2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 #define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
48 * Number of guaranteed r1bios in case of extreme VM load:
50 #define NR_RAID1_BIOS 256
53 static void allow_barrier(conf_t
*conf
);
54 static void lower_barrier(conf_t
*conf
);
56 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
58 struct pool_info
*pi
= data
;
59 int size
= offsetof(r1bio_t
, bios
[pi
->raid_disks
]);
61 /* allocate a r1bio with room for raid_disks entries in the bios array */
62 return kzalloc(size
, gfp_flags
);
65 static void r1bio_pool_free(void *r1_bio
, void *data
)
70 #define RESYNC_BLOCK_SIZE (64*1024)
71 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
72 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
73 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
74 #define RESYNC_WINDOW (2048*1024)
76 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
78 struct pool_info
*pi
= data
;
84 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
89 * Allocate bios : 1 for reading, n-1 for writing
91 for (j
= pi
->raid_disks
; j
-- ; ) {
92 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
95 r1_bio
->bios
[j
] = bio
;
98 * Allocate RESYNC_PAGES data pages and attach them to
100 * If this is a user-requested check/repair, allocate
101 * RESYNC_PAGES for each bio.
103 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
108 bio
= r1_bio
->bios
[j
];
109 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
110 page
= alloc_page(gfp_flags
);
114 bio
->bi_io_vec
[i
].bv_page
= page
;
118 /* If not user-requests, copy the page pointers to all bios */
119 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
120 for (i
=0; i
<RESYNC_PAGES
; i
++)
121 for (j
=1; j
<pi
->raid_disks
; j
++)
122 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
123 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
126 r1_bio
->master_bio
= NULL
;
131 for (j
=0 ; j
< pi
->raid_disks
; j
++)
132 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
133 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
136 while ( ++j
< pi
->raid_disks
)
137 bio_put(r1_bio
->bios
[j
]);
138 r1bio_pool_free(r1_bio
, data
);
142 static void r1buf_pool_free(void *__r1_bio
, void *data
)
144 struct pool_info
*pi
= data
;
146 r1bio_t
*r1bio
= __r1_bio
;
148 for (i
= 0; i
< RESYNC_PAGES
; i
++)
149 for (j
= pi
->raid_disks
; j
-- ;) {
151 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
152 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
153 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
155 for (i
=0 ; i
< pi
->raid_disks
; i
++)
156 bio_put(r1bio
->bios
[i
]);
158 r1bio_pool_free(r1bio
, data
);
161 static void put_all_bios(conf_t
*conf
, r1bio_t
*r1_bio
)
165 for (i
= 0; i
< conf
->raid_disks
; i
++) {
166 struct bio
**bio
= r1_bio
->bios
+ i
;
167 if (!BIO_SPECIAL(*bio
))
173 static void free_r1bio(r1bio_t
*r1_bio
)
175 conf_t
*conf
= r1_bio
->mddev
->private;
177 put_all_bios(conf
, r1_bio
);
178 mempool_free(r1_bio
, conf
->r1bio_pool
);
181 static void put_buf(r1bio_t
*r1_bio
)
183 conf_t
*conf
= r1_bio
->mddev
->private;
186 for (i
=0; i
<conf
->raid_disks
; i
++) {
187 struct bio
*bio
= r1_bio
->bios
[i
];
189 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
192 mempool_free(r1_bio
, conf
->r1buf_pool
);
197 static void reschedule_retry(r1bio_t
*r1_bio
)
200 mddev_t
*mddev
= r1_bio
->mddev
;
201 conf_t
*conf
= mddev
->private;
203 spin_lock_irqsave(&conf
->device_lock
, flags
);
204 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
206 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
208 wake_up(&conf
->wait_barrier
);
209 md_wakeup_thread(mddev
->thread
);
213 * raid_end_bio_io() is called when we have finished servicing a mirrored
214 * operation and are ready to return a success/failure code to the buffer
217 static void call_bio_endio(r1bio_t
*r1_bio
)
219 struct bio
*bio
= r1_bio
->master_bio
;
221 conf_t
*conf
= r1_bio
->mddev
->private;
223 if (bio
->bi_phys_segments
) {
225 spin_lock_irqsave(&conf
->device_lock
, flags
);
226 bio
->bi_phys_segments
--;
227 done
= (bio
->bi_phys_segments
== 0);
228 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
232 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
233 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
237 * Wake up any possible resync thread that waits for the device
244 static void raid_end_bio_io(r1bio_t
*r1_bio
)
246 struct bio
*bio
= r1_bio
->master_bio
;
248 /* if nobody has done the final endio yet, do it now */
249 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
250 PRINTK(KERN_DEBUG
"raid1: sync end %s on sectors %llu-%llu\n",
251 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
252 (unsigned long long) bio
->bi_sector
,
253 (unsigned long long) bio
->bi_sector
+
254 (bio
->bi_size
>> 9) - 1);
256 call_bio_endio(r1_bio
);
262 * Update disk head position estimator based on IRQ completion info.
264 static inline void update_head_pos(int disk
, r1bio_t
*r1_bio
)
266 conf_t
*conf
= r1_bio
->mddev
->private;
268 conf
->mirrors
[disk
].head_position
=
269 r1_bio
->sector
+ (r1_bio
->sectors
);
272 static void raid1_end_read_request(struct bio
*bio
, int error
)
274 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
275 r1bio_t
*r1_bio
= bio
->bi_private
;
277 conf_t
*conf
= r1_bio
->mddev
->private;
279 mirror
= r1_bio
->read_disk
;
281 * this branch is our 'one mirror IO has finished' event handler:
283 update_head_pos(mirror
, r1_bio
);
286 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
288 /* If all other devices have failed, we want to return
289 * the error upwards rather than fail the last device.
290 * Here we redefine "uptodate" to mean "Don't want to retry"
293 spin_lock_irqsave(&conf
->device_lock
, flags
);
294 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
295 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
296 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
298 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
302 raid_end_bio_io(r1_bio
);
307 char b
[BDEVNAME_SIZE
];
309 KERN_ERR
"md/raid1:%s: %s: "
310 "rescheduling sector %llu\n",
312 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
314 (unsigned long long)r1_bio
->sector
);
315 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
316 reschedule_retry(r1_bio
);
319 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
322 static void close_write(r1bio_t
*r1_bio
)
324 /* it really is the end of this request */
325 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
326 /* free extra copy of the data pages */
327 int i
= r1_bio
->behind_page_count
;
329 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
330 kfree(r1_bio
->behind_bvecs
);
331 r1_bio
->behind_bvecs
= NULL
;
333 /* clear the bitmap if all writes complete successfully */
334 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
336 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
337 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
338 md_write_end(r1_bio
->mddev
);
341 static void r1_bio_write_done(r1bio_t
*r1_bio
)
343 if (!atomic_dec_and_test(&r1_bio
->remaining
))
346 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
347 reschedule_retry(r1_bio
);
350 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
351 reschedule_retry(r1_bio
);
353 raid_end_bio_io(r1_bio
);
357 static void raid1_end_write_request(struct bio
*bio
, int error
)
359 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
360 r1bio_t
*r1_bio
= bio
->bi_private
;
361 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
362 conf_t
*conf
= r1_bio
->mddev
->private;
363 struct bio
*to_put
= NULL
;
366 for (mirror
= 0; mirror
< conf
->raid_disks
; mirror
++)
367 if (r1_bio
->bios
[mirror
] == bio
)
371 * 'one mirror IO has finished' event handler:
374 set_bit(WriteErrorSeen
,
375 &conf
->mirrors
[mirror
].rdev
->flags
);
376 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
379 * Set R1BIO_Uptodate in our master bio, so that we
380 * will return a good error code for to the higher
381 * levels even if IO on some other mirrored buffer
384 * The 'master' represents the composite IO operation
385 * to user-side. So if something waits for IO, then it
386 * will wait for the 'master' bio.
391 r1_bio
->bios
[mirror
] = NULL
;
393 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
395 /* Maybe we can clear some bad blocks. */
396 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
397 r1_bio
->sector
, r1_bio
->sectors
,
398 &first_bad
, &bad_sectors
)) {
399 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
400 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
404 update_head_pos(mirror
, r1_bio
);
407 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
408 atomic_dec(&r1_bio
->behind_remaining
);
411 * In behind mode, we ACK the master bio once the I/O
412 * has safely reached all non-writemostly
413 * disks. Setting the Returned bit ensures that this
414 * gets done only once -- we don't ever want to return
415 * -EIO here, instead we'll wait
417 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
418 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
419 /* Maybe we can return now */
420 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
421 struct bio
*mbio
= r1_bio
->master_bio
;
422 PRINTK(KERN_DEBUG
"raid1: behind end write sectors %llu-%llu\n",
423 (unsigned long long) mbio
->bi_sector
,
424 (unsigned long long) mbio
->bi_sector
+
425 (mbio
->bi_size
>> 9) - 1);
426 call_bio_endio(r1_bio
);
430 if (r1_bio
->bios
[mirror
] == NULL
)
431 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
435 * Let's see if all mirrored write operations have finished
438 r1_bio_write_done(r1_bio
);
446 * This routine returns the disk from which the requested read should
447 * be done. There is a per-array 'next expected sequential IO' sector
448 * number - if this matches on the next IO then we use the last disk.
449 * There is also a per-disk 'last know head position' sector that is
450 * maintained from IRQ contexts, both the normal and the resync IO
451 * completion handlers update this position correctly. If there is no
452 * perfect sequential match then we pick the disk whose head is closest.
454 * If there are 2 mirrors in the same 2 devices, performance degrades
455 * because position is mirror, not device based.
457 * The rdev for the device selected will have nr_pending incremented.
459 static int read_balance(conf_t
*conf
, r1bio_t
*r1_bio
, int *max_sectors
)
461 const sector_t this_sector
= r1_bio
->sector
;
463 int best_good_sectors
;
473 * Check if we can balance. We can balance on the whole
474 * device if no resync is going on, or below the resync window.
475 * We take the first readable disk when above the resync window.
478 sectors
= r1_bio
->sectors
;
480 best_dist
= MaxSector
;
481 best_good_sectors
= 0;
483 if (conf
->mddev
->recovery_cp
< MaxSector
&&
484 (this_sector
+ sectors
>= conf
->next_resync
)) {
489 start_disk
= conf
->last_used
;
492 for (i
= 0 ; i
< conf
->raid_disks
; i
++) {
497 int disk
= start_disk
+ i
;
498 if (disk
>= conf
->raid_disks
)
499 disk
-= conf
->raid_disks
;
501 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
502 if (r1_bio
->bios
[disk
] == IO_BLOCKED
504 || test_bit(Faulty
, &rdev
->flags
))
506 if (!test_bit(In_sync
, &rdev
->flags
) &&
507 rdev
->recovery_offset
< this_sector
+ sectors
)
509 if (test_bit(WriteMostly
, &rdev
->flags
)) {
510 /* Don't balance among write-mostly, just
511 * use the first as a last resort */
516 /* This is a reasonable device to use. It might
519 if (is_badblock(rdev
, this_sector
, sectors
,
520 &first_bad
, &bad_sectors
)) {
521 if (best_dist
< MaxSector
)
522 /* already have a better device */
524 if (first_bad
<= this_sector
) {
525 /* cannot read here. If this is the 'primary'
526 * device, then we must not read beyond
527 * bad_sectors from another device..
529 bad_sectors
-= (this_sector
- first_bad
);
530 if (choose_first
&& sectors
> bad_sectors
)
531 sectors
= bad_sectors
;
532 if (best_good_sectors
> sectors
)
533 best_good_sectors
= sectors
;
536 sector_t good_sectors
= first_bad
- this_sector
;
537 if (good_sectors
> best_good_sectors
) {
538 best_good_sectors
= good_sectors
;
546 best_good_sectors
= sectors
;
548 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
550 /* Don't change to another disk for sequential reads */
551 || conf
->next_seq_sect
== this_sector
553 /* If device is idle, use it */
554 || atomic_read(&rdev
->nr_pending
) == 0) {
558 if (dist
< best_dist
) {
564 if (best_disk
>= 0) {
565 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
568 atomic_inc(&rdev
->nr_pending
);
569 if (test_bit(Faulty
, &rdev
->flags
)) {
570 /* cannot risk returning a device that failed
571 * before we inc'ed nr_pending
573 rdev_dec_pending(rdev
, conf
->mddev
);
576 sectors
= best_good_sectors
;
577 conf
->next_seq_sect
= this_sector
+ sectors
;
578 conf
->last_used
= best_disk
;
581 *max_sectors
= sectors
;
586 int md_raid1_congested(mddev_t
*mddev
, int bits
)
588 conf_t
*conf
= mddev
->private;
592 for (i
= 0; i
< mddev
->raid_disks
; i
++) {
593 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
594 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
595 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
599 /* Note the '|| 1' - when read_balance prefers
600 * non-congested targets, it can be removed
602 if ((bits
& (1<<BDI_async_congested
)) || 1)
603 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
605 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
611 EXPORT_SYMBOL_GPL(md_raid1_congested
);
613 static int raid1_congested(void *data
, int bits
)
615 mddev_t
*mddev
= data
;
617 return mddev_congested(mddev
, bits
) ||
618 md_raid1_congested(mddev
, bits
);
621 static void flush_pending_writes(conf_t
*conf
)
623 /* Any writes that have been queued but are awaiting
624 * bitmap updates get flushed here.
626 spin_lock_irq(&conf
->device_lock
);
628 if (conf
->pending_bio_list
.head
) {
630 bio
= bio_list_get(&conf
->pending_bio_list
);
631 spin_unlock_irq(&conf
->device_lock
);
632 /* flush any pending bitmap writes to
633 * disk before proceeding w/ I/O */
634 bitmap_unplug(conf
->mddev
->bitmap
);
636 while (bio
) { /* submit pending writes */
637 struct bio
*next
= bio
->bi_next
;
639 generic_make_request(bio
);
643 spin_unlock_irq(&conf
->device_lock
);
647 * Sometimes we need to suspend IO while we do something else,
648 * either some resync/recovery, or reconfigure the array.
649 * To do this we raise a 'barrier'.
650 * The 'barrier' is a counter that can be raised multiple times
651 * to count how many activities are happening which preclude
653 * We can only raise the barrier if there is no pending IO.
654 * i.e. if nr_pending == 0.
655 * We choose only to raise the barrier if no-one is waiting for the
656 * barrier to go down. This means that as soon as an IO request
657 * is ready, no other operations which require a barrier will start
658 * until the IO request has had a chance.
660 * So: regular IO calls 'wait_barrier'. When that returns there
661 * is no backgroup IO happening, It must arrange to call
662 * allow_barrier when it has finished its IO.
663 * backgroup IO calls must call raise_barrier. Once that returns
664 * there is no normal IO happeing. It must arrange to call
665 * lower_barrier when the particular background IO completes.
667 #define RESYNC_DEPTH 32
669 static void raise_barrier(conf_t
*conf
)
671 spin_lock_irq(&conf
->resync_lock
);
673 /* Wait until no block IO is waiting */
674 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
675 conf
->resync_lock
, );
677 /* block any new IO from starting */
680 /* Now wait for all pending IO to complete */
681 wait_event_lock_irq(conf
->wait_barrier
,
682 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
683 conf
->resync_lock
, );
685 spin_unlock_irq(&conf
->resync_lock
);
688 static void lower_barrier(conf_t
*conf
)
691 BUG_ON(conf
->barrier
<= 0);
692 spin_lock_irqsave(&conf
->resync_lock
, flags
);
694 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
695 wake_up(&conf
->wait_barrier
);
698 static void wait_barrier(conf_t
*conf
)
700 spin_lock_irq(&conf
->resync_lock
);
703 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
709 spin_unlock_irq(&conf
->resync_lock
);
712 static void allow_barrier(conf_t
*conf
)
715 spin_lock_irqsave(&conf
->resync_lock
, flags
);
717 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
718 wake_up(&conf
->wait_barrier
);
721 static void freeze_array(conf_t
*conf
)
723 /* stop syncio and normal IO and wait for everything to
725 * We increment barrier and nr_waiting, and then
726 * wait until nr_pending match nr_queued+1
727 * This is called in the context of one normal IO request
728 * that has failed. Thus any sync request that might be pending
729 * will be blocked by nr_pending, and we need to wait for
730 * pending IO requests to complete or be queued for re-try.
731 * Thus the number queued (nr_queued) plus this request (1)
732 * must match the number of pending IOs (nr_pending) before
735 spin_lock_irq(&conf
->resync_lock
);
738 wait_event_lock_irq(conf
->wait_barrier
,
739 conf
->nr_pending
== conf
->nr_queued
+1,
741 flush_pending_writes(conf
));
742 spin_unlock_irq(&conf
->resync_lock
);
744 static void unfreeze_array(conf_t
*conf
)
746 /* reverse the effect of the freeze */
747 spin_lock_irq(&conf
->resync_lock
);
750 wake_up(&conf
->wait_barrier
);
751 spin_unlock_irq(&conf
->resync_lock
);
755 /* duplicate the data pages for behind I/O
757 static void alloc_behind_pages(struct bio
*bio
, r1bio_t
*r1_bio
)
760 struct bio_vec
*bvec
;
761 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
763 if (unlikely(!bvecs
))
766 bio_for_each_segment(bvec
, bio
, i
) {
768 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
769 if (unlikely(!bvecs
[i
].bv_page
))
771 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
772 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
773 kunmap(bvecs
[i
].bv_page
);
774 kunmap(bvec
->bv_page
);
776 r1_bio
->behind_bvecs
= bvecs
;
777 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
778 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
782 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
783 if (bvecs
[i
].bv_page
)
784 put_page(bvecs
[i
].bv_page
);
786 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
789 static int make_request(mddev_t
*mddev
, struct bio
* bio
)
791 conf_t
*conf
= mddev
->private;
792 mirror_info_t
*mirror
;
794 struct bio
*read_bio
;
796 struct bitmap
*bitmap
;
798 const int rw
= bio_data_dir(bio
);
799 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
800 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
801 mdk_rdev_t
*blocked_rdev
;
808 * Register the new request and wait if the reconstruction
809 * thread has put up a bar for new requests.
810 * Continue immediately if no resync is active currently.
813 md_write_start(mddev
, bio
); /* wait on superblock update early */
815 if (bio_data_dir(bio
) == WRITE
&&
816 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
817 bio
->bi_sector
< mddev
->suspend_hi
) {
818 /* As the suspend_* range is controlled by
819 * userspace, we want an interruptible
824 flush_signals(current
);
825 prepare_to_wait(&conf
->wait_barrier
,
826 &w
, TASK_INTERRUPTIBLE
);
827 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
828 bio
->bi_sector
>= mddev
->suspend_hi
)
832 finish_wait(&conf
->wait_barrier
, &w
);
837 bitmap
= mddev
->bitmap
;
840 * make_request() can abort the operation when READA is being
841 * used and no empty request is available.
844 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
846 r1_bio
->master_bio
= bio
;
847 r1_bio
->sectors
= bio
->bi_size
>> 9;
849 r1_bio
->mddev
= mddev
;
850 r1_bio
->sector
= bio
->bi_sector
;
852 /* We might need to issue multiple reads to different
853 * devices if there are bad blocks around, so we keep
854 * track of the number of reads in bio->bi_phys_segments.
855 * If this is 0, there is only one r1_bio and no locking
856 * will be needed when requests complete. If it is
857 * non-zero, then it is the number of not-completed requests.
859 bio
->bi_phys_segments
= 0;
860 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
864 * read balancing logic:
869 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
872 /* couldn't find anywhere to read from */
873 raid_end_bio_io(r1_bio
);
876 mirror
= conf
->mirrors
+ rdisk
;
878 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
880 /* Reading from a write-mostly device must
881 * take care not to over-take any writes
884 wait_event(bitmap
->behind_wait
,
885 atomic_read(&bitmap
->behind_writes
) == 0);
887 r1_bio
->read_disk
= rdisk
;
889 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
890 md_trim_bio(read_bio
, r1_bio
->sector
- bio
->bi_sector
,
893 r1_bio
->bios
[rdisk
] = read_bio
;
895 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
896 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
897 read_bio
->bi_end_io
= raid1_end_read_request
;
898 read_bio
->bi_rw
= READ
| do_sync
;
899 read_bio
->bi_private
= r1_bio
;
901 if (max_sectors
< r1_bio
->sectors
) {
902 /* could not read all from this device, so we will
903 * need another r1_bio.
906 sectors_handled
= (r1_bio
->sector
+ max_sectors
908 r1_bio
->sectors
= max_sectors
;
909 spin_lock_irq(&conf
->device_lock
);
910 if (bio
->bi_phys_segments
== 0)
911 bio
->bi_phys_segments
= 2;
913 bio
->bi_phys_segments
++;
914 spin_unlock_irq(&conf
->device_lock
);
915 /* Cannot call generic_make_request directly
916 * as that will be queued in __make_request
917 * and subsequent mempool_alloc might block waiting
918 * for it. So hand bio over to raid1d.
920 reschedule_retry(r1_bio
);
922 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
924 r1_bio
->master_bio
= bio
;
925 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
927 r1_bio
->mddev
= mddev
;
928 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
931 generic_make_request(read_bio
);
938 /* first select target devices under rcu_lock and
939 * inc refcount on their rdev. Record them by setting
941 * If there are known/acknowledged bad blocks on any device on
942 * which we have seen a write error, we want to avoid writing those
944 * This potentially requires several writes to write around
945 * the bad blocks. Each set of writes gets it's own r1bio
946 * with a set of bios attached.
948 plugged
= mddev_check_plugged(mddev
);
950 disks
= conf
->raid_disks
;
954 max_sectors
= r1_bio
->sectors
;
955 for (i
= 0; i
< disks
; i
++) {
956 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
957 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
958 atomic_inc(&rdev
->nr_pending
);
962 r1_bio
->bios
[i
] = NULL
;
963 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
964 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
968 atomic_inc(&rdev
->nr_pending
);
969 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
974 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
976 &first_bad
, &bad_sectors
);
978 /* mustn't write here until the bad block is
980 set_bit(BlockedBadBlocks
, &rdev
->flags
);
984 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
985 /* Cannot write here at all */
986 bad_sectors
-= (r1_bio
->sector
- first_bad
);
987 if (bad_sectors
< max_sectors
)
988 /* mustn't write more than bad_sectors
989 * to other devices yet
991 max_sectors
= bad_sectors
;
992 rdev_dec_pending(rdev
, mddev
);
993 /* We don't set R1BIO_Degraded as that
994 * only applies if the disk is
995 * missing, so it might be re-added,
996 * and we want to know to recover this
998 * In this case the device is here,
999 * and the fact that this chunk is not
1000 * in-sync is recorded in the bad
1006 int good_sectors
= first_bad
- r1_bio
->sector
;
1007 if (good_sectors
< max_sectors
)
1008 max_sectors
= good_sectors
;
1011 r1_bio
->bios
[i
] = bio
;
1015 if (unlikely(blocked_rdev
)) {
1016 /* Wait for this device to become unblocked */
1019 for (j
= 0; j
< i
; j
++)
1020 if (r1_bio
->bios
[j
])
1021 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1023 allow_barrier(conf
);
1024 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1029 if (max_sectors
< r1_bio
->sectors
) {
1030 /* We are splitting this write into multiple parts, so
1031 * we need to prepare for allocating another r1_bio.
1033 r1_bio
->sectors
= max_sectors
;
1034 spin_lock_irq(&conf
->device_lock
);
1035 if (bio
->bi_phys_segments
== 0)
1036 bio
->bi_phys_segments
= 2;
1038 bio
->bi_phys_segments
++;
1039 spin_unlock_irq(&conf
->device_lock
);
1041 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1043 atomic_set(&r1_bio
->remaining
, 1);
1044 atomic_set(&r1_bio
->behind_remaining
, 0);
1047 for (i
= 0; i
< disks
; i
++) {
1049 if (!r1_bio
->bios
[i
])
1052 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1053 md_trim_bio(mbio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1057 * Not if there are too many, or cannot
1058 * allocate memory, or a reader on WriteMostly
1059 * is waiting for behind writes to flush */
1061 (atomic_read(&bitmap
->behind_writes
)
1062 < mddev
->bitmap_info
.max_write_behind
) &&
1063 !waitqueue_active(&bitmap
->behind_wait
))
1064 alloc_behind_pages(mbio
, r1_bio
);
1066 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1068 test_bit(R1BIO_BehindIO
,
1072 if (r1_bio
->behind_bvecs
) {
1073 struct bio_vec
*bvec
;
1076 /* Yes, I really want the '__' version so that
1077 * we clear any unused pointer in the io_vec, rather
1078 * than leave them unchanged. This is important
1079 * because when we come to free the pages, we won't
1080 * know the original bi_idx, so we just free
1083 __bio_for_each_segment(bvec
, mbio
, j
, 0)
1084 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1085 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1086 atomic_inc(&r1_bio
->behind_remaining
);
1089 r1_bio
->bios
[i
] = mbio
;
1091 mbio
->bi_sector
= (r1_bio
->sector
+
1092 conf
->mirrors
[i
].rdev
->data_offset
);
1093 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1094 mbio
->bi_end_io
= raid1_end_write_request
;
1095 mbio
->bi_rw
= WRITE
| do_flush_fua
| do_sync
;
1096 mbio
->bi_private
= r1_bio
;
1098 atomic_inc(&r1_bio
->remaining
);
1099 spin_lock_irqsave(&conf
->device_lock
, flags
);
1100 bio_list_add(&conf
->pending_bio_list
, mbio
);
1101 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1103 r1_bio_write_done(r1_bio
);
1105 /* In case raid1d snuck in to freeze_array */
1106 wake_up(&conf
->wait_barrier
);
1108 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1109 /* We need another r1_bio. It has already been counted
1110 * in bio->bi_phys_segments
1112 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1113 r1_bio
->master_bio
= bio
;
1114 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1116 r1_bio
->mddev
= mddev
;
1117 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1121 if (do_sync
|| !bitmap
|| !plugged
)
1122 md_wakeup_thread(mddev
->thread
);
1127 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
1129 conf_t
*conf
= mddev
->private;
1132 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1133 conf
->raid_disks
- mddev
->degraded
);
1135 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1136 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1137 seq_printf(seq
, "%s",
1138 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1141 seq_printf(seq
, "]");
1145 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1147 char b
[BDEVNAME_SIZE
];
1148 conf_t
*conf
= mddev
->private;
1151 * If it is not operational, then we have already marked it as dead
1152 * else if it is the last working disks, ignore the error, let the
1153 * next level up know.
1154 * else mark the drive as failed
1156 if (test_bit(In_sync
, &rdev
->flags
)
1157 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1159 * Don't fail the drive, act as though we were just a
1160 * normal single drive.
1161 * However don't try a recovery from this drive as
1162 * it is very likely to fail.
1164 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1167 set_bit(Blocked
, &rdev
->flags
);
1168 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1169 unsigned long flags
;
1170 spin_lock_irqsave(&conf
->device_lock
, flags
);
1172 set_bit(Faulty
, &rdev
->flags
);
1173 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1175 * if recovery is running, make sure it aborts.
1177 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1179 set_bit(Faulty
, &rdev
->flags
);
1180 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1182 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1183 "md/raid1:%s: Operation continuing on %d devices.\n",
1184 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1185 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1188 static void print_conf(conf_t
*conf
)
1192 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1194 printk(KERN_DEBUG
"(!conf)\n");
1197 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1201 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1202 char b
[BDEVNAME_SIZE
];
1203 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1205 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1206 i
, !test_bit(In_sync
, &rdev
->flags
),
1207 !test_bit(Faulty
, &rdev
->flags
),
1208 bdevname(rdev
->bdev
,b
));
1213 static void close_sync(conf_t
*conf
)
1216 allow_barrier(conf
);
1218 mempool_destroy(conf
->r1buf_pool
);
1219 conf
->r1buf_pool
= NULL
;
1222 static int raid1_spare_active(mddev_t
*mddev
)
1225 conf_t
*conf
= mddev
->private;
1227 unsigned long flags
;
1230 * Find all failed disks within the RAID1 configuration
1231 * and mark them readable.
1232 * Called under mddev lock, so rcu protection not needed.
1234 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1235 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1237 && !test_bit(Faulty
, &rdev
->flags
)
1238 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1240 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1243 spin_lock_irqsave(&conf
->device_lock
, flags
);
1244 mddev
->degraded
-= count
;
1245 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1252 static int raid1_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1254 conf_t
*conf
= mddev
->private;
1259 int last
= mddev
->raid_disks
- 1;
1261 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1264 if (rdev
->raid_disk
>= 0)
1265 first
= last
= rdev
->raid_disk
;
1267 for (mirror
= first
; mirror
<= last
; mirror
++)
1268 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1270 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1271 rdev
->data_offset
<< 9);
1272 /* as we don't honour merge_bvec_fn, we must
1273 * never risk violating it, so limit
1274 * ->max_segments to one lying with a single
1275 * page, as a one page request is never in
1278 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1279 blk_queue_max_segments(mddev
->queue
, 1);
1280 blk_queue_segment_boundary(mddev
->queue
,
1281 PAGE_CACHE_SIZE
- 1);
1284 p
->head_position
= 0;
1285 rdev
->raid_disk
= mirror
;
1287 /* As all devices are equivalent, we don't need a full recovery
1288 * if this was recently any drive of the array
1290 if (rdev
->saved_raid_disk
< 0)
1292 rcu_assign_pointer(p
->rdev
, rdev
);
1295 md_integrity_add_rdev(rdev
, mddev
);
1300 static int raid1_remove_disk(mddev_t
*mddev
, int number
)
1302 conf_t
*conf
= mddev
->private;
1305 mirror_info_t
*p
= conf
->mirrors
+ number
;
1310 if (test_bit(In_sync
, &rdev
->flags
) ||
1311 atomic_read(&rdev
->nr_pending
)) {
1315 /* Only remove non-faulty devices if recovery
1318 if (!test_bit(Faulty
, &rdev
->flags
) &&
1319 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1320 mddev
->degraded
< conf
->raid_disks
) {
1326 if (atomic_read(&rdev
->nr_pending
)) {
1327 /* lost the race, try later */
1332 err
= md_integrity_register(mddev
);
1341 static void end_sync_read(struct bio
*bio
, int error
)
1343 r1bio_t
*r1_bio
= bio
->bi_private
;
1346 for (i
=r1_bio
->mddev
->raid_disks
; i
--; )
1347 if (r1_bio
->bios
[i
] == bio
)
1350 update_head_pos(i
, r1_bio
);
1352 * we have read a block, now it needs to be re-written,
1353 * or re-read if the read failed.
1354 * We don't do much here, just schedule handling by raid1d
1356 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1357 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1359 if (atomic_dec_and_test(&r1_bio
->remaining
))
1360 reschedule_retry(r1_bio
);
1363 static void end_sync_write(struct bio
*bio
, int error
)
1365 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1366 r1bio_t
*r1_bio
= bio
->bi_private
;
1367 mddev_t
*mddev
= r1_bio
->mddev
;
1368 conf_t
*conf
= mddev
->private;
1374 for (i
= 0; i
< conf
->raid_disks
; i
++)
1375 if (r1_bio
->bios
[i
] == bio
) {
1380 sector_t sync_blocks
= 0;
1381 sector_t s
= r1_bio
->sector
;
1382 long sectors_to_go
= r1_bio
->sectors
;
1383 /* make sure these bits doesn't get cleared. */
1385 bitmap_end_sync(mddev
->bitmap
, s
,
1388 sectors_to_go
-= sync_blocks
;
1389 } while (sectors_to_go
> 0);
1390 set_bit(WriteErrorSeen
,
1391 &conf
->mirrors
[mirror
].rdev
->flags
);
1392 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1393 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1396 &first_bad
, &bad_sectors
) &&
1397 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1400 &first_bad
, &bad_sectors
)
1402 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1404 update_head_pos(mirror
, r1_bio
);
1406 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1407 int s
= r1_bio
->sectors
;
1408 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1409 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1410 reschedule_retry(r1_bio
);
1413 md_done_sync(mddev
, s
, uptodate
);
1418 static int r1_sync_page_io(mdk_rdev_t
*rdev
, sector_t sector
,
1419 int sectors
, struct page
*page
, int rw
)
1421 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1425 set_bit(WriteErrorSeen
, &rdev
->flags
);
1426 /* need to record an error - either for the block or the device */
1427 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1428 md_error(rdev
->mddev
, rdev
);
1432 static int fix_sync_read_error(r1bio_t
*r1_bio
)
1434 /* Try some synchronous reads of other devices to get
1435 * good data, much like with normal read errors. Only
1436 * read into the pages we already have so we don't
1437 * need to re-issue the read request.
1438 * We don't need to freeze the array, because being in an
1439 * active sync request, there is no normal IO, and
1440 * no overlapping syncs.
1441 * We don't need to check is_badblock() again as we
1442 * made sure that anything with a bad block in range
1443 * will have bi_end_io clear.
1445 mddev_t
*mddev
= r1_bio
->mddev
;
1446 conf_t
*conf
= mddev
->private;
1447 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1448 sector_t sect
= r1_bio
->sector
;
1449 int sectors
= r1_bio
->sectors
;
1454 int d
= r1_bio
->read_disk
;
1459 if (s
> (PAGE_SIZE
>>9))
1462 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1463 /* No rcu protection needed here devices
1464 * can only be removed when no resync is
1465 * active, and resync is currently active
1467 rdev
= conf
->mirrors
[d
].rdev
;
1468 if (sync_page_io(rdev
, sect
, s
<<9,
1469 bio
->bi_io_vec
[idx
].bv_page
,
1476 if (d
== conf
->raid_disks
)
1478 } while (!success
&& d
!= r1_bio
->read_disk
);
1481 char b
[BDEVNAME_SIZE
];
1483 /* Cannot read from anywhere, this block is lost.
1484 * Record a bad block on each device. If that doesn't
1485 * work just disable and interrupt the recovery.
1486 * Don't fail devices as that won't really help.
1488 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1489 " for block %llu\n",
1491 bdevname(bio
->bi_bdev
, b
),
1492 (unsigned long long)r1_bio
->sector
);
1493 for (d
= 0; d
< conf
->raid_disks
; d
++) {
1494 rdev
= conf
->mirrors
[d
].rdev
;
1495 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1497 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1501 mddev
->recovery_disabled
= 1;
1502 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1503 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1515 /* write it back and re-read */
1516 while (d
!= r1_bio
->read_disk
) {
1518 d
= conf
->raid_disks
;
1520 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1522 rdev
= conf
->mirrors
[d
].rdev
;
1523 if (r1_sync_page_io(rdev
, sect
, s
,
1524 bio
->bi_io_vec
[idx
].bv_page
,
1526 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1527 rdev_dec_pending(rdev
, mddev
);
1531 while (d
!= r1_bio
->read_disk
) {
1533 d
= conf
->raid_disks
;
1535 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1537 rdev
= conf
->mirrors
[d
].rdev
;
1538 if (r1_sync_page_io(rdev
, sect
, s
,
1539 bio
->bi_io_vec
[idx
].bv_page
,
1541 atomic_add(s
, &rdev
->corrected_errors
);
1547 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1548 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1552 static int process_checks(r1bio_t
*r1_bio
)
1554 /* We have read all readable devices. If we haven't
1555 * got the block, then there is no hope left.
1556 * If we have, then we want to do a comparison
1557 * and skip the write if everything is the same.
1558 * If any blocks failed to read, then we need to
1559 * attempt an over-write
1561 mddev_t
*mddev
= r1_bio
->mddev
;
1562 conf_t
*conf
= mddev
->private;
1566 for (primary
= 0; primary
< conf
->raid_disks
; primary
++)
1567 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1568 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1569 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1570 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1573 r1_bio
->read_disk
= primary
;
1574 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1576 int vcnt
= r1_bio
->sectors
>> (PAGE_SHIFT
- 9);
1577 struct bio
*pbio
= r1_bio
->bios
[primary
];
1578 struct bio
*sbio
= r1_bio
->bios
[i
];
1581 if (r1_bio
->bios
[i
]->bi_end_io
!= end_sync_read
)
1584 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1585 for (j
= vcnt
; j
-- ; ) {
1587 p
= pbio
->bi_io_vec
[j
].bv_page
;
1588 s
= sbio
->bi_io_vec
[j
].bv_page
;
1589 if (memcmp(page_address(p
),
1597 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1598 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1599 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1600 /* No need to write to this device. */
1601 sbio
->bi_end_io
= NULL
;
1602 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1605 /* fixup the bio for reuse */
1606 sbio
->bi_vcnt
= vcnt
;
1607 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1609 sbio
->bi_phys_segments
= 0;
1610 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1611 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1612 sbio
->bi_next
= NULL
;
1613 sbio
->bi_sector
= r1_bio
->sector
+
1614 conf
->mirrors
[i
].rdev
->data_offset
;
1615 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1616 size
= sbio
->bi_size
;
1617 for (j
= 0; j
< vcnt
; j
++) {
1619 bi
= &sbio
->bi_io_vec
[j
];
1621 if (size
> PAGE_SIZE
)
1622 bi
->bv_len
= PAGE_SIZE
;
1626 memcpy(page_address(bi
->bv_page
),
1627 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1634 static void sync_request_write(mddev_t
*mddev
, r1bio_t
*r1_bio
)
1636 conf_t
*conf
= mddev
->private;
1638 int disks
= conf
->raid_disks
;
1639 struct bio
*bio
, *wbio
;
1641 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1643 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1644 /* ouch - failed to read all of that. */
1645 if (!fix_sync_read_error(r1_bio
))
1648 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1649 if (process_checks(r1_bio
) < 0)
1654 atomic_set(&r1_bio
->remaining
, 1);
1655 for (i
= 0; i
< disks
; i
++) {
1656 wbio
= r1_bio
->bios
[i
];
1657 if (wbio
->bi_end_io
== NULL
||
1658 (wbio
->bi_end_io
== end_sync_read
&&
1659 (i
== r1_bio
->read_disk
||
1660 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1663 wbio
->bi_rw
= WRITE
;
1664 wbio
->bi_end_io
= end_sync_write
;
1665 atomic_inc(&r1_bio
->remaining
);
1666 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1668 generic_make_request(wbio
);
1671 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1672 /* if we're here, all write(s) have completed, so clean up */
1673 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1679 * This is a kernel thread which:
1681 * 1. Retries failed read operations on working mirrors.
1682 * 2. Updates the raid superblock when problems encounter.
1683 * 3. Performs writes following reads for array synchronising.
1686 static void fix_read_error(conf_t
*conf
, int read_disk
,
1687 sector_t sect
, int sectors
)
1689 mddev_t
*mddev
= conf
->mddev
;
1697 if (s
> (PAGE_SIZE
>>9))
1701 /* Note: no rcu protection needed here
1702 * as this is synchronous in the raid1d thread
1703 * which is the thread that might remove
1704 * a device. If raid1d ever becomes multi-threaded....
1709 rdev
= conf
->mirrors
[d
].rdev
;
1711 test_bit(In_sync
, &rdev
->flags
) &&
1712 is_badblock(rdev
, sect
, s
,
1713 &first_bad
, &bad_sectors
) == 0 &&
1714 sync_page_io(rdev
, sect
, s
<<9,
1715 conf
->tmppage
, READ
, false))
1719 if (d
== conf
->raid_disks
)
1722 } while (!success
&& d
!= read_disk
);
1725 /* Cannot read from anywhere - mark it bad */
1726 mdk_rdev_t
*rdev
= conf
->mirrors
[read_disk
].rdev
;
1727 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1728 md_error(mddev
, rdev
);
1731 /* write it back and re-read */
1733 while (d
!= read_disk
) {
1735 d
= conf
->raid_disks
;
1737 rdev
= conf
->mirrors
[d
].rdev
;
1739 test_bit(In_sync
, &rdev
->flags
))
1740 r1_sync_page_io(rdev
, sect
, s
,
1741 conf
->tmppage
, WRITE
);
1744 while (d
!= read_disk
) {
1745 char b
[BDEVNAME_SIZE
];
1747 d
= conf
->raid_disks
;
1749 rdev
= conf
->mirrors
[d
].rdev
;
1751 test_bit(In_sync
, &rdev
->flags
)) {
1752 if (r1_sync_page_io(rdev
, sect
, s
,
1753 conf
->tmppage
, READ
)) {
1754 atomic_add(s
, &rdev
->corrected_errors
);
1756 "md/raid1:%s: read error corrected "
1757 "(%d sectors at %llu on %s)\n",
1759 (unsigned long long)(sect
+
1761 bdevname(rdev
->bdev
, b
));
1770 static void bi_complete(struct bio
*bio
, int error
)
1772 complete((struct completion
*)bio
->bi_private
);
1775 static int submit_bio_wait(int rw
, struct bio
*bio
)
1777 struct completion event
;
1780 init_completion(&event
);
1781 bio
->bi_private
= &event
;
1782 bio
->bi_end_io
= bi_complete
;
1783 submit_bio(rw
, bio
);
1784 wait_for_completion(&event
);
1786 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1789 static int narrow_write_error(r1bio_t
*r1_bio
, int i
)
1791 mddev_t
*mddev
= r1_bio
->mddev
;
1792 conf_t
*conf
= mddev
->private;
1793 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1795 struct bio_vec
*vec
;
1797 /* bio has the data to be written to device 'i' where
1798 * we just recently had a write error.
1799 * We repeatedly clone the bio and trim down to one block,
1800 * then try the write. Where the write fails we record
1802 * It is conceivable that the bio doesn't exactly align with
1803 * blocks. We must handle this somehow.
1805 * We currently own a reference on the rdev.
1811 int sect_to_write
= r1_bio
->sectors
;
1814 if (rdev
->badblocks
.shift
< 0)
1817 block_sectors
= 1 << rdev
->badblocks
.shift
;
1818 sector
= r1_bio
->sector
;
1819 sectors
= ((sector
+ block_sectors
)
1820 & ~(sector_t
)(block_sectors
- 1))
1823 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
1824 vcnt
= r1_bio
->behind_page_count
;
1825 vec
= r1_bio
->behind_bvecs
;
1827 while (vec
[idx
].bv_page
== NULL
)
1830 vcnt
= r1_bio
->master_bio
->bi_vcnt
;
1831 vec
= r1_bio
->master_bio
->bi_io_vec
;
1832 idx
= r1_bio
->master_bio
->bi_idx
;
1834 while (sect_to_write
) {
1836 if (sectors
> sect_to_write
)
1837 sectors
= sect_to_write
;
1838 /* Write at 'sector' for 'sectors'*/
1840 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
1841 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
1842 wbio
->bi_sector
= r1_bio
->sector
;
1843 wbio
->bi_rw
= WRITE
;
1844 wbio
->bi_vcnt
= vcnt
;
1845 wbio
->bi_size
= r1_bio
->sectors
<< 9;
1848 md_trim_bio(wbio
, sector
- r1_bio
->sector
, sectors
);
1849 wbio
->bi_sector
+= rdev
->data_offset
;
1850 wbio
->bi_bdev
= rdev
->bdev
;
1851 if (submit_bio_wait(WRITE
, wbio
) == 0)
1853 ok
= rdev_set_badblocks(rdev
, sector
,
1858 sect_to_write
-= sectors
;
1860 sectors
= block_sectors
;
1865 static void handle_sync_write_finished(conf_t
*conf
, r1bio_t
*r1_bio
)
1868 int s
= r1_bio
->sectors
;
1869 for (m
= 0; m
< conf
->raid_disks
; m
++) {
1870 mdk_rdev_t
*rdev
= conf
->mirrors
[m
].rdev
;
1871 struct bio
*bio
= r1_bio
->bios
[m
];
1872 if (bio
->bi_end_io
== NULL
)
1874 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
1875 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
1876 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
);
1878 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
1879 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
1880 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
1881 md_error(conf
->mddev
, rdev
);
1885 md_done_sync(conf
->mddev
, s
, 1);
1888 static void handle_write_finished(conf_t
*conf
, r1bio_t
*r1_bio
)
1891 for (m
= 0; m
< conf
->raid_disks
; m
++)
1892 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
1893 mdk_rdev_t
*rdev
= conf
->mirrors
[m
].rdev
;
1894 rdev_clear_badblocks(rdev
,
1897 rdev_dec_pending(rdev
, conf
->mddev
);
1898 } else if (r1_bio
->bios
[m
] != NULL
) {
1899 /* This drive got a write error. We need to
1900 * narrow down and record precise write
1903 if (!narrow_write_error(r1_bio
, m
)) {
1904 md_error(conf
->mddev
,
1905 conf
->mirrors
[m
].rdev
);
1906 /* an I/O failed, we can't clear the bitmap */
1907 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1909 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
1912 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1913 close_write(r1_bio
);
1914 raid_end_bio_io(r1_bio
);
1917 static void handle_read_error(conf_t
*conf
, r1bio_t
*r1_bio
)
1921 mddev_t
*mddev
= conf
->mddev
;
1923 char b
[BDEVNAME_SIZE
];
1926 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
1927 /* we got a read error. Maybe the drive is bad. Maybe just
1928 * the block and we can fix it.
1929 * We freeze all other IO, and try reading the block from
1930 * other devices. When we find one, we re-write
1931 * and check it that fixes the read error.
1932 * This is all done synchronously while the array is
1935 if (mddev
->ro
== 0) {
1937 fix_read_error(conf
, r1_bio
->read_disk
,
1938 r1_bio
->sector
, r1_bio
->sectors
);
1939 unfreeze_array(conf
);
1941 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1943 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1944 bdevname(bio
->bi_bdev
, b
);
1946 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
1948 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
1949 " read error for block %llu\n",
1950 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
1951 raid_end_bio_io(r1_bio
);
1953 const unsigned long do_sync
1954 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
1956 r1_bio
->bios
[r1_bio
->read_disk
] =
1957 mddev
->ro
? IO_BLOCKED
: NULL
;
1960 r1_bio
->read_disk
= disk
;
1961 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
1962 md_trim_bio(bio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1963 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
1964 rdev
= conf
->mirrors
[disk
].rdev
;
1965 printk_ratelimited(KERN_ERR
1966 "md/raid1:%s: redirecting sector %llu"
1967 " to other mirror: %s\n",
1969 (unsigned long long)r1_bio
->sector
,
1970 bdevname(rdev
->bdev
, b
));
1971 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
1972 bio
->bi_bdev
= rdev
->bdev
;
1973 bio
->bi_end_io
= raid1_end_read_request
;
1974 bio
->bi_rw
= READ
| do_sync
;
1975 bio
->bi_private
= r1_bio
;
1976 if (max_sectors
< r1_bio
->sectors
) {
1977 /* Drat - have to split this up more */
1978 struct bio
*mbio
= r1_bio
->master_bio
;
1979 int sectors_handled
= (r1_bio
->sector
+ max_sectors
1981 r1_bio
->sectors
= max_sectors
;
1982 spin_lock_irq(&conf
->device_lock
);
1983 if (mbio
->bi_phys_segments
== 0)
1984 mbio
->bi_phys_segments
= 2;
1986 mbio
->bi_phys_segments
++;
1987 spin_unlock_irq(&conf
->device_lock
);
1988 generic_make_request(bio
);
1991 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1993 r1_bio
->master_bio
= mbio
;
1994 r1_bio
->sectors
= (mbio
->bi_size
>> 9)
1997 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
1998 r1_bio
->mddev
= mddev
;
1999 r1_bio
->sector
= mbio
->bi_sector
+ sectors_handled
;
2003 generic_make_request(bio
);
2007 static void raid1d(mddev_t
*mddev
)
2010 unsigned long flags
;
2011 conf_t
*conf
= mddev
->private;
2012 struct list_head
*head
= &conf
->retry_list
;
2013 struct blk_plug plug
;
2015 md_check_recovery(mddev
);
2017 blk_start_plug(&plug
);
2020 if (atomic_read(&mddev
->plug_cnt
) == 0)
2021 flush_pending_writes(conf
);
2023 spin_lock_irqsave(&conf
->device_lock
, flags
);
2024 if (list_empty(head
)) {
2025 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2028 r1_bio
= list_entry(head
->prev
, r1bio_t
, retry_list
);
2029 list_del(head
->prev
);
2031 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2033 mddev
= r1_bio
->mddev
;
2034 conf
= mddev
->private;
2035 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2036 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2037 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2038 handle_sync_write_finished(conf
, r1_bio
);
2040 sync_request_write(mddev
, r1_bio
);
2041 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2042 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2043 handle_write_finished(conf
, r1_bio
);
2044 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2045 handle_read_error(conf
, r1_bio
);
2047 /* just a partial read to be scheduled from separate
2050 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2053 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2054 md_check_recovery(mddev
);
2056 blk_finish_plug(&plug
);
2060 static int init_resync(conf_t
*conf
)
2064 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2065 BUG_ON(conf
->r1buf_pool
);
2066 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2068 if (!conf
->r1buf_pool
)
2070 conf
->next_resync
= 0;
2075 * perform a "sync" on one "block"
2077 * We need to make sure that no normal I/O request - particularly write
2078 * requests - conflict with active sync requests.
2080 * This is achieved by tracking pending requests and a 'barrier' concept
2081 * that can be installed to exclude normal IO requests.
2084 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2086 conf_t
*conf
= mddev
->private;
2089 sector_t max_sector
, nr_sectors
;
2093 int write_targets
= 0, read_targets
= 0;
2094 sector_t sync_blocks
;
2095 int still_degraded
= 0;
2096 int good_sectors
= RESYNC_SECTORS
;
2097 int min_bad
= 0; /* number of sectors that are bad in all devices */
2099 if (!conf
->r1buf_pool
)
2100 if (init_resync(conf
))
2103 max_sector
= mddev
->dev_sectors
;
2104 if (sector_nr
>= max_sector
) {
2105 /* If we aborted, we need to abort the
2106 * sync on the 'current' bitmap chunk (there will
2107 * only be one in raid1 resync.
2108 * We can find the current addess in mddev->curr_resync
2110 if (mddev
->curr_resync
< max_sector
) /* aborted */
2111 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2113 else /* completed sync */
2116 bitmap_close_sync(mddev
->bitmap
);
2121 if (mddev
->bitmap
== NULL
&&
2122 mddev
->recovery_cp
== MaxSector
&&
2123 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2124 conf
->fullsync
== 0) {
2126 return max_sector
- sector_nr
;
2128 /* before building a request, check if we can skip these blocks..
2129 * This call the bitmap_start_sync doesn't actually record anything
2131 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2132 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2133 /* We can skip this block, and probably several more */
2138 * If there is non-resync activity waiting for a turn,
2139 * and resync is going fast enough,
2140 * then let it though before starting on this new sync request.
2142 if (!go_faster
&& conf
->nr_waiting
)
2143 msleep_interruptible(1000);
2145 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2146 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2147 raise_barrier(conf
);
2149 conf
->next_resync
= sector_nr
;
2153 * If we get a correctably read error during resync or recovery,
2154 * we might want to read from a different device. So we
2155 * flag all drives that could conceivably be read from for READ,
2156 * and any others (which will be non-In_sync devices) for WRITE.
2157 * If a read fails, we try reading from something else for which READ
2161 r1_bio
->mddev
= mddev
;
2162 r1_bio
->sector
= sector_nr
;
2164 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2166 for (i
=0; i
< conf
->raid_disks
; i
++) {
2168 bio
= r1_bio
->bios
[i
];
2170 /* take from bio_init */
2171 bio
->bi_next
= NULL
;
2172 bio
->bi_flags
&= ~(BIO_POOL_MASK
-1);
2173 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2174 bio
->bi_comp_cpu
= -1;
2178 bio
->bi_phys_segments
= 0;
2180 bio
->bi_end_io
= NULL
;
2181 bio
->bi_private
= NULL
;
2183 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2185 test_bit(Faulty
, &rdev
->flags
)) {
2187 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2189 bio
->bi_end_io
= end_sync_write
;
2192 /* may need to read from here */
2193 sector_t first_bad
= MaxSector
;
2196 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2197 &first_bad
, &bad_sectors
)) {
2198 if (first_bad
> sector_nr
)
2199 good_sectors
= first_bad
- sector_nr
;
2201 bad_sectors
-= (sector_nr
- first_bad
);
2203 min_bad
> bad_sectors
)
2204 min_bad
= bad_sectors
;
2207 if (sector_nr
< first_bad
) {
2208 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2216 bio
->bi_end_io
= end_sync_read
;
2220 if (bio
->bi_end_io
) {
2221 atomic_inc(&rdev
->nr_pending
);
2222 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
2223 bio
->bi_bdev
= rdev
->bdev
;
2224 bio
->bi_private
= r1_bio
;
2230 r1_bio
->read_disk
= disk
;
2232 if (read_targets
== 0 && min_bad
> 0) {
2233 /* These sectors are bad on all InSync devices, so we
2234 * need to mark them bad on all write targets
2237 for (i
= 0 ; i
< conf
->raid_disks
; i
++)
2238 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2240 rcu_dereference(conf
->mirrors
[i
].rdev
);
2241 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2245 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2250 /* Cannot record the badblocks, so need to
2252 * If there are multiple read targets, could just
2253 * fail the really bad ones ???
2255 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2256 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2262 if (min_bad
> 0 && min_bad
< good_sectors
) {
2263 /* only resync enough to reach the next bad->good
2265 good_sectors
= min_bad
;
2268 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2269 /* extra read targets are also write targets */
2270 write_targets
+= read_targets
-1;
2272 if (write_targets
== 0 || read_targets
== 0) {
2273 /* There is nowhere to write, so all non-sync
2274 * drives must be failed - so we are finished
2276 sector_t rv
= max_sector
- sector_nr
;
2282 if (max_sector
> mddev
->resync_max
)
2283 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2284 if (max_sector
> sector_nr
+ good_sectors
)
2285 max_sector
= sector_nr
+ good_sectors
;
2290 int len
= PAGE_SIZE
;
2291 if (sector_nr
+ (len
>>9) > max_sector
)
2292 len
= (max_sector
- sector_nr
) << 9;
2295 if (sync_blocks
== 0) {
2296 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2297 &sync_blocks
, still_degraded
) &&
2299 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2301 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2302 if ((len
>> 9) > sync_blocks
)
2303 len
= sync_blocks
<<9;
2306 for (i
=0 ; i
< conf
->raid_disks
; i
++) {
2307 bio
= r1_bio
->bios
[i
];
2308 if (bio
->bi_end_io
) {
2309 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2310 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2312 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2315 bio
= r1_bio
->bios
[i
];
2316 if (bio
->bi_end_io
==NULL
)
2318 /* remove last page from this bio */
2320 bio
->bi_size
-= len
;
2321 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2327 nr_sectors
+= len
>>9;
2328 sector_nr
+= len
>>9;
2329 sync_blocks
-= (len
>>9);
2330 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2332 r1_bio
->sectors
= nr_sectors
;
2334 /* For a user-requested sync, we read all readable devices and do a
2337 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2338 atomic_set(&r1_bio
->remaining
, read_targets
);
2339 for (i
=0; i
<conf
->raid_disks
; i
++) {
2340 bio
= r1_bio
->bios
[i
];
2341 if (bio
->bi_end_io
== end_sync_read
) {
2342 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2343 generic_make_request(bio
);
2347 atomic_set(&r1_bio
->remaining
, 1);
2348 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2349 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2350 generic_make_request(bio
);
2356 static sector_t
raid1_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
2361 return mddev
->dev_sectors
;
2364 static conf_t
*setup_conf(mddev_t
*mddev
)
2368 mirror_info_t
*disk
;
2372 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2376 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2381 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2385 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2386 if (!conf
->poolinfo
)
2388 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
;
2389 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2392 if (!conf
->r1bio_pool
)
2395 conf
->poolinfo
->mddev
= mddev
;
2397 spin_lock_init(&conf
->device_lock
);
2398 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2399 int disk_idx
= rdev
->raid_disk
;
2400 if (disk_idx
>= mddev
->raid_disks
2403 disk
= conf
->mirrors
+ disk_idx
;
2407 disk
->head_position
= 0;
2409 conf
->raid_disks
= mddev
->raid_disks
;
2410 conf
->mddev
= mddev
;
2411 INIT_LIST_HEAD(&conf
->retry_list
);
2413 spin_lock_init(&conf
->resync_lock
);
2414 init_waitqueue_head(&conf
->wait_barrier
);
2416 bio_list_init(&conf
->pending_bio_list
);
2418 conf
->last_used
= -1;
2419 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2421 disk
= conf
->mirrors
+ i
;
2424 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2425 disk
->head_position
= 0;
2428 } else if (conf
->last_used
< 0)
2430 * The first working device is used as a
2431 * starting point to read balancing.
2433 conf
->last_used
= i
;
2437 if (conf
->last_used
< 0) {
2438 printk(KERN_ERR
"md/raid1:%s: no operational mirrors\n",
2443 conf
->thread
= md_register_thread(raid1d
, mddev
, NULL
);
2444 if (!conf
->thread
) {
2446 "md/raid1:%s: couldn't allocate thread\n",
2455 if (conf
->r1bio_pool
)
2456 mempool_destroy(conf
->r1bio_pool
);
2457 kfree(conf
->mirrors
);
2458 safe_put_page(conf
->tmppage
);
2459 kfree(conf
->poolinfo
);
2462 return ERR_PTR(err
);
2465 static int run(mddev_t
*mddev
)
2471 if (mddev
->level
!= 1) {
2472 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2473 mdname(mddev
), mddev
->level
);
2476 if (mddev
->reshape_position
!= MaxSector
) {
2477 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2482 * copy the already verified devices into our private RAID1
2483 * bookkeeping area. [whatever we allocate in run(),
2484 * should be freed in stop()]
2486 if (mddev
->private == NULL
)
2487 conf
= setup_conf(mddev
);
2489 conf
= mddev
->private;
2492 return PTR_ERR(conf
);
2494 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2495 if (!mddev
->gendisk
)
2497 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2498 rdev
->data_offset
<< 9);
2499 /* as we don't honour merge_bvec_fn, we must never risk
2500 * violating it, so limit ->max_segments to 1 lying within
2501 * a single page, as a one page request is never in violation.
2503 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2504 blk_queue_max_segments(mddev
->queue
, 1);
2505 blk_queue_segment_boundary(mddev
->queue
,
2506 PAGE_CACHE_SIZE
- 1);
2510 mddev
->degraded
= 0;
2511 for (i
=0; i
< conf
->raid_disks
; i
++)
2512 if (conf
->mirrors
[i
].rdev
== NULL
||
2513 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2514 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2517 if (conf
->raid_disks
- mddev
->degraded
== 1)
2518 mddev
->recovery_cp
= MaxSector
;
2520 if (mddev
->recovery_cp
!= MaxSector
)
2521 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2522 " -- starting background reconstruction\n",
2525 "md/raid1:%s: active with %d out of %d mirrors\n",
2526 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2530 * Ok, everything is just fine now
2532 mddev
->thread
= conf
->thread
;
2533 conf
->thread
= NULL
;
2534 mddev
->private = conf
;
2536 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2539 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2540 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2542 return md_integrity_register(mddev
);
2545 static int stop(mddev_t
*mddev
)
2547 conf_t
*conf
= mddev
->private;
2548 struct bitmap
*bitmap
= mddev
->bitmap
;
2550 /* wait for behind writes to complete */
2551 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2552 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2554 /* need to kick something here to make sure I/O goes? */
2555 wait_event(bitmap
->behind_wait
,
2556 atomic_read(&bitmap
->behind_writes
) == 0);
2559 raise_barrier(conf
);
2560 lower_barrier(conf
);
2562 md_unregister_thread(mddev
->thread
);
2563 mddev
->thread
= NULL
;
2564 if (conf
->r1bio_pool
)
2565 mempool_destroy(conf
->r1bio_pool
);
2566 kfree(conf
->mirrors
);
2567 kfree(conf
->poolinfo
);
2569 mddev
->private = NULL
;
2573 static int raid1_resize(mddev_t
*mddev
, sector_t sectors
)
2575 /* no resync is happening, and there is enough space
2576 * on all devices, so we can resize.
2577 * We need to make sure resync covers any new space.
2578 * If the array is shrinking we should possibly wait until
2579 * any io in the removed space completes, but it hardly seems
2582 md_set_array_sectors(mddev
, raid1_size(mddev
, sectors
, 0));
2583 if (mddev
->array_sectors
> raid1_size(mddev
, sectors
, 0))
2585 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2586 revalidate_disk(mddev
->gendisk
);
2587 if (sectors
> mddev
->dev_sectors
&&
2588 mddev
->recovery_cp
> mddev
->dev_sectors
) {
2589 mddev
->recovery_cp
= mddev
->dev_sectors
;
2590 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2592 mddev
->dev_sectors
= sectors
;
2593 mddev
->resync_max_sectors
= sectors
;
2597 static int raid1_reshape(mddev_t
*mddev
)
2600 * 1/ resize the r1bio_pool
2601 * 2/ resize conf->mirrors
2603 * We allocate a new r1bio_pool if we can.
2604 * Then raise a device barrier and wait until all IO stops.
2605 * Then resize conf->mirrors and swap in the new r1bio pool.
2607 * At the same time, we "pack" the devices so that all the missing
2608 * devices have the higher raid_disk numbers.
2610 mempool_t
*newpool
, *oldpool
;
2611 struct pool_info
*newpoolinfo
;
2612 mirror_info_t
*newmirrors
;
2613 conf_t
*conf
= mddev
->private;
2614 int cnt
, raid_disks
;
2615 unsigned long flags
;
2618 /* Cannot change chunk_size, layout, or level */
2619 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2620 mddev
->layout
!= mddev
->new_layout
||
2621 mddev
->level
!= mddev
->new_level
) {
2622 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2623 mddev
->new_layout
= mddev
->layout
;
2624 mddev
->new_level
= mddev
->level
;
2628 err
= md_allow_write(mddev
);
2632 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2634 if (raid_disks
< conf
->raid_disks
) {
2636 for (d
= 0; d
< conf
->raid_disks
; d
++)
2637 if (conf
->mirrors
[d
].rdev
)
2639 if (cnt
> raid_disks
)
2643 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2646 newpoolinfo
->mddev
= mddev
;
2647 newpoolinfo
->raid_disks
= raid_disks
;
2649 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2650 r1bio_pool_free
, newpoolinfo
);
2655 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
, GFP_KERNEL
);
2658 mempool_destroy(newpool
);
2662 raise_barrier(conf
);
2664 /* ok, everything is stopped */
2665 oldpool
= conf
->r1bio_pool
;
2666 conf
->r1bio_pool
= newpool
;
2668 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2669 mdk_rdev_t
*rdev
= conf
->mirrors
[d
].rdev
;
2670 if (rdev
&& rdev
->raid_disk
!= d2
) {
2671 sysfs_unlink_rdev(mddev
, rdev
);
2672 rdev
->raid_disk
= d2
;
2673 sysfs_unlink_rdev(mddev
, rdev
);
2674 if (sysfs_link_rdev(mddev
, rdev
))
2676 "md/raid1:%s: cannot register rd%d\n",
2677 mdname(mddev
), rdev
->raid_disk
);
2680 newmirrors
[d2
++].rdev
= rdev
;
2682 kfree(conf
->mirrors
);
2683 conf
->mirrors
= newmirrors
;
2684 kfree(conf
->poolinfo
);
2685 conf
->poolinfo
= newpoolinfo
;
2687 spin_lock_irqsave(&conf
->device_lock
, flags
);
2688 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2689 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2690 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2691 mddev
->delta_disks
= 0;
2693 conf
->last_used
= 0; /* just make sure it is in-range */
2694 lower_barrier(conf
);
2696 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2697 md_wakeup_thread(mddev
->thread
);
2699 mempool_destroy(oldpool
);
2703 static void raid1_quiesce(mddev_t
*mddev
, int state
)
2705 conf_t
*conf
= mddev
->private;
2708 case 2: /* wake for suspend */
2709 wake_up(&conf
->wait_barrier
);
2712 raise_barrier(conf
);
2715 lower_barrier(conf
);
2720 static void *raid1_takeover(mddev_t
*mddev
)
2722 /* raid1 can take over:
2723 * raid5 with 2 devices, any layout or chunk size
2725 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
2727 mddev
->new_level
= 1;
2728 mddev
->new_layout
= 0;
2729 mddev
->new_chunk_sectors
= 0;
2730 conf
= setup_conf(mddev
);
2735 return ERR_PTR(-EINVAL
);
2738 static struct mdk_personality raid1_personality
=
2742 .owner
= THIS_MODULE
,
2743 .make_request
= make_request
,
2747 .error_handler
= error
,
2748 .hot_add_disk
= raid1_add_disk
,
2749 .hot_remove_disk
= raid1_remove_disk
,
2750 .spare_active
= raid1_spare_active
,
2751 .sync_request
= sync_request
,
2752 .resize
= raid1_resize
,
2754 .check_reshape
= raid1_reshape
,
2755 .quiesce
= raid1_quiesce
,
2756 .takeover
= raid1_takeover
,
2759 static int __init
raid_init(void)
2761 return register_md_personality(&raid1_personality
);
2764 static void raid_exit(void)
2766 unregister_md_personality(&raid1_personality
);
2769 module_init(raid_init
);
2770 module_exit(raid_exit
);
2771 MODULE_LICENSE("GPL");
2772 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2773 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2774 MODULE_ALIAS("md-raid1");
2775 MODULE_ALIAS("md-level-1");