2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/buffer_head.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/rmap.h>
23 #include <linux/topology.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/swapops.h>
30 /* The maximum number of pages to take off the LRU for migration */
31 #define MIGRATE_CHUNK_SIZE 256
33 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
36 * Isolate one page from the LRU lists. If successful put it onto
37 * the indicated list with elevated page count.
40 * -EBUSY: page not on LRU list
41 * 0: page removed from LRU list and added to the specified list.
43 int isolate_lru_page(struct page
*page
, struct list_head
*pagelist
)
48 struct zone
*zone
= page_zone(page
);
50 spin_lock_irq(&zone
->lru_lock
);
56 del_page_from_active_list(zone
, page
);
58 del_page_from_inactive_list(zone
, page
);
59 list_add_tail(&page
->lru
, pagelist
);
61 spin_unlock_irq(&zone
->lru_lock
);
67 * migrate_prep() needs to be called after we have compiled the list of pages
68 * to be migrated using isolate_lru_page() but before we begin a series of calls
71 int migrate_prep(void)
73 /* Must have swap device for migration */
74 if (nr_swap_pages
<= 0)
78 * Clear the LRU lists so pages can be isolated.
79 * Note that pages may be moved off the LRU after we have
80 * drained them. Those pages will fail to migrate like other
81 * pages that may be busy.
88 static inline void move_to_lru(struct page
*page
)
91 if (PageActive(page
)) {
93 * lru_cache_add_active checks that
94 * the PG_active bit is off.
96 ClearPageActive(page
);
97 lru_cache_add_active(page
);
105 * Add isolated pages on the list back to the LRU.
107 * returns the number of pages put back.
109 int putback_lru_pages(struct list_head
*l
)
115 list_for_each_entry_safe(page
, page2
, l
, lru
) {
123 * Non migratable page
125 int fail_migrate_page(struct page
*newpage
, struct page
*page
)
129 EXPORT_SYMBOL(fail_migrate_page
);
132 * swapout a single page
133 * page is locked upon entry, unlocked on exit
135 static int swap_page(struct page
*page
)
137 struct address_space
*mapping
= page_mapping(page
);
139 if (page_mapped(page
) && mapping
)
140 if (try_to_unmap(page
, 1) != SWAP_SUCCESS
)
143 if (PageDirty(page
)) {
144 /* Page is dirty, try to write it out here */
145 switch(pageout(page
, mapping
)) {
154 ; /* try to free the page below */
158 if (PagePrivate(page
)) {
159 if (!try_to_release_page(page
, GFP_KERNEL
) ||
160 (!mapping
&& page_count(page
) == 1))
164 if (remove_mapping(mapping
, page
)) {
178 * Remove references for a page and establish the new page with the correct
179 * basic settings to be able to stop accesses to the page.
181 int migrate_page_remove_references(struct page
*newpage
,
182 struct page
*page
, int nr_refs
)
184 struct address_space
*mapping
= page_mapping(page
);
185 struct page
**radix_pointer
;
188 * Avoid doing any of the following work if the page count
189 * indicates that the page is in use or truncate has removed
192 if (!mapping
|| page_mapcount(page
) + nr_refs
!= page_count(page
))
196 * Establish swap ptes for anonymous pages or destroy pte
199 * In order to reestablish file backed mappings the fault handlers
200 * will take the radix tree_lock which may then be used to stop
201 * processses from accessing this page until the new page is ready.
203 * A process accessing via a swap pte (an anonymous page) will take a
204 * page_lock on the old page which will block the process until the
205 * migration attempt is complete. At that time the PageSwapCache bit
206 * will be examined. If the page was migrated then the PageSwapCache
207 * bit will be clear and the operation to retrieve the page will be
208 * retried which will find the new page in the radix tree. Then a new
209 * direct mapping may be generated based on the radix tree contents.
211 * If the page was not migrated then the PageSwapCache bit
212 * is still set and the operation may continue.
214 if (try_to_unmap(page
, 1) == SWAP_FAIL
)
215 /* A vma has VM_LOCKED set -> permanent failure */
219 * Give up if we were unable to remove all mappings.
221 if (page_mapcount(page
))
224 write_lock_irq(&mapping
->tree_lock
);
226 radix_pointer
= (struct page
**)radix_tree_lookup_slot(
230 if (!page_mapping(page
) || page_count(page
) != nr_refs
||
231 *radix_pointer
!= page
) {
232 write_unlock_irq(&mapping
->tree_lock
);
237 * Now we know that no one else is looking at the page.
239 * Certain minimal information about a page must be available
240 * in order for other subsystems to properly handle the page if they
241 * find it through the radix tree update before we are finished
245 newpage
->index
= page
->index
;
246 newpage
->mapping
= page
->mapping
;
247 if (PageSwapCache(page
)) {
248 SetPageSwapCache(newpage
);
249 set_page_private(newpage
, page_private(page
));
252 *radix_pointer
= newpage
;
254 write_unlock_irq(&mapping
->tree_lock
);
258 EXPORT_SYMBOL(migrate_page_remove_references
);
261 * Copy the page to its new location
263 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
265 copy_highpage(newpage
, page
);
268 SetPageError(newpage
);
269 if (PageReferenced(page
))
270 SetPageReferenced(newpage
);
271 if (PageUptodate(page
))
272 SetPageUptodate(newpage
);
273 if (PageActive(page
))
274 SetPageActive(newpage
);
275 if (PageChecked(page
))
276 SetPageChecked(newpage
);
277 if (PageMappedToDisk(page
))
278 SetPageMappedToDisk(newpage
);
280 if (PageDirty(page
)) {
281 clear_page_dirty_for_io(page
);
282 set_page_dirty(newpage
);
285 ClearPageSwapCache(page
);
286 ClearPageActive(page
);
287 ClearPagePrivate(page
);
288 set_page_private(page
, 0);
289 page
->mapping
= NULL
;
292 * If any waiters have accumulated on the new page then
295 if (PageWriteback(newpage
))
296 end_page_writeback(newpage
);
298 EXPORT_SYMBOL(migrate_page_copy
);
301 * Common logic to directly migrate a single page suitable for
302 * pages that do not use PagePrivate.
304 * Pages are locked upon entry and exit.
306 int migrate_page(struct page
*newpage
, struct page
*page
)
310 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
312 rc
= migrate_page_remove_references(newpage
, page
, 2);
317 migrate_page_copy(newpage
, page
);
320 * Remove auxiliary swap entries and replace
321 * them with real ptes.
323 * Note that a real pte entry will allow processes that are not
324 * waiting on the page lock to use the new page via the page tables
325 * before the new page is unlocked.
327 remove_from_swap(newpage
);
330 EXPORT_SYMBOL(migrate_page
);
335 * Two lists are passed to this function. The first list
336 * contains the pages isolated from the LRU to be migrated.
337 * The second list contains new pages that the pages isolated
338 * can be moved to. If the second list is NULL then all
339 * pages are swapped out.
341 * The function returns after 10 attempts or if no pages
342 * are movable anymore because to has become empty
343 * or no retryable pages exist anymore.
345 * Return: Number of pages not migrated when "to" ran empty.
347 int migrate_pages(struct list_head
*from
, struct list_head
*to
,
348 struct list_head
*moved
, struct list_head
*failed
)
355 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
359 current
->flags
|= PF_SWAPWRITE
;
364 list_for_each_entry_safe(page
, page2
, from
, lru
) {
365 struct page
*newpage
= NULL
;
366 struct address_space
*mapping
;
371 if (page_count(page
) == 1)
372 /* page was freed from under us. So we are done. */
375 if (to
&& list_empty(to
))
379 * Skip locked pages during the first two passes to give the
380 * functions holding the lock time to release the page. Later we
381 * use lock_page() to have a higher chance of acquiring the
388 if (TestSetPageLocked(page
))
392 * Only wait on writeback if we have already done a pass where
393 * we we may have triggered writeouts for lots of pages.
396 wait_on_page_writeback(page
);
398 if (PageWriteback(page
))
403 * Anonymous pages must have swap cache references otherwise
404 * the information contained in the page maps cannot be
407 if (PageAnon(page
) && !PageSwapCache(page
)) {
408 if (!add_to_swap(page
, GFP_KERNEL
)) {
415 rc
= swap_page(page
);
419 newpage
= lru_to_page(to
);
423 * Pages are properly locked and writeback is complete.
424 * Try to migrate the page.
426 mapping
= page_mapping(page
);
430 if (mapping
->a_ops
->migratepage
) {
432 * Most pages have a mapping and most filesystems
433 * should provide a migration function. Anonymous
434 * pages are part of swap space which also has its
435 * own migration function. This is the most common
436 * path for page migration.
438 rc
= mapping
->a_ops
->migratepage(newpage
, page
);
443 * Default handling if a filesystem does not provide
444 * a migration function. We can only migrate clean
445 * pages so try to write out any dirty pages first.
447 if (PageDirty(page
)) {
448 switch (pageout(page
, mapping
)) {
454 unlock_page(newpage
);
458 ; /* try to migrate the page below */
463 * Buffers are managed in a filesystem specific way.
464 * We must have no buffers or drop them.
466 if (!page_has_buffers(page
) ||
467 try_to_release_page(page
, GFP_KERNEL
)) {
468 rc
= migrate_page(newpage
, page
);
473 * On early passes with mapped pages simply
474 * retry. There may be a lock held for some
475 * buffers that may go away. Later
480 * Persistently unable to drop buffers..... As a
481 * measure of last resort we fall back to
484 unlock_page(newpage
);
486 rc
= swap_page(page
);
491 unlock_page(newpage
);
500 /* Permanent failure */
501 list_move(&page
->lru
, failed
);
505 /* Successful migration. Return page to LRU */
506 move_to_lru(newpage
);
508 list_move(&page
->lru
, moved
);
511 if (retry
&& pass
++ < 10)
515 current
->flags
&= ~PF_SWAPWRITE
;
517 return nr_failed
+ retry
;
521 * Migration function for pages with buffers. This function can only be used
522 * if the underlying filesystem guarantees that no other references to "page"
525 int buffer_migrate_page(struct page
*newpage
, struct page
*page
)
527 struct address_space
*mapping
= page
->mapping
;
528 struct buffer_head
*bh
, *head
;
534 if (!page_has_buffers(page
))
535 return migrate_page(newpage
, page
);
537 head
= page_buffers(page
);
539 rc
= migrate_page_remove_references(newpage
, page
, 3);
548 bh
= bh
->b_this_page
;
550 } while (bh
!= head
);
552 ClearPagePrivate(page
);
553 set_page_private(newpage
, page_private(page
));
554 set_page_private(page
, 0);
560 set_bh_page(bh
, newpage
, bh_offset(bh
));
561 bh
= bh
->b_this_page
;
563 } while (bh
!= head
);
565 SetPagePrivate(newpage
);
567 migrate_page_copy(newpage
, page
);
573 bh
= bh
->b_this_page
;
575 } while (bh
!= head
);
579 EXPORT_SYMBOL(buffer_migrate_page
);
582 * Migrate the list 'pagelist' of pages to a certain destination.
584 * Specify destination with either non-NULL vma or dest_node >= 0
585 * Return the number of pages not migrated or error code
587 int migrate_pages_to(struct list_head
*pagelist
,
588 struct vm_area_struct
*vma
, int dest
)
594 unsigned long offset
= 0;
601 list_for_each(p
, pagelist
) {
604 * The address passed to alloc_page_vma is used to
605 * generate the proper interleave behavior. We fake
606 * the address here by an increasing offset in order
607 * to get the proper distribution of pages.
609 * No decision has been made as to which page
610 * a certain old page is moved to so we cannot
611 * specify the correct address.
613 page
= alloc_page_vma(GFP_HIGHUSER
, vma
,
614 offset
+ vma
->vm_start
);
618 page
= alloc_pages_node(dest
, GFP_HIGHUSER
, 0);
624 list_add_tail(&page
->lru
, &newlist
);
626 if (nr_pages
> MIGRATE_CHUNK_SIZE
)
629 err
= migrate_pages(pagelist
, &newlist
, &moved
, &failed
);
631 putback_lru_pages(&moved
); /* Call release pages instead ?? */
633 if (err
>= 0 && list_empty(&newlist
) && !list_empty(pagelist
))
636 /* Return leftover allocated pages */
637 while (!list_empty(&newlist
)) {
638 page
= list_entry(newlist
.next
, struct page
, lru
);
639 list_del(&page
->lru
);
642 list_splice(&failed
, pagelist
);
646 /* Calculate number of leftover pages */
648 list_for_each(p
, pagelist
)