4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
30 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
33 * We don't actually have pdflush, but this one is exported though /proc...
35 int nr_pdflush_threads
;
38 * Work items for the bdi_writeback threads
41 struct list_head list
;
42 struct list_head wait_list
;
43 struct rcu_head rcu_head
;
48 struct super_block
*sb
;
49 unsigned long nr_pages
;
50 enum writeback_sync_modes sync_mode
;
60 #define WS_USED (1 << WS_USED_B)
61 #define WS_ONSTACK (1 << WS_ONSTACK_B)
63 static inline bool bdi_work_on_stack(struct bdi_work
*work
)
65 return test_bit(WS_ONSTACK_B
, &work
->state
);
68 static inline void bdi_work_init(struct bdi_work
*work
,
69 struct writeback_control
*wbc
)
71 INIT_RCU_HEAD(&work
->rcu_head
);
73 work
->nr_pages
= wbc
->nr_to_write
;
74 work
->sync_mode
= wbc
->sync_mode
;
75 work
->state
= WS_USED
;
78 static inline void bdi_work_init_on_stack(struct bdi_work
*work
,
79 struct writeback_control
*wbc
)
81 bdi_work_init(work
, wbc
);
82 work
->state
|= WS_ONSTACK
;
86 * writeback_in_progress - determine whether there is writeback in progress
87 * @bdi: the device's backing_dev_info structure.
89 * Determine whether there is writeback waiting to be handled against a
92 int writeback_in_progress(struct backing_dev_info
*bdi
)
94 return !list_empty(&bdi
->work_list
);
97 static void bdi_work_clear(struct bdi_work
*work
)
99 clear_bit(WS_USED_B
, &work
->state
);
100 smp_mb__after_clear_bit();
101 wake_up_bit(&work
->state
, WS_USED_B
);
104 static void bdi_work_free(struct rcu_head
*head
)
106 struct bdi_work
*work
= container_of(head
, struct bdi_work
, rcu_head
);
108 if (!bdi_work_on_stack(work
))
111 bdi_work_clear(work
);
114 static void wb_work_complete(struct bdi_work
*work
)
116 const enum writeback_sync_modes sync_mode
= work
->sync_mode
;
119 * For allocated work, we can clear the done/seen bit right here.
120 * For on-stack work, we need to postpone both the clear and free
121 * to after the RCU grace period, since the stack could be invalidated
122 * as soon as bdi_work_clear() has done the wakeup.
124 if (!bdi_work_on_stack(work
))
125 bdi_work_clear(work
);
126 if (sync_mode
== WB_SYNC_NONE
|| bdi_work_on_stack(work
))
127 call_rcu(&work
->rcu_head
, bdi_work_free
);
130 static void wb_clear_pending(struct bdi_writeback
*wb
, struct bdi_work
*work
)
133 * The caller has retrieved the work arguments from this work,
134 * drop our reference. If this is the last ref, delete and free it
136 if (atomic_dec_and_test(&work
->pending
)) {
137 struct backing_dev_info
*bdi
= wb
->bdi
;
139 spin_lock(&bdi
->wb_lock
);
140 list_del_rcu(&work
->list
);
141 spin_unlock(&bdi
->wb_lock
);
143 wb_work_complete(work
);
147 static void bdi_queue_work(struct backing_dev_info
*bdi
, struct bdi_work
*work
)
150 work
->seen
= bdi
->wb_mask
;
152 atomic_set(&work
->pending
, bdi
->wb_cnt
);
153 BUG_ON(!bdi
->wb_cnt
);
156 * Make sure stores are seen before it appears on the list
160 spin_lock(&bdi
->wb_lock
);
161 list_add_tail_rcu(&work
->list
, &bdi
->work_list
);
162 spin_unlock(&bdi
->wb_lock
);
166 * If the default thread isn't there, make sure we add it. When
167 * it gets created and wakes up, we'll run this work.
169 if (unlikely(list_empty_careful(&bdi
->wb_list
)))
170 wake_up_process(default_backing_dev_info
.wb
.task
);
172 struct bdi_writeback
*wb
= &bdi
->wb
;
175 * If we failed allocating the bdi work item, wake up the wb
176 * thread always. As a safety precaution, it'll flush out
179 if (!wb_has_dirty_io(wb
)) {
181 wb_clear_pending(wb
, work
);
183 wake_up_process(wb
->task
);
188 * Used for on-stack allocated work items. The caller needs to wait until
189 * the wb threads have acked the work before it's safe to continue.
191 static void bdi_wait_on_work_clear(struct bdi_work
*work
)
193 wait_on_bit(&work
->state
, WS_USED_B
, bdi_sched_wait
,
194 TASK_UNINTERRUPTIBLE
);
197 static struct bdi_work
*bdi_alloc_work(struct writeback_control
*wbc
)
199 struct bdi_work
*work
;
201 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
203 bdi_work_init(work
, wbc
);
208 void bdi_start_writeback(struct writeback_control
*wbc
)
210 const bool must_wait
= wbc
->sync_mode
== WB_SYNC_ALL
;
211 struct bdi_work work_stack
, *work
= NULL
;
214 work
= bdi_alloc_work(wbc
);
218 bdi_work_init_on_stack(work
, wbc
);
221 bdi_queue_work(wbc
->bdi
, work
);
224 * If the sync mode is WB_SYNC_ALL, block waiting for the work to
225 * complete. If not, we only need to wait for the work to be started,
226 * if we allocated it on-stack. We use the same mechanism, if the
227 * wait bit is set in the bdi_work struct, then threads will not
228 * clear pending until after they are done.
230 * Note that work == &work_stack if must_wait is true, so we don't
231 * need to do call_rcu() here ever, since the completion path will
232 * have done that for us.
234 if (must_wait
|| work
== &work_stack
) {
235 bdi_wait_on_work_clear(work
);
236 if (work
!= &work_stack
)
237 call_rcu(&work
->rcu_head
, bdi_work_free
);
242 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
243 * furthest end of its superblock's dirty-inode list.
245 * Before stamping the inode's ->dirtied_when, we check to see whether it is
246 * already the most-recently-dirtied inode on the b_dirty list. If that is
247 * the case then the inode must have been redirtied while it was being written
248 * out and we don't reset its dirtied_when.
250 static void redirty_tail(struct inode
*inode
)
252 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
254 if (!list_empty(&wb
->b_dirty
)) {
257 tail
= list_entry(wb
->b_dirty
.next
, struct inode
, i_list
);
258 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
259 inode
->dirtied_when
= jiffies
;
261 list_move(&inode
->i_list
, &wb
->b_dirty
);
265 * requeue inode for re-scanning after bdi->b_io list is exhausted.
267 static void requeue_io(struct inode
*inode
)
269 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
271 list_move(&inode
->i_list
, &wb
->b_more_io
);
274 static void inode_sync_complete(struct inode
*inode
)
277 * Prevent speculative execution through spin_unlock(&inode_lock);
280 wake_up_bit(&inode
->i_state
, __I_SYNC
);
283 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
285 bool ret
= time_after(inode
->dirtied_when
, t
);
288 * For inodes being constantly redirtied, dirtied_when can get stuck.
289 * It _appears_ to be in the future, but is actually in distant past.
290 * This test is necessary to prevent such wrapped-around relative times
291 * from permanently stopping the whole pdflush writeback.
293 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
299 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
301 static void move_expired_inodes(struct list_head
*delaying_queue
,
302 struct list_head
*dispatch_queue
,
303 unsigned long *older_than_this
)
305 while (!list_empty(delaying_queue
)) {
306 struct inode
*inode
= list_entry(delaying_queue
->prev
,
307 struct inode
, i_list
);
308 if (older_than_this
&&
309 inode_dirtied_after(inode
, *older_than_this
))
311 list_move(&inode
->i_list
, dispatch_queue
);
316 * Queue all expired dirty inodes for io, eldest first.
318 static void queue_io(struct bdi_writeback
*wb
, unsigned long *older_than_this
)
320 list_splice_init(&wb
->b_more_io
, wb
->b_io
.prev
);
321 move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, older_than_this
);
324 static int write_inode(struct inode
*inode
, int sync
)
326 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
327 return inode
->i_sb
->s_op
->write_inode(inode
, sync
);
332 * Wait for writeback on an inode to complete.
334 static void inode_wait_for_writeback(struct inode
*inode
)
336 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
337 wait_queue_head_t
*wqh
;
339 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
341 spin_unlock(&inode_lock
);
342 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
343 spin_lock(&inode_lock
);
344 } while (inode
->i_state
& I_SYNC
);
348 * Write out an inode's dirty pages. Called under inode_lock. Either the
349 * caller has ref on the inode (either via __iget or via syscall against an fd)
350 * or the inode has I_WILL_FREE set (via generic_forget_inode)
352 * If `wait' is set, wait on the writeout.
354 * The whole writeout design is quite complex and fragile. We want to avoid
355 * starvation of particular inodes when others are being redirtied, prevent
358 * Called under inode_lock.
361 writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
363 struct address_space
*mapping
= inode
->i_mapping
;
364 int wait
= wbc
->sync_mode
== WB_SYNC_ALL
;
368 if (!atomic_read(&inode
->i_count
))
369 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
371 WARN_ON(inode
->i_state
& I_WILL_FREE
);
373 if (inode
->i_state
& I_SYNC
) {
375 * If this inode is locked for writeback and we are not doing
376 * writeback-for-data-integrity, move it to b_more_io so that
377 * writeback can proceed with the other inodes on s_io.
379 * We'll have another go at writing back this inode when we
380 * completed a full scan of b_io.
388 * It's a data-integrity sync. We must wait.
390 inode_wait_for_writeback(inode
);
393 BUG_ON(inode
->i_state
& I_SYNC
);
395 /* Set I_SYNC, reset I_DIRTY */
396 dirty
= inode
->i_state
& I_DIRTY
;
397 inode
->i_state
|= I_SYNC
;
398 inode
->i_state
&= ~I_DIRTY
;
400 spin_unlock(&inode_lock
);
402 ret
= do_writepages(mapping
, wbc
);
404 /* Don't write the inode if only I_DIRTY_PAGES was set */
405 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
406 int err
= write_inode(inode
, wait
);
412 int err
= filemap_fdatawait(mapping
);
417 spin_lock(&inode_lock
);
418 inode
->i_state
&= ~I_SYNC
;
419 if (!(inode
->i_state
& (I_FREEING
| I_CLEAR
))) {
420 if (!(inode
->i_state
& I_DIRTY
) &&
421 mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
423 * We didn't write back all the pages. nfs_writepages()
424 * sometimes bales out without doing anything. Redirty
425 * the inode; Move it from b_io onto b_more_io/b_dirty.
428 * akpm: if the caller was the kupdate function we put
429 * this inode at the head of b_dirty so it gets first
430 * consideration. Otherwise, move it to the tail, for
431 * the reasons described there. I'm not really sure
432 * how much sense this makes. Presumably I had a good
433 * reasons for doing it this way, and I'd rather not
434 * muck with it at present.
436 if (wbc
->for_kupdate
) {
438 * For the kupdate function we move the inode
439 * to b_more_io so it will get more writeout as
440 * soon as the queue becomes uncongested.
442 inode
->i_state
|= I_DIRTY_PAGES
;
443 if (wbc
->nr_to_write
<= 0) {
445 * slice used up: queue for next turn
450 * somehow blocked: retry later
456 * Otherwise fully redirty the inode so that
457 * other inodes on this superblock will get some
458 * writeout. Otherwise heavy writing to one
459 * file would indefinitely suspend writeout of
460 * all the other files.
462 inode
->i_state
|= I_DIRTY_PAGES
;
465 } else if (inode
->i_state
& I_DIRTY
) {
467 * Someone redirtied the inode while were writing back
471 } else if (atomic_read(&inode
->i_count
)) {
473 * The inode is clean, inuse
475 list_move(&inode
->i_list
, &inode_in_use
);
478 * The inode is clean, unused
480 list_move(&inode
->i_list
, &inode_unused
);
483 inode_sync_complete(inode
);
488 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
489 * before calling writeback. So make sure that we do pin it, so it doesn't
490 * go away while we are writing inodes from it.
492 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
495 static int pin_sb_for_writeback(struct writeback_control
*wbc
,
498 struct super_block
*sb
= inode
->i_sb
;
501 * Caller must already hold the ref for this
503 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
504 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
510 if (down_read_trylock(&sb
->s_umount
)) {
512 spin_unlock(&sb_lock
);
516 * umounted, drop rwsem again and fall through to failure
518 up_read(&sb
->s_umount
);
522 spin_unlock(&sb_lock
);
526 static void unpin_sb_for_writeback(struct writeback_control
*wbc
,
529 struct super_block
*sb
= inode
->i_sb
;
531 if (wbc
->sync_mode
== WB_SYNC_ALL
)
534 up_read(&sb
->s_umount
);
538 static void writeback_inodes_wb(struct bdi_writeback
*wb
,
539 struct writeback_control
*wbc
)
541 struct super_block
*sb
= wbc
->sb
;
542 const int is_blkdev_sb
= sb_is_blkdev_sb(sb
);
543 const unsigned long start
= jiffies
; /* livelock avoidance */
545 spin_lock(&inode_lock
);
547 if (!wbc
->for_kupdate
|| list_empty(&wb
->b_io
))
548 queue_io(wb
, wbc
->older_than_this
);
550 while (!list_empty(&wb
->b_io
)) {
551 struct inode
*inode
= list_entry(wb
->b_io
.prev
,
552 struct inode
, i_list
);
556 * super block given and doesn't match, skip this inode
558 if (sb
&& sb
!= inode
->i_sb
) {
563 if (!bdi_cap_writeback_dirty(wb
->bdi
)) {
567 * Dirty memory-backed blockdev: the ramdisk
568 * driver does this. Skip just this inode
573 * Dirty memory-backed inode against a filesystem other
574 * than the kernel-internal bdev filesystem. Skip the
580 if (inode
->i_state
& (I_NEW
| I_WILL_FREE
)) {
585 if (wbc
->nonblocking
&& bdi_write_congested(wb
->bdi
)) {
586 wbc
->encountered_congestion
= 1;
588 break; /* Skip a congested fs */
590 continue; /* Skip a congested blockdev */
594 * Was this inode dirtied after sync_sb_inodes was called?
595 * This keeps sync from extra jobs and livelock.
597 if (inode_dirtied_after(inode
, start
))
600 if (pin_sb_for_writeback(wbc
, inode
)) {
605 BUG_ON(inode
->i_state
& (I_FREEING
| I_CLEAR
));
607 pages_skipped
= wbc
->pages_skipped
;
608 writeback_single_inode(inode
, wbc
);
609 unpin_sb_for_writeback(wbc
, inode
);
610 if (wbc
->pages_skipped
!= pages_skipped
) {
612 * writeback is not making progress due to locked
613 * buffers. Skip this inode for now.
617 spin_unlock(&inode_lock
);
620 spin_lock(&inode_lock
);
621 if (wbc
->nr_to_write
<= 0) {
625 if (!list_empty(&wb
->b_more_io
))
629 spin_unlock(&inode_lock
);
630 /* Leave any unwritten inodes on b_io */
633 void writeback_inodes_wbc(struct writeback_control
*wbc
)
635 struct backing_dev_info
*bdi
= wbc
->bdi
;
637 writeback_inodes_wb(&bdi
->wb
, wbc
);
641 * The maximum number of pages to writeout in a single bdi flush/kupdate
642 * operation. We do this so we don't hold I_SYNC against an inode for
643 * enormous amounts of time, which would block a userspace task which has
644 * been forced to throttle against that inode. Also, the code reevaluates
645 * the dirty each time it has written this many pages.
647 #define MAX_WRITEBACK_PAGES 1024
649 static inline bool over_bground_thresh(void)
651 unsigned long background_thresh
, dirty_thresh
;
653 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
655 return (global_page_state(NR_FILE_DIRTY
) +
656 global_page_state(NR_UNSTABLE_NFS
) >= background_thresh
);
660 * Explicit flushing or periodic writeback of "old" data.
662 * Define "old": the first time one of an inode's pages is dirtied, we mark the
663 * dirtying-time in the inode's address_space. So this periodic writeback code
664 * just walks the superblock inode list, writing back any inodes which are
665 * older than a specific point in time.
667 * Try to run once per dirty_writeback_interval. But if a writeback event
668 * takes longer than a dirty_writeback_interval interval, then leave a
671 * older_than_this takes precedence over nr_to_write. So we'll only write back
672 * all dirty pages if they are all attached to "old" mappings.
674 static long wb_writeback(struct bdi_writeback
*wb
, long nr_pages
,
675 struct super_block
*sb
,
676 enum writeback_sync_modes sync_mode
, int for_kupdate
)
678 struct writeback_control wbc
= {
681 .sync_mode
= sync_mode
,
682 .older_than_this
= NULL
,
683 .for_kupdate
= for_kupdate
,
686 unsigned long oldest_jif
;
689 if (wbc
.for_kupdate
) {
690 wbc
.older_than_this
= &oldest_jif
;
691 oldest_jif
= jiffies
-
692 msecs_to_jiffies(dirty_expire_interval
* 10);
697 * Don't flush anything for non-integrity writeback where
698 * no nr_pages was given
700 if (!for_kupdate
&& nr_pages
<= 0 && sync_mode
== WB_SYNC_NONE
)
704 * If no specific pages were given and this is just a
705 * periodic background writeout and we are below the
706 * background dirty threshold, don't do anything
708 if (for_kupdate
&& nr_pages
<= 0 && !over_bground_thresh())
712 wbc
.encountered_congestion
= 0;
713 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
714 wbc
.pages_skipped
= 0;
715 writeback_inodes_wb(wb
, &wbc
);
716 nr_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
717 wrote
+= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
720 * If we ran out of stuff to write, bail unless more_io got set
722 if (wbc
.nr_to_write
> 0 || wbc
.pages_skipped
> 0) {
723 if (wbc
.more_io
&& !wbc
.for_kupdate
)
733 * Return the next bdi_work struct that hasn't been processed by this
736 static struct bdi_work
*get_next_work_item(struct backing_dev_info
*bdi
,
737 struct bdi_writeback
*wb
)
739 struct bdi_work
*work
, *ret
= NULL
;
743 list_for_each_entry_rcu(work
, &bdi
->work_list
, list
) {
744 if (!test_and_clear_bit(wb
->nr
, &work
->seen
))
755 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
757 unsigned long expired
;
760 expired
= wb
->last_old_flush
+
761 msecs_to_jiffies(dirty_writeback_interval
* 10);
762 if (time_before(jiffies
, expired
))
765 wb
->last_old_flush
= jiffies
;
766 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
767 global_page_state(NR_UNSTABLE_NFS
) +
768 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
771 return wb_writeback(wb
, nr_pages
, NULL
, WB_SYNC_NONE
, 1);
777 * Retrieve work items and do the writeback they describe
779 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
781 struct backing_dev_info
*bdi
= wb
->bdi
;
782 struct bdi_work
*work
;
783 long nr_pages
, wrote
= 0;
785 while ((work
= get_next_work_item(bdi
, wb
)) != NULL
) {
786 enum writeback_sync_modes sync_mode
;
788 nr_pages
= work
->nr_pages
;
791 * Override sync mode, in case we must wait for completion
794 work
->sync_mode
= sync_mode
= WB_SYNC_ALL
;
796 sync_mode
= work
->sync_mode
;
799 * If this isn't a data integrity operation, just notify
800 * that we have seen this work and we are now starting it.
802 if (sync_mode
== WB_SYNC_NONE
)
803 wb_clear_pending(wb
, work
);
805 wrote
+= wb_writeback(wb
, nr_pages
, work
->sb
, sync_mode
, 0);
808 * This is a data integrity writeback, so only do the
809 * notification when we have completed the work.
811 if (sync_mode
== WB_SYNC_ALL
)
812 wb_clear_pending(wb
, work
);
816 * Check for periodic writeback, kupdated() style
818 wrote
+= wb_check_old_data_flush(wb
);
824 * Handle writeback of dirty data for the device backed by this bdi. Also
825 * wakes up periodically and does kupdated style flushing.
827 int bdi_writeback_task(struct bdi_writeback
*wb
)
829 unsigned long last_active
= jiffies
;
830 unsigned long wait_jiffies
= -1UL;
833 while (!kthread_should_stop()) {
834 pages_written
= wb_do_writeback(wb
, 0);
837 last_active
= jiffies
;
838 else if (wait_jiffies
!= -1UL) {
839 unsigned long max_idle
;
842 * Longest period of inactivity that we tolerate. If we
843 * see dirty data again later, the task will get
844 * recreated automatically.
846 max_idle
= max(5UL * 60 * HZ
, wait_jiffies
);
847 if (time_after(jiffies
, max_idle
+ last_active
))
851 wait_jiffies
= msecs_to_jiffies(dirty_writeback_interval
* 10);
852 set_current_state(TASK_INTERRUPTIBLE
);
853 schedule_timeout(wait_jiffies
);
861 * Schedule writeback for all backing devices. Expensive! If this is a data
862 * integrity operation, writeback will be complete when this returns. If
863 * we are simply called for WB_SYNC_NONE, then writeback will merely be
866 static void bdi_writeback_all(struct writeback_control
*wbc
)
868 const bool must_wait
= wbc
->sync_mode
== WB_SYNC_ALL
;
869 struct backing_dev_info
*bdi
;
870 struct bdi_work
*work
;
874 spin_lock(&bdi_lock
);
876 list_for_each_entry(bdi
, &bdi_list
, bdi_list
) {
877 struct bdi_work
*work
;
879 if (!bdi_has_dirty_io(bdi
))
883 * If work allocation fails, do the writes inline. We drop
884 * the lock and restart the list writeout. This should be OK,
885 * since this happens rarely and because the writeout should
886 * eventually make more free memory available.
888 work
= bdi_alloc_work(wbc
);
890 struct writeback_control __wbc
;
893 * Not a data integrity writeout, just continue
898 spin_unlock(&bdi_lock
);
901 writeback_inodes_wbc(&__wbc
);
905 list_add_tail(&work
->wait_list
, &list
);
907 bdi_queue_work(bdi
, work
);
910 spin_unlock(&bdi_lock
);
913 * If this is for WB_SYNC_ALL, wait for pending work to complete
916 while (!list_empty(&list
)) {
917 work
= list_entry(list
.next
, struct bdi_work
, wait_list
);
918 list_del(&work
->wait_list
);
919 bdi_wait_on_work_clear(work
);
920 call_rcu(&work
->rcu_head
, bdi_work_free
);
925 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
928 void wakeup_flusher_threads(long nr_pages
)
930 struct writeback_control wbc
= {
931 .sync_mode
= WB_SYNC_NONE
,
932 .older_than_this
= NULL
,
937 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
938 global_page_state(NR_UNSTABLE_NFS
);
939 wbc
.nr_to_write
= nr_pages
;
940 bdi_writeback_all(&wbc
);
943 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
945 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
946 struct dentry
*dentry
;
947 const char *name
= "?";
949 dentry
= d_find_alias(inode
);
951 spin_lock(&dentry
->d_lock
);
952 name
= (const char *) dentry
->d_name
.name
;
955 "%s(%d): dirtied inode %lu (%s) on %s\n",
956 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
957 name
, inode
->i_sb
->s_id
);
959 spin_unlock(&dentry
->d_lock
);
966 * __mark_inode_dirty - internal function
967 * @inode: inode to mark
968 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
969 * Mark an inode as dirty. Callers should use mark_inode_dirty or
970 * mark_inode_dirty_sync.
972 * Put the inode on the super block's dirty list.
974 * CAREFUL! We mark it dirty unconditionally, but move it onto the
975 * dirty list only if it is hashed or if it refers to a blockdev.
976 * If it was not hashed, it will never be added to the dirty list
977 * even if it is later hashed, as it will have been marked dirty already.
979 * In short, make sure you hash any inodes _before_ you start marking
982 * This function *must* be atomic for the I_DIRTY_PAGES case -
983 * set_page_dirty() is called under spinlock in several places.
985 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
986 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
987 * the kernel-internal blockdev inode represents the dirtying time of the
988 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
989 * page->mapping->host, so the page-dirtying time is recorded in the internal
992 void __mark_inode_dirty(struct inode
*inode
, int flags
)
994 struct super_block
*sb
= inode
->i_sb
;
997 * Don't do this for I_DIRTY_PAGES - that doesn't actually
998 * dirty the inode itself
1000 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1001 if (sb
->s_op
->dirty_inode
)
1002 sb
->s_op
->dirty_inode(inode
);
1006 * make sure that changes are seen by all cpus before we test i_state
1011 /* avoid the locking if we can */
1012 if ((inode
->i_state
& flags
) == flags
)
1015 if (unlikely(block_dump
))
1016 block_dump___mark_inode_dirty(inode
);
1018 spin_lock(&inode_lock
);
1019 if ((inode
->i_state
& flags
) != flags
) {
1020 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1022 inode
->i_state
|= flags
;
1025 * If the inode is being synced, just update its dirty state.
1026 * The unlocker will place the inode on the appropriate
1027 * superblock list, based upon its state.
1029 if (inode
->i_state
& I_SYNC
)
1033 * Only add valid (hashed) inodes to the superblock's
1034 * dirty list. Add blockdev inodes as well.
1036 if (!S_ISBLK(inode
->i_mode
)) {
1037 if (hlist_unhashed(&inode
->i_hash
))
1040 if (inode
->i_state
& (I_FREEING
|I_CLEAR
))
1044 * If the inode was already on b_dirty/b_io/b_more_io, don't
1045 * reposition it (that would break b_dirty time-ordering).
1048 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1049 struct backing_dev_info
*bdi
= wb
->bdi
;
1051 if (bdi_cap_writeback_dirty(bdi
) &&
1052 !test_bit(BDI_registered
, &bdi
->state
)) {
1054 printk(KERN_ERR
"bdi-%s not registered\n",
1058 inode
->dirtied_when
= jiffies
;
1059 list_move(&inode
->i_list
, &wb
->b_dirty
);
1063 spin_unlock(&inode_lock
);
1065 EXPORT_SYMBOL(__mark_inode_dirty
);
1068 * Write out a superblock's list of dirty inodes. A wait will be performed
1069 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1071 * If older_than_this is non-NULL, then only write out inodes which
1072 * had their first dirtying at a time earlier than *older_than_this.
1074 * If we're a pdlfush thread, then implement pdflush collision avoidance
1075 * against the entire list.
1077 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1078 * This function assumes that the blockdev superblock's inodes are backed by
1079 * a variety of queues, so all inodes are searched. For other superblocks,
1080 * assume that all inodes are backed by the same queue.
1082 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1083 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1084 * on the writer throttling path, and we get decent balancing between many
1085 * throttled threads: we don't want them all piling up on inode_sync_wait.
1087 static void wait_sb_inodes(struct writeback_control
*wbc
)
1089 struct inode
*inode
, *old_inode
= NULL
;
1092 * We need to be protected against the filesystem going from
1093 * r/o to r/w or vice versa.
1095 WARN_ON(!rwsem_is_locked(&wbc
->sb
->s_umount
));
1097 spin_lock(&inode_lock
);
1100 * Data integrity sync. Must wait for all pages under writeback,
1101 * because there may have been pages dirtied before our sync
1102 * call, but which had writeout started before we write it out.
1103 * In which case, the inode may not be on the dirty list, but
1104 * we still have to wait for that writeout.
1106 list_for_each_entry(inode
, &wbc
->sb
->s_inodes
, i_sb_list
) {
1107 struct address_space
*mapping
;
1109 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
|I_NEW
))
1111 mapping
= inode
->i_mapping
;
1112 if (mapping
->nrpages
== 0)
1115 spin_unlock(&inode_lock
);
1117 * We hold a reference to 'inode' so it couldn't have
1118 * been removed from s_inodes list while we dropped the
1119 * inode_lock. We cannot iput the inode now as we can
1120 * be holding the last reference and we cannot iput it
1121 * under inode_lock. So we keep the reference and iput
1127 filemap_fdatawait(mapping
);
1131 spin_lock(&inode_lock
);
1133 spin_unlock(&inode_lock
);
1138 * writeback_inodes_sb - writeback dirty inodes from given super_block
1139 * @sb: the superblock
1141 * Start writeback on some inodes on this super_block. No guarantees are made
1142 * on how many (if any) will be written, and this function does not wait
1143 * for IO completion of submitted IO. The number of pages submitted is
1146 long writeback_inodes_sb(struct super_block
*sb
)
1148 struct writeback_control wbc
= {
1150 .sync_mode
= WB_SYNC_NONE
,
1152 .range_end
= LLONG_MAX
,
1154 unsigned long nr_dirty
= global_page_state(NR_FILE_DIRTY
);
1155 unsigned long nr_unstable
= global_page_state(NR_UNSTABLE_NFS
);
1158 nr_to_write
= nr_dirty
+ nr_unstable
+
1159 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
1161 wbc
.nr_to_write
= nr_to_write
;
1162 bdi_writeback_all(&wbc
);
1163 return nr_to_write
- wbc
.nr_to_write
;
1165 EXPORT_SYMBOL(writeback_inodes_sb
);
1168 * sync_inodes_sb - sync sb inode pages
1169 * @sb: the superblock
1171 * This function writes and waits on any dirty inode belonging to this
1172 * super_block. The number of pages synced is returned.
1174 long sync_inodes_sb(struct super_block
*sb
)
1176 struct writeback_control wbc
= {
1178 .sync_mode
= WB_SYNC_ALL
,
1180 .range_end
= LLONG_MAX
,
1182 long nr_to_write
= LONG_MAX
; /* doesn't actually matter */
1184 wbc
.nr_to_write
= nr_to_write
;
1185 bdi_writeback_all(&wbc
);
1186 wait_sb_inodes(&wbc
);
1187 return nr_to_write
- wbc
.nr_to_write
;
1189 EXPORT_SYMBOL(sync_inodes_sb
);
1192 * write_inode_now - write an inode to disk
1193 * @inode: inode to write to disk
1194 * @sync: whether the write should be synchronous or not
1196 * This function commits an inode to disk immediately if it is dirty. This is
1197 * primarily needed by knfsd.
1199 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1201 int write_inode_now(struct inode
*inode
, int sync
)
1204 struct writeback_control wbc
= {
1205 .nr_to_write
= LONG_MAX
,
1206 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1208 .range_end
= LLONG_MAX
,
1211 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1212 wbc
.nr_to_write
= 0;
1215 spin_lock(&inode_lock
);
1216 ret
= writeback_single_inode(inode
, &wbc
);
1217 spin_unlock(&inode_lock
);
1219 inode_sync_wait(inode
);
1222 EXPORT_SYMBOL(write_inode_now
);
1225 * sync_inode - write an inode and its pages to disk.
1226 * @inode: the inode to sync
1227 * @wbc: controls the writeback mode
1229 * sync_inode() will write an inode and its pages to disk. It will also
1230 * correctly update the inode on its superblock's dirty inode lists and will
1231 * update inode->i_state.
1233 * The caller must have a ref on the inode.
1235 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1239 spin_lock(&inode_lock
);
1240 ret
= writeback_single_inode(inode
, wbc
);
1241 spin_unlock(&inode_lock
);
1244 EXPORT_SYMBOL(sync_inode
);