4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
55 #include <asm/unistd.h>
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76 * Some helpers for converting nanosecond timing to jiffy resolution
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82 * These are the 'tuning knobs' of the scheduler:
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
107 * This part scales the interactivity limit depending on niceness.
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
173 static unsigned int task_timeslice(task_t
*p
)
175 if (p
->static_prio
< NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE
*4, p
->static_prio
);
178 return SCALE_PRIO(DEF_TIMESLICE
, p
->static_prio
);
180 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
184 * These are the runqueue data structures:
187 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
189 typedef struct runqueue runqueue_t
;
192 unsigned int nr_active
;
193 unsigned long bitmap
[BITMAP_SIZE
];
194 struct list_head queue
[MAX_PRIO
];
198 * This is the main, per-CPU runqueue data structure.
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
211 unsigned long nr_running
;
213 unsigned long cpu_load
[3];
215 unsigned long long nr_switches
;
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
223 unsigned long nr_uninterruptible
;
225 unsigned long expired_timestamp
;
226 unsigned long long timestamp_last_tick
;
228 struct mm_struct
*prev_mm
;
229 prio_array_t
*active
, *expired
, arrays
[2];
230 int best_expired_prio
;
234 struct sched_domain
*sd
;
236 /* For active balancing */
240 task_t
*migration_thread
;
241 struct list_head migration_queue
;
245 #ifdef CONFIG_SCHEDSTATS
247 struct sched_info rq_sched_info
;
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty
;
251 unsigned long yld_act_empty
;
252 unsigned long yld_both_empty
;
253 unsigned long yld_cnt
;
255 /* schedule() stats */
256 unsigned long sched_switch
;
257 unsigned long sched_cnt
;
258 unsigned long sched_goidle
;
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt
;
262 unsigned long ttwu_local
;
266 static DEFINE_PER_CPU(struct runqueue
, runqueues
);
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
270 * See detach_destroy_domains: synchronize_sched for details.
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
275 #define for_each_domain(cpu, domain) \
276 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
278 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279 #define this_rq() (&__get_cpu_var(runqueues))
280 #define task_rq(p) cpu_rq(task_cpu(p))
281 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
283 #ifndef prepare_arch_switch
284 # define prepare_arch_switch(next) do { } while (0)
286 #ifndef finish_arch_switch
287 # define finish_arch_switch(prev) do { } while (0)
290 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
291 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
293 return rq
->curr
== p
;
296 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
300 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
302 #ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq
->lock
.owner
= current
;
306 spin_unlock_irq(&rq
->lock
);
309 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
310 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
315 return rq
->curr
== p
;
319 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
329 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq
->lock
);
332 spin_unlock(&rq
->lock
);
336 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
347 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
351 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
358 static inline runqueue_t
*task_rq_lock(task_t
*p
, unsigned long *flags
)
364 local_irq_save(*flags
);
366 spin_lock(&rq
->lock
);
367 if (unlikely(rq
!= task_rq(p
))) {
368 spin_unlock_irqrestore(&rq
->lock
, *flags
);
369 goto repeat_lock_task
;
374 static inline void task_rq_unlock(runqueue_t
*rq
, unsigned long *flags
)
377 spin_unlock_irqrestore(&rq
->lock
, *flags
);
380 #ifdef CONFIG_SCHEDSTATS
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
385 #define SCHEDSTAT_VERSION 12
387 static int show_schedstat(struct seq_file
*seq
, void *v
)
391 seq_printf(seq
, "version %d\n", SCHEDSTAT_VERSION
);
392 seq_printf(seq
, "timestamp %lu\n", jiffies
);
393 for_each_online_cpu(cpu
) {
394 runqueue_t
*rq
= cpu_rq(cpu
);
396 struct sched_domain
*sd
;
400 /* runqueue-specific stats */
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu
, rq
->yld_both_empty
,
404 rq
->yld_act_empty
, rq
->yld_exp_empty
, rq
->yld_cnt
,
405 rq
->sched_switch
, rq
->sched_cnt
, rq
->sched_goidle
,
406 rq
->ttwu_cnt
, rq
->ttwu_local
,
407 rq
->rq_sched_info
.cpu_time
,
408 rq
->rq_sched_info
.run_delay
, rq
->rq_sched_info
.pcnt
);
410 seq_printf(seq
, "\n");
413 /* domain-specific stats */
415 for_each_domain(cpu
, sd
) {
416 enum idle_type itype
;
417 char mask_str
[NR_CPUS
];
419 cpumask_scnprintf(mask_str
, NR_CPUS
, sd
->span
);
420 seq_printf(seq
, "domain%d %s", dcnt
++, mask_str
);
421 for (itype
= SCHED_IDLE
; itype
< MAX_IDLE_TYPES
;
423 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu",
425 sd
->lb_balanced
[itype
],
426 sd
->lb_failed
[itype
],
427 sd
->lb_imbalance
[itype
],
428 sd
->lb_gained
[itype
],
429 sd
->lb_hot_gained
[itype
],
430 sd
->lb_nobusyq
[itype
],
431 sd
->lb_nobusyg
[itype
]);
433 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
434 sd
->alb_cnt
, sd
->alb_failed
, sd
->alb_pushed
,
435 sd
->sbe_cnt
, sd
->sbe_balanced
, sd
->sbe_pushed
,
436 sd
->sbf_cnt
, sd
->sbf_balanced
, sd
->sbf_pushed
,
437 sd
->ttwu_wake_remote
, sd
->ttwu_move_affine
, sd
->ttwu_move_balance
);
445 static int schedstat_open(struct inode
*inode
, struct file
*file
)
447 unsigned int size
= PAGE_SIZE
* (1 + num_online_cpus() / 32);
448 char *buf
= kmalloc(size
, GFP_KERNEL
);
454 res
= single_open(file
, show_schedstat
, NULL
);
456 m
= file
->private_data
;
464 struct file_operations proc_schedstat_operations
= {
465 .open
= schedstat_open
,
468 .release
= single_release
,
471 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473 #else /* !CONFIG_SCHEDSTATS */
474 # define schedstat_inc(rq, field) do { } while (0)
475 # define schedstat_add(rq, field, amt) do { } while (0)
479 * rq_lock - lock a given runqueue and disable interrupts.
481 static inline runqueue_t
*this_rq_lock(void)
488 spin_lock(&rq
->lock
);
493 #ifdef CONFIG_SCHEDSTATS
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
509 static inline void sched_info_dequeued(task_t
*t
)
511 t
->sched_info
.last_queued
= 0;
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
519 static void sched_info_arrive(task_t
*t
)
521 unsigned long now
= jiffies
, diff
= 0;
522 struct runqueue
*rq
= task_rq(t
);
524 if (t
->sched_info
.last_queued
)
525 diff
= now
- t
->sched_info
.last_queued
;
526 sched_info_dequeued(t
);
527 t
->sched_info
.run_delay
+= diff
;
528 t
->sched_info
.last_arrival
= now
;
529 t
->sched_info
.pcnt
++;
534 rq
->rq_sched_info
.run_delay
+= diff
;
535 rq
->rq_sched_info
.pcnt
++;
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
553 static inline void sched_info_queued(task_t
*t
)
555 if (!t
->sched_info
.last_queued
)
556 t
->sched_info
.last_queued
= jiffies
;
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
563 static inline void sched_info_depart(task_t
*t
)
565 struct runqueue
*rq
= task_rq(t
);
566 unsigned long diff
= jiffies
- t
->sched_info
.last_arrival
;
568 t
->sched_info
.cpu_time
+= diff
;
571 rq
->rq_sched_info
.cpu_time
+= diff
;
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
579 static inline void sched_info_switch(task_t
*prev
, task_t
*next
)
581 struct runqueue
*rq
= task_rq(prev
);
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
588 if (prev
!= rq
->idle
)
589 sched_info_depart(prev
);
591 if (next
!= rq
->idle
)
592 sched_info_arrive(next
);
595 #define sched_info_queued(t) do { } while (0)
596 #define sched_info_switch(t, next) do { } while (0)
597 #endif /* CONFIG_SCHEDSTATS */
600 * Adding/removing a task to/from a priority array:
602 static void dequeue_task(struct task_struct
*p
, prio_array_t
*array
)
605 list_del(&p
->run_list
);
606 if (list_empty(array
->queue
+ p
->prio
))
607 __clear_bit(p
->prio
, array
->bitmap
);
610 static void enqueue_task(struct task_struct
*p
, prio_array_t
*array
)
612 sched_info_queued(p
);
613 list_add_tail(&p
->run_list
, array
->queue
+ p
->prio
);
614 __set_bit(p
->prio
, array
->bitmap
);
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
623 static void requeue_task(struct task_struct
*p
, prio_array_t
*array
)
625 list_move_tail(&p
->run_list
, array
->queue
+ p
->prio
);
628 static inline void enqueue_task_head(struct task_struct
*p
, prio_array_t
*array
)
630 list_add(&p
->run_list
, array
->queue
+ p
->prio
);
631 __set_bit(p
->prio
, array
->bitmap
);
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
643 * We use 25% of the full 0...39 priority range so that:
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
648 * Both properties are important to certain workloads.
650 static int effective_prio(task_t
*p
)
657 bonus
= CURRENT_BONUS(p
) - MAX_BONUS
/ 2;
659 prio
= p
->static_prio
- bonus
;
660 if (prio
< MAX_RT_PRIO
)
662 if (prio
> MAX_PRIO
-1)
668 * __activate_task - move a task to the runqueue.
670 static void __activate_task(task_t
*p
, runqueue_t
*rq
)
672 prio_array_t
*target
= rq
->active
;
675 target
= rq
->expired
;
676 enqueue_task(p
, target
);
681 * __activate_idle_task - move idle task to the _front_ of runqueue.
683 static inline void __activate_idle_task(task_t
*p
, runqueue_t
*rq
)
685 enqueue_task_head(p
, rq
->active
);
689 static int recalc_task_prio(task_t
*p
, unsigned long long now
)
691 /* Caller must always ensure 'now >= p->timestamp' */
692 unsigned long long __sleep_time
= now
- p
->timestamp
;
693 unsigned long sleep_time
;
698 if (__sleep_time
> NS_MAX_SLEEP_AVG
)
699 sleep_time
= NS_MAX_SLEEP_AVG
;
701 sleep_time
= (unsigned long)__sleep_time
;
704 if (likely(sleep_time
> 0)) {
706 * User tasks that sleep a long time are categorised as
707 * idle. They will only have their sleep_avg increased to a
708 * level that makes them just interactive priority to stay
709 * active yet prevent them suddenly becoming cpu hogs and
710 * starving other processes.
712 if (p
->mm
&& sleep_time
> INTERACTIVE_SLEEP(p
)) {
713 unsigned long ceiling
;
715 ceiling
= JIFFIES_TO_NS(MAX_SLEEP_AVG
-
717 if (p
->sleep_avg
< ceiling
)
718 p
->sleep_avg
= ceiling
;
721 * Tasks waking from uninterruptible sleep are
722 * limited in their sleep_avg rise as they
723 * are likely to be waiting on I/O
725 if (p
->sleep_type
== SLEEP_NONINTERACTIVE
&& p
->mm
) {
726 if (p
->sleep_avg
>= INTERACTIVE_SLEEP(p
))
728 else if (p
->sleep_avg
+ sleep_time
>=
729 INTERACTIVE_SLEEP(p
)) {
730 p
->sleep_avg
= INTERACTIVE_SLEEP(p
);
736 * This code gives a bonus to interactive tasks.
738 * The boost works by updating the 'average sleep time'
739 * value here, based on ->timestamp. The more time a
740 * task spends sleeping, the higher the average gets -
741 * and the higher the priority boost gets as well.
743 p
->sleep_avg
+= sleep_time
;
745 if (p
->sleep_avg
> NS_MAX_SLEEP_AVG
)
746 p
->sleep_avg
= NS_MAX_SLEEP_AVG
;
750 return effective_prio(p
);
754 * activate_task - move a task to the runqueue and do priority recalculation
756 * Update all the scheduling statistics stuff. (sleep average
757 * calculation, priority modifiers, etc.)
759 static void activate_task(task_t
*p
, runqueue_t
*rq
, int local
)
761 unsigned long long now
;
766 /* Compensate for drifting sched_clock */
767 runqueue_t
*this_rq
= this_rq();
768 now
= (now
- this_rq
->timestamp_last_tick
)
769 + rq
->timestamp_last_tick
;
774 p
->prio
= recalc_task_prio(p
, now
);
777 * This checks to make sure it's not an uninterruptible task
778 * that is now waking up.
780 if (p
->sleep_type
== SLEEP_NORMAL
) {
782 * Tasks which were woken up by interrupts (ie. hw events)
783 * are most likely of interactive nature. So we give them
784 * the credit of extending their sleep time to the period
785 * of time they spend on the runqueue, waiting for execution
786 * on a CPU, first time around:
789 p
->sleep_type
= SLEEP_INTERRUPTED
;
792 * Normal first-time wakeups get a credit too for
793 * on-runqueue time, but it will be weighted down:
795 p
->sleep_type
= SLEEP_INTERACTIVE
;
800 __activate_task(p
, rq
);
804 * deactivate_task - remove a task from the runqueue.
806 static void deactivate_task(struct task_struct
*p
, runqueue_t
*rq
)
809 dequeue_task(p
, p
->array
);
814 * resched_task - mark a task 'to be rescheduled now'.
816 * On UP this means the setting of the need_resched flag, on SMP it
817 * might also involve a cross-CPU call to trigger the scheduler on
821 static void resched_task(task_t
*p
)
825 assert_spin_locked(&task_rq(p
)->lock
);
827 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
830 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
833 if (cpu
== smp_processor_id())
836 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
838 if (!test_tsk_thread_flag(p
, TIF_POLLING_NRFLAG
))
839 smp_send_reschedule(cpu
);
842 static inline void resched_task(task_t
*p
)
844 assert_spin_locked(&task_rq(p
)->lock
);
845 set_tsk_need_resched(p
);
850 * task_curr - is this task currently executing on a CPU?
851 * @p: the task in question.
853 inline int task_curr(const task_t
*p
)
855 return cpu_curr(task_cpu(p
)) == p
;
860 struct list_head list
;
865 struct completion done
;
869 * The task's runqueue lock must be held.
870 * Returns true if you have to wait for migration thread.
872 static int migrate_task(task_t
*p
, int dest_cpu
, migration_req_t
*req
)
874 runqueue_t
*rq
= task_rq(p
);
877 * If the task is not on a runqueue (and not running), then
878 * it is sufficient to simply update the task's cpu field.
880 if (!p
->array
&& !task_running(rq
, p
)) {
881 set_task_cpu(p
, dest_cpu
);
885 init_completion(&req
->done
);
887 req
->dest_cpu
= dest_cpu
;
888 list_add(&req
->list
, &rq
->migration_queue
);
893 * wait_task_inactive - wait for a thread to unschedule.
895 * The caller must ensure that the task *will* unschedule sometime soon,
896 * else this function might spin for a *long* time. This function can't
897 * be called with interrupts off, or it may introduce deadlock with
898 * smp_call_function() if an IPI is sent by the same process we are
899 * waiting to become inactive.
901 void wait_task_inactive(task_t
*p
)
908 rq
= task_rq_lock(p
, &flags
);
909 /* Must be off runqueue entirely, not preempted. */
910 if (unlikely(p
->array
|| task_running(rq
, p
))) {
911 /* If it's preempted, we yield. It could be a while. */
912 preempted
= !task_running(rq
, p
);
913 task_rq_unlock(rq
, &flags
);
919 task_rq_unlock(rq
, &flags
);
923 * kick_process - kick a running thread to enter/exit the kernel
924 * @p: the to-be-kicked thread
926 * Cause a process which is running on another CPU to enter
927 * kernel-mode, without any delay. (to get signals handled.)
929 * NOTE: this function doesnt have to take the runqueue lock,
930 * because all it wants to ensure is that the remote task enters
931 * the kernel. If the IPI races and the task has been migrated
932 * to another CPU then no harm is done and the purpose has been
935 void kick_process(task_t
*p
)
941 if ((cpu
!= smp_processor_id()) && task_curr(p
))
942 smp_send_reschedule(cpu
);
947 * Return a low guess at the load of a migration-source cpu.
949 * We want to under-estimate the load of migration sources, to
950 * balance conservatively.
952 static inline unsigned long source_load(int cpu
, int type
)
954 runqueue_t
*rq
= cpu_rq(cpu
);
955 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
959 return min(rq
->cpu_load
[type
-1], load_now
);
963 * Return a high guess at the load of a migration-target cpu
965 static inline unsigned long target_load(int cpu
, int type
)
967 runqueue_t
*rq
= cpu_rq(cpu
);
968 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
972 return max(rq
->cpu_load
[type
-1], load_now
);
976 * find_idlest_group finds and returns the least busy CPU group within the
979 static struct sched_group
*
980 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
982 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
983 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
984 int load_idx
= sd
->forkexec_idx
;
985 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
988 unsigned long load
, avg_load
;
992 /* Skip over this group if it has no CPUs allowed */
993 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
996 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
998 /* Tally up the load of all CPUs in the group */
1001 for_each_cpu_mask(i
, group
->cpumask
) {
1002 /* Bias balancing toward cpus of our domain */
1004 load
= source_load(i
, load_idx
);
1006 load
= target_load(i
, load_idx
);
1011 /* Adjust by relative CPU power of the group */
1012 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1015 this_load
= avg_load
;
1017 } else if (avg_load
< min_load
) {
1018 min_load
= avg_load
;
1022 group
= group
->next
;
1023 } while (group
!= sd
->groups
);
1025 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1031 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1034 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1037 unsigned long load
, min_load
= ULONG_MAX
;
1041 /* Traverse only the allowed CPUs */
1042 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1044 for_each_cpu_mask(i
, tmp
) {
1045 load
= source_load(i
, 0);
1047 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1057 * sched_balance_self: balance the current task (running on cpu) in domains
1058 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1061 * Balance, ie. select the least loaded group.
1063 * Returns the target CPU number, or the same CPU if no balancing is needed.
1065 * preempt must be disabled.
1067 static int sched_balance_self(int cpu
, int flag
)
1069 struct task_struct
*t
= current
;
1070 struct sched_domain
*tmp
, *sd
= NULL
;
1072 for_each_domain(cpu
, tmp
)
1073 if (tmp
->flags
& flag
)
1078 struct sched_group
*group
;
1083 group
= find_idlest_group(sd
, t
, cpu
);
1087 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1088 if (new_cpu
== -1 || new_cpu
== cpu
)
1091 /* Now try balancing at a lower domain level */
1095 weight
= cpus_weight(span
);
1096 for_each_domain(cpu
, tmp
) {
1097 if (weight
<= cpus_weight(tmp
->span
))
1099 if (tmp
->flags
& flag
)
1102 /* while loop will break here if sd == NULL */
1108 #endif /* CONFIG_SMP */
1111 * wake_idle() will wake a task on an idle cpu if task->cpu is
1112 * not idle and an idle cpu is available. The span of cpus to
1113 * search starts with cpus closest then further out as needed,
1114 * so we always favor a closer, idle cpu.
1116 * Returns the CPU we should wake onto.
1118 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1119 static int wake_idle(int cpu
, task_t
*p
)
1122 struct sched_domain
*sd
;
1128 for_each_domain(cpu
, sd
) {
1129 if (sd
->flags
& SD_WAKE_IDLE
) {
1130 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1131 for_each_cpu_mask(i
, tmp
) {
1142 static inline int wake_idle(int cpu
, task_t
*p
)
1149 * try_to_wake_up - wake up a thread
1150 * @p: the to-be-woken-up thread
1151 * @state: the mask of task states that can be woken
1152 * @sync: do a synchronous wakeup?
1154 * Put it on the run-queue if it's not already there. The "current"
1155 * thread is always on the run-queue (except when the actual
1156 * re-schedule is in progress), and as such you're allowed to do
1157 * the simpler "current->state = TASK_RUNNING" to mark yourself
1158 * runnable without the overhead of this.
1160 * returns failure only if the task is already active.
1162 static int try_to_wake_up(task_t
*p
, unsigned int state
, int sync
)
1164 int cpu
, this_cpu
, success
= 0;
1165 unsigned long flags
;
1169 unsigned long load
, this_load
;
1170 struct sched_domain
*sd
, *this_sd
= NULL
;
1174 rq
= task_rq_lock(p
, &flags
);
1175 old_state
= p
->state
;
1176 if (!(old_state
& state
))
1183 this_cpu
= smp_processor_id();
1186 if (unlikely(task_running(rq
, p
)))
1191 schedstat_inc(rq
, ttwu_cnt
);
1192 if (cpu
== this_cpu
) {
1193 schedstat_inc(rq
, ttwu_local
);
1197 for_each_domain(this_cpu
, sd
) {
1198 if (cpu_isset(cpu
, sd
->span
)) {
1199 schedstat_inc(sd
, ttwu_wake_remote
);
1205 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1209 * Check for affine wakeup and passive balancing possibilities.
1212 int idx
= this_sd
->wake_idx
;
1213 unsigned int imbalance
;
1215 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1217 load
= source_load(cpu
, idx
);
1218 this_load
= target_load(this_cpu
, idx
);
1220 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1222 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1223 unsigned long tl
= this_load
;
1225 * If sync wakeup then subtract the (maximum possible)
1226 * effect of the currently running task from the load
1227 * of the current CPU:
1230 tl
-= SCHED_LOAD_SCALE
;
1233 tl
+ target_load(cpu
, idx
) <= SCHED_LOAD_SCALE
) ||
1234 100*(tl
+ SCHED_LOAD_SCALE
) <= imbalance
*load
) {
1236 * This domain has SD_WAKE_AFFINE and
1237 * p is cache cold in this domain, and
1238 * there is no bad imbalance.
1240 schedstat_inc(this_sd
, ttwu_move_affine
);
1246 * Start passive balancing when half the imbalance_pct
1249 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1250 if (imbalance
*this_load
<= 100*load
) {
1251 schedstat_inc(this_sd
, ttwu_move_balance
);
1257 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1259 new_cpu
= wake_idle(new_cpu
, p
);
1260 if (new_cpu
!= cpu
) {
1261 set_task_cpu(p
, new_cpu
);
1262 task_rq_unlock(rq
, &flags
);
1263 /* might preempt at this point */
1264 rq
= task_rq_lock(p
, &flags
);
1265 old_state
= p
->state
;
1266 if (!(old_state
& state
))
1271 this_cpu
= smp_processor_id();
1276 #endif /* CONFIG_SMP */
1277 if (old_state
== TASK_UNINTERRUPTIBLE
) {
1278 rq
->nr_uninterruptible
--;
1280 * Tasks on involuntary sleep don't earn
1281 * sleep_avg beyond just interactive state.
1283 p
->sleep_type
= SLEEP_NONINTERACTIVE
;
1287 * Tasks that have marked their sleep as noninteractive get
1288 * woken up with their sleep average not weighted in an
1291 if (old_state
& TASK_NONINTERACTIVE
)
1292 p
->sleep_type
= SLEEP_NONINTERACTIVE
;
1295 activate_task(p
, rq
, cpu
== this_cpu
);
1297 * Sync wakeups (i.e. those types of wakeups where the waker
1298 * has indicated that it will leave the CPU in short order)
1299 * don't trigger a preemption, if the woken up task will run on
1300 * this cpu. (in this case the 'I will reschedule' promise of
1301 * the waker guarantees that the freshly woken up task is going
1302 * to be considered on this CPU.)
1304 if (!sync
|| cpu
!= this_cpu
) {
1305 if (TASK_PREEMPTS_CURR(p
, rq
))
1306 resched_task(rq
->curr
);
1311 p
->state
= TASK_RUNNING
;
1313 task_rq_unlock(rq
, &flags
);
1318 int fastcall
wake_up_process(task_t
*p
)
1320 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1321 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1324 EXPORT_SYMBOL(wake_up_process
);
1326 int fastcall
wake_up_state(task_t
*p
, unsigned int state
)
1328 return try_to_wake_up(p
, state
, 0);
1332 * Perform scheduler related setup for a newly forked process p.
1333 * p is forked by current.
1335 void fastcall
sched_fork(task_t
*p
, int clone_flags
)
1337 int cpu
= get_cpu();
1340 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1342 set_task_cpu(p
, cpu
);
1345 * We mark the process as running here, but have not actually
1346 * inserted it onto the runqueue yet. This guarantees that
1347 * nobody will actually run it, and a signal or other external
1348 * event cannot wake it up and insert it on the runqueue either.
1350 p
->state
= TASK_RUNNING
;
1351 INIT_LIST_HEAD(&p
->run_list
);
1353 #ifdef CONFIG_SCHEDSTATS
1354 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1356 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1359 #ifdef CONFIG_PREEMPT
1360 /* Want to start with kernel preemption disabled. */
1361 task_thread_info(p
)->preempt_count
= 1;
1364 * Share the timeslice between parent and child, thus the
1365 * total amount of pending timeslices in the system doesn't change,
1366 * resulting in more scheduling fairness.
1368 local_irq_disable();
1369 p
->time_slice
= (current
->time_slice
+ 1) >> 1;
1371 * The remainder of the first timeslice might be recovered by
1372 * the parent if the child exits early enough.
1374 p
->first_time_slice
= 1;
1375 current
->time_slice
>>= 1;
1376 p
->timestamp
= sched_clock();
1377 if (unlikely(!current
->time_slice
)) {
1379 * This case is rare, it happens when the parent has only
1380 * a single jiffy left from its timeslice. Taking the
1381 * runqueue lock is not a problem.
1383 current
->time_slice
= 1;
1391 * wake_up_new_task - wake up a newly created task for the first time.
1393 * This function will do some initial scheduler statistics housekeeping
1394 * that must be done for every newly created context, then puts the task
1395 * on the runqueue and wakes it.
1397 void fastcall
wake_up_new_task(task_t
*p
, unsigned long clone_flags
)
1399 unsigned long flags
;
1401 runqueue_t
*rq
, *this_rq
;
1403 rq
= task_rq_lock(p
, &flags
);
1404 BUG_ON(p
->state
!= TASK_RUNNING
);
1405 this_cpu
= smp_processor_id();
1409 * We decrease the sleep average of forking parents
1410 * and children as well, to keep max-interactive tasks
1411 * from forking tasks that are max-interactive. The parent
1412 * (current) is done further down, under its lock.
1414 p
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(p
) *
1415 CHILD_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1417 p
->prio
= effective_prio(p
);
1419 if (likely(cpu
== this_cpu
)) {
1420 if (!(clone_flags
& CLONE_VM
)) {
1422 * The VM isn't cloned, so we're in a good position to
1423 * do child-runs-first in anticipation of an exec. This
1424 * usually avoids a lot of COW overhead.
1426 if (unlikely(!current
->array
))
1427 __activate_task(p
, rq
);
1429 p
->prio
= current
->prio
;
1430 list_add_tail(&p
->run_list
, ¤t
->run_list
);
1431 p
->array
= current
->array
;
1432 p
->array
->nr_active
++;
1437 /* Run child last */
1438 __activate_task(p
, rq
);
1440 * We skip the following code due to cpu == this_cpu
1442 * task_rq_unlock(rq, &flags);
1443 * this_rq = task_rq_lock(current, &flags);
1447 this_rq
= cpu_rq(this_cpu
);
1450 * Not the local CPU - must adjust timestamp. This should
1451 * get optimised away in the !CONFIG_SMP case.
1453 p
->timestamp
= (p
->timestamp
- this_rq
->timestamp_last_tick
)
1454 + rq
->timestamp_last_tick
;
1455 __activate_task(p
, rq
);
1456 if (TASK_PREEMPTS_CURR(p
, rq
))
1457 resched_task(rq
->curr
);
1460 * Parent and child are on different CPUs, now get the
1461 * parent runqueue to update the parent's ->sleep_avg:
1463 task_rq_unlock(rq
, &flags
);
1464 this_rq
= task_rq_lock(current
, &flags
);
1466 current
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(current
) *
1467 PARENT_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1468 task_rq_unlock(this_rq
, &flags
);
1472 * Potentially available exiting-child timeslices are
1473 * retrieved here - this way the parent does not get
1474 * penalized for creating too many threads.
1476 * (this cannot be used to 'generate' timeslices
1477 * artificially, because any timeslice recovered here
1478 * was given away by the parent in the first place.)
1480 void fastcall
sched_exit(task_t
*p
)
1482 unsigned long flags
;
1486 * If the child was a (relative-) CPU hog then decrease
1487 * the sleep_avg of the parent as well.
1489 rq
= task_rq_lock(p
->parent
, &flags
);
1490 if (p
->first_time_slice
&& task_cpu(p
) == task_cpu(p
->parent
)) {
1491 p
->parent
->time_slice
+= p
->time_slice
;
1492 if (unlikely(p
->parent
->time_slice
> task_timeslice(p
)))
1493 p
->parent
->time_slice
= task_timeslice(p
);
1495 if (p
->sleep_avg
< p
->parent
->sleep_avg
)
1496 p
->parent
->sleep_avg
= p
->parent
->sleep_avg
/
1497 (EXIT_WEIGHT
+ 1) * EXIT_WEIGHT
+ p
->sleep_avg
/
1499 task_rq_unlock(rq
, &flags
);
1503 * prepare_task_switch - prepare to switch tasks
1504 * @rq: the runqueue preparing to switch
1505 * @next: the task we are going to switch to.
1507 * This is called with the rq lock held and interrupts off. It must
1508 * be paired with a subsequent finish_task_switch after the context
1511 * prepare_task_switch sets up locking and calls architecture specific
1514 static inline void prepare_task_switch(runqueue_t
*rq
, task_t
*next
)
1516 prepare_lock_switch(rq
, next
);
1517 prepare_arch_switch(next
);
1521 * finish_task_switch - clean up after a task-switch
1522 * @rq: runqueue associated with task-switch
1523 * @prev: the thread we just switched away from.
1525 * finish_task_switch must be called after the context switch, paired
1526 * with a prepare_task_switch call before the context switch.
1527 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1528 * and do any other architecture-specific cleanup actions.
1530 * Note that we may have delayed dropping an mm in context_switch(). If
1531 * so, we finish that here outside of the runqueue lock. (Doing it
1532 * with the lock held can cause deadlocks; see schedule() for
1535 static inline void finish_task_switch(runqueue_t
*rq
, task_t
*prev
)
1536 __releases(rq
->lock
)
1538 struct mm_struct
*mm
= rq
->prev_mm
;
1539 unsigned long prev_task_flags
;
1544 * A task struct has one reference for the use as "current".
1545 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1546 * calls schedule one last time. The schedule call will never return,
1547 * and the scheduled task must drop that reference.
1548 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1549 * still held, otherwise prev could be scheduled on another cpu, die
1550 * there before we look at prev->state, and then the reference would
1552 * Manfred Spraul <manfred@colorfullife.com>
1554 prev_task_flags
= prev
->flags
;
1555 finish_arch_switch(prev
);
1556 finish_lock_switch(rq
, prev
);
1559 if (unlikely(prev_task_flags
& PF_DEAD
)) {
1561 * Remove function-return probe instances associated with this
1562 * task and put them back on the free list.
1564 kprobe_flush_task(prev
);
1565 put_task_struct(prev
);
1570 * schedule_tail - first thing a freshly forked thread must call.
1571 * @prev: the thread we just switched away from.
1573 asmlinkage
void schedule_tail(task_t
*prev
)
1574 __releases(rq
->lock
)
1576 runqueue_t
*rq
= this_rq();
1577 finish_task_switch(rq
, prev
);
1578 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1579 /* In this case, finish_task_switch does not reenable preemption */
1582 if (current
->set_child_tid
)
1583 put_user(current
->pid
, current
->set_child_tid
);
1587 * context_switch - switch to the new MM and the new
1588 * thread's register state.
1591 task_t
* context_switch(runqueue_t
*rq
, task_t
*prev
, task_t
*next
)
1593 struct mm_struct
*mm
= next
->mm
;
1594 struct mm_struct
*oldmm
= prev
->active_mm
;
1596 if (unlikely(!mm
)) {
1597 next
->active_mm
= oldmm
;
1598 atomic_inc(&oldmm
->mm_count
);
1599 enter_lazy_tlb(oldmm
, next
);
1601 switch_mm(oldmm
, mm
, next
);
1603 if (unlikely(!prev
->mm
)) {
1604 prev
->active_mm
= NULL
;
1605 WARN_ON(rq
->prev_mm
);
1606 rq
->prev_mm
= oldmm
;
1609 /* Here we just switch the register state and the stack. */
1610 switch_to(prev
, next
, prev
);
1616 * nr_running, nr_uninterruptible and nr_context_switches:
1618 * externally visible scheduler statistics: current number of runnable
1619 * threads, current number of uninterruptible-sleeping threads, total
1620 * number of context switches performed since bootup.
1622 unsigned long nr_running(void)
1624 unsigned long i
, sum
= 0;
1626 for_each_online_cpu(i
)
1627 sum
+= cpu_rq(i
)->nr_running
;
1632 unsigned long nr_uninterruptible(void)
1634 unsigned long i
, sum
= 0;
1636 for_each_possible_cpu(i
)
1637 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1640 * Since we read the counters lockless, it might be slightly
1641 * inaccurate. Do not allow it to go below zero though:
1643 if (unlikely((long)sum
< 0))
1649 unsigned long long nr_context_switches(void)
1651 unsigned long long i
, sum
= 0;
1653 for_each_possible_cpu(i
)
1654 sum
+= cpu_rq(i
)->nr_switches
;
1659 unsigned long nr_iowait(void)
1661 unsigned long i
, sum
= 0;
1663 for_each_possible_cpu(i
)
1664 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1669 unsigned long nr_active(void)
1671 unsigned long i
, running
= 0, uninterruptible
= 0;
1673 for_each_online_cpu(i
) {
1674 running
+= cpu_rq(i
)->nr_running
;
1675 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1678 if (unlikely((long)uninterruptible
< 0))
1679 uninterruptible
= 0;
1681 return running
+ uninterruptible
;
1687 * double_rq_lock - safely lock two runqueues
1689 * We must take them in cpu order to match code in
1690 * dependent_sleeper and wake_dependent_sleeper.
1692 * Note this does not disable interrupts like task_rq_lock,
1693 * you need to do so manually before calling.
1695 static void double_rq_lock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1696 __acquires(rq1
->lock
)
1697 __acquires(rq2
->lock
)
1700 spin_lock(&rq1
->lock
);
1701 __acquire(rq2
->lock
); /* Fake it out ;) */
1703 if (rq1
->cpu
< rq2
->cpu
) {
1704 spin_lock(&rq1
->lock
);
1705 spin_lock(&rq2
->lock
);
1707 spin_lock(&rq2
->lock
);
1708 spin_lock(&rq1
->lock
);
1714 * double_rq_unlock - safely unlock two runqueues
1716 * Note this does not restore interrupts like task_rq_unlock,
1717 * you need to do so manually after calling.
1719 static void double_rq_unlock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1720 __releases(rq1
->lock
)
1721 __releases(rq2
->lock
)
1723 spin_unlock(&rq1
->lock
);
1725 spin_unlock(&rq2
->lock
);
1727 __release(rq2
->lock
);
1731 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 static void double_lock_balance(runqueue_t
*this_rq
, runqueue_t
*busiest
)
1734 __releases(this_rq
->lock
)
1735 __acquires(busiest
->lock
)
1736 __acquires(this_rq
->lock
)
1738 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1739 if (busiest
->cpu
< this_rq
->cpu
) {
1740 spin_unlock(&this_rq
->lock
);
1741 spin_lock(&busiest
->lock
);
1742 spin_lock(&this_rq
->lock
);
1744 spin_lock(&busiest
->lock
);
1749 * If dest_cpu is allowed for this process, migrate the task to it.
1750 * This is accomplished by forcing the cpu_allowed mask to only
1751 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1752 * the cpu_allowed mask is restored.
1754 static void sched_migrate_task(task_t
*p
, int dest_cpu
)
1756 migration_req_t req
;
1758 unsigned long flags
;
1760 rq
= task_rq_lock(p
, &flags
);
1761 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
1762 || unlikely(cpu_is_offline(dest_cpu
)))
1765 /* force the process onto the specified CPU */
1766 if (migrate_task(p
, dest_cpu
, &req
)) {
1767 /* Need to wait for migration thread (might exit: take ref). */
1768 struct task_struct
*mt
= rq
->migration_thread
;
1769 get_task_struct(mt
);
1770 task_rq_unlock(rq
, &flags
);
1771 wake_up_process(mt
);
1772 put_task_struct(mt
);
1773 wait_for_completion(&req
.done
);
1777 task_rq_unlock(rq
, &flags
);
1781 * sched_exec - execve() is a valuable balancing opportunity, because at
1782 * this point the task has the smallest effective memory and cache footprint.
1784 void sched_exec(void)
1786 int new_cpu
, this_cpu
= get_cpu();
1787 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
1789 if (new_cpu
!= this_cpu
)
1790 sched_migrate_task(current
, new_cpu
);
1794 * pull_task - move a task from a remote runqueue to the local runqueue.
1795 * Both runqueues must be locked.
1798 void pull_task(runqueue_t
*src_rq
, prio_array_t
*src_array
, task_t
*p
,
1799 runqueue_t
*this_rq
, prio_array_t
*this_array
, int this_cpu
)
1801 dequeue_task(p
, src_array
);
1802 src_rq
->nr_running
--;
1803 set_task_cpu(p
, this_cpu
);
1804 this_rq
->nr_running
++;
1805 enqueue_task(p
, this_array
);
1806 p
->timestamp
= (p
->timestamp
- src_rq
->timestamp_last_tick
)
1807 + this_rq
->timestamp_last_tick
;
1809 * Note that idle threads have a prio of MAX_PRIO, for this test
1810 * to be always true for them.
1812 if (TASK_PREEMPTS_CURR(p
, this_rq
))
1813 resched_task(this_rq
->curr
);
1817 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1820 int can_migrate_task(task_t
*p
, runqueue_t
*rq
, int this_cpu
,
1821 struct sched_domain
*sd
, enum idle_type idle
,
1825 * We do not migrate tasks that are:
1826 * 1) running (obviously), or
1827 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1828 * 3) are cache-hot on their current CPU.
1830 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
1834 if (task_running(rq
, p
))
1838 * Aggressive migration if:
1839 * 1) task is cache cold, or
1840 * 2) too many balance attempts have failed.
1843 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
1846 if (task_hot(p
, rq
->timestamp_last_tick
, sd
))
1852 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1853 * as part of a balancing operation within "domain". Returns the number of
1856 * Called with both runqueues locked.
1858 static int move_tasks(runqueue_t
*this_rq
, int this_cpu
, runqueue_t
*busiest
,
1859 unsigned long max_nr_move
, struct sched_domain
*sd
,
1860 enum idle_type idle
, int *all_pinned
)
1862 prio_array_t
*array
, *dst_array
;
1863 struct list_head
*head
, *curr
;
1864 int idx
, pulled
= 0, pinned
= 0;
1867 if (max_nr_move
== 0)
1873 * We first consider expired tasks. Those will likely not be
1874 * executed in the near future, and they are most likely to
1875 * be cache-cold, thus switching CPUs has the least effect
1878 if (busiest
->expired
->nr_active
) {
1879 array
= busiest
->expired
;
1880 dst_array
= this_rq
->expired
;
1882 array
= busiest
->active
;
1883 dst_array
= this_rq
->active
;
1887 /* Start searching at priority 0: */
1891 idx
= sched_find_first_bit(array
->bitmap
);
1893 idx
= find_next_bit(array
->bitmap
, MAX_PRIO
, idx
);
1894 if (idx
>= MAX_PRIO
) {
1895 if (array
== busiest
->expired
&& busiest
->active
->nr_active
) {
1896 array
= busiest
->active
;
1897 dst_array
= this_rq
->active
;
1903 head
= array
->queue
+ idx
;
1906 tmp
= list_entry(curr
, task_t
, run_list
);
1910 if (!can_migrate_task(tmp
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
1917 #ifdef CONFIG_SCHEDSTATS
1918 if (task_hot(tmp
, busiest
->timestamp_last_tick
, sd
))
1919 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1922 pull_task(busiest
, array
, tmp
, this_rq
, dst_array
, this_cpu
);
1925 /* We only want to steal up to the prescribed number of tasks. */
1926 if (pulled
< max_nr_move
) {
1934 * Right now, this is the only place pull_task() is called,
1935 * so we can safely collect pull_task() stats here rather than
1936 * inside pull_task().
1938 schedstat_add(sd
, lb_gained
[idle
], pulled
);
1941 *all_pinned
= pinned
;
1946 * find_busiest_group finds and returns the busiest CPU group within the
1947 * domain. It calculates and returns the number of tasks which should be
1948 * moved to restore balance via the imbalance parameter.
1950 static struct sched_group
*
1951 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
1952 unsigned long *imbalance
, enum idle_type idle
, int *sd_idle
)
1954 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1955 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
1956 unsigned long max_pull
;
1959 max_load
= this_load
= total_load
= total_pwr
= 0;
1960 if (idle
== NOT_IDLE
)
1961 load_idx
= sd
->busy_idx
;
1962 else if (idle
== NEWLY_IDLE
)
1963 load_idx
= sd
->newidle_idx
;
1965 load_idx
= sd
->idle_idx
;
1972 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1974 /* Tally up the load of all CPUs in the group */
1977 for_each_cpu_mask(i
, group
->cpumask
) {
1978 if (*sd_idle
&& !idle_cpu(i
))
1981 /* Bias balancing toward cpus of our domain */
1983 load
= target_load(i
, load_idx
);
1985 load
= source_load(i
, load_idx
);
1990 total_load
+= avg_load
;
1991 total_pwr
+= group
->cpu_power
;
1993 /* Adjust by relative CPU power of the group */
1994 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1997 this_load
= avg_load
;
1999 } else if (avg_load
> max_load
) {
2000 max_load
= avg_load
;
2003 group
= group
->next
;
2004 } while (group
!= sd
->groups
);
2006 if (!busiest
|| this_load
>= max_load
|| max_load
<= SCHED_LOAD_SCALE
)
2009 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2011 if (this_load
>= avg_load
||
2012 100*max_load
<= sd
->imbalance_pct
*this_load
)
2016 * We're trying to get all the cpus to the average_load, so we don't
2017 * want to push ourselves above the average load, nor do we wish to
2018 * reduce the max loaded cpu below the average load, as either of these
2019 * actions would just result in more rebalancing later, and ping-pong
2020 * tasks around. Thus we look for the minimum possible imbalance.
2021 * Negative imbalances (*we* are more loaded than anyone else) will
2022 * be counted as no imbalance for these purposes -- we can't fix that
2023 * by pulling tasks to us. Be careful of negative numbers as they'll
2024 * appear as very large values with unsigned longs.
2027 /* Don't want to pull so many tasks that a group would go idle */
2028 max_pull
= min(max_load
- avg_load
, max_load
- SCHED_LOAD_SCALE
);
2030 /* How much load to actually move to equalise the imbalance */
2031 *imbalance
= min(max_pull
* busiest
->cpu_power
,
2032 (avg_load
- this_load
) * this->cpu_power
)
2035 if (*imbalance
< SCHED_LOAD_SCALE
) {
2036 unsigned long pwr_now
= 0, pwr_move
= 0;
2039 if (max_load
- this_load
>= SCHED_LOAD_SCALE
*2) {
2045 * OK, we don't have enough imbalance to justify moving tasks,
2046 * however we may be able to increase total CPU power used by
2050 pwr_now
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
, max_load
);
2051 pwr_now
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
);
2052 pwr_now
/= SCHED_LOAD_SCALE
;
2054 /* Amount of load we'd subtract */
2055 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/busiest
->cpu_power
;
2057 pwr_move
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
,
2060 /* Amount of load we'd add */
2061 if (max_load
*busiest
->cpu_power
<
2062 SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
)
2063 tmp
= max_load
*busiest
->cpu_power
/this->cpu_power
;
2065 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/this->cpu_power
;
2066 pwr_move
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
+ tmp
);
2067 pwr_move
/= SCHED_LOAD_SCALE
;
2069 /* Move if we gain throughput */
2070 if (pwr_move
<= pwr_now
)
2077 /* Get rid of the scaling factor, rounding down as we divide */
2078 *imbalance
= *imbalance
/ SCHED_LOAD_SCALE
;
2088 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2090 static runqueue_t
*find_busiest_queue(struct sched_group
*group
,
2091 enum idle_type idle
)
2093 unsigned long load
, max_load
= 0;
2094 runqueue_t
*busiest
= NULL
;
2097 for_each_cpu_mask(i
, group
->cpumask
) {
2098 load
= source_load(i
, 0);
2100 if (load
> max_load
) {
2102 busiest
= cpu_rq(i
);
2110 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2111 * so long as it is large enough.
2113 #define MAX_PINNED_INTERVAL 512
2116 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2117 * tasks if there is an imbalance.
2119 * Called with this_rq unlocked.
2121 static int load_balance(int this_cpu
, runqueue_t
*this_rq
,
2122 struct sched_domain
*sd
, enum idle_type idle
)
2124 struct sched_group
*group
;
2125 runqueue_t
*busiest
;
2126 unsigned long imbalance
;
2127 int nr_moved
, all_pinned
= 0;
2128 int active_balance
= 0;
2131 if (idle
!= NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2134 schedstat_inc(sd
, lb_cnt
[idle
]);
2136 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
);
2138 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2142 busiest
= find_busiest_queue(group
, idle
);
2144 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2148 BUG_ON(busiest
== this_rq
);
2150 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2153 if (busiest
->nr_running
> 1) {
2155 * Attempt to move tasks. If find_busiest_group has found
2156 * an imbalance but busiest->nr_running <= 1, the group is
2157 * still unbalanced. nr_moved simply stays zero, so it is
2158 * correctly treated as an imbalance.
2160 double_rq_lock(this_rq
, busiest
);
2161 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2162 imbalance
, sd
, idle
, &all_pinned
);
2163 double_rq_unlock(this_rq
, busiest
);
2165 /* All tasks on this runqueue were pinned by CPU affinity */
2166 if (unlikely(all_pinned
))
2171 schedstat_inc(sd
, lb_failed
[idle
]);
2172 sd
->nr_balance_failed
++;
2174 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2176 spin_lock(&busiest
->lock
);
2178 /* don't kick the migration_thread, if the curr
2179 * task on busiest cpu can't be moved to this_cpu
2181 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2182 spin_unlock(&busiest
->lock
);
2184 goto out_one_pinned
;
2187 if (!busiest
->active_balance
) {
2188 busiest
->active_balance
= 1;
2189 busiest
->push_cpu
= this_cpu
;
2192 spin_unlock(&busiest
->lock
);
2194 wake_up_process(busiest
->migration_thread
);
2197 * We've kicked active balancing, reset the failure
2200 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2203 sd
->nr_balance_failed
= 0;
2205 if (likely(!active_balance
)) {
2206 /* We were unbalanced, so reset the balancing interval */
2207 sd
->balance_interval
= sd
->min_interval
;
2210 * If we've begun active balancing, start to back off. This
2211 * case may not be covered by the all_pinned logic if there
2212 * is only 1 task on the busy runqueue (because we don't call
2215 if (sd
->balance_interval
< sd
->max_interval
)
2216 sd
->balance_interval
*= 2;
2219 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2224 schedstat_inc(sd
, lb_balanced
[idle
]);
2226 sd
->nr_balance_failed
= 0;
2229 /* tune up the balancing interval */
2230 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2231 (sd
->balance_interval
< sd
->max_interval
))
2232 sd
->balance_interval
*= 2;
2234 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2240 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2241 * tasks if there is an imbalance.
2243 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2244 * this_rq is locked.
2246 static int load_balance_newidle(int this_cpu
, runqueue_t
*this_rq
,
2247 struct sched_domain
*sd
)
2249 struct sched_group
*group
;
2250 runqueue_t
*busiest
= NULL
;
2251 unsigned long imbalance
;
2255 if (sd
->flags
& SD_SHARE_CPUPOWER
)
2258 schedstat_inc(sd
, lb_cnt
[NEWLY_IDLE
]);
2259 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, NEWLY_IDLE
, &sd_idle
);
2261 schedstat_inc(sd
, lb_nobusyg
[NEWLY_IDLE
]);
2265 busiest
= find_busiest_queue(group
, NEWLY_IDLE
);
2267 schedstat_inc(sd
, lb_nobusyq
[NEWLY_IDLE
]);
2271 BUG_ON(busiest
== this_rq
);
2273 schedstat_add(sd
, lb_imbalance
[NEWLY_IDLE
], imbalance
);
2276 if (busiest
->nr_running
> 1) {
2277 /* Attempt to move tasks */
2278 double_lock_balance(this_rq
, busiest
);
2279 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2280 imbalance
, sd
, NEWLY_IDLE
, NULL
);
2281 spin_unlock(&busiest
->lock
);
2285 schedstat_inc(sd
, lb_failed
[NEWLY_IDLE
]);
2286 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2289 sd
->nr_balance_failed
= 0;
2294 schedstat_inc(sd
, lb_balanced
[NEWLY_IDLE
]);
2295 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2297 sd
->nr_balance_failed
= 0;
2302 * idle_balance is called by schedule() if this_cpu is about to become
2303 * idle. Attempts to pull tasks from other CPUs.
2305 static void idle_balance(int this_cpu
, runqueue_t
*this_rq
)
2307 struct sched_domain
*sd
;
2309 for_each_domain(this_cpu
, sd
) {
2310 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
2311 if (load_balance_newidle(this_cpu
, this_rq
, sd
)) {
2312 /* We've pulled tasks over so stop searching */
2320 * active_load_balance is run by migration threads. It pushes running tasks
2321 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2322 * running on each physical CPU where possible, and avoids physical /
2323 * logical imbalances.
2325 * Called with busiest_rq locked.
2327 static void active_load_balance(runqueue_t
*busiest_rq
, int busiest_cpu
)
2329 struct sched_domain
*sd
;
2330 runqueue_t
*target_rq
;
2331 int target_cpu
= busiest_rq
->push_cpu
;
2333 if (busiest_rq
->nr_running
<= 1)
2334 /* no task to move */
2337 target_rq
= cpu_rq(target_cpu
);
2340 * This condition is "impossible", if it occurs
2341 * we need to fix it. Originally reported by
2342 * Bjorn Helgaas on a 128-cpu setup.
2344 BUG_ON(busiest_rq
== target_rq
);
2346 /* move a task from busiest_rq to target_rq */
2347 double_lock_balance(busiest_rq
, target_rq
);
2349 /* Search for an sd spanning us and the target CPU. */
2350 for_each_domain(target_cpu
, sd
)
2351 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2352 cpu_isset(busiest_cpu
, sd
->span
))
2355 if (unlikely(sd
== NULL
))
2358 schedstat_inc(sd
, alb_cnt
);
2360 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1, sd
, SCHED_IDLE
, NULL
))
2361 schedstat_inc(sd
, alb_pushed
);
2363 schedstat_inc(sd
, alb_failed
);
2365 spin_unlock(&target_rq
->lock
);
2369 * rebalance_tick will get called every timer tick, on every CPU.
2371 * It checks each scheduling domain to see if it is due to be balanced,
2372 * and initiates a balancing operation if so.
2374 * Balancing parameters are set up in arch_init_sched_domains.
2377 /* Don't have all balancing operations going off at once */
2378 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2380 static void rebalance_tick(int this_cpu
, runqueue_t
*this_rq
,
2381 enum idle_type idle
)
2383 unsigned long old_load
, this_load
;
2384 unsigned long j
= jiffies
+ CPU_OFFSET(this_cpu
);
2385 struct sched_domain
*sd
;
2388 this_load
= this_rq
->nr_running
* SCHED_LOAD_SCALE
;
2389 /* Update our load */
2390 for (i
= 0; i
< 3; i
++) {
2391 unsigned long new_load
= this_load
;
2393 old_load
= this_rq
->cpu_load
[i
];
2395 * Round up the averaging division if load is increasing. This
2396 * prevents us from getting stuck on 9 if the load is 10, for
2399 if (new_load
> old_load
)
2400 new_load
+= scale
-1;
2401 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) / scale
;
2404 for_each_domain(this_cpu
, sd
) {
2405 unsigned long interval
;
2407 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2410 interval
= sd
->balance_interval
;
2411 if (idle
!= SCHED_IDLE
)
2412 interval
*= sd
->busy_factor
;
2414 /* scale ms to jiffies */
2415 interval
= msecs_to_jiffies(interval
);
2416 if (unlikely(!interval
))
2419 if (j
- sd
->last_balance
>= interval
) {
2420 if (load_balance(this_cpu
, this_rq
, sd
, idle
)) {
2422 * We've pulled tasks over so either we're no
2423 * longer idle, or one of our SMT siblings is
2428 sd
->last_balance
+= interval
;
2434 * on UP we do not need to balance between CPUs:
2436 static inline void rebalance_tick(int cpu
, runqueue_t
*rq
, enum idle_type idle
)
2439 static inline void idle_balance(int cpu
, runqueue_t
*rq
)
2444 static inline int wake_priority_sleeper(runqueue_t
*rq
)
2447 #ifdef CONFIG_SCHED_SMT
2448 spin_lock(&rq
->lock
);
2450 * If an SMT sibling task has been put to sleep for priority
2451 * reasons reschedule the idle task to see if it can now run.
2453 if (rq
->nr_running
) {
2454 resched_task(rq
->idle
);
2457 spin_unlock(&rq
->lock
);
2462 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2464 EXPORT_PER_CPU_SYMBOL(kstat
);
2467 * This is called on clock ticks and on context switches.
2468 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2470 static inline void update_cpu_clock(task_t
*p
, runqueue_t
*rq
,
2471 unsigned long long now
)
2473 unsigned long long last
= max(p
->timestamp
, rq
->timestamp_last_tick
);
2474 p
->sched_time
+= now
- last
;
2478 * Return current->sched_time plus any more ns on the sched_clock
2479 * that have not yet been banked.
2481 unsigned long long current_sched_time(const task_t
*tsk
)
2483 unsigned long long ns
;
2484 unsigned long flags
;
2485 local_irq_save(flags
);
2486 ns
= max(tsk
->timestamp
, task_rq(tsk
)->timestamp_last_tick
);
2487 ns
= tsk
->sched_time
+ (sched_clock() - ns
);
2488 local_irq_restore(flags
);
2493 * We place interactive tasks back into the active array, if possible.
2495 * To guarantee that this does not starve expired tasks we ignore the
2496 * interactivity of a task if the first expired task had to wait more
2497 * than a 'reasonable' amount of time. This deadline timeout is
2498 * load-dependent, as the frequency of array switched decreases with
2499 * increasing number of running tasks. We also ignore the interactivity
2500 * if a better static_prio task has expired:
2502 #define EXPIRED_STARVING(rq) \
2503 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2504 (jiffies - (rq)->expired_timestamp >= \
2505 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2506 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2509 * Account user cpu time to a process.
2510 * @p: the process that the cpu time gets accounted to
2511 * @hardirq_offset: the offset to subtract from hardirq_count()
2512 * @cputime: the cpu time spent in user space since the last update
2514 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
2516 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2519 p
->utime
= cputime_add(p
->utime
, cputime
);
2521 /* Add user time to cpustat. */
2522 tmp
= cputime_to_cputime64(cputime
);
2523 if (TASK_NICE(p
) > 0)
2524 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
2526 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
2530 * Account system cpu time to a process.
2531 * @p: the process that the cpu time gets accounted to
2532 * @hardirq_offset: the offset to subtract from hardirq_count()
2533 * @cputime: the cpu time spent in kernel space since the last update
2535 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2538 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2539 runqueue_t
*rq
= this_rq();
2542 p
->stime
= cputime_add(p
->stime
, cputime
);
2544 /* Add system time to cpustat. */
2545 tmp
= cputime_to_cputime64(cputime
);
2546 if (hardirq_count() - hardirq_offset
)
2547 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
2548 else if (softirq_count())
2549 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
2550 else if (p
!= rq
->idle
)
2551 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
2552 else if (atomic_read(&rq
->nr_iowait
) > 0)
2553 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2555 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2556 /* Account for system time used */
2557 acct_update_integrals(p
);
2561 * Account for involuntary wait time.
2562 * @p: the process from which the cpu time has been stolen
2563 * @steal: the cpu time spent in involuntary wait
2565 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
2567 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2568 cputime64_t tmp
= cputime_to_cputime64(steal
);
2569 runqueue_t
*rq
= this_rq();
2571 if (p
== rq
->idle
) {
2572 p
->stime
= cputime_add(p
->stime
, steal
);
2573 if (atomic_read(&rq
->nr_iowait
) > 0)
2574 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2576 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2578 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
2582 * This function gets called by the timer code, with HZ frequency.
2583 * We call it with interrupts disabled.
2585 * It also gets called by the fork code, when changing the parent's
2588 void scheduler_tick(void)
2590 int cpu
= smp_processor_id();
2591 runqueue_t
*rq
= this_rq();
2592 task_t
*p
= current
;
2593 unsigned long long now
= sched_clock();
2595 update_cpu_clock(p
, rq
, now
);
2597 rq
->timestamp_last_tick
= now
;
2599 if (p
== rq
->idle
) {
2600 if (wake_priority_sleeper(rq
))
2602 rebalance_tick(cpu
, rq
, SCHED_IDLE
);
2606 /* Task might have expired already, but not scheduled off yet */
2607 if (p
->array
!= rq
->active
) {
2608 set_tsk_need_resched(p
);
2611 spin_lock(&rq
->lock
);
2613 * The task was running during this tick - update the
2614 * time slice counter. Note: we do not update a thread's
2615 * priority until it either goes to sleep or uses up its
2616 * timeslice. This makes it possible for interactive tasks
2617 * to use up their timeslices at their highest priority levels.
2621 * RR tasks need a special form of timeslice management.
2622 * FIFO tasks have no timeslices.
2624 if ((p
->policy
== SCHED_RR
) && !--p
->time_slice
) {
2625 p
->time_slice
= task_timeslice(p
);
2626 p
->first_time_slice
= 0;
2627 set_tsk_need_resched(p
);
2629 /* put it at the end of the queue: */
2630 requeue_task(p
, rq
->active
);
2634 if (!--p
->time_slice
) {
2635 dequeue_task(p
, rq
->active
);
2636 set_tsk_need_resched(p
);
2637 p
->prio
= effective_prio(p
);
2638 p
->time_slice
= task_timeslice(p
);
2639 p
->first_time_slice
= 0;
2641 if (!rq
->expired_timestamp
)
2642 rq
->expired_timestamp
= jiffies
;
2643 if (!TASK_INTERACTIVE(p
) || EXPIRED_STARVING(rq
)) {
2644 enqueue_task(p
, rq
->expired
);
2645 if (p
->static_prio
< rq
->best_expired_prio
)
2646 rq
->best_expired_prio
= p
->static_prio
;
2648 enqueue_task(p
, rq
->active
);
2651 * Prevent a too long timeslice allowing a task to monopolize
2652 * the CPU. We do this by splitting up the timeslice into
2655 * Note: this does not mean the task's timeslices expire or
2656 * get lost in any way, they just might be preempted by
2657 * another task of equal priority. (one with higher
2658 * priority would have preempted this task already.) We
2659 * requeue this task to the end of the list on this priority
2660 * level, which is in essence a round-robin of tasks with
2663 * This only applies to tasks in the interactive
2664 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2666 if (TASK_INTERACTIVE(p
) && !((task_timeslice(p
) -
2667 p
->time_slice
) % TIMESLICE_GRANULARITY(p
)) &&
2668 (p
->time_slice
>= TIMESLICE_GRANULARITY(p
)) &&
2669 (p
->array
== rq
->active
)) {
2671 requeue_task(p
, rq
->active
);
2672 set_tsk_need_resched(p
);
2676 spin_unlock(&rq
->lock
);
2678 rebalance_tick(cpu
, rq
, NOT_IDLE
);
2681 #ifdef CONFIG_SCHED_SMT
2682 static inline void wakeup_busy_runqueue(runqueue_t
*rq
)
2684 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2685 if (rq
->curr
== rq
->idle
&& rq
->nr_running
)
2686 resched_task(rq
->idle
);
2689 static void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2691 struct sched_domain
*tmp
, *sd
= NULL
;
2692 cpumask_t sibling_map
;
2695 for_each_domain(this_cpu
, tmp
)
2696 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2703 * Unlock the current runqueue because we have to lock in
2704 * CPU order to avoid deadlocks. Caller knows that we might
2705 * unlock. We keep IRQs disabled.
2707 spin_unlock(&this_rq
->lock
);
2709 sibling_map
= sd
->span
;
2711 for_each_cpu_mask(i
, sibling_map
)
2712 spin_lock(&cpu_rq(i
)->lock
);
2714 * We clear this CPU from the mask. This both simplifies the
2715 * inner loop and keps this_rq locked when we exit:
2717 cpu_clear(this_cpu
, sibling_map
);
2719 for_each_cpu_mask(i
, sibling_map
) {
2720 runqueue_t
*smt_rq
= cpu_rq(i
);
2722 wakeup_busy_runqueue(smt_rq
);
2725 for_each_cpu_mask(i
, sibling_map
)
2726 spin_unlock(&cpu_rq(i
)->lock
);
2728 * We exit with this_cpu's rq still held and IRQs
2734 * number of 'lost' timeslices this task wont be able to fully
2735 * utilize, if another task runs on a sibling. This models the
2736 * slowdown effect of other tasks running on siblings:
2738 static inline unsigned long smt_slice(task_t
*p
, struct sched_domain
*sd
)
2740 return p
->time_slice
* (100 - sd
->per_cpu_gain
) / 100;
2743 static int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2745 struct sched_domain
*tmp
, *sd
= NULL
;
2746 cpumask_t sibling_map
;
2747 prio_array_t
*array
;
2751 for_each_domain(this_cpu
, tmp
)
2752 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2759 * The same locking rules and details apply as for
2760 * wake_sleeping_dependent():
2762 spin_unlock(&this_rq
->lock
);
2763 sibling_map
= sd
->span
;
2764 for_each_cpu_mask(i
, sibling_map
)
2765 spin_lock(&cpu_rq(i
)->lock
);
2766 cpu_clear(this_cpu
, sibling_map
);
2769 * Establish next task to be run - it might have gone away because
2770 * we released the runqueue lock above:
2772 if (!this_rq
->nr_running
)
2774 array
= this_rq
->active
;
2775 if (!array
->nr_active
)
2776 array
= this_rq
->expired
;
2777 BUG_ON(!array
->nr_active
);
2779 p
= list_entry(array
->queue
[sched_find_first_bit(array
->bitmap
)].next
,
2782 for_each_cpu_mask(i
, sibling_map
) {
2783 runqueue_t
*smt_rq
= cpu_rq(i
);
2784 task_t
*smt_curr
= smt_rq
->curr
;
2786 /* Kernel threads do not participate in dependent sleeping */
2787 if (!p
->mm
|| !smt_curr
->mm
|| rt_task(p
))
2788 goto check_smt_task
;
2791 * If a user task with lower static priority than the
2792 * running task on the SMT sibling is trying to schedule,
2793 * delay it till there is proportionately less timeslice
2794 * left of the sibling task to prevent a lower priority
2795 * task from using an unfair proportion of the
2796 * physical cpu's resources. -ck
2798 if (rt_task(smt_curr
)) {
2800 * With real time tasks we run non-rt tasks only
2801 * per_cpu_gain% of the time.
2803 if ((jiffies
% DEF_TIMESLICE
) >
2804 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2807 if (smt_curr
->static_prio
< p
->static_prio
&&
2808 !TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2809 smt_slice(smt_curr
, sd
) > task_timeslice(p
))
2813 if ((!smt_curr
->mm
&& smt_curr
!= smt_rq
->idle
) ||
2817 wakeup_busy_runqueue(smt_rq
);
2822 * Reschedule a lower priority task on the SMT sibling for
2823 * it to be put to sleep, or wake it up if it has been put to
2824 * sleep for priority reasons to see if it should run now.
2827 if ((jiffies
% DEF_TIMESLICE
) >
2828 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2829 resched_task(smt_curr
);
2831 if (TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2832 smt_slice(p
, sd
) > task_timeslice(smt_curr
))
2833 resched_task(smt_curr
);
2835 wakeup_busy_runqueue(smt_rq
);
2839 for_each_cpu_mask(i
, sibling_map
)
2840 spin_unlock(&cpu_rq(i
)->lock
);
2844 static inline void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2848 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2854 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2856 void fastcall
add_preempt_count(int val
)
2861 BUG_ON((preempt_count() < 0));
2862 preempt_count() += val
;
2864 * Spinlock count overflowing soon?
2866 BUG_ON((preempt_count() & PREEMPT_MASK
) >= PREEMPT_MASK
-10);
2868 EXPORT_SYMBOL(add_preempt_count
);
2870 void fastcall
sub_preempt_count(int val
)
2875 BUG_ON(val
> preempt_count());
2877 * Is the spinlock portion underflowing?
2879 BUG_ON((val
< PREEMPT_MASK
) && !(preempt_count() & PREEMPT_MASK
));
2880 preempt_count() -= val
;
2882 EXPORT_SYMBOL(sub_preempt_count
);
2886 static inline int interactive_sleep(enum sleep_type sleep_type
)
2888 return (sleep_type
== SLEEP_INTERACTIVE
||
2889 sleep_type
== SLEEP_INTERRUPTED
);
2893 * schedule() is the main scheduler function.
2895 asmlinkage
void __sched
schedule(void)
2898 task_t
*prev
, *next
;
2900 prio_array_t
*array
;
2901 struct list_head
*queue
;
2902 unsigned long long now
;
2903 unsigned long run_time
;
2904 int cpu
, idx
, new_prio
;
2907 * Test if we are atomic. Since do_exit() needs to call into
2908 * schedule() atomically, we ignore that path for now.
2909 * Otherwise, whine if we are scheduling when we should not be.
2911 if (unlikely(in_atomic() && !current
->exit_state
)) {
2912 printk(KERN_ERR
"BUG: scheduling while atomic: "
2914 current
->comm
, preempt_count(), current
->pid
);
2917 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2922 release_kernel_lock(prev
);
2923 need_resched_nonpreemptible
:
2927 * The idle thread is not allowed to schedule!
2928 * Remove this check after it has been exercised a bit.
2930 if (unlikely(prev
== rq
->idle
) && prev
->state
!= TASK_RUNNING
) {
2931 printk(KERN_ERR
"bad: scheduling from the idle thread!\n");
2935 schedstat_inc(rq
, sched_cnt
);
2936 now
= sched_clock();
2937 if (likely((long long)(now
- prev
->timestamp
) < NS_MAX_SLEEP_AVG
)) {
2938 run_time
= now
- prev
->timestamp
;
2939 if (unlikely((long long)(now
- prev
->timestamp
) < 0))
2942 run_time
= NS_MAX_SLEEP_AVG
;
2945 * Tasks charged proportionately less run_time at high sleep_avg to
2946 * delay them losing their interactive status
2948 run_time
/= (CURRENT_BONUS(prev
) ? : 1);
2950 spin_lock_irq(&rq
->lock
);
2952 if (unlikely(prev
->flags
& PF_DEAD
))
2953 prev
->state
= EXIT_DEAD
;
2955 switch_count
= &prev
->nivcsw
;
2956 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2957 switch_count
= &prev
->nvcsw
;
2958 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
2959 unlikely(signal_pending(prev
))))
2960 prev
->state
= TASK_RUNNING
;
2962 if (prev
->state
== TASK_UNINTERRUPTIBLE
)
2963 rq
->nr_uninterruptible
++;
2964 deactivate_task(prev
, rq
);
2968 cpu
= smp_processor_id();
2969 if (unlikely(!rq
->nr_running
)) {
2971 idle_balance(cpu
, rq
);
2972 if (!rq
->nr_running
) {
2974 rq
->expired_timestamp
= 0;
2975 wake_sleeping_dependent(cpu
, rq
);
2977 * wake_sleeping_dependent() might have released
2978 * the runqueue, so break out if we got new
2981 if (!rq
->nr_running
)
2985 if (dependent_sleeper(cpu
, rq
)) {
2990 * dependent_sleeper() releases and reacquires the runqueue
2991 * lock, hence go into the idle loop if the rq went
2994 if (unlikely(!rq
->nr_running
))
2999 if (unlikely(!array
->nr_active
)) {
3001 * Switch the active and expired arrays.
3003 schedstat_inc(rq
, sched_switch
);
3004 rq
->active
= rq
->expired
;
3005 rq
->expired
= array
;
3007 rq
->expired_timestamp
= 0;
3008 rq
->best_expired_prio
= MAX_PRIO
;
3011 idx
= sched_find_first_bit(array
->bitmap
);
3012 queue
= array
->queue
+ idx
;
3013 next
= list_entry(queue
->next
, task_t
, run_list
);
3015 if (!rt_task(next
) && interactive_sleep(next
->sleep_type
)) {
3016 unsigned long long delta
= now
- next
->timestamp
;
3017 if (unlikely((long long)(now
- next
->timestamp
) < 0))
3020 if (next
->sleep_type
== SLEEP_INTERACTIVE
)
3021 delta
= delta
* (ON_RUNQUEUE_WEIGHT
* 128 / 100) / 128;
3023 array
= next
->array
;
3024 new_prio
= recalc_task_prio(next
, next
->timestamp
+ delta
);
3026 if (unlikely(next
->prio
!= new_prio
)) {
3027 dequeue_task(next
, array
);
3028 next
->prio
= new_prio
;
3029 enqueue_task(next
, array
);
3032 next
->sleep_type
= SLEEP_NORMAL
;
3034 if (next
== rq
->idle
)
3035 schedstat_inc(rq
, sched_goidle
);
3037 prefetch_stack(next
);
3038 clear_tsk_need_resched(prev
);
3039 rcu_qsctr_inc(task_cpu(prev
));
3041 update_cpu_clock(prev
, rq
, now
);
3043 prev
->sleep_avg
-= run_time
;
3044 if ((long)prev
->sleep_avg
<= 0)
3045 prev
->sleep_avg
= 0;
3046 prev
->timestamp
= prev
->last_ran
= now
;
3048 sched_info_switch(prev
, next
);
3049 if (likely(prev
!= next
)) {
3050 next
->timestamp
= now
;
3055 prepare_task_switch(rq
, next
);
3056 prev
= context_switch(rq
, prev
, next
);
3059 * this_rq must be evaluated again because prev may have moved
3060 * CPUs since it called schedule(), thus the 'rq' on its stack
3061 * frame will be invalid.
3063 finish_task_switch(this_rq(), prev
);
3065 spin_unlock_irq(&rq
->lock
);
3068 if (unlikely(reacquire_kernel_lock(prev
) < 0))
3069 goto need_resched_nonpreemptible
;
3070 preempt_enable_no_resched();
3071 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3075 EXPORT_SYMBOL(schedule
);
3077 #ifdef CONFIG_PREEMPT
3079 * this is is the entry point to schedule() from in-kernel preemption
3080 * off of preempt_enable. Kernel preemptions off return from interrupt
3081 * occur there and call schedule directly.
3083 asmlinkage
void __sched
preempt_schedule(void)
3085 struct thread_info
*ti
= current_thread_info();
3086 #ifdef CONFIG_PREEMPT_BKL
3087 struct task_struct
*task
= current
;
3088 int saved_lock_depth
;
3091 * If there is a non-zero preempt_count or interrupts are disabled,
3092 * we do not want to preempt the current task. Just return..
3094 if (unlikely(ti
->preempt_count
|| irqs_disabled()))
3098 add_preempt_count(PREEMPT_ACTIVE
);
3100 * We keep the big kernel semaphore locked, but we
3101 * clear ->lock_depth so that schedule() doesnt
3102 * auto-release the semaphore:
3104 #ifdef CONFIG_PREEMPT_BKL
3105 saved_lock_depth
= task
->lock_depth
;
3106 task
->lock_depth
= -1;
3109 #ifdef CONFIG_PREEMPT_BKL
3110 task
->lock_depth
= saved_lock_depth
;
3112 sub_preempt_count(PREEMPT_ACTIVE
);
3114 /* we could miss a preemption opportunity between schedule and now */
3116 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3120 EXPORT_SYMBOL(preempt_schedule
);
3123 * this is is the entry point to schedule() from kernel preemption
3124 * off of irq context.
3125 * Note, that this is called and return with irqs disabled. This will
3126 * protect us against recursive calling from irq.
3128 asmlinkage
void __sched
preempt_schedule_irq(void)
3130 struct thread_info
*ti
= current_thread_info();
3131 #ifdef CONFIG_PREEMPT_BKL
3132 struct task_struct
*task
= current
;
3133 int saved_lock_depth
;
3135 /* Catch callers which need to be fixed*/
3136 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3139 add_preempt_count(PREEMPT_ACTIVE
);
3141 * We keep the big kernel semaphore locked, but we
3142 * clear ->lock_depth so that schedule() doesnt
3143 * auto-release the semaphore:
3145 #ifdef CONFIG_PREEMPT_BKL
3146 saved_lock_depth
= task
->lock_depth
;
3147 task
->lock_depth
= -1;
3151 local_irq_disable();
3152 #ifdef CONFIG_PREEMPT_BKL
3153 task
->lock_depth
= saved_lock_depth
;
3155 sub_preempt_count(PREEMPT_ACTIVE
);
3157 /* we could miss a preemption opportunity between schedule and now */
3159 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3163 #endif /* CONFIG_PREEMPT */
3165 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3168 task_t
*p
= curr
->private;
3169 return try_to_wake_up(p
, mode
, sync
);
3172 EXPORT_SYMBOL(default_wake_function
);
3175 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3176 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3177 * number) then we wake all the non-exclusive tasks and one exclusive task.
3179 * There are circumstances in which we can try to wake a task which has already
3180 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3181 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3183 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3184 int nr_exclusive
, int sync
, void *key
)
3186 struct list_head
*tmp
, *next
;
3188 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3191 curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3192 flags
= curr
->flags
;
3193 if (curr
->func(curr
, mode
, sync
, key
) &&
3194 (flags
& WQ_FLAG_EXCLUSIVE
) &&
3201 * __wake_up - wake up threads blocked on a waitqueue.
3203 * @mode: which threads
3204 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3205 * @key: is directly passed to the wakeup function
3207 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3208 int nr_exclusive
, void *key
)
3210 unsigned long flags
;
3212 spin_lock_irqsave(&q
->lock
, flags
);
3213 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3214 spin_unlock_irqrestore(&q
->lock
, flags
);
3217 EXPORT_SYMBOL(__wake_up
);
3220 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3222 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3224 __wake_up_common(q
, mode
, 1, 0, NULL
);
3228 * __wake_up_sync - wake up threads blocked on a waitqueue.
3230 * @mode: which threads
3231 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3233 * The sync wakeup differs that the waker knows that it will schedule
3234 * away soon, so while the target thread will be woken up, it will not
3235 * be migrated to another CPU - ie. the two threads are 'synchronized'
3236 * with each other. This can prevent needless bouncing between CPUs.
3238 * On UP it can prevent extra preemption.
3241 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3243 unsigned long flags
;
3249 if (unlikely(!nr_exclusive
))
3252 spin_lock_irqsave(&q
->lock
, flags
);
3253 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3254 spin_unlock_irqrestore(&q
->lock
, flags
);
3256 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3258 void fastcall
complete(struct completion
*x
)
3260 unsigned long flags
;
3262 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3264 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3266 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3268 EXPORT_SYMBOL(complete
);
3270 void fastcall
complete_all(struct completion
*x
)
3272 unsigned long flags
;
3274 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3275 x
->done
+= UINT_MAX
/2;
3276 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3278 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3280 EXPORT_SYMBOL(complete_all
);
3282 void fastcall __sched
wait_for_completion(struct completion
*x
)
3285 spin_lock_irq(&x
->wait
.lock
);
3287 DECLARE_WAITQUEUE(wait
, current
);
3289 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3290 __add_wait_queue_tail(&x
->wait
, &wait
);
3292 __set_current_state(TASK_UNINTERRUPTIBLE
);
3293 spin_unlock_irq(&x
->wait
.lock
);
3295 spin_lock_irq(&x
->wait
.lock
);
3297 __remove_wait_queue(&x
->wait
, &wait
);
3300 spin_unlock_irq(&x
->wait
.lock
);
3302 EXPORT_SYMBOL(wait_for_completion
);
3304 unsigned long fastcall __sched
3305 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3309 spin_lock_irq(&x
->wait
.lock
);
3311 DECLARE_WAITQUEUE(wait
, current
);
3313 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3314 __add_wait_queue_tail(&x
->wait
, &wait
);
3316 __set_current_state(TASK_UNINTERRUPTIBLE
);
3317 spin_unlock_irq(&x
->wait
.lock
);
3318 timeout
= schedule_timeout(timeout
);
3319 spin_lock_irq(&x
->wait
.lock
);
3321 __remove_wait_queue(&x
->wait
, &wait
);
3325 __remove_wait_queue(&x
->wait
, &wait
);
3329 spin_unlock_irq(&x
->wait
.lock
);
3332 EXPORT_SYMBOL(wait_for_completion_timeout
);
3334 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3340 spin_lock_irq(&x
->wait
.lock
);
3342 DECLARE_WAITQUEUE(wait
, current
);
3344 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3345 __add_wait_queue_tail(&x
->wait
, &wait
);
3347 if (signal_pending(current
)) {
3349 __remove_wait_queue(&x
->wait
, &wait
);
3352 __set_current_state(TASK_INTERRUPTIBLE
);
3353 spin_unlock_irq(&x
->wait
.lock
);
3355 spin_lock_irq(&x
->wait
.lock
);
3357 __remove_wait_queue(&x
->wait
, &wait
);
3361 spin_unlock_irq(&x
->wait
.lock
);
3365 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3367 unsigned long fastcall __sched
3368 wait_for_completion_interruptible_timeout(struct completion
*x
,
3369 unsigned long timeout
)
3373 spin_lock_irq(&x
->wait
.lock
);
3375 DECLARE_WAITQUEUE(wait
, current
);
3377 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3378 __add_wait_queue_tail(&x
->wait
, &wait
);
3380 if (signal_pending(current
)) {
3381 timeout
= -ERESTARTSYS
;
3382 __remove_wait_queue(&x
->wait
, &wait
);
3385 __set_current_state(TASK_INTERRUPTIBLE
);
3386 spin_unlock_irq(&x
->wait
.lock
);
3387 timeout
= schedule_timeout(timeout
);
3388 spin_lock_irq(&x
->wait
.lock
);
3390 __remove_wait_queue(&x
->wait
, &wait
);
3394 __remove_wait_queue(&x
->wait
, &wait
);
3398 spin_unlock_irq(&x
->wait
.lock
);
3401 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3404 #define SLEEP_ON_VAR \
3405 unsigned long flags; \
3406 wait_queue_t wait; \
3407 init_waitqueue_entry(&wait, current);
3409 #define SLEEP_ON_HEAD \
3410 spin_lock_irqsave(&q->lock,flags); \
3411 __add_wait_queue(q, &wait); \
3412 spin_unlock(&q->lock);
3414 #define SLEEP_ON_TAIL \
3415 spin_lock_irq(&q->lock); \
3416 __remove_wait_queue(q, &wait); \
3417 spin_unlock_irqrestore(&q->lock, flags);
3419 void fastcall __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3423 current
->state
= TASK_INTERRUPTIBLE
;
3430 EXPORT_SYMBOL(interruptible_sleep_on
);
3432 long fastcall __sched
3433 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3437 current
->state
= TASK_INTERRUPTIBLE
;
3440 timeout
= schedule_timeout(timeout
);
3446 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3448 void fastcall __sched
sleep_on(wait_queue_head_t
*q
)
3452 current
->state
= TASK_UNINTERRUPTIBLE
;
3459 EXPORT_SYMBOL(sleep_on
);
3461 long fastcall __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3465 current
->state
= TASK_UNINTERRUPTIBLE
;
3468 timeout
= schedule_timeout(timeout
);
3474 EXPORT_SYMBOL(sleep_on_timeout
);
3476 void set_user_nice(task_t
*p
, long nice
)
3478 unsigned long flags
;
3479 prio_array_t
*array
;
3481 int old_prio
, new_prio
, delta
;
3483 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3486 * We have to be careful, if called from sys_setpriority(),
3487 * the task might be in the middle of scheduling on another CPU.
3489 rq
= task_rq_lock(p
, &flags
);
3491 * The RT priorities are set via sched_setscheduler(), but we still
3492 * allow the 'normal' nice value to be set - but as expected
3493 * it wont have any effect on scheduling until the task is
3494 * not SCHED_NORMAL/SCHED_BATCH:
3497 p
->static_prio
= NICE_TO_PRIO(nice
);
3502 dequeue_task(p
, array
);
3505 new_prio
= NICE_TO_PRIO(nice
);
3506 delta
= new_prio
- old_prio
;
3507 p
->static_prio
= NICE_TO_PRIO(nice
);
3511 enqueue_task(p
, array
);
3513 * If the task increased its priority or is running and
3514 * lowered its priority, then reschedule its CPU:
3516 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3517 resched_task(rq
->curr
);
3520 task_rq_unlock(rq
, &flags
);
3523 EXPORT_SYMBOL(set_user_nice
);
3526 * can_nice - check if a task can reduce its nice value
3530 int can_nice(const task_t
*p
, const int nice
)
3532 /* convert nice value [19,-20] to rlimit style value [1,40] */
3533 int nice_rlim
= 20 - nice
;
3534 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3535 capable(CAP_SYS_NICE
));
3538 #ifdef __ARCH_WANT_SYS_NICE
3541 * sys_nice - change the priority of the current process.
3542 * @increment: priority increment
3544 * sys_setpriority is a more generic, but much slower function that
3545 * does similar things.
3547 asmlinkage
long sys_nice(int increment
)
3553 * Setpriority might change our priority at the same moment.
3554 * We don't have to worry. Conceptually one call occurs first
3555 * and we have a single winner.
3557 if (increment
< -40)
3562 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3568 if (increment
< 0 && !can_nice(current
, nice
))
3571 retval
= security_task_setnice(current
, nice
);
3575 set_user_nice(current
, nice
);
3582 * task_prio - return the priority value of a given task.
3583 * @p: the task in question.
3585 * This is the priority value as seen by users in /proc.
3586 * RT tasks are offset by -200. Normal tasks are centered
3587 * around 0, value goes from -16 to +15.
3589 int task_prio(const task_t
*p
)
3591 return p
->prio
- MAX_RT_PRIO
;
3595 * task_nice - return the nice value of a given task.
3596 * @p: the task in question.
3598 int task_nice(const task_t
*p
)
3600 return TASK_NICE(p
);
3602 EXPORT_SYMBOL_GPL(task_nice
);
3605 * idle_cpu - is a given cpu idle currently?
3606 * @cpu: the processor in question.
3608 int idle_cpu(int cpu
)
3610 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
3614 * idle_task - return the idle task for a given cpu.
3615 * @cpu: the processor in question.
3617 task_t
*idle_task(int cpu
)
3619 return cpu_rq(cpu
)->idle
;
3623 * find_process_by_pid - find a process with a matching PID value.
3624 * @pid: the pid in question.
3626 static inline task_t
*find_process_by_pid(pid_t pid
)
3628 return pid
? find_task_by_pid(pid
) : current
;
3631 /* Actually do priority change: must hold rq lock. */
3632 static void __setscheduler(struct task_struct
*p
, int policy
, int prio
)
3636 p
->rt_priority
= prio
;
3637 if (policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) {
3638 p
->prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
3640 p
->prio
= p
->static_prio
;
3642 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3644 if (policy
== SCHED_BATCH
)
3650 * sched_setscheduler - change the scheduling policy and/or RT priority of
3652 * @p: the task in question.
3653 * @policy: new policy.
3654 * @param: structure containing the new RT priority.
3656 int sched_setscheduler(struct task_struct
*p
, int policy
,
3657 struct sched_param
*param
)
3660 int oldprio
, oldpolicy
= -1;
3661 prio_array_t
*array
;
3662 unsigned long flags
;
3666 /* double check policy once rq lock held */
3668 policy
= oldpolicy
= p
->policy
;
3669 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3670 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
)
3673 * Valid priorities for SCHED_FIFO and SCHED_RR are
3674 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3677 if (param
->sched_priority
< 0 ||
3678 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3679 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
3681 if ((policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
)
3682 != (param
->sched_priority
== 0))
3686 * Allow unprivileged RT tasks to decrease priority:
3688 if (!capable(CAP_SYS_NICE
)) {
3690 * can't change policy, except between SCHED_NORMAL
3693 if (((policy
!= SCHED_NORMAL
&& p
->policy
!= SCHED_BATCH
) &&
3694 (policy
!= SCHED_BATCH
&& p
->policy
!= SCHED_NORMAL
)) &&
3695 !p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3697 /* can't increase priority */
3698 if ((policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) &&
3699 param
->sched_priority
> p
->rt_priority
&&
3700 param
->sched_priority
>
3701 p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3703 /* can't change other user's priorities */
3704 if ((current
->euid
!= p
->euid
) &&
3705 (current
->euid
!= p
->uid
))
3709 retval
= security_task_setscheduler(p
, policy
, param
);
3713 * To be able to change p->policy safely, the apropriate
3714 * runqueue lock must be held.
3716 rq
= task_rq_lock(p
, &flags
);
3717 /* recheck policy now with rq lock held */
3718 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3719 policy
= oldpolicy
= -1;
3720 task_rq_unlock(rq
, &flags
);
3725 deactivate_task(p
, rq
);
3727 __setscheduler(p
, policy
, param
->sched_priority
);
3729 __activate_task(p
, rq
);
3731 * Reschedule if we are currently running on this runqueue and
3732 * our priority decreased, or if we are not currently running on
3733 * this runqueue and our priority is higher than the current's
3735 if (task_running(rq
, p
)) {
3736 if (p
->prio
> oldprio
)
3737 resched_task(rq
->curr
);
3738 } else if (TASK_PREEMPTS_CURR(p
, rq
))
3739 resched_task(rq
->curr
);
3741 task_rq_unlock(rq
, &flags
);
3744 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3747 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3750 struct sched_param lparam
;
3751 struct task_struct
*p
;
3753 if (!param
|| pid
< 0)
3755 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3757 read_lock_irq(&tasklist_lock
);
3758 p
= find_process_by_pid(pid
);
3760 read_unlock_irq(&tasklist_lock
);
3763 retval
= sched_setscheduler(p
, policy
, &lparam
);
3764 read_unlock_irq(&tasklist_lock
);
3769 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3770 * @pid: the pid in question.
3771 * @policy: new policy.
3772 * @param: structure containing the new RT priority.
3774 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
3775 struct sched_param __user
*param
)
3777 /* negative values for policy are not valid */
3781 return do_sched_setscheduler(pid
, policy
, param
);
3785 * sys_sched_setparam - set/change the RT priority of a thread
3786 * @pid: the pid in question.
3787 * @param: structure containing the new RT priority.
3789 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
3791 return do_sched_setscheduler(pid
, -1, param
);
3795 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3796 * @pid: the pid in question.
3798 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
3800 int retval
= -EINVAL
;
3807 read_lock(&tasklist_lock
);
3808 p
= find_process_by_pid(pid
);
3810 retval
= security_task_getscheduler(p
);
3814 read_unlock(&tasklist_lock
);
3821 * sys_sched_getscheduler - get the RT priority of a thread
3822 * @pid: the pid in question.
3823 * @param: structure containing the RT priority.
3825 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
3827 struct sched_param lp
;
3828 int retval
= -EINVAL
;
3831 if (!param
|| pid
< 0)
3834 read_lock(&tasklist_lock
);
3835 p
= find_process_by_pid(pid
);
3840 retval
= security_task_getscheduler(p
);
3844 lp
.sched_priority
= p
->rt_priority
;
3845 read_unlock(&tasklist_lock
);
3848 * This one might sleep, we cannot do it with a spinlock held ...
3850 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3856 read_unlock(&tasklist_lock
);
3860 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
3864 cpumask_t cpus_allowed
;
3867 read_lock(&tasklist_lock
);
3869 p
= find_process_by_pid(pid
);
3871 read_unlock(&tasklist_lock
);
3872 unlock_cpu_hotplug();
3877 * It is not safe to call set_cpus_allowed with the
3878 * tasklist_lock held. We will bump the task_struct's
3879 * usage count and then drop tasklist_lock.
3882 read_unlock(&tasklist_lock
);
3885 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
3886 !capable(CAP_SYS_NICE
))
3889 cpus_allowed
= cpuset_cpus_allowed(p
);
3890 cpus_and(new_mask
, new_mask
, cpus_allowed
);
3891 retval
= set_cpus_allowed(p
, new_mask
);
3895 unlock_cpu_hotplug();
3899 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
3900 cpumask_t
*new_mask
)
3902 if (len
< sizeof(cpumask_t
)) {
3903 memset(new_mask
, 0, sizeof(cpumask_t
));
3904 } else if (len
> sizeof(cpumask_t
)) {
3905 len
= sizeof(cpumask_t
);
3907 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
3911 * sys_sched_setaffinity - set the cpu affinity of a process
3912 * @pid: pid of the process
3913 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3914 * @user_mask_ptr: user-space pointer to the new cpu mask
3916 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
3917 unsigned long __user
*user_mask_ptr
)
3922 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
3926 return sched_setaffinity(pid
, new_mask
);
3930 * Represents all cpu's present in the system
3931 * In systems capable of hotplug, this map could dynamically grow
3932 * as new cpu's are detected in the system via any platform specific
3933 * method, such as ACPI for e.g.
3936 cpumask_t cpu_present_map __read_mostly
;
3937 EXPORT_SYMBOL(cpu_present_map
);
3940 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
3941 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
3944 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
3950 read_lock(&tasklist_lock
);
3953 p
= find_process_by_pid(pid
);
3958 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
3961 read_unlock(&tasklist_lock
);
3962 unlock_cpu_hotplug();
3970 * sys_sched_getaffinity - get the cpu affinity of a process
3971 * @pid: pid of the process
3972 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3973 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3975 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
3976 unsigned long __user
*user_mask_ptr
)
3981 if (len
< sizeof(cpumask_t
))
3984 ret
= sched_getaffinity(pid
, &mask
);
3988 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
3991 return sizeof(cpumask_t
);
3995 * sys_sched_yield - yield the current processor to other threads.
3997 * this function yields the current CPU by moving the calling thread
3998 * to the expired array. If there are no other threads running on this
3999 * CPU then this function will return.
4001 asmlinkage
long sys_sched_yield(void)
4003 runqueue_t
*rq
= this_rq_lock();
4004 prio_array_t
*array
= current
->array
;
4005 prio_array_t
*target
= rq
->expired
;
4007 schedstat_inc(rq
, yld_cnt
);
4009 * We implement yielding by moving the task into the expired
4012 * (special rule: RT tasks will just roundrobin in the active
4015 if (rt_task(current
))
4016 target
= rq
->active
;
4018 if (array
->nr_active
== 1) {
4019 schedstat_inc(rq
, yld_act_empty
);
4020 if (!rq
->expired
->nr_active
)
4021 schedstat_inc(rq
, yld_both_empty
);
4022 } else if (!rq
->expired
->nr_active
)
4023 schedstat_inc(rq
, yld_exp_empty
);
4025 if (array
!= target
) {
4026 dequeue_task(current
, array
);
4027 enqueue_task(current
, target
);
4030 * requeue_task is cheaper so perform that if possible.
4032 requeue_task(current
, array
);
4035 * Since we are going to call schedule() anyway, there's
4036 * no need to preempt or enable interrupts:
4038 __release(rq
->lock
);
4039 _raw_spin_unlock(&rq
->lock
);
4040 preempt_enable_no_resched();
4047 static inline void __cond_resched(void)
4050 * The BKS might be reacquired before we have dropped
4051 * PREEMPT_ACTIVE, which could trigger a second
4052 * cond_resched() call.
4054 if (unlikely(preempt_count()))
4056 if (unlikely(system_state
!= SYSTEM_RUNNING
))
4059 add_preempt_count(PREEMPT_ACTIVE
);
4061 sub_preempt_count(PREEMPT_ACTIVE
);
4062 } while (need_resched());
4065 int __sched
cond_resched(void)
4067 if (need_resched()) {
4074 EXPORT_SYMBOL(cond_resched
);
4077 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4078 * call schedule, and on return reacquire the lock.
4080 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4081 * operations here to prevent schedule() from being called twice (once via
4082 * spin_unlock(), once by hand).
4084 int cond_resched_lock(spinlock_t
*lock
)
4088 if (need_lockbreak(lock
)) {
4094 if (need_resched()) {
4095 _raw_spin_unlock(lock
);
4096 preempt_enable_no_resched();
4104 EXPORT_SYMBOL(cond_resched_lock
);
4106 int __sched
cond_resched_softirq(void)
4108 BUG_ON(!in_softirq());
4110 if (need_resched()) {
4111 __local_bh_enable();
4119 EXPORT_SYMBOL(cond_resched_softirq
);
4123 * yield - yield the current processor to other threads.
4125 * this is a shortcut for kernel-space yielding - it marks the
4126 * thread runnable and calls sys_sched_yield().
4128 void __sched
yield(void)
4130 set_current_state(TASK_RUNNING
);
4134 EXPORT_SYMBOL(yield
);
4137 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4138 * that process accounting knows that this is a task in IO wait state.
4140 * But don't do that if it is a deliberate, throttling IO wait (this task
4141 * has set its backing_dev_info: the queue against which it should throttle)
4143 void __sched
io_schedule(void)
4145 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4147 atomic_inc(&rq
->nr_iowait
);
4149 atomic_dec(&rq
->nr_iowait
);
4152 EXPORT_SYMBOL(io_schedule
);
4154 long __sched
io_schedule_timeout(long timeout
)
4156 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4159 atomic_inc(&rq
->nr_iowait
);
4160 ret
= schedule_timeout(timeout
);
4161 atomic_dec(&rq
->nr_iowait
);
4166 * sys_sched_get_priority_max - return maximum RT priority.
4167 * @policy: scheduling class.
4169 * this syscall returns the maximum rt_priority that can be used
4170 * by a given scheduling class.
4172 asmlinkage
long sys_sched_get_priority_max(int policy
)
4179 ret
= MAX_USER_RT_PRIO
-1;
4190 * sys_sched_get_priority_min - return minimum RT priority.
4191 * @policy: scheduling class.
4193 * this syscall returns the minimum rt_priority that can be used
4194 * by a given scheduling class.
4196 asmlinkage
long sys_sched_get_priority_min(int policy
)
4213 * sys_sched_rr_get_interval - return the default timeslice of a process.
4214 * @pid: pid of the process.
4215 * @interval: userspace pointer to the timeslice value.
4217 * this syscall writes the default timeslice value of a given process
4218 * into the user-space timespec buffer. A value of '0' means infinity.
4221 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4223 int retval
= -EINVAL
;
4231 read_lock(&tasklist_lock
);
4232 p
= find_process_by_pid(pid
);
4236 retval
= security_task_getscheduler(p
);
4240 jiffies_to_timespec(p
->policy
& SCHED_FIFO
?
4241 0 : task_timeslice(p
), &t
);
4242 read_unlock(&tasklist_lock
);
4243 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4247 read_unlock(&tasklist_lock
);
4251 static inline struct task_struct
*eldest_child(struct task_struct
*p
)
4253 if (list_empty(&p
->children
)) return NULL
;
4254 return list_entry(p
->children
.next
,struct task_struct
,sibling
);
4257 static inline struct task_struct
*older_sibling(struct task_struct
*p
)
4259 if (p
->sibling
.prev
==&p
->parent
->children
) return NULL
;
4260 return list_entry(p
->sibling
.prev
,struct task_struct
,sibling
);
4263 static inline struct task_struct
*younger_sibling(struct task_struct
*p
)
4265 if (p
->sibling
.next
==&p
->parent
->children
) return NULL
;
4266 return list_entry(p
->sibling
.next
,struct task_struct
,sibling
);
4269 static void show_task(task_t
*p
)
4273 unsigned long free
= 0;
4274 static const char *stat_nam
[] = { "R", "S", "D", "T", "t", "Z", "X" };
4276 printk("%-13.13s ", p
->comm
);
4277 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4278 if (state
< ARRAY_SIZE(stat_nam
))
4279 printk(stat_nam
[state
]);
4282 #if (BITS_PER_LONG == 32)
4283 if (state
== TASK_RUNNING
)
4284 printk(" running ");
4286 printk(" %08lX ", thread_saved_pc(p
));
4288 if (state
== TASK_RUNNING
)
4289 printk(" running task ");
4291 printk(" %016lx ", thread_saved_pc(p
));
4293 #ifdef CONFIG_DEBUG_STACK_USAGE
4295 unsigned long *n
= end_of_stack(p
);
4298 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4301 printk("%5lu %5d %6d ", free
, p
->pid
, p
->parent
->pid
);
4302 if ((relative
= eldest_child(p
)))
4303 printk("%5d ", relative
->pid
);
4306 if ((relative
= younger_sibling(p
)))
4307 printk("%7d", relative
->pid
);
4310 if ((relative
= older_sibling(p
)))
4311 printk(" %5d", relative
->pid
);
4315 printk(" (L-TLB)\n");
4317 printk(" (NOTLB)\n");
4319 if (state
!= TASK_RUNNING
)
4320 show_stack(p
, NULL
);
4323 void show_state(void)
4327 #if (BITS_PER_LONG == 32)
4330 printk(" task PC pid father child younger older\n");
4334 printk(" task PC pid father child younger older\n");
4336 read_lock(&tasklist_lock
);
4337 do_each_thread(g
, p
) {
4339 * reset the NMI-timeout, listing all files on a slow
4340 * console might take alot of time:
4342 touch_nmi_watchdog();
4344 } while_each_thread(g
, p
);
4346 read_unlock(&tasklist_lock
);
4347 mutex_debug_show_all_locks();
4351 * init_idle - set up an idle thread for a given CPU
4352 * @idle: task in question
4353 * @cpu: cpu the idle task belongs to
4355 * NOTE: this function does not set the idle thread's NEED_RESCHED
4356 * flag, to make booting more robust.
4358 void __devinit
init_idle(task_t
*idle
, int cpu
)
4360 runqueue_t
*rq
= cpu_rq(cpu
);
4361 unsigned long flags
;
4363 idle
->timestamp
= sched_clock();
4364 idle
->sleep_avg
= 0;
4366 idle
->prio
= MAX_PRIO
;
4367 idle
->state
= TASK_RUNNING
;
4368 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4369 set_task_cpu(idle
, cpu
);
4371 spin_lock_irqsave(&rq
->lock
, flags
);
4372 rq
->curr
= rq
->idle
= idle
;
4373 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4376 spin_unlock_irqrestore(&rq
->lock
, flags
);
4378 /* Set the preempt count _outside_ the spinlocks! */
4379 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4380 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4382 task_thread_info(idle
)->preempt_count
= 0;
4387 * In a system that switches off the HZ timer nohz_cpu_mask
4388 * indicates which cpus entered this state. This is used
4389 * in the rcu update to wait only for active cpus. For system
4390 * which do not switch off the HZ timer nohz_cpu_mask should
4391 * always be CPU_MASK_NONE.
4393 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4397 * This is how migration works:
4399 * 1) we queue a migration_req_t structure in the source CPU's
4400 * runqueue and wake up that CPU's migration thread.
4401 * 2) we down() the locked semaphore => thread blocks.
4402 * 3) migration thread wakes up (implicitly it forces the migrated
4403 * thread off the CPU)
4404 * 4) it gets the migration request and checks whether the migrated
4405 * task is still in the wrong runqueue.
4406 * 5) if it's in the wrong runqueue then the migration thread removes
4407 * it and puts it into the right queue.
4408 * 6) migration thread up()s the semaphore.
4409 * 7) we wake up and the migration is done.
4413 * Change a given task's CPU affinity. Migrate the thread to a
4414 * proper CPU and schedule it away if the CPU it's executing on
4415 * is removed from the allowed bitmask.
4417 * NOTE: the caller must have a valid reference to the task, the
4418 * task must not exit() & deallocate itself prematurely. The
4419 * call is not atomic; no spinlocks may be held.
4421 int set_cpus_allowed(task_t
*p
, cpumask_t new_mask
)
4423 unsigned long flags
;
4425 migration_req_t req
;
4428 rq
= task_rq_lock(p
, &flags
);
4429 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4434 p
->cpus_allowed
= new_mask
;
4435 /* Can the task run on the task's current CPU? If so, we're done */
4436 if (cpu_isset(task_cpu(p
), new_mask
))
4439 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4440 /* Need help from migration thread: drop lock and wait. */
4441 task_rq_unlock(rq
, &flags
);
4442 wake_up_process(rq
->migration_thread
);
4443 wait_for_completion(&req
.done
);
4444 tlb_migrate_finish(p
->mm
);
4448 task_rq_unlock(rq
, &flags
);
4452 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4455 * Move (not current) task off this cpu, onto dest cpu. We're doing
4456 * this because either it can't run here any more (set_cpus_allowed()
4457 * away from this CPU, or CPU going down), or because we're
4458 * attempting to rebalance this task on exec (sched_exec).
4460 * So we race with normal scheduler movements, but that's OK, as long
4461 * as the task is no longer on this CPU.
4463 static void __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4465 runqueue_t
*rq_dest
, *rq_src
;
4467 if (unlikely(cpu_is_offline(dest_cpu
)))
4470 rq_src
= cpu_rq(src_cpu
);
4471 rq_dest
= cpu_rq(dest_cpu
);
4473 double_rq_lock(rq_src
, rq_dest
);
4474 /* Already moved. */
4475 if (task_cpu(p
) != src_cpu
)
4477 /* Affinity changed (again). */
4478 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4481 set_task_cpu(p
, dest_cpu
);
4484 * Sync timestamp with rq_dest's before activating.
4485 * The same thing could be achieved by doing this step
4486 * afterwards, and pretending it was a local activate.
4487 * This way is cleaner and logically correct.
4489 p
->timestamp
= p
->timestamp
- rq_src
->timestamp_last_tick
4490 + rq_dest
->timestamp_last_tick
;
4491 deactivate_task(p
, rq_src
);
4492 activate_task(p
, rq_dest
, 0);
4493 if (TASK_PREEMPTS_CURR(p
, rq_dest
))
4494 resched_task(rq_dest
->curr
);
4498 double_rq_unlock(rq_src
, rq_dest
);
4502 * migration_thread - this is a highprio system thread that performs
4503 * thread migration by bumping thread off CPU then 'pushing' onto
4506 static int migration_thread(void *data
)
4509 int cpu
= (long)data
;
4512 BUG_ON(rq
->migration_thread
!= current
);
4514 set_current_state(TASK_INTERRUPTIBLE
);
4515 while (!kthread_should_stop()) {
4516 struct list_head
*head
;
4517 migration_req_t
*req
;
4521 spin_lock_irq(&rq
->lock
);
4523 if (cpu_is_offline(cpu
)) {
4524 spin_unlock_irq(&rq
->lock
);
4528 if (rq
->active_balance
) {
4529 active_load_balance(rq
, cpu
);
4530 rq
->active_balance
= 0;
4533 head
= &rq
->migration_queue
;
4535 if (list_empty(head
)) {
4536 spin_unlock_irq(&rq
->lock
);
4538 set_current_state(TASK_INTERRUPTIBLE
);
4541 req
= list_entry(head
->next
, migration_req_t
, list
);
4542 list_del_init(head
->next
);
4544 spin_unlock(&rq
->lock
);
4545 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4548 complete(&req
->done
);
4550 __set_current_state(TASK_RUNNING
);
4554 /* Wait for kthread_stop */
4555 set_current_state(TASK_INTERRUPTIBLE
);
4556 while (!kthread_should_stop()) {
4558 set_current_state(TASK_INTERRUPTIBLE
);
4560 __set_current_state(TASK_RUNNING
);
4564 #ifdef CONFIG_HOTPLUG_CPU
4565 /* Figure out where task on dead CPU should go, use force if neccessary. */
4566 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*tsk
)
4572 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4573 cpus_and(mask
, mask
, tsk
->cpus_allowed
);
4574 dest_cpu
= any_online_cpu(mask
);
4576 /* On any allowed CPU? */
4577 if (dest_cpu
== NR_CPUS
)
4578 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4580 /* No more Mr. Nice Guy. */
4581 if (dest_cpu
== NR_CPUS
) {
4582 cpus_setall(tsk
->cpus_allowed
);
4583 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4586 * Don't tell them about moving exiting tasks or
4587 * kernel threads (both mm NULL), since they never
4590 if (tsk
->mm
&& printk_ratelimit())
4591 printk(KERN_INFO
"process %d (%s) no "
4592 "longer affine to cpu%d\n",
4593 tsk
->pid
, tsk
->comm
, dead_cpu
);
4595 __migrate_task(tsk
, dead_cpu
, dest_cpu
);
4599 * While a dead CPU has no uninterruptible tasks queued at this point,
4600 * it might still have a nonzero ->nr_uninterruptible counter, because
4601 * for performance reasons the counter is not stricly tracking tasks to
4602 * their home CPUs. So we just add the counter to another CPU's counter,
4603 * to keep the global sum constant after CPU-down:
4605 static void migrate_nr_uninterruptible(runqueue_t
*rq_src
)
4607 runqueue_t
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
4608 unsigned long flags
;
4610 local_irq_save(flags
);
4611 double_rq_lock(rq_src
, rq_dest
);
4612 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
4613 rq_src
->nr_uninterruptible
= 0;
4614 double_rq_unlock(rq_src
, rq_dest
);
4615 local_irq_restore(flags
);
4618 /* Run through task list and migrate tasks from the dead cpu. */
4619 static void migrate_live_tasks(int src_cpu
)
4621 struct task_struct
*tsk
, *t
;
4623 write_lock_irq(&tasklist_lock
);
4625 do_each_thread(t
, tsk
) {
4629 if (task_cpu(tsk
) == src_cpu
)
4630 move_task_off_dead_cpu(src_cpu
, tsk
);
4631 } while_each_thread(t
, tsk
);
4633 write_unlock_irq(&tasklist_lock
);
4636 /* Schedules idle task to be the next runnable task on current CPU.
4637 * It does so by boosting its priority to highest possible and adding it to
4638 * the _front_ of runqueue. Used by CPU offline code.
4640 void sched_idle_next(void)
4642 int cpu
= smp_processor_id();
4643 runqueue_t
*rq
= this_rq();
4644 struct task_struct
*p
= rq
->idle
;
4645 unsigned long flags
;
4647 /* cpu has to be offline */
4648 BUG_ON(cpu_online(cpu
));
4650 /* Strictly not necessary since rest of the CPUs are stopped by now
4651 * and interrupts disabled on current cpu.
4653 spin_lock_irqsave(&rq
->lock
, flags
);
4655 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4656 /* Add idle task to _front_ of it's priority queue */
4657 __activate_idle_task(p
, rq
);
4659 spin_unlock_irqrestore(&rq
->lock
, flags
);
4662 /* Ensures that the idle task is using init_mm right before its cpu goes
4665 void idle_task_exit(void)
4667 struct mm_struct
*mm
= current
->active_mm
;
4669 BUG_ON(cpu_online(smp_processor_id()));
4672 switch_mm(mm
, &init_mm
, current
);
4676 static void migrate_dead(unsigned int dead_cpu
, task_t
*tsk
)
4678 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4680 /* Must be exiting, otherwise would be on tasklist. */
4681 BUG_ON(tsk
->exit_state
!= EXIT_ZOMBIE
&& tsk
->exit_state
!= EXIT_DEAD
);
4683 /* Cannot have done final schedule yet: would have vanished. */
4684 BUG_ON(tsk
->flags
& PF_DEAD
);
4686 get_task_struct(tsk
);
4689 * Drop lock around migration; if someone else moves it,
4690 * that's OK. No task can be added to this CPU, so iteration is
4693 spin_unlock_irq(&rq
->lock
);
4694 move_task_off_dead_cpu(dead_cpu
, tsk
);
4695 spin_lock_irq(&rq
->lock
);
4697 put_task_struct(tsk
);
4700 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4701 static void migrate_dead_tasks(unsigned int dead_cpu
)
4704 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4706 for (arr
= 0; arr
< 2; arr
++) {
4707 for (i
= 0; i
< MAX_PRIO
; i
++) {
4708 struct list_head
*list
= &rq
->arrays
[arr
].queue
[i
];
4709 while (!list_empty(list
))
4710 migrate_dead(dead_cpu
,
4711 list_entry(list
->next
, task_t
,
4716 #endif /* CONFIG_HOTPLUG_CPU */
4719 * migration_call - callback that gets triggered when a CPU is added.
4720 * Here we can start up the necessary migration thread for the new CPU.
4722 static int migration_call(struct notifier_block
*nfb
, unsigned long action
,
4725 int cpu
= (long)hcpu
;
4726 struct task_struct
*p
;
4727 struct runqueue
*rq
;
4728 unsigned long flags
;
4731 case CPU_UP_PREPARE
:
4732 p
= kthread_create(migration_thread
, hcpu
, "migration/%d",cpu
);
4735 p
->flags
|= PF_NOFREEZE
;
4736 kthread_bind(p
, cpu
);
4737 /* Must be high prio: stop_machine expects to yield to it. */
4738 rq
= task_rq_lock(p
, &flags
);
4739 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4740 task_rq_unlock(rq
, &flags
);
4741 cpu_rq(cpu
)->migration_thread
= p
;
4744 /* Strictly unneccessary, as first user will wake it. */
4745 wake_up_process(cpu_rq(cpu
)->migration_thread
);
4747 #ifdef CONFIG_HOTPLUG_CPU
4748 case CPU_UP_CANCELED
:
4749 /* Unbind it from offline cpu so it can run. Fall thru. */
4750 kthread_bind(cpu_rq(cpu
)->migration_thread
,
4751 any_online_cpu(cpu_online_map
));
4752 kthread_stop(cpu_rq(cpu
)->migration_thread
);
4753 cpu_rq(cpu
)->migration_thread
= NULL
;
4756 migrate_live_tasks(cpu
);
4758 kthread_stop(rq
->migration_thread
);
4759 rq
->migration_thread
= NULL
;
4760 /* Idle task back to normal (off runqueue, low prio) */
4761 rq
= task_rq_lock(rq
->idle
, &flags
);
4762 deactivate_task(rq
->idle
, rq
);
4763 rq
->idle
->static_prio
= MAX_PRIO
;
4764 __setscheduler(rq
->idle
, SCHED_NORMAL
, 0);
4765 migrate_dead_tasks(cpu
);
4766 task_rq_unlock(rq
, &flags
);
4767 migrate_nr_uninterruptible(rq
);
4768 BUG_ON(rq
->nr_running
!= 0);
4770 /* No need to migrate the tasks: it was best-effort if
4771 * they didn't do lock_cpu_hotplug(). Just wake up
4772 * the requestors. */
4773 spin_lock_irq(&rq
->lock
);
4774 while (!list_empty(&rq
->migration_queue
)) {
4775 migration_req_t
*req
;
4776 req
= list_entry(rq
->migration_queue
.next
,
4777 migration_req_t
, list
);
4778 list_del_init(&req
->list
);
4779 complete(&req
->done
);
4781 spin_unlock_irq(&rq
->lock
);
4788 /* Register at highest priority so that task migration (migrate_all_tasks)
4789 * happens before everything else.
4791 static struct notifier_block migration_notifier
= {
4792 .notifier_call
= migration_call
,
4796 int __init
migration_init(void)
4798 void *cpu
= (void *)(long)smp_processor_id();
4799 /* Start one for boot CPU. */
4800 migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
4801 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
4802 register_cpu_notifier(&migration_notifier
);
4808 #undef SCHED_DOMAIN_DEBUG
4809 #ifdef SCHED_DOMAIN_DEBUG
4810 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
4815 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
4819 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
4824 struct sched_group
*group
= sd
->groups
;
4825 cpumask_t groupmask
;
4827 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
4828 cpus_clear(groupmask
);
4831 for (i
= 0; i
< level
+ 1; i
++)
4833 printk("domain %d: ", level
);
4835 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
4836 printk("does not load-balance\n");
4838 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
4842 printk("span %s\n", str
);
4844 if (!cpu_isset(cpu
, sd
->span
))
4845 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
4846 if (!cpu_isset(cpu
, group
->cpumask
))
4847 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
4850 for (i
= 0; i
< level
+ 2; i
++)
4856 printk(KERN_ERR
"ERROR: group is NULL\n");
4860 if (!group
->cpu_power
) {
4862 printk(KERN_ERR
"ERROR: domain->cpu_power not set\n");
4865 if (!cpus_weight(group
->cpumask
)) {
4867 printk(KERN_ERR
"ERROR: empty group\n");
4870 if (cpus_intersects(groupmask
, group
->cpumask
)) {
4872 printk(KERN_ERR
"ERROR: repeated CPUs\n");
4875 cpus_or(groupmask
, groupmask
, group
->cpumask
);
4877 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
4880 group
= group
->next
;
4881 } while (group
!= sd
->groups
);
4884 if (!cpus_equal(sd
->span
, groupmask
))
4885 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
4891 if (!cpus_subset(groupmask
, sd
->span
))
4892 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
4898 #define sched_domain_debug(sd, cpu) {}
4901 static int sd_degenerate(struct sched_domain
*sd
)
4903 if (cpus_weight(sd
->span
) == 1)
4906 /* Following flags need at least 2 groups */
4907 if (sd
->flags
& (SD_LOAD_BALANCE
|
4908 SD_BALANCE_NEWIDLE
|
4911 if (sd
->groups
!= sd
->groups
->next
)
4915 /* Following flags don't use groups */
4916 if (sd
->flags
& (SD_WAKE_IDLE
|
4924 static int sd_parent_degenerate(struct sched_domain
*sd
,
4925 struct sched_domain
*parent
)
4927 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
4929 if (sd_degenerate(parent
))
4932 if (!cpus_equal(sd
->span
, parent
->span
))
4935 /* Does parent contain flags not in child? */
4936 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4937 if (cflags
& SD_WAKE_AFFINE
)
4938 pflags
&= ~SD_WAKE_BALANCE
;
4939 /* Flags needing groups don't count if only 1 group in parent */
4940 if (parent
->groups
== parent
->groups
->next
) {
4941 pflags
&= ~(SD_LOAD_BALANCE
|
4942 SD_BALANCE_NEWIDLE
|
4946 if (~cflags
& pflags
)
4953 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4954 * hold the hotplug lock.
4956 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
4958 runqueue_t
*rq
= cpu_rq(cpu
);
4959 struct sched_domain
*tmp
;
4961 /* Remove the sched domains which do not contribute to scheduling. */
4962 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
4963 struct sched_domain
*parent
= tmp
->parent
;
4966 if (sd_parent_degenerate(tmp
, parent
))
4967 tmp
->parent
= parent
->parent
;
4970 if (sd
&& sd_degenerate(sd
))
4973 sched_domain_debug(sd
, cpu
);
4975 rcu_assign_pointer(rq
->sd
, sd
);
4978 /* cpus with isolated domains */
4979 static cpumask_t __devinitdata cpu_isolated_map
= CPU_MASK_NONE
;
4981 /* Setup the mask of cpus configured for isolated domains */
4982 static int __init
isolated_cpu_setup(char *str
)
4984 int ints
[NR_CPUS
], i
;
4986 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
4987 cpus_clear(cpu_isolated_map
);
4988 for (i
= 1; i
<= ints
[0]; i
++)
4989 if (ints
[i
] < NR_CPUS
)
4990 cpu_set(ints
[i
], cpu_isolated_map
);
4994 __setup ("isolcpus=", isolated_cpu_setup
);
4997 * init_sched_build_groups takes an array of groups, the cpumask we wish
4998 * to span, and a pointer to a function which identifies what group a CPU
4999 * belongs to. The return value of group_fn must be a valid index into the
5000 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5001 * keep track of groups covered with a cpumask_t).
5003 * init_sched_build_groups will build a circular linked list of the groups
5004 * covered by the given span, and will set each group's ->cpumask correctly,
5005 * and ->cpu_power to 0.
5007 static void init_sched_build_groups(struct sched_group groups
[], cpumask_t span
,
5008 int (*group_fn
)(int cpu
))
5010 struct sched_group
*first
= NULL
, *last
= NULL
;
5011 cpumask_t covered
= CPU_MASK_NONE
;
5014 for_each_cpu_mask(i
, span
) {
5015 int group
= group_fn(i
);
5016 struct sched_group
*sg
= &groups
[group
];
5019 if (cpu_isset(i
, covered
))
5022 sg
->cpumask
= CPU_MASK_NONE
;
5025 for_each_cpu_mask(j
, span
) {
5026 if (group_fn(j
) != group
)
5029 cpu_set(j
, covered
);
5030 cpu_set(j
, sg
->cpumask
);
5041 #define SD_NODES_PER_DOMAIN 16
5044 * Self-tuning task migration cost measurement between source and target CPUs.
5046 * This is done by measuring the cost of manipulating buffers of varying
5047 * sizes. For a given buffer-size here are the steps that are taken:
5049 * 1) the source CPU reads+dirties a shared buffer
5050 * 2) the target CPU reads+dirties the same shared buffer
5052 * We measure how long they take, in the following 4 scenarios:
5054 * - source: CPU1, target: CPU2 | cost1
5055 * - source: CPU2, target: CPU1 | cost2
5056 * - source: CPU1, target: CPU1 | cost3
5057 * - source: CPU2, target: CPU2 | cost4
5059 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5060 * the cost of migration.
5062 * We then start off from a small buffer-size and iterate up to larger
5063 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5064 * doing a maximum search for the cost. (The maximum cost for a migration
5065 * normally occurs when the working set size is around the effective cache
5068 #define SEARCH_SCOPE 2
5069 #define MIN_CACHE_SIZE (64*1024U)
5070 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5071 #define ITERATIONS 1
5072 #define SIZE_THRESH 130
5073 #define COST_THRESH 130
5076 * The migration cost is a function of 'domain distance'. Domain
5077 * distance is the number of steps a CPU has to iterate down its
5078 * domain tree to share a domain with the other CPU. The farther
5079 * two CPUs are from each other, the larger the distance gets.
5081 * Note that we use the distance only to cache measurement results,
5082 * the distance value is not used numerically otherwise. When two
5083 * CPUs have the same distance it is assumed that the migration
5084 * cost is the same. (this is a simplification but quite practical)
5086 #define MAX_DOMAIN_DISTANCE 32
5088 static unsigned long long migration_cost
[MAX_DOMAIN_DISTANCE
] =
5089 { [ 0 ... MAX_DOMAIN_DISTANCE
-1 ] =
5091 * Architectures may override the migration cost and thus avoid
5092 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5093 * virtualized hardware:
5095 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5096 CONFIG_DEFAULT_MIGRATION_COST
5103 * Allow override of migration cost - in units of microseconds.
5104 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5105 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5107 static int __init
migration_cost_setup(char *str
)
5109 int ints
[MAX_DOMAIN_DISTANCE
+1], i
;
5111 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5113 printk("#ints: %d\n", ints
[0]);
5114 for (i
= 1; i
<= ints
[0]; i
++) {
5115 migration_cost
[i
-1] = (unsigned long long)ints
[i
]*1000;
5116 printk("migration_cost[%d]: %Ld\n", i
-1, migration_cost
[i
-1]);
5121 __setup ("migration_cost=", migration_cost_setup
);
5124 * Global multiplier (divisor) for migration-cutoff values,
5125 * in percentiles. E.g. use a value of 150 to get 1.5 times
5126 * longer cache-hot cutoff times.
5128 * (We scale it from 100 to 128 to long long handling easier.)
5131 #define MIGRATION_FACTOR_SCALE 128
5133 static unsigned int migration_factor
= MIGRATION_FACTOR_SCALE
;
5135 static int __init
setup_migration_factor(char *str
)
5137 get_option(&str
, &migration_factor
);
5138 migration_factor
= migration_factor
* MIGRATION_FACTOR_SCALE
/ 100;
5142 __setup("migration_factor=", setup_migration_factor
);
5145 * Estimated distance of two CPUs, measured via the number of domains
5146 * we have to pass for the two CPUs to be in the same span:
5148 static unsigned long domain_distance(int cpu1
, int cpu2
)
5150 unsigned long distance
= 0;
5151 struct sched_domain
*sd
;
5153 for_each_domain(cpu1
, sd
) {
5154 WARN_ON(!cpu_isset(cpu1
, sd
->span
));
5155 if (cpu_isset(cpu2
, sd
->span
))
5159 if (distance
>= MAX_DOMAIN_DISTANCE
) {
5161 distance
= MAX_DOMAIN_DISTANCE
-1;
5167 static unsigned int migration_debug
;
5169 static int __init
setup_migration_debug(char *str
)
5171 get_option(&str
, &migration_debug
);
5175 __setup("migration_debug=", setup_migration_debug
);
5178 * Maximum cache-size that the scheduler should try to measure.
5179 * Architectures with larger caches should tune this up during
5180 * bootup. Gets used in the domain-setup code (i.e. during SMP
5183 unsigned int max_cache_size
;
5185 static int __init
setup_max_cache_size(char *str
)
5187 get_option(&str
, &max_cache_size
);
5191 __setup("max_cache_size=", setup_max_cache_size
);
5194 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5195 * is the operation that is timed, so we try to generate unpredictable
5196 * cachemisses that still end up filling the L2 cache:
5198 static void touch_cache(void *__cache
, unsigned long __size
)
5200 unsigned long size
= __size
/sizeof(long), chunk1
= size
/3,
5202 unsigned long *cache
= __cache
;
5205 for (i
= 0; i
< size
/6; i
+= 8) {
5208 case 1: cache
[size
-1-i
]++;
5209 case 2: cache
[chunk1
-i
]++;
5210 case 3: cache
[chunk1
+i
]++;
5211 case 4: cache
[chunk2
-i
]++;
5212 case 5: cache
[chunk2
+i
]++;
5218 * Measure the cache-cost of one task migration. Returns in units of nsec.
5220 static unsigned long long measure_one(void *cache
, unsigned long size
,
5221 int source
, int target
)
5223 cpumask_t mask
, saved_mask
;
5224 unsigned long long t0
, t1
, t2
, t3
, cost
;
5226 saved_mask
= current
->cpus_allowed
;
5229 * Flush source caches to RAM and invalidate them:
5234 * Migrate to the source CPU:
5236 mask
= cpumask_of_cpu(source
);
5237 set_cpus_allowed(current
, mask
);
5238 WARN_ON(smp_processor_id() != source
);
5241 * Dirty the working set:
5244 touch_cache(cache
, size
);
5248 * Migrate to the target CPU, dirty the L2 cache and access
5249 * the shared buffer. (which represents the working set
5250 * of a migrated task.)
5252 mask
= cpumask_of_cpu(target
);
5253 set_cpus_allowed(current
, mask
);
5254 WARN_ON(smp_processor_id() != target
);
5257 touch_cache(cache
, size
);
5260 cost
= t1
-t0
+ t3
-t2
;
5262 if (migration_debug
>= 2)
5263 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5264 source
, target
, t1
-t0
, t1
-t0
, t3
-t2
, cost
);
5266 * Flush target caches to RAM and invalidate them:
5270 set_cpus_allowed(current
, saved_mask
);
5276 * Measure a series of task migrations and return the average
5277 * result. Since this code runs early during bootup the system
5278 * is 'undisturbed' and the average latency makes sense.
5280 * The algorithm in essence auto-detects the relevant cache-size,
5281 * so it will properly detect different cachesizes for different
5282 * cache-hierarchies, depending on how the CPUs are connected.
5284 * Architectures can prime the upper limit of the search range via
5285 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5287 static unsigned long long
5288 measure_cost(int cpu1
, int cpu2
, void *cache
, unsigned int size
)
5290 unsigned long long cost1
, cost2
;
5294 * Measure the migration cost of 'size' bytes, over an
5295 * average of 10 runs:
5297 * (We perturb the cache size by a small (0..4k)
5298 * value to compensate size/alignment related artifacts.
5299 * We also subtract the cost of the operation done on
5305 * dry run, to make sure we start off cache-cold on cpu1,
5306 * and to get any vmalloc pagefaults in advance:
5308 measure_one(cache
, size
, cpu1
, cpu2
);
5309 for (i
= 0; i
< ITERATIONS
; i
++)
5310 cost1
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu2
);
5312 measure_one(cache
, size
, cpu2
, cpu1
);
5313 for (i
= 0; i
< ITERATIONS
; i
++)
5314 cost1
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu1
);
5317 * (We measure the non-migrating [cached] cost on both
5318 * cpu1 and cpu2, to handle CPUs with different speeds)
5322 measure_one(cache
, size
, cpu1
, cpu1
);
5323 for (i
= 0; i
< ITERATIONS
; i
++)
5324 cost2
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu1
);
5326 measure_one(cache
, size
, cpu2
, cpu2
);
5327 for (i
= 0; i
< ITERATIONS
; i
++)
5328 cost2
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu2
);
5331 * Get the per-iteration migration cost:
5333 do_div(cost1
, 2*ITERATIONS
);
5334 do_div(cost2
, 2*ITERATIONS
);
5336 return cost1
- cost2
;
5339 static unsigned long long measure_migration_cost(int cpu1
, int cpu2
)
5341 unsigned long long max_cost
= 0, fluct
= 0, avg_fluct
= 0;
5342 unsigned int max_size
, size
, size_found
= 0;
5343 long long cost
= 0, prev_cost
;
5347 * Search from max_cache_size*5 down to 64K - the real relevant
5348 * cachesize has to lie somewhere inbetween.
5350 if (max_cache_size
) {
5351 max_size
= max(max_cache_size
* SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5352 size
= max(max_cache_size
/ SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5355 * Since we have no estimation about the relevant
5358 max_size
= DEFAULT_CACHE_SIZE
* SEARCH_SCOPE
;
5359 size
= MIN_CACHE_SIZE
;
5362 if (!cpu_online(cpu1
) || !cpu_online(cpu2
)) {
5363 printk("cpu %d and %d not both online!\n", cpu1
, cpu2
);
5368 * Allocate the working set:
5370 cache
= vmalloc(max_size
);
5372 printk("could not vmalloc %d bytes for cache!\n", 2*max_size
);
5373 return 1000000; // return 1 msec on very small boxen
5376 while (size
<= max_size
) {
5378 cost
= measure_cost(cpu1
, cpu2
, cache
, size
);
5384 if (max_cost
< cost
) {
5390 * Calculate average fluctuation, we use this to prevent
5391 * noise from triggering an early break out of the loop:
5393 fluct
= abs(cost
- prev_cost
);
5394 avg_fluct
= (avg_fluct
+ fluct
)/2;
5396 if (migration_debug
)
5397 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5399 (long)cost
/ 1000000,
5400 ((long)cost
/ 100000) % 10,
5401 (long)max_cost
/ 1000000,
5402 ((long)max_cost
/ 100000) % 10,
5403 domain_distance(cpu1
, cpu2
),
5407 * If we iterated at least 20% past the previous maximum,
5408 * and the cost has dropped by more than 20% already,
5409 * (taking fluctuations into account) then we assume to
5410 * have found the maximum and break out of the loop early:
5412 if (size_found
&& (size
*100 > size_found
*SIZE_THRESH
))
5413 if (cost
+avg_fluct
<= 0 ||
5414 max_cost
*100 > (cost
+avg_fluct
)*COST_THRESH
) {
5416 if (migration_debug
)
5417 printk("-> found max.\n");
5421 * Increase the cachesize in 10% steps:
5423 size
= size
* 10 / 9;
5426 if (migration_debug
)
5427 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5428 cpu1
, cpu2
, size_found
, max_cost
);
5433 * A task is considered 'cache cold' if at least 2 times
5434 * the worst-case cost of migration has passed.
5436 * (this limit is only listened to if the load-balancing
5437 * situation is 'nice' - if there is a large imbalance we
5438 * ignore it for the sake of CPU utilization and
5439 * processing fairness.)
5441 return 2 * max_cost
* migration_factor
/ MIGRATION_FACTOR_SCALE
;
5444 static void calibrate_migration_costs(const cpumask_t
*cpu_map
)
5446 int cpu1
= -1, cpu2
= -1, cpu
, orig_cpu
= raw_smp_processor_id();
5447 unsigned long j0
, j1
, distance
, max_distance
= 0;
5448 struct sched_domain
*sd
;
5453 * First pass - calculate the cacheflush times:
5455 for_each_cpu_mask(cpu1
, *cpu_map
) {
5456 for_each_cpu_mask(cpu2
, *cpu_map
) {
5459 distance
= domain_distance(cpu1
, cpu2
);
5460 max_distance
= max(max_distance
, distance
);
5462 * No result cached yet?
5464 if (migration_cost
[distance
] == -1LL)
5465 migration_cost
[distance
] =
5466 measure_migration_cost(cpu1
, cpu2
);
5470 * Second pass - update the sched domain hierarchy with
5471 * the new cache-hot-time estimations:
5473 for_each_cpu_mask(cpu
, *cpu_map
) {
5475 for_each_domain(cpu
, sd
) {
5476 sd
->cache_hot_time
= migration_cost
[distance
];
5483 if (migration_debug
)
5484 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5492 if (system_state
== SYSTEM_BOOTING
) {
5493 printk("migration_cost=");
5494 for (distance
= 0; distance
<= max_distance
; distance
++) {
5497 printk("%ld", (long)migration_cost
[distance
] / 1000);
5502 if (migration_debug
)
5503 printk("migration: %ld seconds\n", (j1
-j0
)/HZ
);
5506 * Move back to the original CPU. NUMA-Q gets confused
5507 * if we migrate to another quad during bootup.
5509 if (raw_smp_processor_id() != orig_cpu
) {
5510 cpumask_t mask
= cpumask_of_cpu(orig_cpu
),
5511 saved_mask
= current
->cpus_allowed
;
5513 set_cpus_allowed(current
, mask
);
5514 set_cpus_allowed(current
, saved_mask
);
5521 * find_next_best_node - find the next node to include in a sched_domain
5522 * @node: node whose sched_domain we're building
5523 * @used_nodes: nodes already in the sched_domain
5525 * Find the next node to include in a given scheduling domain. Simply
5526 * finds the closest node not already in the @used_nodes map.
5528 * Should use nodemask_t.
5530 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5532 int i
, n
, val
, min_val
, best_node
= 0;
5536 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5537 /* Start at @node */
5538 n
= (node
+ i
) % MAX_NUMNODES
;
5540 if (!nr_cpus_node(n
))
5543 /* Skip already used nodes */
5544 if (test_bit(n
, used_nodes
))
5547 /* Simple min distance search */
5548 val
= node_distance(node
, n
);
5550 if (val
< min_val
) {
5556 set_bit(best_node
, used_nodes
);
5561 * sched_domain_node_span - get a cpumask for a node's sched_domain
5562 * @node: node whose cpumask we're constructing
5563 * @size: number of nodes to include in this span
5565 * Given a node, construct a good cpumask for its sched_domain to span. It
5566 * should be one that prevents unnecessary balancing, but also spreads tasks
5569 static cpumask_t
sched_domain_node_span(int node
)
5572 cpumask_t span
, nodemask
;
5573 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5576 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5578 nodemask
= node_to_cpumask(node
);
5579 cpus_or(span
, span
, nodemask
);
5580 set_bit(node
, used_nodes
);
5582 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5583 int next_node
= find_next_best_node(node
, used_nodes
);
5584 nodemask
= node_to_cpumask(next_node
);
5585 cpus_or(span
, span
, nodemask
);
5593 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5594 * can switch it on easily if needed.
5596 #ifdef CONFIG_SCHED_SMT
5597 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5598 static struct sched_group sched_group_cpus
[NR_CPUS
];
5599 static int cpu_to_cpu_group(int cpu
)
5605 #ifdef CONFIG_SCHED_MC
5606 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5607 static struct sched_group sched_group_core
[NR_CPUS
];
5610 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5611 static int cpu_to_core_group(int cpu
)
5613 return first_cpu(cpu_sibling_map
[cpu
]);
5615 #elif defined(CONFIG_SCHED_MC)
5616 static int cpu_to_core_group(int cpu
)
5622 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5623 static struct sched_group sched_group_phys
[NR_CPUS
];
5624 static int cpu_to_phys_group(int cpu
)
5626 #if defined(CONFIG_SCHED_MC)
5627 cpumask_t mask
= cpu_coregroup_map(cpu
);
5628 return first_cpu(mask
);
5629 #elif defined(CONFIG_SCHED_SMT)
5630 return first_cpu(cpu_sibling_map
[cpu
]);
5638 * The init_sched_build_groups can't handle what we want to do with node
5639 * groups, so roll our own. Now each node has its own list of groups which
5640 * gets dynamically allocated.
5642 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5643 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5645 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5646 static struct sched_group
*sched_group_allnodes_bycpu
[NR_CPUS
];
5648 static int cpu_to_allnodes_group(int cpu
)
5650 return cpu_to_node(cpu
);
5652 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5654 struct sched_group
*sg
= group_head
;
5660 for_each_cpu_mask(j
, sg
->cpumask
) {
5661 struct sched_domain
*sd
;
5663 sd
= &per_cpu(phys_domains
, j
);
5664 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5666 * Only add "power" once for each
5672 sg
->cpu_power
+= sd
->groups
->cpu_power
;
5675 if (sg
!= group_head
)
5681 * Build sched domains for a given set of cpus and attach the sched domains
5682 * to the individual cpus
5684 void build_sched_domains(const cpumask_t
*cpu_map
)
5688 struct sched_group
**sched_group_nodes
= NULL
;
5689 struct sched_group
*sched_group_allnodes
= NULL
;
5692 * Allocate the per-node list of sched groups
5694 sched_group_nodes
= kmalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
5696 if (!sched_group_nodes
) {
5697 printk(KERN_WARNING
"Can not alloc sched group node list\n");
5700 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
5704 * Set up domains for cpus specified by the cpu_map.
5706 for_each_cpu_mask(i
, *cpu_map
) {
5708 struct sched_domain
*sd
= NULL
, *p
;
5709 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
5711 cpus_and(nodemask
, nodemask
, *cpu_map
);
5714 if (cpus_weight(*cpu_map
)
5715 > SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
5716 if (!sched_group_allnodes
) {
5717 sched_group_allnodes
5718 = kmalloc(sizeof(struct sched_group
)
5721 if (!sched_group_allnodes
) {
5723 "Can not alloc allnodes sched group\n");
5726 sched_group_allnodes_bycpu
[i
]
5727 = sched_group_allnodes
;
5729 sd
= &per_cpu(allnodes_domains
, i
);
5730 *sd
= SD_ALLNODES_INIT
;
5731 sd
->span
= *cpu_map
;
5732 group
= cpu_to_allnodes_group(i
);
5733 sd
->groups
= &sched_group_allnodes
[group
];
5738 sd
= &per_cpu(node_domains
, i
);
5740 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
5742 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5746 sd
= &per_cpu(phys_domains
, i
);
5747 group
= cpu_to_phys_group(i
);
5749 sd
->span
= nodemask
;
5751 sd
->groups
= &sched_group_phys
[group
];
5753 #ifdef CONFIG_SCHED_MC
5755 sd
= &per_cpu(core_domains
, i
);
5756 group
= cpu_to_core_group(i
);
5758 sd
->span
= cpu_coregroup_map(i
);
5759 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5761 sd
->groups
= &sched_group_core
[group
];
5764 #ifdef CONFIG_SCHED_SMT
5766 sd
= &per_cpu(cpu_domains
, i
);
5767 group
= cpu_to_cpu_group(i
);
5768 *sd
= SD_SIBLING_INIT
;
5769 sd
->span
= cpu_sibling_map
[i
];
5770 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5772 sd
->groups
= &sched_group_cpus
[group
];
5776 #ifdef CONFIG_SCHED_SMT
5777 /* Set up CPU (sibling) groups */
5778 for_each_cpu_mask(i
, *cpu_map
) {
5779 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
5780 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
5781 if (i
!= first_cpu(this_sibling_map
))
5784 init_sched_build_groups(sched_group_cpus
, this_sibling_map
,
5789 #ifdef CONFIG_SCHED_MC
5790 /* Set up multi-core groups */
5791 for_each_cpu_mask(i
, *cpu_map
) {
5792 cpumask_t this_core_map
= cpu_coregroup_map(i
);
5793 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
5794 if (i
!= first_cpu(this_core_map
))
5796 init_sched_build_groups(sched_group_core
, this_core_map
,
5797 &cpu_to_core_group
);
5802 /* Set up physical groups */
5803 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5804 cpumask_t nodemask
= node_to_cpumask(i
);
5806 cpus_and(nodemask
, nodemask
, *cpu_map
);
5807 if (cpus_empty(nodemask
))
5810 init_sched_build_groups(sched_group_phys
, nodemask
,
5811 &cpu_to_phys_group
);
5815 /* Set up node groups */
5816 if (sched_group_allnodes
)
5817 init_sched_build_groups(sched_group_allnodes
, *cpu_map
,
5818 &cpu_to_allnodes_group
);
5820 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5821 /* Set up node groups */
5822 struct sched_group
*sg
, *prev
;
5823 cpumask_t nodemask
= node_to_cpumask(i
);
5824 cpumask_t domainspan
;
5825 cpumask_t covered
= CPU_MASK_NONE
;
5828 cpus_and(nodemask
, nodemask
, *cpu_map
);
5829 if (cpus_empty(nodemask
)) {
5830 sched_group_nodes
[i
] = NULL
;
5834 domainspan
= sched_domain_node_span(i
);
5835 cpus_and(domainspan
, domainspan
, *cpu_map
);
5837 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5838 sched_group_nodes
[i
] = sg
;
5839 for_each_cpu_mask(j
, nodemask
) {
5840 struct sched_domain
*sd
;
5841 sd
= &per_cpu(node_domains
, j
);
5843 if (sd
->groups
== NULL
) {
5844 /* Turn off balancing if we have no groups */
5850 "Can not alloc domain group for node %d\n", i
);
5854 sg
->cpumask
= nodemask
;
5855 cpus_or(covered
, covered
, nodemask
);
5858 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
5859 cpumask_t tmp
, notcovered
;
5860 int n
= (i
+ j
) % MAX_NUMNODES
;
5862 cpus_complement(notcovered
, covered
);
5863 cpus_and(tmp
, notcovered
, *cpu_map
);
5864 cpus_and(tmp
, tmp
, domainspan
);
5865 if (cpus_empty(tmp
))
5868 nodemask
= node_to_cpumask(n
);
5869 cpus_and(tmp
, tmp
, nodemask
);
5870 if (cpus_empty(tmp
))
5873 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5876 "Can not alloc domain group for node %d\n", j
);
5881 cpus_or(covered
, covered
, tmp
);
5885 prev
->next
= sched_group_nodes
[i
];
5889 /* Calculate CPU power for physical packages and nodes */
5890 for_each_cpu_mask(i
, *cpu_map
) {
5892 struct sched_domain
*sd
;
5893 #ifdef CONFIG_SCHED_SMT
5894 sd
= &per_cpu(cpu_domains
, i
);
5895 power
= SCHED_LOAD_SCALE
;
5896 sd
->groups
->cpu_power
= power
;
5898 #ifdef CONFIG_SCHED_MC
5899 sd
= &per_cpu(core_domains
, i
);
5900 power
= SCHED_LOAD_SCALE
+ (cpus_weight(sd
->groups
->cpumask
)-1)
5901 * SCHED_LOAD_SCALE
/ 10;
5902 sd
->groups
->cpu_power
= power
;
5904 sd
= &per_cpu(phys_domains
, i
);
5907 * This has to be < 2 * SCHED_LOAD_SCALE
5908 * Lets keep it SCHED_LOAD_SCALE, so that
5909 * while calculating NUMA group's cpu_power
5911 * numa_group->cpu_power += phys_group->cpu_power;
5913 * See "only add power once for each physical pkg"
5916 sd
->groups
->cpu_power
= SCHED_LOAD_SCALE
;
5918 sd
= &per_cpu(phys_domains
, i
);
5919 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5920 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5921 sd
->groups
->cpu_power
= power
;
5926 for (i
= 0; i
< MAX_NUMNODES
; i
++)
5927 init_numa_sched_groups_power(sched_group_nodes
[i
]);
5929 init_numa_sched_groups_power(sched_group_allnodes
);
5932 /* Attach the domains */
5933 for_each_cpu_mask(i
, *cpu_map
) {
5934 struct sched_domain
*sd
;
5935 #ifdef CONFIG_SCHED_SMT
5936 sd
= &per_cpu(cpu_domains
, i
);
5937 #elif defined(CONFIG_SCHED_MC)
5938 sd
= &per_cpu(core_domains
, i
);
5940 sd
= &per_cpu(phys_domains
, i
);
5942 cpu_attach_domain(sd
, i
);
5945 * Tune cache-hot values:
5947 calibrate_migration_costs(cpu_map
);
5950 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5952 static void arch_init_sched_domains(const cpumask_t
*cpu_map
)
5954 cpumask_t cpu_default_map
;
5957 * Setup mask for cpus without special case scheduling requirements.
5958 * For now this just excludes isolated cpus, but could be used to
5959 * exclude other special cases in the future.
5961 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
5963 build_sched_domains(&cpu_default_map
);
5966 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
5972 for_each_cpu_mask(cpu
, *cpu_map
) {
5973 struct sched_group
*sched_group_allnodes
5974 = sched_group_allnodes_bycpu
[cpu
];
5975 struct sched_group
**sched_group_nodes
5976 = sched_group_nodes_bycpu
[cpu
];
5978 if (sched_group_allnodes
) {
5979 kfree(sched_group_allnodes
);
5980 sched_group_allnodes_bycpu
[cpu
] = NULL
;
5983 if (!sched_group_nodes
)
5986 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5987 cpumask_t nodemask
= node_to_cpumask(i
);
5988 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5990 cpus_and(nodemask
, nodemask
, *cpu_map
);
5991 if (cpus_empty(nodemask
))
6001 if (oldsg
!= sched_group_nodes
[i
])
6004 kfree(sched_group_nodes
);
6005 sched_group_nodes_bycpu
[cpu
] = NULL
;
6011 * Detach sched domains from a group of cpus specified in cpu_map
6012 * These cpus will now be attached to the NULL domain
6014 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6018 for_each_cpu_mask(i
, *cpu_map
)
6019 cpu_attach_domain(NULL
, i
);
6020 synchronize_sched();
6021 arch_destroy_sched_domains(cpu_map
);
6025 * Partition sched domains as specified by the cpumasks below.
6026 * This attaches all cpus from the cpumasks to the NULL domain,
6027 * waits for a RCU quiescent period, recalculates sched
6028 * domain information and then attaches them back to the
6029 * correct sched domains
6030 * Call with hotplug lock held
6032 void partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6034 cpumask_t change_map
;
6036 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6037 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6038 cpus_or(change_map
, *partition1
, *partition2
);
6040 /* Detach sched domains from all of the affected cpus */
6041 detach_destroy_domains(&change_map
);
6042 if (!cpus_empty(*partition1
))
6043 build_sched_domains(partition1
);
6044 if (!cpus_empty(*partition2
))
6045 build_sched_domains(partition2
);
6048 #ifdef CONFIG_HOTPLUG_CPU
6050 * Force a reinitialization of the sched domains hierarchy. The domains
6051 * and groups cannot be updated in place without racing with the balancing
6052 * code, so we temporarily attach all running cpus to the NULL domain
6053 * which will prevent rebalancing while the sched domains are recalculated.
6055 static int update_sched_domains(struct notifier_block
*nfb
,
6056 unsigned long action
, void *hcpu
)
6059 case CPU_UP_PREPARE
:
6060 case CPU_DOWN_PREPARE
:
6061 detach_destroy_domains(&cpu_online_map
);
6064 case CPU_UP_CANCELED
:
6065 case CPU_DOWN_FAILED
:
6069 * Fall through and re-initialise the domains.
6076 /* The hotplug lock is already held by cpu_up/cpu_down */
6077 arch_init_sched_domains(&cpu_online_map
);
6083 void __init
sched_init_smp(void)
6086 arch_init_sched_domains(&cpu_online_map
);
6087 unlock_cpu_hotplug();
6088 /* XXX: Theoretical race here - CPU may be hotplugged now */
6089 hotcpu_notifier(update_sched_domains
, 0);
6092 void __init
sched_init_smp(void)
6095 #endif /* CONFIG_SMP */
6097 int in_sched_functions(unsigned long addr
)
6099 /* Linker adds these: start and end of __sched functions */
6100 extern char __sched_text_start
[], __sched_text_end
[];
6101 return in_lock_functions(addr
) ||
6102 (addr
>= (unsigned long)__sched_text_start
6103 && addr
< (unsigned long)__sched_text_end
);
6106 void __init
sched_init(void)
6111 for_each_possible_cpu(i
) {
6112 prio_array_t
*array
;
6115 spin_lock_init(&rq
->lock
);
6117 rq
->active
= rq
->arrays
;
6118 rq
->expired
= rq
->arrays
+ 1;
6119 rq
->best_expired_prio
= MAX_PRIO
;
6123 for (j
= 1; j
< 3; j
++)
6124 rq
->cpu_load
[j
] = 0;
6125 rq
->active_balance
= 0;
6127 rq
->migration_thread
= NULL
;
6128 INIT_LIST_HEAD(&rq
->migration_queue
);
6131 atomic_set(&rq
->nr_iowait
, 0);
6133 for (j
= 0; j
< 2; j
++) {
6134 array
= rq
->arrays
+ j
;
6135 for (k
= 0; k
< MAX_PRIO
; k
++) {
6136 INIT_LIST_HEAD(array
->queue
+ k
);
6137 __clear_bit(k
, array
->bitmap
);
6139 // delimiter for bitsearch
6140 __set_bit(MAX_PRIO
, array
->bitmap
);
6145 * The boot idle thread does lazy MMU switching as well:
6147 atomic_inc(&init_mm
.mm_count
);
6148 enter_lazy_tlb(&init_mm
, current
);
6151 * Make us the idle thread. Technically, schedule() should not be
6152 * called from this thread, however somewhere below it might be,
6153 * but because we are the idle thread, we just pick up running again
6154 * when this runqueue becomes "idle".
6156 init_idle(current
, smp_processor_id());
6159 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6160 void __might_sleep(char *file
, int line
)
6162 #if defined(in_atomic)
6163 static unsigned long prev_jiffy
; /* ratelimiting */
6165 if ((in_atomic() || irqs_disabled()) &&
6166 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6167 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6169 prev_jiffy
= jiffies
;
6170 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6171 " context at %s:%d\n", file
, line
);
6172 printk("in_atomic():%d, irqs_disabled():%d\n",
6173 in_atomic(), irqs_disabled());
6178 EXPORT_SYMBOL(__might_sleep
);
6181 #ifdef CONFIG_MAGIC_SYSRQ
6182 void normalize_rt_tasks(void)
6184 struct task_struct
*p
;
6185 prio_array_t
*array
;
6186 unsigned long flags
;
6189 read_lock_irq(&tasklist_lock
);
6190 for_each_process (p
) {
6194 rq
= task_rq_lock(p
, &flags
);
6198 deactivate_task(p
, task_rq(p
));
6199 __setscheduler(p
, SCHED_NORMAL
, 0);
6201 __activate_task(p
, task_rq(p
));
6202 resched_task(rq
->curr
);
6205 task_rq_unlock(rq
, &flags
);
6207 read_unlock_irq(&tasklist_lock
);
6210 #endif /* CONFIG_MAGIC_SYSRQ */
6214 * These functions are only useful for the IA64 MCA handling.
6216 * They can only be called when the whole system has been
6217 * stopped - every CPU needs to be quiescent, and no scheduling
6218 * activity can take place. Using them for anything else would
6219 * be a serious bug, and as a result, they aren't even visible
6220 * under any other configuration.
6224 * curr_task - return the current task for a given cpu.
6225 * @cpu: the processor in question.
6227 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6229 task_t
*curr_task(int cpu
)
6231 return cpu_curr(cpu
);
6235 * set_curr_task - set the current task for a given cpu.
6236 * @cpu: the processor in question.
6237 * @p: the task pointer to set.
6239 * Description: This function must only be used when non-maskable interrupts
6240 * are serviced on a separate stack. It allows the architecture to switch the
6241 * notion of the current task on a cpu in a non-blocking manner. This function
6242 * must be called with all CPU's synchronized, and interrupts disabled, the
6243 * and caller must save the original value of the current task (see
6244 * curr_task() above) and restore that value before reenabling interrupts and
6245 * re-starting the system.
6247 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6249 void set_curr_task(int cpu
, task_t
*p
)