Add linux-next specific files for 20110831
[linux-2.6/next.git] / kernel / rcutree.c
blob9ffe418a3e036c3360f97835f4cc69f8064f8973
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
57 #include "rcu.h"
59 /* Data structures. */
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .signaled = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
88 static struct rcu_state *rcu_state;
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
114 static int rcu_scheduler_fully_active __read_mostly;
116 #ifdef CONFIG_RCU_BOOST
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
128 #endif /* #ifdef CONFIG_RCU_BOOST */
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
162 void rcu_sched_qs(int cpu)
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
173 void rcu_bh_qs(int cpu)
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
189 void rcu_note_context_switch(int cpu)
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
198 #ifdef CONFIG_NO_HZ
199 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
200 .dynticks_nesting = 1,
201 .dynticks = ATOMIC_INIT(1),
203 #endif /* #ifdef CONFIG_NO_HZ */
205 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
206 static int qhimark = 10000; /* If this many pending, ignore blimit. */
207 static int qlowmark = 100; /* Once only this many pending, use blimit. */
209 module_param(blimit, int, 0);
210 module_param(qhimark, int, 0);
211 module_param(qlowmark, int, 0);
213 int rcu_cpu_stall_suppress __read_mostly;
214 module_param(rcu_cpu_stall_suppress, int, 0644);
216 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
217 static int rcu_pending(int cpu);
220 * Return the number of RCU-sched batches processed thus far for debug & stats.
222 long rcu_batches_completed_sched(void)
224 return rcu_sched_state.completed;
226 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
229 * Return the number of RCU BH batches processed thus far for debug & stats.
231 long rcu_batches_completed_bh(void)
233 return rcu_bh_state.completed;
235 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
238 * Force a quiescent state for RCU BH.
240 void rcu_bh_force_quiescent_state(void)
242 force_quiescent_state(&rcu_bh_state, 0);
244 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
247 * Record the number of times rcutorture tests have been initiated and
248 * terminated. This information allows the debugfs tracing stats to be
249 * correlated to the rcutorture messages, even when the rcutorture module
250 * is being repeatedly loaded and unloaded. In other words, we cannot
251 * store this state in rcutorture itself.
253 void rcutorture_record_test_transition(void)
255 rcutorture_testseq++;
256 rcutorture_vernum = 0;
258 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
261 * Record the number of writer passes through the current rcutorture test.
262 * This is also used to correlate debugfs tracing stats with the rcutorture
263 * messages.
265 void rcutorture_record_progress(unsigned long vernum)
267 rcutorture_vernum++;
269 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
272 * Force a quiescent state for RCU-sched.
274 void rcu_sched_force_quiescent_state(void)
276 force_quiescent_state(&rcu_sched_state, 0);
278 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
281 * Does the CPU have callbacks ready to be invoked?
283 static int
284 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
286 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
290 * Does the current CPU require a yet-as-unscheduled grace period?
292 static int
293 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
295 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
299 * Return the root node of the specified rcu_state structure.
301 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
303 return &rsp->node[0];
306 #ifdef CONFIG_SMP
309 * If the specified CPU is offline, tell the caller that it is in
310 * a quiescent state. Otherwise, whack it with a reschedule IPI.
311 * Grace periods can end up waiting on an offline CPU when that
312 * CPU is in the process of coming online -- it will be added to the
313 * rcu_node bitmasks before it actually makes it online. The same thing
314 * can happen while a CPU is in the process of coming online. Because this
315 * race is quite rare, we check for it after detecting that the grace
316 * period has been delayed rather than checking each and every CPU
317 * each and every time we start a new grace period.
319 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
322 * If the CPU is offline, it is in a quiescent state. We can
323 * trust its state not to change because interrupts are disabled.
325 if (cpu_is_offline(rdp->cpu)) {
326 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
327 rdp->offline_fqs++;
328 return 1;
331 /* If preemptible RCU, no point in sending reschedule IPI. */
332 if (rdp->preemptible)
333 return 0;
335 /* The CPU is online, so send it a reschedule IPI. */
336 if (rdp->cpu != smp_processor_id())
337 smp_send_reschedule(rdp->cpu);
338 else
339 set_need_resched();
340 rdp->resched_ipi++;
341 return 0;
344 #endif /* #ifdef CONFIG_SMP */
346 #ifdef CONFIG_NO_HZ
349 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
351 * Enter nohz mode, in other words, -leave- the mode in which RCU
352 * read-side critical sections can occur. (Though RCU read-side
353 * critical sections can occur in irq handlers in nohz mode, a possibility
354 * handled by rcu_irq_enter() and rcu_irq_exit()).
356 void rcu_enter_nohz(void)
358 unsigned long flags;
359 struct rcu_dynticks *rdtp;
361 local_irq_save(flags);
362 rdtp = &__get_cpu_var(rcu_dynticks);
363 if (--rdtp->dynticks_nesting) {
364 local_irq_restore(flags);
365 return;
367 trace_rcu_dyntick("Start");
368 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
369 smp_mb__before_atomic_inc(); /* See above. */
370 atomic_inc(&rdtp->dynticks);
371 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
372 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
373 local_irq_restore(flags);
377 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
379 * Exit nohz mode, in other words, -enter- the mode in which RCU
380 * read-side critical sections normally occur.
382 void rcu_exit_nohz(void)
384 unsigned long flags;
385 struct rcu_dynticks *rdtp;
387 local_irq_save(flags);
388 rdtp = &__get_cpu_var(rcu_dynticks);
389 if (rdtp->dynticks_nesting++) {
390 local_irq_restore(flags);
391 return;
393 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
394 atomic_inc(&rdtp->dynticks);
395 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
396 smp_mb__after_atomic_inc(); /* See above. */
397 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
398 trace_rcu_dyntick("End");
399 local_irq_restore(flags);
403 * rcu_nmi_enter - inform RCU of entry to NMI context
405 * If the CPU was idle with dynamic ticks active, and there is no
406 * irq handler running, this updates rdtp->dynticks_nmi to let the
407 * RCU grace-period handling know that the CPU is active.
409 void rcu_nmi_enter(void)
411 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
413 if (rdtp->dynticks_nmi_nesting == 0 &&
414 (atomic_read(&rdtp->dynticks) & 0x1))
415 return;
416 rdtp->dynticks_nmi_nesting++;
417 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
418 atomic_inc(&rdtp->dynticks);
419 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
420 smp_mb__after_atomic_inc(); /* See above. */
421 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
425 * rcu_nmi_exit - inform RCU of exit from NMI context
427 * If the CPU was idle with dynamic ticks active, and there is no
428 * irq handler running, this updates rdtp->dynticks_nmi to let the
429 * RCU grace-period handling know that the CPU is no longer active.
431 void rcu_nmi_exit(void)
433 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
435 if (rdtp->dynticks_nmi_nesting == 0 ||
436 --rdtp->dynticks_nmi_nesting != 0)
437 return;
438 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
439 smp_mb__before_atomic_inc(); /* See above. */
440 atomic_inc(&rdtp->dynticks);
441 smp_mb__after_atomic_inc(); /* Force delay to next write. */
442 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
446 * rcu_irq_enter - inform RCU of entry to hard irq context
448 * If the CPU was idle with dynamic ticks active, this updates the
449 * rdtp->dynticks to let the RCU handling know that the CPU is active.
451 void rcu_irq_enter(void)
453 rcu_exit_nohz();
457 * rcu_irq_exit - inform RCU of exit from hard irq context
459 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
460 * to put let the RCU handling be aware that the CPU is going back to idle
461 * with no ticks.
463 void rcu_irq_exit(void)
465 rcu_enter_nohz();
468 #ifdef CONFIG_SMP
471 * Snapshot the specified CPU's dynticks counter so that we can later
472 * credit them with an implicit quiescent state. Return 1 if this CPU
473 * is in dynticks idle mode, which is an extended quiescent state.
475 static int dyntick_save_progress_counter(struct rcu_data *rdp)
477 smp_mb(); /* Work around some architectures weak impls. */
478 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
479 smp_mb(); /* Work around some architectures weak impls. */
480 return 0;
484 * Return true if the specified CPU has passed through a quiescent
485 * state by virtue of being in or having passed through an dynticks
486 * idle state since the last call to dyntick_save_progress_counter()
487 * for this same CPU.
489 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
491 unsigned int curr;
492 unsigned int snap;
494 smp_mb(); /* Work around some architectures weak impls. */
495 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
496 smp_mb(); /* Work around some architectures weak impls. */
497 snap = (unsigned int)rdp->dynticks_snap;
500 * If the CPU passed through or entered a dynticks idle phase with
501 * no active irq/NMI handlers, then we can safely pretend that the CPU
502 * already acknowledged the request to pass through a quiescent
503 * state. Either way, that CPU cannot possibly be in an RCU
504 * read-side critical section that started before the beginning
505 * of the current RCU grace period.
507 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
508 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
509 rdp->dynticks_fqs++;
510 return 1;
513 /* Go check for the CPU being offline. */
514 return rcu_implicit_offline_qs(rdp);
517 #endif /* #ifdef CONFIG_SMP */
519 #else /* #ifdef CONFIG_NO_HZ */
521 #ifdef CONFIG_SMP
523 static int dyntick_save_progress_counter(struct rcu_data *rdp)
525 return 0;
528 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
530 return rcu_implicit_offline_qs(rdp);
533 #endif /* #ifdef CONFIG_SMP */
535 #endif /* #else #ifdef CONFIG_NO_HZ */
537 int rcu_cpu_stall_suppress __read_mostly;
539 static void record_gp_stall_check_time(struct rcu_state *rsp)
541 rsp->gp_start = jiffies;
542 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
545 static void print_other_cpu_stall(struct rcu_state *rsp)
547 int cpu;
548 long delta;
549 unsigned long flags;
550 int ndetected;
551 struct rcu_node *rnp = rcu_get_root(rsp);
553 /* Only let one CPU complain about others per time interval. */
555 raw_spin_lock_irqsave(&rnp->lock, flags);
556 delta = jiffies - rsp->jiffies_stall;
557 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
558 raw_spin_unlock_irqrestore(&rnp->lock, flags);
559 return;
561 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
564 * Now rat on any tasks that got kicked up to the root rcu_node
565 * due to CPU offlining.
567 ndetected = rcu_print_task_stall(rnp);
568 raw_spin_unlock_irqrestore(&rnp->lock, flags);
571 * OK, time to rat on our buddy...
572 * See Documentation/RCU/stallwarn.txt for info on how to debug
573 * RCU CPU stall warnings.
575 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
576 rsp->name);
577 rcu_for_each_leaf_node(rsp, rnp) {
578 raw_spin_lock_irqsave(&rnp->lock, flags);
579 ndetected += rcu_print_task_stall(rnp);
580 raw_spin_unlock_irqrestore(&rnp->lock, flags);
581 if (rnp->qsmask == 0)
582 continue;
583 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
584 if (rnp->qsmask & (1UL << cpu)) {
585 printk(" %d", rnp->grplo + cpu);
586 ndetected++;
589 printk("} (detected by %d, t=%ld jiffies)\n",
590 smp_processor_id(), (long)(jiffies - rsp->gp_start));
591 if (ndetected == 0)
592 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
593 else if (!trigger_all_cpu_backtrace())
594 dump_stack();
596 /* If so configured, complain about tasks blocking the grace period. */
598 rcu_print_detail_task_stall(rsp);
600 force_quiescent_state(rsp, 0); /* Kick them all. */
603 static void print_cpu_stall(struct rcu_state *rsp)
605 unsigned long flags;
606 struct rcu_node *rnp = rcu_get_root(rsp);
609 * OK, time to rat on ourselves...
610 * See Documentation/RCU/stallwarn.txt for info on how to debug
611 * RCU CPU stall warnings.
613 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
614 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
615 if (!trigger_all_cpu_backtrace())
616 dump_stack();
618 raw_spin_lock_irqsave(&rnp->lock, flags);
619 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
620 rsp->jiffies_stall =
621 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
622 raw_spin_unlock_irqrestore(&rnp->lock, flags);
624 set_need_resched(); /* kick ourselves to get things going. */
627 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
629 unsigned long j;
630 unsigned long js;
631 struct rcu_node *rnp;
633 if (rcu_cpu_stall_suppress)
634 return;
635 j = ACCESS_ONCE(jiffies);
636 js = ACCESS_ONCE(rsp->jiffies_stall);
637 rnp = rdp->mynode;
638 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
640 /* We haven't checked in, so go dump stack. */
641 print_cpu_stall(rsp);
643 } else if (rcu_gp_in_progress(rsp) &&
644 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
646 /* They had a few time units to dump stack, so complain. */
647 print_other_cpu_stall(rsp);
651 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
653 rcu_cpu_stall_suppress = 1;
654 return NOTIFY_DONE;
658 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
660 * Set the stall-warning timeout way off into the future, thus preventing
661 * any RCU CPU stall-warning messages from appearing in the current set of
662 * RCU grace periods.
664 * The caller must disable hard irqs.
666 void rcu_cpu_stall_reset(void)
668 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
669 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
670 rcu_preempt_stall_reset();
673 static struct notifier_block rcu_panic_block = {
674 .notifier_call = rcu_panic,
677 static void __init check_cpu_stall_init(void)
679 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
683 * Update CPU-local rcu_data state to record the newly noticed grace period.
684 * This is used both when we started the grace period and when we notice
685 * that someone else started the grace period. The caller must hold the
686 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
687 * and must have irqs disabled.
689 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
691 if (rdp->gpnum != rnp->gpnum) {
693 * If the current grace period is waiting for this CPU,
694 * set up to detect a quiescent state, otherwise don't
695 * go looking for one.
697 rdp->gpnum = rnp->gpnum;
698 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
699 if (rnp->qsmask & rdp->grpmask) {
700 rdp->qs_pending = 1;
701 rdp->passed_quiesce = 0;
702 } else
703 rdp->qs_pending = 0;
707 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
709 unsigned long flags;
710 struct rcu_node *rnp;
712 local_irq_save(flags);
713 rnp = rdp->mynode;
714 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
715 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
716 local_irq_restore(flags);
717 return;
719 __note_new_gpnum(rsp, rnp, rdp);
720 raw_spin_unlock_irqrestore(&rnp->lock, flags);
724 * Did someone else start a new RCU grace period start since we last
725 * checked? Update local state appropriately if so. Must be called
726 * on the CPU corresponding to rdp.
728 static int
729 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
731 unsigned long flags;
732 int ret = 0;
734 local_irq_save(flags);
735 if (rdp->gpnum != rsp->gpnum) {
736 note_new_gpnum(rsp, rdp);
737 ret = 1;
739 local_irq_restore(flags);
740 return ret;
744 * Advance this CPU's callbacks, but only if the current grace period
745 * has ended. This may be called only from the CPU to whom the rdp
746 * belongs. In addition, the corresponding leaf rcu_node structure's
747 * ->lock must be held by the caller, with irqs disabled.
749 static void
750 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
752 /* Did another grace period end? */
753 if (rdp->completed != rnp->completed) {
755 /* Advance callbacks. No harm if list empty. */
756 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
757 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
758 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
760 /* Remember that we saw this grace-period completion. */
761 rdp->completed = rnp->completed;
762 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
765 * If we were in an extended quiescent state, we may have
766 * missed some grace periods that others CPUs handled on
767 * our behalf. Catch up with this state to avoid noting
768 * spurious new grace periods. If another grace period
769 * has started, then rnp->gpnum will have advanced, so
770 * we will detect this later on.
772 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
773 rdp->gpnum = rdp->completed;
776 * If RCU does not need a quiescent state from this CPU,
777 * then make sure that this CPU doesn't go looking for one.
779 if ((rnp->qsmask & rdp->grpmask) == 0)
780 rdp->qs_pending = 0;
785 * Advance this CPU's callbacks, but only if the current grace period
786 * has ended. This may be called only from the CPU to whom the rdp
787 * belongs.
789 static void
790 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
792 unsigned long flags;
793 struct rcu_node *rnp;
795 local_irq_save(flags);
796 rnp = rdp->mynode;
797 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
798 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
799 local_irq_restore(flags);
800 return;
802 __rcu_process_gp_end(rsp, rnp, rdp);
803 raw_spin_unlock_irqrestore(&rnp->lock, flags);
807 * Do per-CPU grace-period initialization for running CPU. The caller
808 * must hold the lock of the leaf rcu_node structure corresponding to
809 * this CPU.
811 static void
812 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
814 /* Prior grace period ended, so advance callbacks for current CPU. */
815 __rcu_process_gp_end(rsp, rnp, rdp);
818 * Because this CPU just now started the new grace period, we know
819 * that all of its callbacks will be covered by this upcoming grace
820 * period, even the ones that were registered arbitrarily recently.
821 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
823 * Other CPUs cannot be sure exactly when the grace period started.
824 * Therefore, their recently registered callbacks must pass through
825 * an additional RCU_NEXT_READY stage, so that they will be handled
826 * by the next RCU grace period.
828 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
829 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
831 /* Set state so that this CPU will detect the next quiescent state. */
832 __note_new_gpnum(rsp, rnp, rdp);
836 * Start a new RCU grace period if warranted, re-initializing the hierarchy
837 * in preparation for detecting the next grace period. The caller must hold
838 * the root node's ->lock, which is released before return. Hard irqs must
839 * be disabled.
841 static void
842 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
843 __releases(rcu_get_root(rsp)->lock)
845 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
846 struct rcu_node *rnp = rcu_get_root(rsp);
848 if (!rcu_scheduler_fully_active ||
849 !cpu_needs_another_gp(rsp, rdp)) {
851 * Either the scheduler hasn't yet spawned the first
852 * non-idle task or this CPU does not need another
853 * grace period. Either way, don't start a new grace
854 * period.
856 raw_spin_unlock_irqrestore(&rnp->lock, flags);
857 return;
860 if (rsp->fqs_active) {
862 * This CPU needs a grace period, but force_quiescent_state()
863 * is running. Tell it to start one on this CPU's behalf.
865 rsp->fqs_need_gp = 1;
866 raw_spin_unlock_irqrestore(&rnp->lock, flags);
867 return;
870 /* Advance to a new grace period and initialize state. */
871 rsp->gpnum++;
872 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
873 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
874 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
875 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
876 record_gp_stall_check_time(rsp);
878 /* Special-case the common single-level case. */
879 if (NUM_RCU_NODES == 1) {
880 rcu_preempt_check_blocked_tasks(rnp);
881 rnp->qsmask = rnp->qsmaskinit;
882 rnp->gpnum = rsp->gpnum;
883 rnp->completed = rsp->completed;
884 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
885 rcu_start_gp_per_cpu(rsp, rnp, rdp);
886 rcu_preempt_boost_start_gp(rnp);
887 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
888 rnp->level, rnp->grplo,
889 rnp->grphi, rnp->qsmask);
890 raw_spin_unlock_irqrestore(&rnp->lock, flags);
891 return;
894 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
897 /* Exclude any concurrent CPU-hotplug operations. */
898 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
901 * Set the quiescent-state-needed bits in all the rcu_node
902 * structures for all currently online CPUs in breadth-first
903 * order, starting from the root rcu_node structure. This
904 * operation relies on the layout of the hierarchy within the
905 * rsp->node[] array. Note that other CPUs will access only
906 * the leaves of the hierarchy, which still indicate that no
907 * grace period is in progress, at least until the corresponding
908 * leaf node has been initialized. In addition, we have excluded
909 * CPU-hotplug operations.
911 * Note that the grace period cannot complete until we finish
912 * the initialization process, as there will be at least one
913 * qsmask bit set in the root node until that time, namely the
914 * one corresponding to this CPU, due to the fact that we have
915 * irqs disabled.
917 rcu_for_each_node_breadth_first(rsp, rnp) {
918 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
919 rcu_preempt_check_blocked_tasks(rnp);
920 rnp->qsmask = rnp->qsmaskinit;
921 rnp->gpnum = rsp->gpnum;
922 rnp->completed = rsp->completed;
923 if (rnp == rdp->mynode)
924 rcu_start_gp_per_cpu(rsp, rnp, rdp);
925 rcu_preempt_boost_start_gp(rnp);
926 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
927 rnp->level, rnp->grplo,
928 rnp->grphi, rnp->qsmask);
929 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
932 rnp = rcu_get_root(rsp);
933 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
934 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
935 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
936 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
940 * Report a full set of quiescent states to the specified rcu_state
941 * data structure. This involves cleaning up after the prior grace
942 * period and letting rcu_start_gp() start up the next grace period
943 * if one is needed. Note that the caller must hold rnp->lock, as
944 * required by rcu_start_gp(), which will release it.
946 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
947 __releases(rcu_get_root(rsp)->lock)
949 unsigned long gp_duration;
950 struct rcu_node *rnp = rcu_get_root(rsp);
951 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
953 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
956 * Ensure that all grace-period and pre-grace-period activity
957 * is seen before the assignment to rsp->completed.
959 smp_mb(); /* See above block comment. */
960 gp_duration = jiffies - rsp->gp_start;
961 if (gp_duration > rsp->gp_max)
962 rsp->gp_max = gp_duration;
965 * We know the grace period is complete, but to everyone else
966 * it appears to still be ongoing. But it is also the case
967 * that to everyone else it looks like there is nothing that
968 * they can do to advance the grace period. It is therefore
969 * safe for us to drop the lock in order to mark the grace
970 * period as completed in all of the rcu_node structures.
972 * But if this CPU needs another grace period, it will take
973 * care of this while initializing the next grace period.
974 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
975 * because the callbacks have not yet been advanced: Those
976 * callbacks are waiting on the grace period that just now
977 * completed.
979 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
980 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
983 * Propagate new ->completed value to rcu_node structures
984 * so that other CPUs don't have to wait until the start
985 * of the next grace period to process their callbacks.
987 rcu_for_each_node_breadth_first(rsp, rnp) {
988 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
989 rnp->completed = rsp->gpnum;
990 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
992 rnp = rcu_get_root(rsp);
993 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
996 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
997 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
998 rsp->signaled = RCU_GP_IDLE;
999 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1003 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1004 * Allows quiescent states for a group of CPUs to be reported at one go
1005 * to the specified rcu_node structure, though all the CPUs in the group
1006 * must be represented by the same rcu_node structure (which need not be
1007 * a leaf rcu_node structure, though it often will be). That structure's
1008 * lock must be held upon entry, and it is released before return.
1010 static void
1011 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1012 struct rcu_node *rnp, unsigned long flags)
1013 __releases(rnp->lock)
1015 struct rcu_node *rnp_c;
1017 /* Walk up the rcu_node hierarchy. */
1018 for (;;) {
1019 if (!(rnp->qsmask & mask)) {
1021 /* Our bit has already been cleared, so done. */
1022 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1023 return;
1025 rnp->qsmask &= ~mask;
1026 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1027 mask, rnp->qsmask, rnp->level,
1028 rnp->grplo, rnp->grphi,
1029 !!rnp->gp_tasks);
1030 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1032 /* Other bits still set at this level, so done. */
1033 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1034 return;
1036 mask = rnp->grpmask;
1037 if (rnp->parent == NULL) {
1039 /* No more levels. Exit loop holding root lock. */
1041 break;
1043 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1044 rnp_c = rnp;
1045 rnp = rnp->parent;
1046 raw_spin_lock_irqsave(&rnp->lock, flags);
1047 WARN_ON_ONCE(rnp_c->qsmask);
1051 * Get here if we are the last CPU to pass through a quiescent
1052 * state for this grace period. Invoke rcu_report_qs_rsp()
1053 * to clean up and start the next grace period if one is needed.
1055 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1059 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1060 * structure. This must be either called from the specified CPU, or
1061 * called when the specified CPU is known to be offline (and when it is
1062 * also known that no other CPU is concurrently trying to help the offline
1063 * CPU). The lastcomp argument is used to make sure we are still in the
1064 * grace period of interest. We don't want to end the current grace period
1065 * based on quiescent states detected in an earlier grace period!
1067 static void
1068 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1070 unsigned long flags;
1071 unsigned long mask;
1072 struct rcu_node *rnp;
1074 rnp = rdp->mynode;
1075 raw_spin_lock_irqsave(&rnp->lock, flags);
1076 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1079 * The grace period in which this quiescent state was
1080 * recorded has ended, so don't report it upwards.
1081 * We will instead need a new quiescent state that lies
1082 * within the current grace period.
1084 rdp->passed_quiesce = 0; /* need qs for new gp. */
1085 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1086 return;
1088 mask = rdp->grpmask;
1089 if ((rnp->qsmask & mask) == 0) {
1090 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1091 } else {
1092 rdp->qs_pending = 0;
1095 * This GP can't end until cpu checks in, so all of our
1096 * callbacks can be processed during the next GP.
1098 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1100 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1105 * Check to see if there is a new grace period of which this CPU
1106 * is not yet aware, and if so, set up local rcu_data state for it.
1107 * Otherwise, see if this CPU has just passed through its first
1108 * quiescent state for this grace period, and record that fact if so.
1110 static void
1111 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1113 /* If there is now a new grace period, record and return. */
1114 if (check_for_new_grace_period(rsp, rdp))
1115 return;
1118 * Does this CPU still need to do its part for current grace period?
1119 * If no, return and let the other CPUs do their part as well.
1121 if (!rdp->qs_pending)
1122 return;
1125 * Was there a quiescent state since the beginning of the grace
1126 * period? If no, then exit and wait for the next call.
1128 if (!rdp->passed_quiesce)
1129 return;
1132 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1133 * judge of that).
1135 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1138 #ifdef CONFIG_HOTPLUG_CPU
1141 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1142 * Synchronization is not required because this function executes
1143 * in stop_machine() context.
1145 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1147 int i;
1148 /* current DYING CPU is cleared in the cpu_online_mask */
1149 int receive_cpu = cpumask_any(cpu_online_mask);
1150 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1151 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1153 if (rdp->nxtlist == NULL)
1154 return; /* irqs disabled, so comparison is stable. */
1156 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1157 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1158 receive_rdp->qlen += rdp->qlen;
1159 receive_rdp->n_cbs_adopted += rdp->qlen;
1160 rdp->n_cbs_orphaned += rdp->qlen;
1162 rdp->nxtlist = NULL;
1163 for (i = 0; i < RCU_NEXT_SIZE; i++)
1164 rdp->nxttail[i] = &rdp->nxtlist;
1165 rdp->qlen = 0;
1169 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1170 * and move all callbacks from the outgoing CPU to the current one.
1171 * There can only be one CPU hotplug operation at a time, so no other
1172 * CPU can be attempting to update rcu_cpu_kthread_task.
1174 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1176 unsigned long flags;
1177 unsigned long mask;
1178 int need_report = 0;
1179 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1180 struct rcu_node *rnp;
1182 rcu_stop_cpu_kthread(cpu);
1184 /* Exclude any attempts to start a new grace period. */
1185 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1187 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1188 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1189 mask = rdp->grpmask; /* rnp->grplo is constant. */
1190 do {
1191 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1192 rnp->qsmaskinit &= ~mask;
1193 if (rnp->qsmaskinit != 0) {
1194 if (rnp != rdp->mynode)
1195 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1196 else
1197 trace_rcu_grace_period(rsp->name,
1198 rnp->gpnum + 1 -
1199 !!(rnp->qsmask & mask),
1200 "cpuofl");
1201 break;
1203 if (rnp == rdp->mynode) {
1204 trace_rcu_grace_period(rsp->name,
1205 rnp->gpnum + 1 -
1206 !!(rnp->qsmask & mask),
1207 "cpuofl");
1208 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1209 } else
1210 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1211 mask = rnp->grpmask;
1212 rnp = rnp->parent;
1213 } while (rnp != NULL);
1216 * We still hold the leaf rcu_node structure lock here, and
1217 * irqs are still disabled. The reason for this subterfuge is
1218 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1219 * held leads to deadlock.
1221 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1222 rnp = rdp->mynode;
1223 if (need_report & RCU_OFL_TASKS_NORM_GP)
1224 rcu_report_unblock_qs_rnp(rnp, flags);
1225 else
1226 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1227 if (need_report & RCU_OFL_TASKS_EXP_GP)
1228 rcu_report_exp_rnp(rsp, rnp);
1229 rcu_node_kthread_setaffinity(rnp, -1);
1233 * Remove the specified CPU from the RCU hierarchy and move any pending
1234 * callbacks that it might have to the current CPU. This code assumes
1235 * that at least one CPU in the system will remain running at all times.
1236 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1238 static void rcu_offline_cpu(int cpu)
1240 __rcu_offline_cpu(cpu, &rcu_sched_state);
1241 __rcu_offline_cpu(cpu, &rcu_bh_state);
1242 rcu_preempt_offline_cpu(cpu);
1245 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1247 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1251 static void rcu_offline_cpu(int cpu)
1255 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1258 * Invoke any RCU callbacks that have made it to the end of their grace
1259 * period. Thottle as specified by rdp->blimit.
1261 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1263 unsigned long flags;
1264 struct rcu_head *next, *list, **tail;
1265 int bl, count;
1267 /* If no callbacks are ready, just return.*/
1268 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1269 trace_rcu_batch_start(rsp->name, 0, 0);
1270 trace_rcu_batch_end(rsp->name, 0);
1271 return;
1275 * Extract the list of ready callbacks, disabling to prevent
1276 * races with call_rcu() from interrupt handlers.
1278 local_irq_save(flags);
1279 bl = rdp->blimit;
1280 trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1281 list = rdp->nxtlist;
1282 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1283 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1284 tail = rdp->nxttail[RCU_DONE_TAIL];
1285 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1286 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1287 rdp->nxttail[count] = &rdp->nxtlist;
1288 local_irq_restore(flags);
1290 /* Invoke callbacks. */
1291 count = 0;
1292 while (list) {
1293 next = list->next;
1294 prefetch(next);
1295 debug_rcu_head_unqueue(list);
1296 __rcu_reclaim(rsp->name, list);
1297 list = next;
1298 if (++count >= bl)
1299 break;
1302 local_irq_save(flags);
1303 trace_rcu_batch_end(rsp->name, count);
1305 /* Update count, and requeue any remaining callbacks. */
1306 rdp->qlen -= count;
1307 rdp->n_cbs_invoked += count;
1308 if (list != NULL) {
1309 *tail = rdp->nxtlist;
1310 rdp->nxtlist = list;
1311 for (count = 0; count < RCU_NEXT_SIZE; count++)
1312 if (&rdp->nxtlist == rdp->nxttail[count])
1313 rdp->nxttail[count] = tail;
1314 else
1315 break;
1318 /* Reinstate batch limit if we have worked down the excess. */
1319 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1320 rdp->blimit = blimit;
1322 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1323 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1324 rdp->qlen_last_fqs_check = 0;
1325 rdp->n_force_qs_snap = rsp->n_force_qs;
1326 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1327 rdp->qlen_last_fqs_check = rdp->qlen;
1329 local_irq_restore(flags);
1331 /* Re-invoke RCU core processing if there are callbacks remaining. */
1332 if (cpu_has_callbacks_ready_to_invoke(rdp))
1333 invoke_rcu_core();
1337 * Check to see if this CPU is in a non-context-switch quiescent state
1338 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1339 * Also schedule RCU core processing.
1341 * This function must be called with hardirqs disabled. It is normally
1342 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1343 * false, there is no point in invoking rcu_check_callbacks().
1345 void rcu_check_callbacks(int cpu, int user)
1347 trace_rcu_utilization("Start scheduler-tick");
1348 if (user ||
1349 (idle_cpu(cpu) && rcu_scheduler_active &&
1350 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1353 * Get here if this CPU took its interrupt from user
1354 * mode or from the idle loop, and if this is not a
1355 * nested interrupt. In this case, the CPU is in
1356 * a quiescent state, so note it.
1358 * No memory barrier is required here because both
1359 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1360 * variables that other CPUs neither access nor modify,
1361 * at least not while the corresponding CPU is online.
1364 rcu_sched_qs(cpu);
1365 rcu_bh_qs(cpu);
1367 } else if (!in_softirq()) {
1370 * Get here if this CPU did not take its interrupt from
1371 * softirq, in other words, if it is not interrupting
1372 * a rcu_bh read-side critical section. This is an _bh
1373 * critical section, so note it.
1376 rcu_bh_qs(cpu);
1378 rcu_preempt_check_callbacks(cpu);
1379 if (rcu_pending(cpu))
1380 invoke_rcu_core();
1381 trace_rcu_utilization("End scheduler-tick");
1384 #ifdef CONFIG_SMP
1387 * Scan the leaf rcu_node structures, processing dyntick state for any that
1388 * have not yet encountered a quiescent state, using the function specified.
1389 * Also initiate boosting for any threads blocked on the root rcu_node.
1391 * The caller must have suppressed start of new grace periods.
1393 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1395 unsigned long bit;
1396 int cpu;
1397 unsigned long flags;
1398 unsigned long mask;
1399 struct rcu_node *rnp;
1401 rcu_for_each_leaf_node(rsp, rnp) {
1402 mask = 0;
1403 raw_spin_lock_irqsave(&rnp->lock, flags);
1404 if (!rcu_gp_in_progress(rsp)) {
1405 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1406 return;
1408 if (rnp->qsmask == 0) {
1409 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1410 continue;
1412 cpu = rnp->grplo;
1413 bit = 1;
1414 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1415 if ((rnp->qsmask & bit) != 0 &&
1416 f(per_cpu_ptr(rsp->rda, cpu)))
1417 mask |= bit;
1419 if (mask != 0) {
1421 /* rcu_report_qs_rnp() releases rnp->lock. */
1422 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1423 continue;
1425 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1427 rnp = rcu_get_root(rsp);
1428 if (rnp->qsmask == 0) {
1429 raw_spin_lock_irqsave(&rnp->lock, flags);
1430 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1435 * Force quiescent states on reluctant CPUs, and also detect which
1436 * CPUs are in dyntick-idle mode.
1438 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1440 unsigned long flags;
1441 struct rcu_node *rnp = rcu_get_root(rsp);
1443 trace_rcu_utilization("Start fqs");
1444 if (!rcu_gp_in_progress(rsp)) {
1445 trace_rcu_utilization("End fqs");
1446 return; /* No grace period in progress, nothing to force. */
1448 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1449 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1450 trace_rcu_utilization("End fqs");
1451 return; /* Someone else is already on the job. */
1453 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1454 goto unlock_fqs_ret; /* no emergency and done recently. */
1455 rsp->n_force_qs++;
1456 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1457 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1458 if(!rcu_gp_in_progress(rsp)) {
1459 rsp->n_force_qs_ngp++;
1460 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1461 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1463 rsp->fqs_active = 1;
1464 switch (rsp->signaled) {
1465 case RCU_GP_IDLE:
1466 case RCU_GP_INIT:
1468 break; /* grace period idle or initializing, ignore. */
1470 case RCU_SAVE_DYNTICK:
1471 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1472 break; /* So gcc recognizes the dead code. */
1474 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1476 /* Record dyntick-idle state. */
1477 force_qs_rnp(rsp, dyntick_save_progress_counter);
1478 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1479 if (rcu_gp_in_progress(rsp))
1480 rsp->signaled = RCU_FORCE_QS;
1481 break;
1483 case RCU_FORCE_QS:
1485 /* Check dyntick-idle state, send IPI to laggarts. */
1486 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1487 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1489 /* Leave state in case more forcing is required. */
1491 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1492 break;
1494 rsp->fqs_active = 0;
1495 if (rsp->fqs_need_gp) {
1496 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1497 rsp->fqs_need_gp = 0;
1498 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1499 trace_rcu_utilization("End fqs");
1500 return;
1502 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1503 unlock_fqs_ret:
1504 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1505 trace_rcu_utilization("End fqs");
1508 #else /* #ifdef CONFIG_SMP */
1510 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1512 set_need_resched();
1515 #endif /* #else #ifdef CONFIG_SMP */
1518 * This does the RCU core processing work for the specified rcu_state
1519 * and rcu_data structures. This may be called only from the CPU to
1520 * whom the rdp belongs.
1522 static void
1523 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1525 unsigned long flags;
1527 WARN_ON_ONCE(rdp->beenonline == 0);
1530 * If an RCU GP has gone long enough, go check for dyntick
1531 * idle CPUs and, if needed, send resched IPIs.
1533 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1534 force_quiescent_state(rsp, 1);
1537 * Advance callbacks in response to end of earlier grace
1538 * period that some other CPU ended.
1540 rcu_process_gp_end(rsp, rdp);
1542 /* Update RCU state based on any recent quiescent states. */
1543 rcu_check_quiescent_state(rsp, rdp);
1545 /* Does this CPU require a not-yet-started grace period? */
1546 if (cpu_needs_another_gp(rsp, rdp)) {
1547 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1548 rcu_start_gp(rsp, flags); /* releases above lock */
1551 /* If there are callbacks ready, invoke them. */
1552 if (cpu_has_callbacks_ready_to_invoke(rdp))
1553 invoke_rcu_callbacks(rsp, rdp);
1557 * Do RCU core processing for the current CPU.
1559 static void rcu_process_callbacks(struct softirq_action *unused)
1561 trace_rcu_utilization("Start RCU core");
1562 __rcu_process_callbacks(&rcu_sched_state,
1563 &__get_cpu_var(rcu_sched_data));
1564 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1565 rcu_preempt_process_callbacks();
1566 trace_rcu_utilization("End RCU core");
1570 * Schedule RCU callback invocation. If the specified type of RCU
1571 * does not support RCU priority boosting, just do a direct call,
1572 * otherwise wake up the per-CPU kernel kthread. Note that because we
1573 * are running on the current CPU with interrupts disabled, the
1574 * rcu_cpu_kthread_task cannot disappear out from under us.
1576 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1578 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1579 return;
1580 if (likely(!rsp->boost)) {
1581 rcu_do_batch(rsp, rdp);
1582 return;
1584 invoke_rcu_callbacks_kthread();
1587 static void invoke_rcu_core(void)
1589 raise_softirq(RCU_SOFTIRQ);
1592 static void
1593 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1594 struct rcu_state *rsp)
1596 unsigned long flags;
1597 struct rcu_data *rdp;
1599 debug_rcu_head_queue(head);
1600 head->func = func;
1601 head->next = NULL;
1603 smp_mb(); /* Ensure RCU update seen before callback registry. */
1606 * Opportunistically note grace-period endings and beginnings.
1607 * Note that we might see a beginning right after we see an
1608 * end, but never vice versa, since this CPU has to pass through
1609 * a quiescent state betweentimes.
1611 local_irq_save(flags);
1612 rdp = this_cpu_ptr(rsp->rda);
1614 /* Add the callback to our list. */
1615 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1616 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1617 rdp->qlen++;
1619 if (__is_kfree_rcu_offset((unsigned long)func))
1620 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1621 rdp->qlen);
1622 else
1623 trace_rcu_callback(rsp->name, head, rdp->qlen);
1625 /* If interrupts were disabled, don't dive into RCU core. */
1626 if (irqs_disabled_flags(flags)) {
1627 local_irq_restore(flags);
1628 return;
1632 * Force the grace period if too many callbacks or too long waiting.
1633 * Enforce hysteresis, and don't invoke force_quiescent_state()
1634 * if some other CPU has recently done so. Also, don't bother
1635 * invoking force_quiescent_state() if the newly enqueued callback
1636 * is the only one waiting for a grace period to complete.
1638 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1640 /* Are we ignoring a completed grace period? */
1641 rcu_process_gp_end(rsp, rdp);
1642 check_for_new_grace_period(rsp, rdp);
1644 /* Start a new grace period if one not already started. */
1645 if (!rcu_gp_in_progress(rsp)) {
1646 unsigned long nestflag;
1647 struct rcu_node *rnp_root = rcu_get_root(rsp);
1649 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1650 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1651 } else {
1652 /* Give the grace period a kick. */
1653 rdp->blimit = LONG_MAX;
1654 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1655 *rdp->nxttail[RCU_DONE_TAIL] != head)
1656 force_quiescent_state(rsp, 0);
1657 rdp->n_force_qs_snap = rsp->n_force_qs;
1658 rdp->qlen_last_fqs_check = rdp->qlen;
1660 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1661 force_quiescent_state(rsp, 1);
1662 local_irq_restore(flags);
1666 * Queue an RCU-sched callback for invocation after a grace period.
1668 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1670 __call_rcu(head, func, &rcu_sched_state);
1672 EXPORT_SYMBOL_GPL(call_rcu_sched);
1675 * Queue an RCU for invocation after a quicker grace period.
1677 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1679 __call_rcu(head, func, &rcu_bh_state);
1681 EXPORT_SYMBOL_GPL(call_rcu_bh);
1684 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1686 * Control will return to the caller some time after a full rcu-sched
1687 * grace period has elapsed, in other words after all currently executing
1688 * rcu-sched read-side critical sections have completed. These read-side
1689 * critical sections are delimited by rcu_read_lock_sched() and
1690 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1691 * local_irq_disable(), and so on may be used in place of
1692 * rcu_read_lock_sched().
1694 * This means that all preempt_disable code sequences, including NMI and
1695 * hardware-interrupt handlers, in progress on entry will have completed
1696 * before this primitive returns. However, this does not guarantee that
1697 * softirq handlers will have completed, since in some kernels, these
1698 * handlers can run in process context, and can block.
1700 * This primitive provides the guarantees made by the (now removed)
1701 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1702 * guarantees that rcu_read_lock() sections will have completed.
1703 * In "classic RCU", these two guarantees happen to be one and
1704 * the same, but can differ in realtime RCU implementations.
1706 void synchronize_sched(void)
1708 if (rcu_blocking_is_gp())
1709 return;
1710 wait_rcu_gp(call_rcu_sched);
1712 EXPORT_SYMBOL_GPL(synchronize_sched);
1715 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1717 * Control will return to the caller some time after a full rcu_bh grace
1718 * period has elapsed, in other words after all currently executing rcu_bh
1719 * read-side critical sections have completed. RCU read-side critical
1720 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1721 * and may be nested.
1723 void synchronize_rcu_bh(void)
1725 if (rcu_blocking_is_gp())
1726 return;
1727 wait_rcu_gp(call_rcu_bh);
1729 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1732 * Check to see if there is any immediate RCU-related work to be done
1733 * by the current CPU, for the specified type of RCU, returning 1 if so.
1734 * The checks are in order of increasing expense: checks that can be
1735 * carried out against CPU-local state are performed first. However,
1736 * we must check for CPU stalls first, else we might not get a chance.
1738 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1740 struct rcu_node *rnp = rdp->mynode;
1742 rdp->n_rcu_pending++;
1744 /* Check for CPU stalls, if enabled. */
1745 check_cpu_stall(rsp, rdp);
1747 /* Is the RCU core waiting for a quiescent state from this CPU? */
1748 if (rcu_scheduler_fully_active &&
1749 rdp->qs_pending && !rdp->passed_quiesce) {
1752 * If force_quiescent_state() coming soon and this CPU
1753 * needs a quiescent state, and this is either RCU-sched
1754 * or RCU-bh, force a local reschedule.
1756 rdp->n_rp_qs_pending++;
1757 if (!rdp->preemptible &&
1758 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1759 jiffies))
1760 set_need_resched();
1761 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1762 rdp->n_rp_report_qs++;
1763 return 1;
1766 /* Does this CPU have callbacks ready to invoke? */
1767 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1768 rdp->n_rp_cb_ready++;
1769 return 1;
1772 /* Has RCU gone idle with this CPU needing another grace period? */
1773 if (cpu_needs_another_gp(rsp, rdp)) {
1774 rdp->n_rp_cpu_needs_gp++;
1775 return 1;
1778 /* Has another RCU grace period completed? */
1779 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1780 rdp->n_rp_gp_completed++;
1781 return 1;
1784 /* Has a new RCU grace period started? */
1785 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1786 rdp->n_rp_gp_started++;
1787 return 1;
1790 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1791 if (rcu_gp_in_progress(rsp) &&
1792 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1793 rdp->n_rp_need_fqs++;
1794 return 1;
1797 /* nothing to do */
1798 rdp->n_rp_need_nothing++;
1799 return 0;
1803 * Check to see if there is any immediate RCU-related work to be done
1804 * by the current CPU, returning 1 if so. This function is part of the
1805 * RCU implementation; it is -not- an exported member of the RCU API.
1807 static int rcu_pending(int cpu)
1809 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1810 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1811 rcu_preempt_pending(cpu);
1815 * Check to see if any future RCU-related work will need to be done
1816 * by the current CPU, even if none need be done immediately, returning
1817 * 1 if so.
1819 static int rcu_needs_cpu_quick_check(int cpu)
1821 PROVE_RCU(WARN_ON_ONCE(lock_is_held(&rcu_lock_map)));
1822 PROVE_RCU(WARN_ON_ONCE(lock_is_held(&rcu_bh_lock_map)));
1823 PROVE_RCU(WARN_ON_ONCE(lock_is_held(&rcu_sched_lock_map)));
1824 /* RCU callbacks either ready or pending? */
1825 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1826 per_cpu(rcu_bh_data, cpu).nxtlist ||
1827 rcu_preempt_needs_cpu(cpu);
1830 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1831 static atomic_t rcu_barrier_cpu_count;
1832 static DEFINE_MUTEX(rcu_barrier_mutex);
1833 static struct completion rcu_barrier_completion;
1835 static void rcu_barrier_callback(struct rcu_head *notused)
1837 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1838 complete(&rcu_barrier_completion);
1842 * Called with preemption disabled, and from cross-cpu IRQ context.
1844 static void rcu_barrier_func(void *type)
1846 int cpu = smp_processor_id();
1847 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1848 void (*call_rcu_func)(struct rcu_head *head,
1849 void (*func)(struct rcu_head *head));
1851 atomic_inc(&rcu_barrier_cpu_count);
1852 call_rcu_func = type;
1853 call_rcu_func(head, rcu_barrier_callback);
1857 * Orchestrate the specified type of RCU barrier, waiting for all
1858 * RCU callbacks of the specified type to complete.
1860 static void _rcu_barrier(struct rcu_state *rsp,
1861 void (*call_rcu_func)(struct rcu_head *head,
1862 void (*func)(struct rcu_head *head)))
1864 BUG_ON(in_interrupt());
1865 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1866 mutex_lock(&rcu_barrier_mutex);
1867 init_completion(&rcu_barrier_completion);
1869 * Initialize rcu_barrier_cpu_count to 1, then invoke
1870 * rcu_barrier_func() on each CPU, so that each CPU also has
1871 * incremented rcu_barrier_cpu_count. Only then is it safe to
1872 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1873 * might complete its grace period before all of the other CPUs
1874 * did their increment, causing this function to return too
1875 * early. Note that on_each_cpu() disables irqs, which prevents
1876 * any CPUs from coming online or going offline until each online
1877 * CPU has queued its RCU-barrier callback.
1879 atomic_set(&rcu_barrier_cpu_count, 1);
1880 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1881 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1882 complete(&rcu_barrier_completion);
1883 wait_for_completion(&rcu_barrier_completion);
1884 mutex_unlock(&rcu_barrier_mutex);
1888 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1890 void rcu_barrier_bh(void)
1892 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1894 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1897 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1899 void rcu_barrier_sched(void)
1901 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1903 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1906 * Do boot-time initialization of a CPU's per-CPU RCU data.
1908 static void __init
1909 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1911 unsigned long flags;
1912 int i;
1913 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1914 struct rcu_node *rnp = rcu_get_root(rsp);
1916 /* Set up local state, ensuring consistent view of global state. */
1917 raw_spin_lock_irqsave(&rnp->lock, flags);
1918 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1919 rdp->nxtlist = NULL;
1920 for (i = 0; i < RCU_NEXT_SIZE; i++)
1921 rdp->nxttail[i] = &rdp->nxtlist;
1922 rdp->qlen = 0;
1923 #ifdef CONFIG_NO_HZ
1924 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1925 #endif /* #ifdef CONFIG_NO_HZ */
1926 rdp->cpu = cpu;
1927 rdp->rsp = rsp;
1928 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1932 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1933 * offline event can be happening at a given time. Note also that we
1934 * can accept some slop in the rsp->completed access due to the fact
1935 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1937 static void __cpuinit
1938 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1940 unsigned long flags;
1941 unsigned long mask;
1942 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1943 struct rcu_node *rnp = rcu_get_root(rsp);
1945 /* Set up local state, ensuring consistent view of global state. */
1946 raw_spin_lock_irqsave(&rnp->lock, flags);
1947 rdp->beenonline = 1; /* We have now been online. */
1948 rdp->preemptible = preemptible;
1949 rdp->qlen_last_fqs_check = 0;
1950 rdp->n_force_qs_snap = rsp->n_force_qs;
1951 rdp->blimit = blimit;
1952 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1955 * A new grace period might start here. If so, we won't be part
1956 * of it, but that is OK, as we are currently in a quiescent state.
1959 /* Exclude any attempts to start a new GP on large systems. */
1960 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1962 /* Add CPU to rcu_node bitmasks. */
1963 rnp = rdp->mynode;
1964 mask = rdp->grpmask;
1965 do {
1966 /* Exclude any attempts to start a new GP on small systems. */
1967 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1968 rnp->qsmaskinit |= mask;
1969 mask = rnp->grpmask;
1970 if (rnp == rdp->mynode) {
1972 * If there is a grace period in progress, we will
1973 * set up to wait for it next time we run the
1974 * RCU core code.
1976 rdp->gpnum = rnp->completed;
1977 rdp->completed = rnp->completed;
1978 rdp->passed_quiesce = 0;
1979 rdp->qs_pending = 0;
1980 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
1981 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
1983 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1984 rnp = rnp->parent;
1985 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1987 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1990 static void __cpuinit rcu_prepare_cpu(int cpu)
1992 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1993 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1994 rcu_preempt_init_percpu_data(cpu);
1998 * Handle CPU online/offline notification events.
2000 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2001 unsigned long action, void *hcpu)
2003 long cpu = (long)hcpu;
2004 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2005 struct rcu_node *rnp = rdp->mynode;
2007 trace_rcu_utilization("Start CPU hotplug");
2008 switch (action) {
2009 case CPU_UP_PREPARE:
2010 case CPU_UP_PREPARE_FROZEN:
2011 rcu_prepare_cpu(cpu);
2012 rcu_prepare_kthreads(cpu);
2013 break;
2014 case CPU_ONLINE:
2015 case CPU_DOWN_FAILED:
2016 rcu_node_kthread_setaffinity(rnp, -1);
2017 rcu_cpu_kthread_setrt(cpu, 1);
2018 break;
2019 case CPU_DOWN_PREPARE:
2020 rcu_node_kthread_setaffinity(rnp, cpu);
2021 rcu_cpu_kthread_setrt(cpu, 0);
2022 break;
2023 case CPU_DYING:
2024 case CPU_DYING_FROZEN:
2026 * The whole machine is "stopped" except this CPU, so we can
2027 * touch any data without introducing corruption. We send the
2028 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2030 rcu_send_cbs_to_online(&rcu_bh_state);
2031 rcu_send_cbs_to_online(&rcu_sched_state);
2032 rcu_preempt_send_cbs_to_online();
2033 break;
2034 case CPU_DEAD:
2035 case CPU_DEAD_FROZEN:
2036 case CPU_UP_CANCELED:
2037 case CPU_UP_CANCELED_FROZEN:
2038 rcu_offline_cpu(cpu);
2039 break;
2040 default:
2041 break;
2043 trace_rcu_utilization("End CPU hotplug");
2044 return NOTIFY_OK;
2048 * This function is invoked towards the end of the scheduler's initialization
2049 * process. Before this is called, the idle task might contain
2050 * RCU read-side critical sections (during which time, this idle
2051 * task is booting the system). After this function is called, the
2052 * idle tasks are prohibited from containing RCU read-side critical
2053 * sections. This function also enables RCU lockdep checking.
2055 void rcu_scheduler_starting(void)
2057 WARN_ON(num_online_cpus() != 1);
2058 WARN_ON(nr_context_switches() > 0);
2059 rcu_scheduler_active = 1;
2063 * Compute the per-level fanout, either using the exact fanout specified
2064 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2066 #ifdef CONFIG_RCU_FANOUT_EXACT
2067 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2069 int i;
2071 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2072 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2073 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2075 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2076 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2078 int ccur;
2079 int cprv;
2080 int i;
2082 cprv = NR_CPUS;
2083 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2084 ccur = rsp->levelcnt[i];
2085 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2086 cprv = ccur;
2089 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2092 * Helper function for rcu_init() that initializes one rcu_state structure.
2094 static void __init rcu_init_one(struct rcu_state *rsp,
2095 struct rcu_data __percpu *rda)
2097 static char *buf[] = { "rcu_node_level_0",
2098 "rcu_node_level_1",
2099 "rcu_node_level_2",
2100 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2101 int cpustride = 1;
2102 int i;
2103 int j;
2104 struct rcu_node *rnp;
2106 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2108 /* Initialize the level-tracking arrays. */
2110 for (i = 1; i < NUM_RCU_LVLS; i++)
2111 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2112 rcu_init_levelspread(rsp);
2114 /* Initialize the elements themselves, starting from the leaves. */
2116 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2117 cpustride *= rsp->levelspread[i];
2118 rnp = rsp->level[i];
2119 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2120 raw_spin_lock_init(&rnp->lock);
2121 lockdep_set_class_and_name(&rnp->lock,
2122 &rcu_node_class[i], buf[i]);
2123 rnp->gpnum = 0;
2124 rnp->qsmask = 0;
2125 rnp->qsmaskinit = 0;
2126 rnp->grplo = j * cpustride;
2127 rnp->grphi = (j + 1) * cpustride - 1;
2128 if (rnp->grphi >= NR_CPUS)
2129 rnp->grphi = NR_CPUS - 1;
2130 if (i == 0) {
2131 rnp->grpnum = 0;
2132 rnp->grpmask = 0;
2133 rnp->parent = NULL;
2134 } else {
2135 rnp->grpnum = j % rsp->levelspread[i - 1];
2136 rnp->grpmask = 1UL << rnp->grpnum;
2137 rnp->parent = rsp->level[i - 1] +
2138 j / rsp->levelspread[i - 1];
2140 rnp->level = i;
2141 INIT_LIST_HEAD(&rnp->blkd_tasks);
2145 rsp->rda = rda;
2146 rnp = rsp->level[NUM_RCU_LVLS - 1];
2147 for_each_possible_cpu(i) {
2148 while (i > rnp->grphi)
2149 rnp++;
2150 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2151 rcu_boot_init_percpu_data(i, rsp);
2155 void __init rcu_init(void)
2157 int cpu;
2159 rcu_bootup_announce();
2160 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2161 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2162 __rcu_init_preempt();
2163 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2166 * We don't need protection against CPU-hotplug here because
2167 * this is called early in boot, before either interrupts
2168 * or the scheduler are operational.
2170 cpu_notifier(rcu_cpu_notify, 0);
2171 for_each_online_cpu(cpu)
2172 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2173 check_cpu_stall_init();
2176 #include "rcutree_plugin.h"