;
3566 if (track->pid > l->max_pid)
3567 l->max_pid = track->pid;
3569 cpumask_set_cpu(track->cpu,
3570 to_cpumask(l->cpus));
3572 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3573 return 1;
3576 if (track->addr < caddr)
3577 end = pos;
3578 else
3579 start = pos;
3583 * Not found. Insert new tracking element.
3585 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3586 return 0;
3588 l = t->loc + pos;
3589 if (pos < t->count)
3590 memmove(l + 1, l,
3591 (t->count - pos) * sizeof(struct location));
3592 t->count++;
3593 l->count = 1;
3594 l->addr = track->addr;
3595 l->sum_time = age;
3596 l->min_time = age;
3597 l->max_time = age;
3598 l->min_pid = track->pid;
3599 l->max_pid = track->pid;
3600 cpumask_clear(to_cpumask(l->cpus));
3601 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3602 nodes_clear(l->nodes);
3603 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3604 return 1;
3607 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3608 struct page *page, enum track_item alloc,
3609 unsigned long *map)
3611 void *addr = page_address(page);
3612 void *p;
3614 bitmap_zero(map, page->objects);
3615 for_each_free_object(p, s, page->freelist)
3616 set_bit(slab_index(p, s, addr), map);
3618 for_each_object(p, s, addr, page->objects)
3619 if (!test_bit(slab_index(p, s, addr), map))
3620 add_location(t, s, get_track(s, p, alloc));
3623 static int list_locations(struct kmem_cache *s, char *buf,
3624 enum track_item alloc)
3626 int len = 0;
3627 unsigned long i;
3628 struct loc_track t = { 0, 0, NULL };
3629 int node;
3630 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3631 sizeof(unsigned long), GFP_KERNEL);
3633 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3634 GFP_TEMPORARY)) {
3635 kfree(map);
3636 return sprintf(buf, "Out of memory\n");
3638 /* Push back cpu slabs */
3639 flush_all(s);
3641 for_each_node_state(node, N_NORMAL_MEMORY) {
3642 struct kmem_cache_node *n = get_node(s, node);
3643 unsigned long flags;
3644 struct page *page;
3646 if (!atomic_long_read(&n->nr_slabs))
3647 continue;
3649 spin_lock_irqsave(&n->list_lock, flags);
3650 list_for_each_entry(page, &n->partial, lru)
3651 process_slab(&t, s, page, alloc, map);
3652 list_for_each_entry(page, &n->full, lru)
3653 process_slab(&t, s, page, alloc, map);
3654 spin_unlock_irqrestore(&n->list_lock, flags);
3657 for (i = 0; i < t.count; i++) {
3658 struct location *l = &t.loc[i];
3660 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3661 break;
3662 len += sprintf(buf + len, "%7ld ", l->count);
3664 if (l->addr)
3665 len += sprintf(buf + len, "%pS", (void *)l->addr);
3666 else
3667 len += sprintf(buf + len, "<not-available>");
3669 if (l->sum_time != l->min_time) {
3670 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3671 l->min_time,
3672 (long)div_u64(l->sum_time, l->count),
3673 l->max_time);
3674 } else
3675 len += sprintf(buf + len, " age=%ld",
3676 l->min_time);
3678 if (l->min_pid != l->max_pid)
3679 len += sprintf(buf + len, " pid=%ld-%ld",
3680 l->min_pid, l->max_pid);
3681 else
3682 len += sprintf(buf + len, " pid=%ld",
3683 l->min_pid);
3685 if (num_online_cpus() > 1 &&
3686 !cpumask_empty(to_cpumask(l->cpus)) &&
3687 len < PAGE_SIZE - 60) {
3688 len += sprintf(buf + len, " cpus=");
3689 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3690 to_cpumask(l->cpus));
3693 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3694 len < PAGE_SIZE - 60) {
3695 len += sprintf(buf + len, " nodes=");
3696 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3697 l->nodes);
3700 len += sprintf(buf + len, "\n");
3703 free_loc_track(&t);
3704 kfree(map);
3705 if (!t.count)
3706 len += sprintf(buf, "No data\n");
3707 return len;
3709 #endif
3711 #ifdef SLUB_RESILIENCY_TEST
3712 static void resiliency_test(void)
3714 u8 *p;
3716 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3718 printk(KERN_ERR "SLUB resiliency testing\n");
3719 printk(KERN_ERR "-----------------------\n");
3720 printk(KERN_ERR "A. Corruption after allocation\n");
3722 p = kzalloc(16, GFP_KERNEL);
3723 p[16] = 0x12;
3724 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3725 " 0x12->0x%p\n\n", p + 16);
3727 validate_slab_cache(kmalloc_caches[4]);
3729 /* Hmmm... The next two are dangerous */
3730 p = kzalloc(32, GFP_KERNEL);
3731 p[32 + sizeof(void *)] = 0x34;
3732 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3733 " 0x34 -> -0x%p\n", p);
3734 printk(KERN_ERR
3735 "If allocated object is overwritten then not detectable\n\n");
3737 validate_slab_cache(kmalloc_caches[5]);
3738 p = kzalloc(64, GFP_KERNEL);
3739 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3740 *p = 0x56;
3741 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3743 printk(KERN_ERR
3744 "If allocated object is overwritten then not detectable\n\n");
3745 validate_slab_cache(kmalloc_caches[6]);
3747 printk(KERN_ERR "\nB. Corruption after free\n");
3748 p = kzalloc(128, GFP_KERNEL);
3749 kfree(p);
3750 *p = 0x78;
3751 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3752 validate_slab_cache(kmalloc_caches[7]);
3754 p = kzalloc(256, GFP_KERNEL);
3755 kfree(p);
3756 p[50] = 0x9a;
3757 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3759 validate_slab_cache(kmalloc_caches[8]);
3761 p = kzalloc(512, GFP_KERNEL);
3762 kfree(p);
3763 p[512] = 0xab;
3764 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3765 validate_slab_cache(kmalloc_caches[9]);
3767 #else
3768 #ifdef CONFIG_SYSFS
3769 static void resiliency_test(void) {};
3770 #endif
3771 #endif
3773 #ifdef CONFIG_SYSFS
3774 enum slab_stat_type {
3775 SL_ALL, /* All slabs */
3776 SL_PARTIAL, /* Only partially allocated slabs */
3777 SL_CPU, /* Only slabs used for cpu caches */
3778 SL_OBJECTS, /* Determine allocated objects not slabs */
3779 SL_TOTAL /* Determine object capacity not slabs */
3782 #define SO_ALL (1 << SL_ALL)
3783 #define SO_PARTIAL (1 << SL_PARTIAL)
3784 #define SO_CPU (1 << SL_CPU)
3785 #define SO_OBJECTS (1 << SL_OBJECTS)
3786 #define SO_TOTAL (1 << SL_TOTAL)
3788 static ssize_t show_slab_objects(struct kmem_cache *s,
3789 char *buf, unsigned long flags)
3791 unsigned long total = 0;
3792 int node;
3793 int x;
3794 unsigned long *nodes;
3795 unsigned long *per_cpu;
3797 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3798 if (!nodes)
3799 return -ENOMEM;
3800 per_cpu = nodes + nr_node_ids;
3802 if (flags & SO_CPU) {
3803 int cpu;
3805 for_each_possible_cpu(cpu) {
3806 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3808 if (!c || c->node < 0)
3809 continue;
3811 if (c->page) {
3812 if (flags & SO_TOTAL)
3813 x = c->page->objects;
3814 else if (flags & SO_OBJECTS)
3815 x = c->page->inuse;
3816 else
3817 x = 1;
3819 total += x;
3820 nodes[c->node] += x;
3822 per_cpu[c->node]++;
3826 lock_memory_hotplug();
3827 #ifdef CONFIG_SLUB_DEBUG
3828 if (flags & SO_ALL) {
3829 for_each_node_state(node, N_NORMAL_MEMORY) {
3830 struct kmem_cache_node *n = get_node(s, node);
3832 if (flags & SO_TOTAL)
3833 x = atomic_long_read(&n->total_objects);
3834 else if (flags & SO_OBJECTS)
3835 x = atomic_long_read(&n->total_objects) -
3836 count_partial(n, count_free);
3838 else
3839 x = atomic_long_read(&n->nr_slabs);
3840 total += x;
3841 nodes[node] += x;
3844 } else
3845 #endif
3846 if (flags & SO_PARTIAL) {
3847 for_each_node_state(node, N_NORMAL_MEMORY) {
3848 struct kmem_cache_node *n = get_node(s, node);
3850 if (flags & SO_TOTAL)
3851 x = count_partial(n, count_total);
3852 else if (flags & SO_OBJECTS)
3853 x = count_partial(n, count_inuse);
3854 else
3855 x = n->nr_partial;
3856 total += x;
3857 nodes[node] += x;
3860 x = sprintf(buf, "%lu", total);
3861 #ifdef CONFIG_NUMA
3862 for_each_node_state(node, N_NORMAL_MEMORY)
3863 if (nodes[node])
3864 x += sprintf(buf + x, " N%d=%lu",
3865 node, nodes[node]);
3866 #endif
3867 unlock_memory_hotplug();
3868 kfree(nodes);
3869 return x + sprintf(buf + x, "\n");
3872 #ifdef CONFIG_SLUB_DEBUG
3873 static int any_slab_objects(struct kmem_cache *s)
3875 int node;
3877 for_each_online_node(node) {
3878 struct kmem_cache_node *n = get_node(s, node);
3880 if (!n)
3881 continue;
3883 if (atomic_long_read(&n->total_objects))
3884 return 1;
3886 return 0;
3888 #endif
3890 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3891 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3893 struct slab_attribute {
3894 struct attribute attr;
3895 ssize_t (*show)(struct kmem_cache *s, char *buf);
3896 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3899 #define SLAB_ATTR_RO(_name) \
3900 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3902 #define SLAB_ATTR(_name) \
3903 static struct slab_attribute _name##_attr = \
3904 __ATTR(_name, 0644, _name##_show, _name##_store)
3906 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3908 return sprintf(buf, "%d\n", s->size);
3910 SLAB_ATTR_RO(slab_size);
3912 static ssize_t align_show(struct kmem_cache *s, char *buf)
3914 return sprintf(buf, "%d\n", s->align);
3916 SLAB_ATTR_RO(align);
3918 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3920 return sprintf(buf, "%d\n", s->objsize);
3922 SLAB_ATTR_RO(object_size);
3924 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3926 return sprintf(buf, "%d\n", oo_objects(s->oo));
3928 SLAB_ATTR_RO(objs_per_slab);
3930 static ssize_t order_store(struct kmem_cache *s,
3931 const char *buf, size_t length)
3933 unsigned long order;
3934 int err;
3936 err = strict_strtoul(buf, 10, &order);
3937 if (err)
3938 return err;
3940 if (order > slub_max_order || order < slub_min_order)
3941 return -EINVAL;
3943 calculate_sizes(s, order);
3944 return length;
3947 static ssize_t order_show(struct kmem_cache *s, char *buf)
3949 return sprintf(buf, "%d\n", oo_order(s->oo));
3951 SLAB_ATTR(order);
3953 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3955 return sprintf(buf, "%lu\n", s->min_partial);
3958 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3959 size_t length)
3961 unsigned long min;
3962 int err;
3964 err = strict_strtoul(buf, 10, &min);
3965 if (err)
3966 return err;
3968 set_min_partial(s, min);
3969 return length;
3971 SLAB_ATTR(min_partial);
3973 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3975 if (!s->ctor)
3976 return 0;
3977 return sprintf(buf, "%pS\n", s->ctor);
3979 SLAB_ATTR_RO(ctor);
3981 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3983 return sprintf(buf, "%d\n", s->refcount - 1);
3985 SLAB_ATTR_RO(aliases);
3987 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3989 return show_slab_objects(s, buf, SO_PARTIAL);
3991 SLAB_ATTR_RO(partial);
3993 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3995 return show_slab_objects(s, buf, SO_CPU);
3997 SLAB_ATTR_RO(cpu_slabs);
3999 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4001 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4003 SLAB_ATTR_RO(objects);
4005 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4007 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4009 SLAB_ATTR_RO(objects_partial);
4011 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4016 static ssize_t reclaim_account_store(struct kmem_cache *s,
4017 const char *buf, size_t length)
4019 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4020 if (buf[0] == '1')
4021 s->flags |= SLAB_RECLAIM_ACCOUNT;
4022 return length;
4024 SLAB_ATTR(reclaim_account);
4026 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4028 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4030 SLAB_ATTR_RO(hwcache_align);
4032 #ifdef CONFIG_ZONE_DMA
4033 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4035 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4037 SLAB_ATTR_RO(cache_dma);
4038 #endif
4040 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4042 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4044 SLAB_ATTR_RO(destroy_by_rcu);
4046 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4048 return sprintf(buf, "%d\n", s->reserved);
4050 SLAB_ATTR_RO(reserved);
4052 #ifdef CONFIG_SLUB_DEBUG
4053 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4055 return show_slab_objects(s, buf, SO_ALL);
4057 SLAB_ATTR_RO(slabs);
4059 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4061 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4063 SLAB_ATTR_RO(total_objects);
4065 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4067 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4070 static ssize_t sanity_checks_store(struct kmem_cache *s,
4071 const char *buf, size_t length)
4073 s->flags &= ~SLAB_DEBUG_FREE;
4074 if (buf[0] == '1')
4075 s->flags |= SLAB_DEBUG_FREE;
4076 return length;
4078 SLAB_ATTR(sanity_checks);
4080 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4082 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4085 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4086 size_t length)
4088 s->flags &= ~SLAB_TRACE;
4089 if (buf[0] == '1')
4090 s->flags |= SLAB_TRACE;
4091 return length;
4093 SLAB_ATTR(trace);
4095 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4097 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4100 static ssize_t red_zone_store(struct kmem_cache *s,
4101 const char *buf, size_t length)
4103 if (any_slab_objects(s))
4104 return -EBUSY;
4106 s->flags &= ~SLAB_RED_ZONE;
4107 if (buf[0] == '1')
4108 s->flags |= SLAB_RED_ZONE;
4109 calculate_sizes(s, -1);
4110 return length;
4112 SLAB_ATTR(red_zone);
4114 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4119 static ssize_t poison_store(struct kmem_cache *s,
4120 const char *buf, size_t length)
4122 if (any_slab_objects(s))
4123 return -EBUSY;
4125 s->flags &= ~SLAB_POISON;
4126 if (buf[0] == '1')
4127 s->flags |= SLAB_POISON;
4128 calculate_sizes(s, -1);
4129 return length;
4131 SLAB_ATTR(poison);
4133 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4135 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4138 static ssize_t store_user_store(struct kmem_cache *s,
4139 const char *buf, size_t length)
4141 if (any_slab_objects(s))
4142 return -EBUSY;
4144 s->flags &= ~SLAB_STORE_USER;
4145 if (buf[0] == '1')
4146 s->flags |= SLAB_STORE_USER;
4147 calculate_sizes(s, -1);
4148 return length;
4150 SLAB_ATTR(store_user);
4152 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4154 return 0;
4157 static ssize_t validate_store(struct kmem_cache *s,
4158 const char *buf, size_t length)
4160 int ret = -EINVAL;
4162 if (buf[0] == '1') {
4163 ret = validate_slab_cache(s);
4164 if (ret >= 0)
4165 ret = length;
4167 return ret;
4169 SLAB_ATTR(validate);
4171 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4173 if (!(s->flags & SLAB_STORE_USER))
4174 return -ENOSYS;
4175 return list_locations(s, buf, TRACK_ALLOC);
4177 SLAB_ATTR_RO(alloc_calls);
4179 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4181 if (!(s->flags & SLAB_STORE_USER))
4182 return -ENOSYS;
4183 return list_locations(s, buf, TRACK_FREE);
4185 SLAB_ATTR_RO(free_calls);
4186 #endif /* CONFIG_SLUB_DEBUG */
4188 #ifdef CONFIG_FAILSLAB
4189 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4191 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4194 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4195 size_t length)
4197 s->flags &= ~SLAB_FAILSLAB;
4198 if (buf[0] == '1')
4199 s->flags |= SLAB_FAILSLAB;
4200 return length;
4202 SLAB_ATTR(failslab);
4203 #endif
4205 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4207 return 0;
4210 static ssize_t shrink_store(struct kmem_cache *s,
4211 const char *buf, size_t length)
4213 if (buf[0] == '1') {
4214 int rc = kmem_cache_shrink(s);
4216 if (rc)
4217 return rc;
4218 } else
4219 return -EINVAL;
4220 return length;
4222 SLAB_ATTR(shrink);
4224 #ifdef CONFIG_NUMA
4225 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4227 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4230 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4231 const char *buf, size_t length)
4233 unsigned long ratio;
4234 int err;
4236 err = strict_strtoul(buf, 10, &ratio);
4237 if (err)
4238 return err;
4240 if (ratio <= 100)
4241 s->remote_node_defrag_ratio = ratio * 10;
4243 return length;
4245 SLAB_ATTR(remote_node_defrag_ratio);
4246 #endif
4248 #ifdef CONFIG_SLUB_STATS
4249 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4251 unsigned long sum = 0;
4252 int cpu;
4253 int len;
4254 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4256 if (!data)
4257 return -ENOMEM;
4259 for_each_online_cpu(cpu) {
4260 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4262 data[cpu] = x;
4263 sum += x;
4266 len = sprintf(buf, "%lu", sum);
4268 #ifdef CONFIG_SMP
4269 for_each_online_cpu(cpu) {
4270 if (data[cpu] && len < PAGE_SIZE - 20)
4271 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4273 #endif
4274 kfree(data);
4275 return len + sprintf(buf + len, "\n");
4278 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4280 int cpu;
4282 for_each_online_cpu(cpu)
4283 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4286 #define STAT_ATTR(si, text) \
4287 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4289 return show_stat(s, buf, si); \
4291 static ssize_t text##_store(struct kmem_cache *s, \
4292 const char *buf, size_t length) \
4294 if (buf[0] != '0') \
4295 return -EINVAL; \
4296 clear_stat(s, si); \
4297 return length; \
4299 SLAB_ATTR(text); \
4301 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4302 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4303 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4304 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4305 STAT_ATTR(FREE_FROZEN, free_frozen);
4306 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4307 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4308 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4309 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4310 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4311 STAT_ATTR(FREE_SLAB, free_slab);
4312 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4313 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4314 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4315 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4316 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4317 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4318 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4319 #endif
4321 static struct attribute *slab_attrs[] = {
4322 &slab_size_attr.attr,
4323 &object_size_attr.attr,
4324 &objs_per_slab_attr.attr,
4325 &order_attr.attr,
4326 &min_partial_attr.attr,
4327 &objects_attr.attr,
4328 &objects_partial_attr.attr,
4329 &partial_attr.attr,
4330 &cpu_slabs_attr.attr,
4331 &ctor_attr.attr,
4332 &aliases_attr.attr,
4333 &align_attr.attr,
4334 &hwcache_align_attr.attr,
4335 &reclaim_account_attr.attr,
4336 &destroy_by_rcu_attr.attr,
4337 &shrink_attr.attr,
4338 &reserved_attr.attr,
4339 #ifdef CONFIG_SLUB_DEBUG
4340 &total_objects_attr.attr,
4341 &slabs_attr.attr,
4342 &sanity_checks_attr.attr,
4343 &trace_attr.attr,
4344 &red_zone_attr.attr,
4345 &poison_attr.attr,
4346 &store_user_attr.attr,
4347 &validate_attr.attr,
4348 &alloc_calls_attr.attr,
4349 &free_calls_attr.attr,
4350 #endif
4351 #ifdef CONFIG_ZONE_DMA
4352 &cache_dma_attr.attr,
4353 #endif
4354 #ifdef CONFIG_NUMA
4355 &remote_node_defrag_ratio_attr.attr,
4356 #endif
4357 #ifdef CONFIG_SLUB_STATS
4358 &alloc_fastpath_attr.attr,
4359 &alloc_slowpath_attr.attr,
4360 &free_fastpath_attr.attr,
4361 &free_slowpath_attr.attr,
4362 &free_frozen_attr.attr,
4363 &free_add_partial_attr.attr,
4364 &free_remove_partial_attr.attr,
4365 &alloc_from_partial_attr.attr,
4366 &alloc_slab_attr.attr,
4367 &alloc_refill_attr.attr,
4368 &free_slab_attr.attr,
4369 &cpuslab_flush_attr.attr,
4370 &deactivate_full_attr.attr,
4371 &deactivate_empty_attr.attr,
4372 &deactivate_to_head_attr.attr,
4373 &deactivate_to_tail_attr.attr,
4374 &deactivate_remote_frees_attr.attr,
4375 &order_fallback_attr.attr,
4376 #endif
4377 #ifdef CONFIG_FAILSLAB
4378 &failslab_attr.attr,
4379 #endif
4381 NULL
4384 static struct attribute_group slab_attr_group = {
4385 .attrs = slab_attrs,
4388 static ssize_t slab_attr_show(struct kobject *kobj,
4389 struct attribute *attr,
4390 char *buf)
4392 struct slab_attribute *attribute;
4393 struct kmem_cache *s;
4394 int err;
4396 attribute = to_slab_attr(attr);
4397 s = to_slab(kobj);
4399 if (!attribute->show)
4400 return -EIO;
4402 err = attribute->show(s, buf);
4404 return err;
4407 static ssize_t slab_attr_store(struct kobject *kobj,
4408 struct attribute *attr,
4409 const char *buf, size_t len)
4411 struct slab_attribute *attribute;
4412 struct kmem_cache *s;
4413 int err;
4415 attribute = to_slab_attr(attr);
4416 s = to_slab(kobj);
4418 if (!attribute->store)
4419 return -EIO;
4421 err = attribute->store(s, buf, len);
4423 return err;
4426 static void kmem_cache_release(struct kobject *kobj)
4428 struct kmem_cache *s = to_slab(kobj);
4430 kfree(s->name);
4431 kfree(s);
4434 static const struct sysfs_ops slab_sysfs_ops = {
4435 .show = slab_attr_show,
4436 .store = slab_attr_store,
4439 static struct kobj_type slab_ktype = {
4440 .sysfs_ops = &slab_sysfs_ops,
4441 .release = kmem_cache_release
4444 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4446 struct kobj_type *ktype = get_ktype(kobj);
4448 if (ktype == &slab_ktype)
4449 return 1;
4450 return 0;
4453 static const struct kset_uevent_ops slab_uevent_ops = {
4454 .filter = uevent_filter,
4457 static struct kset *slab_kset;
4459 #define ID_STR_LENGTH 64
4461 /* Create a unique string id for a slab cache:
4463 * Format :[flags-]size
4465 static char *create_unique_id(struct kmem_cache *s)
4467 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4468 char *p = name;
4470 BUG_ON(!name);
4472 *p++ = ':';
4474 * First flags affecting slabcache operations. We will only
4475 * get here for aliasable slabs so we do not need to support
4476 * too many flags. The flags here must cover all flags that
4477 * are matched during merging to guarantee that the id is
4478 * unique.
4480 if (s->flags & SLAB_CACHE_DMA)
4481 *p++ = 'd';
4482 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4483 *p++ = 'a';
4484 if (s->flags & SLAB_DEBUG_FREE)
4485 *p++ = 'F';
4486 if (!(s->flags & SLAB_NOTRACK))
4487 *p++ = 't';
4488 if (p != name + 1)
4489 *p++ = '-';
4490 p += sprintf(p, "%07d", s->size);
4491 BUG_ON(p > name + ID_STR_LENGTH - 1);
4492 return name;
4495 static int sysfs_slab_add(struct kmem_cache *s)
4497 int err;
4498 const char *name;
4499 int unmergeable;
4501 if (slab_state < SYSFS)
4502 /* Defer until later */
4503 return 0;
4505 unmergeable = slab_unmergeable(s);
4506 if (unmergeable) {
4508 * Slabcache can never be merged so we can use the name proper.
4509 * This is typically the case for debug situations. In that
4510 * case we can catch duplicate names easily.
4512 sysfs_remove_link(&slab_kset->kobj, s->name);
4513 name = s->name;
4514 } else {
4516 * Create a unique name for the slab as a target
4517 * for the symlinks.
4519 name = create_unique_id(s);
4522 s->kobj.kset = slab_kset;
4523 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4524 if (err) {
4525 kobject_put(&s->kobj);
4526 return err;
4529 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4530 if (err) {
4531 kobject_del(&s->kobj);
4532 kobject_put(&s->kobj);
4533 return err;
4535 kobject_uevent(&s->kobj, KOBJ_ADD);
4536 if (!unmergeable) {
4537 /* Setup first alias */
4538 sysfs_slab_alias(s, s->name);
4539 kfree(name);
4541 return 0;
4544 static void sysfs_slab_remove(struct kmem_cache *s)
4546 if (slab_state < SYSFS)
4548 * Sysfs has not been setup yet so no need to remove the
4549 * cache from sysfs.
4551 return;
4553 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4554 kobject_del(&s->kobj);
4555 kobject_put(&s->kobj);
4559 * Need to buffer aliases during bootup until sysfs becomes
4560 * available lest we lose that information.
4562 struct saved_alias {
4563 struct kmem_cache *s;
4564 const char *name;
4565 struct saved_alias *next;
4568 static struct saved_alias *alias_list;
4570 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4572 struct saved_alias *al;
4574 if (slab_state == SYSFS) {
4576 * If we have a leftover link then remove it.
4578 sysfs_remove_link(&slab_kset->kobj, name);
4579 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4582 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4583 if (!al)
4584 return -ENOMEM;
4586 al->s = s;
4587 al->name = name;
4588 al->next = alias_list;
4589 alias_list = al;
4590 return 0;
4593 static int __init slab_sysfs_init(void)
4595 struct kmem_cache *s;
4596 int err;
4598 down_write(&slub_lock);
4600 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4601 if (!slab_kset) {
4602 up_write(&slub_lock);
4603 printk(KERN_ERR "Cannot register slab subsystem.\n");
4604 return -ENOSYS;
4607 slab_state = SYSFS;
4609 list_for_each_entry(s, &slab_caches, list) {
4610 err = sysfs_slab_add(s);
4611 if (err)
4612 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4613 " to sysfs\n", s->name);
4616 while (alias_list) {
4617 struct saved_alias *al = alias_list;
4619 alias_list = alias_list->next;
4620 err = sysfs_slab_alias(al->s, al->name);
4621 if (err)
4622 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4623 " %s to sysfs\n", s->name);
4624 kfree(al);
4627 up_write(&slub_lock);
4628 resiliency_test();
4629 return 0;
4632 __initcall(slab_sysfs_init);
4633 #endif /* CONFIG_SYSFS */
4636 * The /proc/slabinfo ABI
4638 #ifdef CONFIG_SLABINFO
4639 static void print_slabinfo_header(struct seq_file *m)
4641 seq_puts(m, "slabinfo - version: 2.1\n");
4642 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4643 "<objperslab> <pagesperslab>");
4644 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4645 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4646 seq_putc(m, '\n');
4649 static void *s_start(struct seq_file *m, loff_t *pos)
4651 loff_t n = *pos;
4653 down_read(&slub_lock);
4654 if (!n)
4655 print_slabinfo_header(m);
4657 return seq_list_start(&slab_caches, *pos);
4660 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4662 return seq_list_next(p, &slab_caches, pos);
4665 static void s_stop(struct seq_file *m, void *p)
4667 up_read(&slub_lock);
4670 static int s_show(struct seq_file *m, void *p)
4672 unsigned long nr_partials = 0;
4673 unsigned long nr_slabs = 0;
4674 unsigned long nr_inuse = 0;
4675 unsigned long nr_objs = 0;
4676 unsigned long nr_free = 0;
4677 struct kmem_cache *s;
4678 int node;
4680 s = list_entry(p, struct kmem_cache, list);
4682 for_each_online_node(node) {
4683 struct kmem_cache_node *n = get_node(s, node);
4685 if (!n)
4686 continue;
4688 nr_partials += n->nr_partial;
4689 nr_slabs += atomic_long_read(&n->nr_slabs);
4690 nr_objs += atomic_long_read(&n->total_objects);
4691 nr_free += count_partial(n, count_free);
4694 nr_inuse = nr_objs - nr_free;
4696 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4697 nr_objs, s->size, oo_objects(s->oo),
4698 (1 << oo_order(s->oo)));
4699 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4700 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4701 0UL);
4702 seq_putc(m, '\n');
4703 return 0;
4706 static const struct seq_operations slabinfo_op = {
4707 .start = s_start,
4708 .next = s_next,
4709 .stop = s_stop,
4710 .show = s_show,
4713 static int slabinfo_open(struct inode *inode, struct file *file)
4715 return seq_open(file, &slabinfo_op);
4718 static const struct file_operations proc_slabinfo_operations = {
4719 .open = slabinfo_open,
4720 .read = seq_read,
4721 .llseek = seq_lseek,
4722 .release = seq_release,
4725 static int __init slab_proc_init(void)
4727 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4728 return 0;
4730 module_init(slab_proc_init);
4731 #endif /* CONFIG_SLABINFO */