4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
82 #include "sched_cpupri.h"
83 #include "workqueue_sched.h"
84 #include "sched_autogroup.h"
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
94 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
103 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
108 * Helpers for converting nanosecond timing to jiffy resolution
110 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
112 #define NICE_0_LOAD SCHED_LOAD_SCALE
113 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
116 * These are the 'tuning knobs' of the scheduler:
118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
119 * Timeslices get refilled after they expire.
121 #define DEF_TIMESLICE (100 * HZ / 1000)
124 * single value that denotes runtime == period, ie unlimited time.
126 #define RUNTIME_INF ((u64)~0ULL)
128 static inline int rt_policy(int policy
)
130 if (policy
== SCHED_FIFO
|| policy
== SCHED_RR
)
135 static inline int task_has_rt_policy(struct task_struct
*p
)
137 return rt_policy(p
->policy
);
141 * This is the priority-queue data structure of the RT scheduling class:
143 struct rt_prio_array
{
144 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
145 struct list_head queue
[MAX_RT_PRIO
];
148 struct rt_bandwidth
{
149 /* nests inside the rq lock: */
150 raw_spinlock_t rt_runtime_lock
;
153 struct hrtimer rt_period_timer
;
156 static struct rt_bandwidth def_rt_bandwidth
;
158 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
160 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
162 struct rt_bandwidth
*rt_b
=
163 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
169 now
= hrtimer_cb_get_time(timer
);
170 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
175 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
178 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
182 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
184 rt_b
->rt_period
= ns_to_ktime(period
);
185 rt_b
->rt_runtime
= runtime
;
187 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
189 hrtimer_init(&rt_b
->rt_period_timer
,
190 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
191 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
194 static inline int rt_bandwidth_enabled(void)
196 return sysctl_sched_rt_runtime
>= 0;
199 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
203 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
206 if (hrtimer_active(&rt_b
->rt_period_timer
))
209 raw_spin_lock(&rt_b
->rt_runtime_lock
);
214 if (hrtimer_active(&rt_b
->rt_period_timer
))
217 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
218 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
220 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
221 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
222 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
223 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
224 HRTIMER_MODE_ABS_PINNED
, 0);
226 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
229 #ifdef CONFIG_RT_GROUP_SCHED
230 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
232 hrtimer_cancel(&rt_b
->rt_period_timer
);
237 * sched_domains_mutex serializes calls to init_sched_domains,
238 * detach_destroy_domains and partition_sched_domains.
240 static DEFINE_MUTEX(sched_domains_mutex
);
242 #ifdef CONFIG_CGROUP_SCHED
244 #include <linux/cgroup.h>
248 static LIST_HEAD(task_groups
);
250 /* task group related information */
252 struct cgroup_subsys_state css
;
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity
**se
;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq
**cfs_rq
;
259 unsigned long shares
;
261 atomic_t load_weight
;
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity
**rt_se
;
266 struct rt_rq
**rt_rq
;
268 struct rt_bandwidth rt_bandwidth
;
272 struct list_head list
;
274 struct task_group
*parent
;
275 struct list_head siblings
;
276 struct list_head children
;
278 #ifdef CONFIG_SCHED_AUTOGROUP
279 struct autogroup
*autogroup
;
283 /* task_group_lock serializes the addition/removal of task groups */
284 static DEFINE_SPINLOCK(task_group_lock
);
286 #ifdef CONFIG_FAIR_GROUP_SCHED
288 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
298 #define MIN_SHARES (1UL << 1)
299 #define MAX_SHARES (1UL << 18)
301 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group root_task_group
;
309 #endif /* CONFIG_CGROUP_SCHED */
311 /* CFS-related fields in a runqueue */
313 struct load_weight load
;
314 unsigned long nr_running
;
319 u64 min_vruntime_copy
;
322 struct rb_root tasks_timeline
;
323 struct rb_node
*rb_leftmost
;
325 struct list_head tasks
;
326 struct list_head
*balance_iterator
;
329 * 'curr' points to currently running entity on this cfs_rq.
330 * It is set to NULL otherwise (i.e when none are currently running).
332 struct sched_entity
*curr
, *next
, *last
, *skip
;
334 #ifdef CONFIG_SCHED_DEBUG
335 unsigned int nr_spread_over
;
338 #ifdef CONFIG_FAIR_GROUP_SCHED
339 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
342 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
343 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
344 * (like users, containers etc.)
346 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
347 * list is used during load balance.
350 struct list_head leaf_cfs_rq_list
;
351 struct task_group
*tg
; /* group that "owns" this runqueue */
355 * the part of load.weight contributed by tasks
357 unsigned long task_weight
;
360 * h_load = weight * f(tg)
362 * Where f(tg) is the recursive weight fraction assigned to
365 unsigned long h_load
;
368 * Maintaining per-cpu shares distribution for group scheduling
370 * load_stamp is the last time we updated the load average
371 * load_last is the last time we updated the load average and saw load
372 * load_unacc_exec_time is currently unaccounted execution time
376 u64 load_stamp
, load_last
, load_unacc_exec_time
;
378 unsigned long load_contribution
;
383 /* Real-Time classes' related field in a runqueue: */
385 struct rt_prio_array active
;
386 unsigned long rt_nr_running
;
387 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
389 int curr
; /* highest queued rt task prio */
391 int next
; /* next highest */
396 unsigned long rt_nr_migratory
;
397 unsigned long rt_nr_total
;
399 struct plist_head pushable_tasks
;
404 /* Nests inside the rq lock: */
405 raw_spinlock_t rt_runtime_lock
;
407 #ifdef CONFIG_RT_GROUP_SCHED
408 unsigned long rt_nr_boosted
;
411 struct list_head leaf_rt_rq_list
;
412 struct task_group
*tg
;
419 * We add the notion of a root-domain which will be used to define per-domain
420 * variables. Each exclusive cpuset essentially defines an island domain by
421 * fully partitioning the member cpus from any other cpuset. Whenever a new
422 * exclusive cpuset is created, we also create and attach a new root-domain
431 cpumask_var_t online
;
434 * The "RT overload" flag: it gets set if a CPU has more than
435 * one runnable RT task.
437 cpumask_var_t rto_mask
;
438 struct cpupri cpupri
;
442 * By default the system creates a single root-domain with all cpus as
443 * members (mimicking the global state we have today).
445 static struct root_domain def_root_domain
;
447 #endif /* CONFIG_SMP */
450 * This is the main, per-CPU runqueue data structure.
452 * Locking rule: those places that want to lock multiple runqueues
453 * (such as the load balancing or the thread migration code), lock
454 * acquire operations must be ordered by ascending &runqueue.
461 * nr_running and cpu_load should be in the same cacheline because
462 * remote CPUs use both these fields when doing load calculation.
464 unsigned long nr_running
;
465 #define CPU_LOAD_IDX_MAX 5
466 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
467 unsigned long last_load_update_tick
;
470 unsigned char nohz_balance_kick
;
472 int skip_clock_update
;
474 /* capture load from *all* tasks on this cpu: */
475 struct load_weight load
;
476 unsigned long nr_load_updates
;
482 #ifdef CONFIG_FAIR_GROUP_SCHED
483 /* list of leaf cfs_rq on this cpu: */
484 struct list_head leaf_cfs_rq_list
;
486 #ifdef CONFIG_RT_GROUP_SCHED
487 struct list_head leaf_rt_rq_list
;
491 * This is part of a global counter where only the total sum
492 * over all CPUs matters. A task can increase this counter on
493 * one CPU and if it got migrated afterwards it may decrease
494 * it on another CPU. Always updated under the runqueue lock:
496 unsigned long nr_uninterruptible
;
498 struct task_struct
*curr
, *idle
, *stop
;
499 unsigned long next_balance
;
500 struct mm_struct
*prev_mm
;
508 struct root_domain
*rd
;
509 struct sched_domain
*sd
;
511 unsigned long cpu_power
;
513 unsigned char idle_at_tick
;
514 /* For active balancing */
518 struct cpu_stop_work active_balance_work
;
519 /* cpu of this runqueue: */
523 unsigned long avg_load_per_task
;
531 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
534 #ifdef CONFIG_PARAVIRT
537 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
538 u64 prev_steal_time_rq
;
541 /* calc_load related fields */
542 unsigned long calc_load_update
;
543 long calc_load_active
;
545 #ifdef CONFIG_SCHED_HRTICK
547 int hrtick_csd_pending
;
548 struct call_single_data hrtick_csd
;
550 struct hrtimer hrtick_timer
;
553 #ifdef CONFIG_SCHEDSTATS
555 struct sched_info rq_sched_info
;
556 unsigned long long rq_cpu_time
;
557 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
559 /* sys_sched_yield() stats */
560 unsigned int yld_count
;
562 /* schedule() stats */
563 unsigned int sched_switch
;
564 unsigned int sched_count
;
565 unsigned int sched_goidle
;
567 /* try_to_wake_up() stats */
568 unsigned int ttwu_count
;
569 unsigned int ttwu_local
;
573 struct task_struct
*wake_list
;
577 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
580 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
582 static inline int cpu_of(struct rq
*rq
)
591 #define rcu_dereference_check_sched_domain(p) \
592 rcu_dereference_check((p), \
593 rcu_read_lock_held() || \
594 lockdep_is_held(&sched_domains_mutex))
597 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
598 * See detach_destroy_domains: synchronize_sched for details.
600 * The domain tree of any CPU may only be accessed from within
601 * preempt-disabled sections.
603 #define for_each_domain(cpu, __sd) \
604 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
606 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
607 #define this_rq() (&__get_cpu_var(runqueues))
608 #define task_rq(p) cpu_rq(task_cpu(p))
609 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
610 #define raw_rq() (&__raw_get_cpu_var(runqueues))
612 #ifdef CONFIG_CGROUP_SCHED
615 * Return the group to which this tasks belongs.
617 * We use task_subsys_state_check() and extend the RCU verification with
618 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
619 * task it moves into the cgroup. Therefore by holding either of those locks,
620 * we pin the task to the current cgroup.
622 static inline struct task_group
*task_group(struct task_struct
*p
)
624 struct task_group
*tg
;
625 struct cgroup_subsys_state
*css
;
627 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
628 lockdep_is_held(&p
->pi_lock
) ||
629 lockdep_is_held(&task_rq(p
)->lock
));
630 tg
= container_of(css
, struct task_group
, css
);
632 return autogroup_task_group(p
, tg
);
635 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
636 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
638 #ifdef CONFIG_FAIR_GROUP_SCHED
639 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
640 p
->se
.parent
= task_group(p
)->se
[cpu
];
643 #ifdef CONFIG_RT_GROUP_SCHED
644 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
645 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
649 #else /* CONFIG_CGROUP_SCHED */
651 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
652 static inline struct task_group
*task_group(struct task_struct
*p
)
657 #endif /* CONFIG_CGROUP_SCHED */
659 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
661 static void update_rq_clock(struct rq
*rq
)
665 if (rq
->skip_clock_update
> 0)
668 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
670 update_rq_clock_task(rq
, delta
);
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
676 #ifdef CONFIG_SCHED_DEBUG
677 # define const_debug __read_mostly
679 # define const_debug static const
683 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
684 * @cpu: the processor in question.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
689 int runqueue_is_locked(int cpu
)
691 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
695 * Debugging: various feature bits
698 #define SCHED_FEAT(name, enabled) \
699 __SCHED_FEAT_##name ,
702 #include "sched_features.h"
707 #define SCHED_FEAT(name, enabled) \
708 (1UL << __SCHED_FEAT_##name) * enabled |
710 const_debug
unsigned int sysctl_sched_features
=
711 #include "sched_features.h"
716 #ifdef CONFIG_SCHED_DEBUG
717 #define SCHED_FEAT(name, enabled) \
720 static __read_mostly
char *sched_feat_names
[] = {
721 #include "sched_features.h"
727 static int sched_feat_show(struct seq_file
*m
, void *v
)
731 for (i
= 0; sched_feat_names
[i
]; i
++) {
732 if (!(sysctl_sched_features
& (1UL << i
)))
734 seq_printf(m
, "%s ", sched_feat_names
[i
]);
742 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
743 size_t cnt
, loff_t
*ppos
)
753 if (copy_from_user(&buf
, ubuf
, cnt
))
759 if (strncmp(cmp
, "NO_", 3) == 0) {
764 for (i
= 0; sched_feat_names
[i
]; i
++) {
765 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
767 sysctl_sched_features
&= ~(1UL << i
);
769 sysctl_sched_features
|= (1UL << i
);
774 if (!sched_feat_names
[i
])
782 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
784 return single_open(filp
, sched_feat_show
, NULL
);
787 static const struct file_operations sched_feat_fops
= {
788 .open
= sched_feat_open
,
789 .write
= sched_feat_write
,
792 .release
= single_release
,
795 static __init
int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
802 late_initcall(sched_init_debug
);
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
815 * period over which we average the RT time consumption, measured
820 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
823 * period over which we measure -rt task cpu usage in us.
826 unsigned int sysctl_sched_rt_period
= 1000000;
828 static __read_mostly
int scheduler_running
;
831 * part of the period that we allow rt tasks to run in us.
834 int sysctl_sched_rt_runtime
= 950000;
836 static inline u64
global_rt_period(void)
838 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
841 static inline u64
global_rt_runtime(void)
843 if (sysctl_sched_rt_runtime
< 0)
846 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
849 #ifndef prepare_arch_switch
850 # define prepare_arch_switch(next) do { } while (0)
852 #ifndef finish_arch_switch
853 # define finish_arch_switch(prev) do { } while (0)
856 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
858 return rq
->curr
== p
;
861 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
866 return task_current(rq
, p
);
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
875 * We can optimise this out completely for !SMP, because the
876 * SMP rebalancing from interrupt is the only thing that cares
883 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
887 * After ->on_cpu is cleared, the task can be moved to a different CPU.
888 * We must ensure this doesn't happen until the switch is completely
894 #ifdef CONFIG_DEBUG_SPINLOCK
895 /* this is a valid case when another task releases the spinlock */
896 rq
->lock
.owner
= current
;
899 * If we are tracking spinlock dependencies then we have to
900 * fix up the runqueue lock - which gets 'carried over' from
903 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
905 raw_spin_unlock_irq(&rq
->lock
);
908 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
909 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 raw_spin_unlock_irq(&rq
->lock
);
922 raw_spin_unlock(&rq
->lock
);
926 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
930 * After ->on_cpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944 * __task_rq_lock - lock the rq @p resides on.
946 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
951 lockdep_assert_held(&p
->pi_lock
);
955 raw_spin_lock(&rq
->lock
);
956 if (likely(rq
== task_rq(p
)))
958 raw_spin_unlock(&rq
->lock
);
963 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
965 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
966 __acquires(p
->pi_lock
)
972 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
974 raw_spin_lock(&rq
->lock
);
975 if (likely(rq
== task_rq(p
)))
977 raw_spin_unlock(&rq
->lock
);
978 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
982 static void __task_rq_unlock(struct rq
*rq
)
985 raw_spin_unlock(&rq
->lock
);
989 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
991 __releases(p
->pi_lock
)
993 raw_spin_unlock(&rq
->lock
);
994 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
998 * this_rq_lock - lock this runqueue and disable interrupts.
1000 static struct rq
*this_rq_lock(void)
1001 __acquires(rq
->lock
)
1005 local_irq_disable();
1007 raw_spin_lock(&rq
->lock
);
1012 #ifdef CONFIG_SCHED_HRTICK
1014 * Use HR-timers to deliver accurate preemption points.
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * - enabled by features
1027 * - hrtimer is actually high res
1029 static inline int hrtick_enabled(struct rq
*rq
)
1031 if (!sched_feat(HRTICK
))
1033 if (!cpu_active(cpu_of(rq
)))
1035 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1038 static void hrtick_clear(struct rq
*rq
)
1040 if (hrtimer_active(&rq
->hrtick_timer
))
1041 hrtimer_cancel(&rq
->hrtick_timer
);
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1048 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1050 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1052 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1054 raw_spin_lock(&rq
->lock
);
1055 update_rq_clock(rq
);
1056 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1057 raw_spin_unlock(&rq
->lock
);
1059 return HRTIMER_NORESTART
;
1064 * called from hardirq (IPI) context
1066 static void __hrtick_start(void *arg
)
1068 struct rq
*rq
= arg
;
1070 raw_spin_lock(&rq
->lock
);
1071 hrtimer_restart(&rq
->hrtick_timer
);
1072 rq
->hrtick_csd_pending
= 0;
1073 raw_spin_unlock(&rq
->lock
);
1077 * Called to set the hrtick timer state.
1079 * called with rq->lock held and irqs disabled
1081 static void hrtick_start(struct rq
*rq
, u64 delay
)
1083 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1084 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1086 hrtimer_set_expires(timer
, time
);
1088 if (rq
== this_rq()) {
1089 hrtimer_restart(timer
);
1090 } else if (!rq
->hrtick_csd_pending
) {
1091 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1092 rq
->hrtick_csd_pending
= 1;
1097 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1099 int cpu
= (int)(long)hcpu
;
1102 case CPU_UP_CANCELED
:
1103 case CPU_UP_CANCELED_FROZEN
:
1104 case CPU_DOWN_PREPARE
:
1105 case CPU_DOWN_PREPARE_FROZEN
:
1107 case CPU_DEAD_FROZEN
:
1108 hrtick_clear(cpu_rq(cpu
));
1115 static __init
void init_hrtick(void)
1117 hotcpu_notifier(hotplug_hrtick
, 0);
1121 * Called to set the hrtick timer state.
1123 * called with rq->lock held and irqs disabled
1125 static void hrtick_start(struct rq
*rq
, u64 delay
)
1127 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1128 HRTIMER_MODE_REL_PINNED
, 0);
1131 static inline void init_hrtick(void)
1134 #endif /* CONFIG_SMP */
1136 static void init_rq_hrtick(struct rq
*rq
)
1139 rq
->hrtick_csd_pending
= 0;
1141 rq
->hrtick_csd
.flags
= 0;
1142 rq
->hrtick_csd
.func
= __hrtick_start
;
1143 rq
->hrtick_csd
.info
= rq
;
1146 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1147 rq
->hrtick_timer
.function
= hrtick
;
1149 #else /* CONFIG_SCHED_HRTICK */
1150 static inline void hrtick_clear(struct rq
*rq
)
1154 static inline void init_rq_hrtick(struct rq
*rq
)
1158 static inline void init_hrtick(void)
1161 #endif /* CONFIG_SCHED_HRTICK */
1164 * resched_task - mark a task 'to be rescheduled now'.
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1172 #ifndef tsk_is_polling
1173 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 static void resched_task(struct task_struct
*p
)
1180 assert_raw_spin_locked(&task_rq(p
)->lock
);
1182 if (test_tsk_need_resched(p
))
1185 set_tsk_need_resched(p
);
1188 if (cpu
== smp_processor_id())
1191 /* NEED_RESCHED must be visible before we test polling */
1193 if (!tsk_is_polling(p
))
1194 smp_send_reschedule(cpu
);
1197 static void resched_cpu(int cpu
)
1199 struct rq
*rq
= cpu_rq(cpu
);
1200 unsigned long flags
;
1202 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1204 resched_task(cpu_curr(cpu
));
1205 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1210 * In the semi idle case, use the nearest busy cpu for migrating timers
1211 * from an idle cpu. This is good for power-savings.
1213 * We don't do similar optimization for completely idle system, as
1214 * selecting an idle cpu will add more delays to the timers than intended
1215 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1217 int get_nohz_timer_target(void)
1219 int cpu
= smp_processor_id();
1221 struct sched_domain
*sd
;
1224 for_each_domain(cpu
, sd
) {
1225 for_each_cpu(i
, sched_domain_span(sd
)) {
1237 * When add_timer_on() enqueues a timer into the timer wheel of an
1238 * idle CPU then this timer might expire before the next timer event
1239 * which is scheduled to wake up that CPU. In case of a completely
1240 * idle system the next event might even be infinite time into the
1241 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1242 * leaves the inner idle loop so the newly added timer is taken into
1243 * account when the CPU goes back to idle and evaluates the timer
1244 * wheel for the next timer event.
1246 void wake_up_idle_cpu(int cpu
)
1248 struct rq
*rq
= cpu_rq(cpu
);
1250 if (cpu
== smp_processor_id())
1254 * This is safe, as this function is called with the timer
1255 * wheel base lock of (cpu) held. When the CPU is on the way
1256 * to idle and has not yet set rq->curr to idle then it will
1257 * be serialized on the timer wheel base lock and take the new
1258 * timer into account automatically.
1260 if (rq
->curr
!= rq
->idle
)
1264 * We can set TIF_RESCHED on the idle task of the other CPU
1265 * lockless. The worst case is that the other CPU runs the
1266 * idle task through an additional NOOP schedule()
1268 set_tsk_need_resched(rq
->idle
);
1270 /* NEED_RESCHED must be visible before we test polling */
1272 if (!tsk_is_polling(rq
->idle
))
1273 smp_send_reschedule(cpu
);
1276 #endif /* CONFIG_NO_HZ */
1278 static u64
sched_avg_period(void)
1280 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1283 static void sched_avg_update(struct rq
*rq
)
1285 s64 period
= sched_avg_period();
1287 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1289 * Inline assembly required to prevent the compiler
1290 * optimising this loop into a divmod call.
1291 * See __iter_div_u64_rem() for another example of this.
1293 asm("" : "+rm" (rq
->age_stamp
));
1294 rq
->age_stamp
+= period
;
1299 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1301 rq
->rt_avg
+= rt_delta
;
1302 sched_avg_update(rq
);
1305 #else /* !CONFIG_SMP */
1306 static void resched_task(struct task_struct
*p
)
1308 assert_raw_spin_locked(&task_rq(p
)->lock
);
1309 set_tsk_need_resched(p
);
1312 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1316 static void sched_avg_update(struct rq
*rq
)
1319 #endif /* CONFIG_SMP */
1321 #if BITS_PER_LONG == 32
1322 # define WMULT_CONST (~0UL)
1324 # define WMULT_CONST (1UL << 32)
1327 #define WMULT_SHIFT 32
1330 * Shift right and round:
1332 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1335 * delta *= weight / lw
1337 static unsigned long
1338 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1339 struct load_weight
*lw
)
1344 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1345 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1346 * 2^SCHED_LOAD_RESOLUTION.
1348 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
1349 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
1351 tmp
= (u64
)delta_exec
;
1353 if (!lw
->inv_weight
) {
1354 unsigned long w
= scale_load_down(lw
->weight
);
1356 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
1358 else if (unlikely(!w
))
1359 lw
->inv_weight
= WMULT_CONST
;
1361 lw
->inv_weight
= WMULT_CONST
/ w
;
1365 * Check whether we'd overflow the 64-bit multiplication:
1367 if (unlikely(tmp
> WMULT_CONST
))
1368 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1371 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1373 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1376 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1382 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1388 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1395 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1396 * of tasks with abnormal "nice" values across CPUs the contribution that
1397 * each task makes to its run queue's load is weighted according to its
1398 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1399 * scaled version of the new time slice allocation that they receive on time
1403 #define WEIGHT_IDLEPRIO 3
1404 #define WMULT_IDLEPRIO 1431655765
1407 * Nice levels are multiplicative, with a gentle 10% change for every
1408 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1409 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1410 * that remained on nice 0.
1412 * The "10% effect" is relative and cumulative: from _any_ nice level,
1413 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1414 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1415 * If a task goes up by ~10% and another task goes down by ~10% then
1416 * the relative distance between them is ~25%.)
1418 static const int prio_to_weight
[40] = {
1419 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1420 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1421 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1422 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1423 /* 0 */ 1024, 820, 655, 526, 423,
1424 /* 5 */ 335, 272, 215, 172, 137,
1425 /* 10 */ 110, 87, 70, 56, 45,
1426 /* 15 */ 36, 29, 23, 18, 15,
1430 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1432 * In cases where the weight does not change often, we can use the
1433 * precalculated inverse to speed up arithmetics by turning divisions
1434 * into multiplications:
1436 static const u32 prio_to_wmult
[40] = {
1437 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1438 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1439 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1440 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1441 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1442 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1443 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1444 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1447 /* Time spent by the tasks of the cpu accounting group executing in ... */
1448 enum cpuacct_stat_index
{
1449 CPUACCT_STAT_USER
, /* ... user mode */
1450 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1452 CPUACCT_STAT_NSTATS
,
1455 #ifdef CONFIG_CGROUP_CPUACCT
1456 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1457 static void cpuacct_update_stats(struct task_struct
*tsk
,
1458 enum cpuacct_stat_index idx
, cputime_t val
);
1460 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1461 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1462 enum cpuacct_stat_index idx
, cputime_t val
) {}
1465 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1467 update_load_add(&rq
->load
, load
);
1470 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1472 update_load_sub(&rq
->load
, load
);
1475 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1476 typedef int (*tg_visitor
)(struct task_group
*, void *);
1479 * Iterate the full tree, calling @down when first entering a node and @up when
1480 * leaving it for the final time.
1482 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1484 struct task_group
*parent
, *child
;
1488 parent
= &root_task_group
;
1490 ret
= (*down
)(parent
, data
);
1493 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1500 ret
= (*up
)(parent
, data
);
1505 parent
= parent
->parent
;
1514 static int tg_nop(struct task_group
*tg
, void *data
)
1521 /* Used instead of source_load when we know the type == 0 */
1522 static unsigned long weighted_cpuload(const int cpu
)
1524 return cpu_rq(cpu
)->load
.weight
;
1528 * Return a low guess at the load of a migration-source cpu weighted
1529 * according to the scheduling class and "nice" value.
1531 * We want to under-estimate the load of migration sources, to
1532 * balance conservatively.
1534 static unsigned long source_load(int cpu
, int type
)
1536 struct rq
*rq
= cpu_rq(cpu
);
1537 unsigned long total
= weighted_cpuload(cpu
);
1539 if (type
== 0 || !sched_feat(LB_BIAS
))
1542 return min(rq
->cpu_load
[type
-1], total
);
1546 * Return a high guess at the load of a migration-target cpu weighted
1547 * according to the scheduling class and "nice" value.
1549 static unsigned long target_load(int cpu
, int type
)
1551 struct rq
*rq
= cpu_rq(cpu
);
1552 unsigned long total
= weighted_cpuload(cpu
);
1554 if (type
== 0 || !sched_feat(LB_BIAS
))
1557 return max(rq
->cpu_load
[type
-1], total
);
1560 static unsigned long power_of(int cpu
)
1562 return cpu_rq(cpu
)->cpu_power
;
1565 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1567 static unsigned long cpu_avg_load_per_task(int cpu
)
1569 struct rq
*rq
= cpu_rq(cpu
);
1570 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1573 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1575 rq
->avg_load_per_task
= 0;
1577 return rq
->avg_load_per_task
;
1580 #ifdef CONFIG_PREEMPT
1582 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1585 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1586 * way at the expense of forcing extra atomic operations in all
1587 * invocations. This assures that the double_lock is acquired using the
1588 * same underlying policy as the spinlock_t on this architecture, which
1589 * reduces latency compared to the unfair variant below. However, it
1590 * also adds more overhead and therefore may reduce throughput.
1592 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1593 __releases(this_rq
->lock
)
1594 __acquires(busiest
->lock
)
1595 __acquires(this_rq
->lock
)
1597 raw_spin_unlock(&this_rq
->lock
);
1598 double_rq_lock(this_rq
, busiest
);
1605 * Unfair double_lock_balance: Optimizes throughput at the expense of
1606 * latency by eliminating extra atomic operations when the locks are
1607 * already in proper order on entry. This favors lower cpu-ids and will
1608 * grant the double lock to lower cpus over higher ids under contention,
1609 * regardless of entry order into the function.
1611 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1612 __releases(this_rq
->lock
)
1613 __acquires(busiest
->lock
)
1614 __acquires(this_rq
->lock
)
1618 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1619 if (busiest
< this_rq
) {
1620 raw_spin_unlock(&this_rq
->lock
);
1621 raw_spin_lock(&busiest
->lock
);
1622 raw_spin_lock_nested(&this_rq
->lock
,
1623 SINGLE_DEPTH_NESTING
);
1626 raw_spin_lock_nested(&busiest
->lock
,
1627 SINGLE_DEPTH_NESTING
);
1632 #endif /* CONFIG_PREEMPT */
1635 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1637 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1639 if (unlikely(!irqs_disabled())) {
1640 /* printk() doesn't work good under rq->lock */
1641 raw_spin_unlock(&this_rq
->lock
);
1645 return _double_lock_balance(this_rq
, busiest
);
1648 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1649 __releases(busiest
->lock
)
1651 raw_spin_unlock(&busiest
->lock
);
1652 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1656 * double_rq_lock - safely lock two runqueues
1658 * Note this does not disable interrupts like task_rq_lock,
1659 * you need to do so manually before calling.
1661 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1662 __acquires(rq1
->lock
)
1663 __acquires(rq2
->lock
)
1665 BUG_ON(!irqs_disabled());
1667 raw_spin_lock(&rq1
->lock
);
1668 __acquire(rq2
->lock
); /* Fake it out ;) */
1671 raw_spin_lock(&rq1
->lock
);
1672 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1674 raw_spin_lock(&rq2
->lock
);
1675 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1681 * double_rq_unlock - safely unlock two runqueues
1683 * Note this does not restore interrupts like task_rq_unlock,
1684 * you need to do so manually after calling.
1686 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1687 __releases(rq1
->lock
)
1688 __releases(rq2
->lock
)
1690 raw_spin_unlock(&rq1
->lock
);
1692 raw_spin_unlock(&rq2
->lock
);
1694 __release(rq2
->lock
);
1697 #else /* CONFIG_SMP */
1700 * double_rq_lock - safely lock two runqueues
1702 * Note this does not disable interrupts like task_rq_lock,
1703 * you need to do so manually before calling.
1705 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1706 __acquires(rq1
->lock
)
1707 __acquires(rq2
->lock
)
1709 BUG_ON(!irqs_disabled());
1711 raw_spin_lock(&rq1
->lock
);
1712 __acquire(rq2
->lock
); /* Fake it out ;) */
1716 * double_rq_unlock - safely unlock two runqueues
1718 * Note this does not restore interrupts like task_rq_unlock,
1719 * you need to do so manually after calling.
1721 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1722 __releases(rq1
->lock
)
1723 __releases(rq2
->lock
)
1726 raw_spin_unlock(&rq1
->lock
);
1727 __release(rq2
->lock
);
1732 static void calc_load_account_idle(struct rq
*this_rq
);
1733 static void update_sysctl(void);
1734 static int get_update_sysctl_factor(void);
1735 static void update_cpu_load(struct rq
*this_rq
);
1737 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1739 set_task_rq(p
, cpu
);
1742 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1743 * successfuly executed on another CPU. We must ensure that updates of
1744 * per-task data have been completed by this moment.
1747 task_thread_info(p
)->cpu
= cpu
;
1751 static const struct sched_class rt_sched_class
;
1753 #define sched_class_highest (&stop_sched_class)
1754 #define for_each_class(class) \
1755 for (class = sched_class_highest; class; class = class->next)
1757 #include "sched_stats.h"
1759 static void inc_nr_running(struct rq
*rq
)
1764 static void dec_nr_running(struct rq
*rq
)
1769 static void set_load_weight(struct task_struct
*p
)
1771 int prio
= p
->static_prio
- MAX_RT_PRIO
;
1772 struct load_weight
*load
= &p
->se
.load
;
1775 * SCHED_IDLE tasks get minimal weight:
1777 if (p
->policy
== SCHED_IDLE
) {
1778 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
1779 load
->inv_weight
= WMULT_IDLEPRIO
;
1783 load
->weight
= scale_load(prio_to_weight
[prio
]);
1784 load
->inv_weight
= prio_to_wmult
[prio
];
1787 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1789 update_rq_clock(rq
);
1790 sched_info_queued(p
);
1791 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1794 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1796 update_rq_clock(rq
);
1797 sched_info_dequeued(p
);
1798 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1802 * activate_task - move a task to the runqueue.
1804 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1806 if (task_contributes_to_load(p
))
1807 rq
->nr_uninterruptible
--;
1809 enqueue_task(rq
, p
, flags
);
1814 * deactivate_task - remove a task from the runqueue.
1816 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1818 if (task_contributes_to_load(p
))
1819 rq
->nr_uninterruptible
++;
1821 dequeue_task(rq
, p
, flags
);
1825 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1828 * There are no locks covering percpu hardirq/softirq time.
1829 * They are only modified in account_system_vtime, on corresponding CPU
1830 * with interrupts disabled. So, writes are safe.
1831 * They are read and saved off onto struct rq in update_rq_clock().
1832 * This may result in other CPU reading this CPU's irq time and can
1833 * race with irq/account_system_vtime on this CPU. We would either get old
1834 * or new value with a side effect of accounting a slice of irq time to wrong
1835 * task when irq is in progress while we read rq->clock. That is a worthy
1836 * compromise in place of having locks on each irq in account_system_time.
1838 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1839 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1841 static DEFINE_PER_CPU(u64
, irq_start_time
);
1842 static int sched_clock_irqtime
;
1844 void enable_sched_clock_irqtime(void)
1846 sched_clock_irqtime
= 1;
1849 void disable_sched_clock_irqtime(void)
1851 sched_clock_irqtime
= 0;
1854 #ifndef CONFIG_64BIT
1855 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1857 static inline void irq_time_write_begin(void)
1859 __this_cpu_inc(irq_time_seq
.sequence
);
1863 static inline void irq_time_write_end(void)
1866 __this_cpu_inc(irq_time_seq
.sequence
);
1869 static inline u64
irq_time_read(int cpu
)
1875 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1876 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1877 per_cpu(cpu_hardirq_time
, cpu
);
1878 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1882 #else /* CONFIG_64BIT */
1883 static inline void irq_time_write_begin(void)
1887 static inline void irq_time_write_end(void)
1891 static inline u64
irq_time_read(int cpu
)
1893 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1895 #endif /* CONFIG_64BIT */
1898 * Called before incrementing preempt_count on {soft,}irq_enter
1899 * and before decrementing preempt_count on {soft,}irq_exit.
1901 void account_system_vtime(struct task_struct
*curr
)
1903 unsigned long flags
;
1907 if (!sched_clock_irqtime
)
1910 local_irq_save(flags
);
1912 cpu
= smp_processor_id();
1913 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
1914 __this_cpu_add(irq_start_time
, delta
);
1916 irq_time_write_begin();
1918 * We do not account for softirq time from ksoftirqd here.
1919 * We want to continue accounting softirq time to ksoftirqd thread
1920 * in that case, so as not to confuse scheduler with a special task
1921 * that do not consume any time, but still wants to run.
1923 if (hardirq_count())
1924 __this_cpu_add(cpu_hardirq_time
, delta
);
1925 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
1926 __this_cpu_add(cpu_softirq_time
, delta
);
1928 irq_time_write_end();
1929 local_irq_restore(flags
);
1931 EXPORT_SYMBOL_GPL(account_system_vtime
);
1933 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1935 #ifdef CONFIG_PARAVIRT
1936 static inline u64
steal_ticks(u64 steal
)
1938 if (unlikely(steal
> NSEC_PER_SEC
))
1939 return div_u64(steal
, TICK_NSEC
);
1941 return __iter_div_u64_rem(steal
, TICK_NSEC
, &steal
);
1945 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1948 * In theory, the compile should just see 0 here, and optimize out the call
1949 * to sched_rt_avg_update. But I don't trust it...
1951 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
1952 s64 steal
= 0, irq_delta
= 0;
1954 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1955 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
1958 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1959 * this case when a previous update_rq_clock() happened inside a
1960 * {soft,}irq region.
1962 * When this happens, we stop ->clock_task and only update the
1963 * prev_irq_time stamp to account for the part that fit, so that a next
1964 * update will consume the rest. This ensures ->clock_task is
1967 * It does however cause some slight miss-attribution of {soft,}irq
1968 * time, a more accurate solution would be to update the irq_time using
1969 * the current rq->clock timestamp, except that would require using
1972 if (irq_delta
> delta
)
1975 rq
->prev_irq_time
+= irq_delta
;
1978 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1979 if (static_branch((¶virt_steal_rq_enabled
))) {
1982 steal
= paravirt_steal_clock(cpu_of(rq
));
1983 steal
-= rq
->prev_steal_time_rq
;
1985 if (unlikely(steal
> delta
))
1988 st
= steal_ticks(steal
);
1989 steal
= st
* TICK_NSEC
;
1991 rq
->prev_steal_time_rq
+= steal
;
1997 rq
->clock_task
+= delta
;
1999 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2000 if ((irq_delta
+ steal
) && sched_feat(NONTASK_POWER
))
2001 sched_rt_avg_update(rq
, irq_delta
+ steal
);
2005 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2006 static int irqtime_account_hi_update(void)
2008 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2009 unsigned long flags
;
2013 local_irq_save(flags
);
2014 latest_ns
= this_cpu_read(cpu_hardirq_time
);
2015 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
2017 local_irq_restore(flags
);
2021 static int irqtime_account_si_update(void)
2023 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2024 unsigned long flags
;
2028 local_irq_save(flags
);
2029 latest_ns
= this_cpu_read(cpu_softirq_time
);
2030 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
2032 local_irq_restore(flags
);
2036 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2038 #define sched_clock_irqtime (0)
2042 #include "sched_idletask.c"
2043 #include "sched_fair.c"
2044 #include "sched_rt.c"
2045 #include "sched_autogroup.c"
2046 #include "sched_stoptask.c"
2047 #ifdef CONFIG_SCHED_DEBUG
2048 # include "sched_debug.c"
2051 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2053 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2054 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2058 * Make it appear like a SCHED_FIFO task, its something
2059 * userspace knows about and won't get confused about.
2061 * Also, it will make PI more or less work without too
2062 * much confusion -- but then, stop work should not
2063 * rely on PI working anyway.
2065 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2067 stop
->sched_class
= &stop_sched_class
;
2070 cpu_rq(cpu
)->stop
= stop
;
2074 * Reset it back to a normal scheduling class so that
2075 * it can die in pieces.
2077 old_stop
->sched_class
= &rt_sched_class
;
2082 * __normal_prio - return the priority that is based on the static prio
2084 static inline int __normal_prio(struct task_struct
*p
)
2086 return p
->static_prio
;
2090 * Calculate the expected normal priority: i.e. priority
2091 * without taking RT-inheritance into account. Might be
2092 * boosted by interactivity modifiers. Changes upon fork,
2093 * setprio syscalls, and whenever the interactivity
2094 * estimator recalculates.
2096 static inline int normal_prio(struct task_struct
*p
)
2100 if (task_has_rt_policy(p
))
2101 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2103 prio
= __normal_prio(p
);
2108 * Calculate the current priority, i.e. the priority
2109 * taken into account by the scheduler. This value might
2110 * be boosted by RT tasks, or might be boosted by
2111 * interactivity modifiers. Will be RT if the task got
2112 * RT-boosted. If not then it returns p->normal_prio.
2114 static int effective_prio(struct task_struct
*p
)
2116 p
->normal_prio
= normal_prio(p
);
2118 * If we are RT tasks or we were boosted to RT priority,
2119 * keep the priority unchanged. Otherwise, update priority
2120 * to the normal priority:
2122 if (!rt_prio(p
->prio
))
2123 return p
->normal_prio
;
2128 * task_curr - is this task currently executing on a CPU?
2129 * @p: the task in question.
2131 inline int task_curr(const struct task_struct
*p
)
2133 return cpu_curr(task_cpu(p
)) == p
;
2136 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2137 const struct sched_class
*prev_class
,
2140 if (prev_class
!= p
->sched_class
) {
2141 if (prev_class
->switched_from
)
2142 prev_class
->switched_from(rq
, p
);
2143 p
->sched_class
->switched_to(rq
, p
);
2144 } else if (oldprio
!= p
->prio
)
2145 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2148 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2150 const struct sched_class
*class;
2152 if (p
->sched_class
== rq
->curr
->sched_class
) {
2153 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2155 for_each_class(class) {
2156 if (class == rq
->curr
->sched_class
)
2158 if (class == p
->sched_class
) {
2159 resched_task(rq
->curr
);
2166 * A queue event has occurred, and we're going to schedule. In
2167 * this case, we can save a useless back to back clock update.
2169 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
2170 rq
->skip_clock_update
= 1;
2175 * Is this task likely cache-hot:
2178 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2182 if (p
->sched_class
!= &fair_sched_class
)
2185 if (unlikely(p
->policy
== SCHED_IDLE
))
2189 * Buddy candidates are cache hot:
2191 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2192 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2193 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2196 if (sysctl_sched_migration_cost
== -1)
2198 if (sysctl_sched_migration_cost
== 0)
2201 delta
= now
- p
->se
.exec_start
;
2203 return delta
< (s64
)sysctl_sched_migration_cost
;
2206 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2208 #ifdef CONFIG_SCHED_DEBUG
2210 * We should never call set_task_cpu() on a blocked task,
2211 * ttwu() will sort out the placement.
2213 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2214 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2216 #ifdef CONFIG_LOCKDEP
2218 * The caller should hold either p->pi_lock or rq->lock, when changing
2219 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2221 * sched_move_task() holds both and thus holding either pins the cgroup,
2222 * see set_task_rq().
2224 * Furthermore, all task_rq users should acquire both locks, see
2227 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
2228 lockdep_is_held(&task_rq(p
)->lock
)));
2232 trace_sched_migrate_task(p
, new_cpu
);
2234 if (task_cpu(p
) != new_cpu
) {
2235 p
->se
.nr_migrations
++;
2236 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
2239 __set_task_cpu(p
, new_cpu
);
2242 struct migration_arg
{
2243 struct task_struct
*task
;
2247 static int migration_cpu_stop(void *data
);
2250 * wait_task_inactive - wait for a thread to unschedule.
2252 * If @match_state is nonzero, it's the @p->state value just checked and
2253 * not expected to change. If it changes, i.e. @p might have woken up,
2254 * then return zero. When we succeed in waiting for @p to be off its CPU,
2255 * we return a positive number (its total switch count). If a second call
2256 * a short while later returns the same number, the caller can be sure that
2257 * @p has remained unscheduled the whole time.
2259 * The caller must ensure that the task *will* unschedule sometime soon,
2260 * else this function might spin for a *long* time. This function can't
2261 * be called with interrupts off, or it may introduce deadlock with
2262 * smp_call_function() if an IPI is sent by the same process we are
2263 * waiting to become inactive.
2265 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2267 unsigned long flags
;
2274 * We do the initial early heuristics without holding
2275 * any task-queue locks at all. We'll only try to get
2276 * the runqueue lock when things look like they will
2282 * If the task is actively running on another CPU
2283 * still, just relax and busy-wait without holding
2286 * NOTE! Since we don't hold any locks, it's not
2287 * even sure that "rq" stays as the right runqueue!
2288 * But we don't care, since "task_running()" will
2289 * return false if the runqueue has changed and p
2290 * is actually now running somewhere else!
2292 while (task_running(rq
, p
)) {
2293 if (match_state
&& unlikely(p
->state
!= match_state
))
2299 * Ok, time to look more closely! We need the rq
2300 * lock now, to be *sure*. If we're wrong, we'll
2301 * just go back and repeat.
2303 rq
= task_rq_lock(p
, &flags
);
2304 trace_sched_wait_task(p
);
2305 running
= task_running(rq
, p
);
2308 if (!match_state
|| p
->state
== match_state
)
2309 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2310 task_rq_unlock(rq
, p
, &flags
);
2313 * If it changed from the expected state, bail out now.
2315 if (unlikely(!ncsw
))
2319 * Was it really running after all now that we
2320 * checked with the proper locks actually held?
2322 * Oops. Go back and try again..
2324 if (unlikely(running
)) {
2330 * It's not enough that it's not actively running,
2331 * it must be off the runqueue _entirely_, and not
2334 * So if it was still runnable (but just not actively
2335 * running right now), it's preempted, and we should
2336 * yield - it could be a while.
2338 if (unlikely(on_rq
)) {
2339 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2341 set_current_state(TASK_UNINTERRUPTIBLE
);
2342 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2347 * Ahh, all good. It wasn't running, and it wasn't
2348 * runnable, which means that it will never become
2349 * running in the future either. We're all done!
2358 * kick_process - kick a running thread to enter/exit the kernel
2359 * @p: the to-be-kicked thread
2361 * Cause a process which is running on another CPU to enter
2362 * kernel-mode, without any delay. (to get signals handled.)
2364 * NOTE: this function doesn't have to take the runqueue lock,
2365 * because all it wants to ensure is that the remote task enters
2366 * the kernel. If the IPI races and the task has been migrated
2367 * to another CPU then no harm is done and the purpose has been
2370 void kick_process(struct task_struct
*p
)
2376 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2377 smp_send_reschedule(cpu
);
2380 EXPORT_SYMBOL_GPL(kick_process
);
2381 #endif /* CONFIG_SMP */
2385 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2387 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2390 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2392 /* Look for allowed, online CPU in same node. */
2393 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2394 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2397 /* Any allowed, online CPU? */
2398 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2399 if (dest_cpu
< nr_cpu_ids
)
2402 /* No more Mr. Nice Guy. */
2403 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2405 * Don't tell them about moving exiting tasks or
2406 * kernel threads (both mm NULL), since they never
2409 if (p
->mm
&& printk_ratelimit()) {
2410 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2411 task_pid_nr(p
), p
->comm
, cpu
);
2418 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2421 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2423 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2426 * In order not to call set_task_cpu() on a blocking task we need
2427 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2430 * Since this is common to all placement strategies, this lives here.
2432 * [ this allows ->select_task() to simply return task_cpu(p) and
2433 * not worry about this generic constraint ]
2435 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2437 cpu
= select_fallback_rq(task_cpu(p
), p
);
2442 static void update_avg(u64
*avg
, u64 sample
)
2444 s64 diff
= sample
- *avg
;
2450 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2452 #ifdef CONFIG_SCHEDSTATS
2453 struct rq
*rq
= this_rq();
2456 int this_cpu
= smp_processor_id();
2458 if (cpu
== this_cpu
) {
2459 schedstat_inc(rq
, ttwu_local
);
2460 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2462 struct sched_domain
*sd
;
2464 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2466 for_each_domain(this_cpu
, sd
) {
2467 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2468 schedstat_inc(sd
, ttwu_wake_remote
);
2475 if (wake_flags
& WF_MIGRATED
)
2476 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2478 #endif /* CONFIG_SMP */
2480 schedstat_inc(rq
, ttwu_count
);
2481 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2483 if (wake_flags
& WF_SYNC
)
2484 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2486 #endif /* CONFIG_SCHEDSTATS */
2489 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
2491 activate_task(rq
, p
, en_flags
);
2494 /* if a worker is waking up, notify workqueue */
2495 if (p
->flags
& PF_WQ_WORKER
)
2496 wq_worker_waking_up(p
, cpu_of(rq
));
2500 * Mark the task runnable and perform wakeup-preemption.
2503 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2505 trace_sched_wakeup(p
, true);
2506 check_preempt_curr(rq
, p
, wake_flags
);
2508 p
->state
= TASK_RUNNING
;
2510 if (p
->sched_class
->task_woken
)
2511 p
->sched_class
->task_woken(rq
, p
);
2513 if (rq
->idle_stamp
) {
2514 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2515 u64 max
= 2*sysctl_sched_migration_cost
;
2520 update_avg(&rq
->avg_idle
, delta
);
2527 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2530 if (p
->sched_contributes_to_load
)
2531 rq
->nr_uninterruptible
--;
2534 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
2535 ttwu_do_wakeup(rq
, p
, wake_flags
);
2539 * Called in case the task @p isn't fully descheduled from its runqueue,
2540 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2541 * since all we need to do is flip p->state to TASK_RUNNING, since
2542 * the task is still ->on_rq.
2544 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
2549 rq
= __task_rq_lock(p
);
2551 ttwu_do_wakeup(rq
, p
, wake_flags
);
2554 __task_rq_unlock(rq
);
2560 static void sched_ttwu_do_pending(struct task_struct
*list
)
2562 struct rq
*rq
= this_rq();
2564 raw_spin_lock(&rq
->lock
);
2567 struct task_struct
*p
= list
;
2568 list
= list
->wake_entry
;
2569 ttwu_do_activate(rq
, p
, 0);
2572 raw_spin_unlock(&rq
->lock
);
2575 #ifdef CONFIG_HOTPLUG_CPU
2577 static void sched_ttwu_pending(void)
2579 struct rq
*rq
= this_rq();
2580 struct task_struct
*list
= xchg(&rq
->wake_list
, NULL
);
2585 sched_ttwu_do_pending(list
);
2588 #endif /* CONFIG_HOTPLUG_CPU */
2590 void scheduler_ipi(void)
2592 struct rq
*rq
= this_rq();
2593 struct task_struct
*list
= xchg(&rq
->wake_list
, NULL
);
2599 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2600 * traditionally all their work was done from the interrupt return
2601 * path. Now that we actually do some work, we need to make sure
2604 * Some archs already do call them, luckily irq_enter/exit nest
2607 * Arguably we should visit all archs and update all handlers,
2608 * however a fair share of IPIs are still resched only so this would
2609 * somewhat pessimize the simple resched case.
2612 sched_ttwu_do_pending(list
);
2616 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
2618 struct rq
*rq
= cpu_rq(cpu
);
2619 struct task_struct
*next
= rq
->wake_list
;
2622 struct task_struct
*old
= next
;
2624 p
->wake_entry
= next
;
2625 next
= cmpxchg(&rq
->wake_list
, old
, p
);
2631 smp_send_reschedule(cpu
);
2634 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2635 static int ttwu_activate_remote(struct task_struct
*p
, int wake_flags
)
2640 rq
= __task_rq_lock(p
);
2642 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2643 ttwu_do_wakeup(rq
, p
, wake_flags
);
2646 __task_rq_unlock(rq
);
2651 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2652 #endif /* CONFIG_SMP */
2654 static void ttwu_queue(struct task_struct
*p
, int cpu
)
2656 struct rq
*rq
= cpu_rq(cpu
);
2658 #if defined(CONFIG_SMP)
2659 if (sched_feat(TTWU_QUEUE
) && cpu
!= smp_processor_id()) {
2660 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
2661 ttwu_queue_remote(p
, cpu
);
2666 raw_spin_lock(&rq
->lock
);
2667 ttwu_do_activate(rq
, p
, 0);
2668 raw_spin_unlock(&rq
->lock
);
2672 * try_to_wake_up - wake up a thread
2673 * @p: the thread to be awakened
2674 * @state: the mask of task states that can be woken
2675 * @wake_flags: wake modifier flags (WF_*)
2677 * Put it on the run-queue if it's not already there. The "current"
2678 * thread is always on the run-queue (except when the actual
2679 * re-schedule is in progress), and as such you're allowed to do
2680 * the simpler "current->state = TASK_RUNNING" to mark yourself
2681 * runnable without the overhead of this.
2683 * Returns %true if @p was woken up, %false if it was already running
2684 * or @state didn't match @p's state.
2687 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2689 unsigned long flags
;
2690 int cpu
, success
= 0;
2693 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2694 if (!(p
->state
& state
))
2697 success
= 1; /* we're going to change ->state */
2700 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2705 * If the owning (remote) cpu is still in the middle of schedule() with
2706 * this task as prev, wait until its done referencing the task.
2709 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2711 * In case the architecture enables interrupts in
2712 * context_switch(), we cannot busy wait, since that
2713 * would lead to deadlocks when an interrupt hits and
2714 * tries to wake up @prev. So bail and do a complete
2717 if (ttwu_activate_remote(p
, wake_flags
))
2724 * Pairs with the smp_wmb() in finish_lock_switch().
2728 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2729 p
->state
= TASK_WAKING
;
2731 if (p
->sched_class
->task_waking
)
2732 p
->sched_class
->task_waking(p
);
2734 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2735 if (task_cpu(p
) != cpu
) {
2736 wake_flags
|= WF_MIGRATED
;
2737 set_task_cpu(p
, cpu
);
2739 #endif /* CONFIG_SMP */
2743 ttwu_stat(p
, cpu
, wake_flags
);
2745 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2751 * try_to_wake_up_local - try to wake up a local task with rq lock held
2752 * @p: the thread to be awakened
2754 * Put @p on the run-queue if it's not already there. The caller must
2755 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2758 static void try_to_wake_up_local(struct task_struct
*p
)
2760 struct rq
*rq
= task_rq(p
);
2762 BUG_ON(rq
!= this_rq());
2763 BUG_ON(p
== current
);
2764 lockdep_assert_held(&rq
->lock
);
2766 if (!raw_spin_trylock(&p
->pi_lock
)) {
2767 raw_spin_unlock(&rq
->lock
);
2768 raw_spin_lock(&p
->pi_lock
);
2769 raw_spin_lock(&rq
->lock
);
2772 if (!(p
->state
& TASK_NORMAL
))
2776 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2778 ttwu_do_wakeup(rq
, p
, 0);
2779 ttwu_stat(p
, smp_processor_id(), 0);
2781 raw_spin_unlock(&p
->pi_lock
);
2785 * wake_up_process - Wake up a specific process
2786 * @p: The process to be woken up.
2788 * Attempt to wake up the nominated process and move it to the set of runnable
2789 * processes. Returns 1 if the process was woken up, 0 if it was already
2792 * It may be assumed that this function implies a write memory barrier before
2793 * changing the task state if and only if any tasks are woken up.
2795 int wake_up_process(struct task_struct
*p
)
2797 return try_to_wake_up(p
, TASK_ALL
, 0);
2799 EXPORT_SYMBOL(wake_up_process
);
2801 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2803 return try_to_wake_up(p
, state
, 0);
2807 * Perform scheduler related setup for a newly forked process p.
2808 * p is forked by current.
2810 * __sched_fork() is basic setup used by init_idle() too:
2812 static void __sched_fork(struct task_struct
*p
)
2817 p
->se
.exec_start
= 0;
2818 p
->se
.sum_exec_runtime
= 0;
2819 p
->se
.prev_sum_exec_runtime
= 0;
2820 p
->se
.nr_migrations
= 0;
2822 INIT_LIST_HEAD(&p
->se
.group_node
);
2824 #ifdef CONFIG_SCHEDSTATS
2825 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2828 INIT_LIST_HEAD(&p
->rt
.run_list
);
2830 #ifdef CONFIG_PREEMPT_NOTIFIERS
2831 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2836 * fork()/clone()-time setup:
2838 void sched_fork(struct task_struct
*p
)
2840 unsigned long flags
;
2841 int cpu
= get_cpu();
2845 * We mark the process as running here. This guarantees that
2846 * nobody will actually run it, and a signal or other external
2847 * event cannot wake it up and insert it on the runqueue either.
2849 p
->state
= TASK_RUNNING
;
2852 * Revert to default priority/policy on fork if requested.
2854 if (unlikely(p
->sched_reset_on_fork
)) {
2855 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2856 p
->policy
= SCHED_NORMAL
;
2857 p
->normal_prio
= p
->static_prio
;
2860 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2861 p
->static_prio
= NICE_TO_PRIO(0);
2862 p
->normal_prio
= p
->static_prio
;
2867 * We don't need the reset flag anymore after the fork. It has
2868 * fulfilled its duty:
2870 p
->sched_reset_on_fork
= 0;
2874 * Make sure we do not leak PI boosting priority to the child.
2876 p
->prio
= current
->normal_prio
;
2878 if (!rt_prio(p
->prio
))
2879 p
->sched_class
= &fair_sched_class
;
2881 if (p
->sched_class
->task_fork
)
2882 p
->sched_class
->task_fork(p
);
2885 * The child is not yet in the pid-hash so no cgroup attach races,
2886 * and the cgroup is pinned to this child due to cgroup_fork()
2887 * is ran before sched_fork().
2889 * Silence PROVE_RCU.
2891 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2892 set_task_cpu(p
, cpu
);
2893 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2895 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2896 if (likely(sched_info_on()))
2897 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2899 #if defined(CONFIG_SMP)
2902 #ifdef CONFIG_PREEMPT_COUNT
2903 /* Want to start with kernel preemption disabled. */
2904 task_thread_info(p
)->preempt_count
= 1;
2907 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2914 * wake_up_new_task - wake up a newly created task for the first time.
2916 * This function will do some initial scheduler statistics housekeeping
2917 * that must be done for every newly created context, then puts the task
2918 * on the runqueue and wakes it.
2920 void wake_up_new_task(struct task_struct
*p
)
2922 unsigned long flags
;
2925 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2928 * Fork balancing, do it here and not earlier because:
2929 * - cpus_allowed can change in the fork path
2930 * - any previously selected cpu might disappear through hotplug
2932 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
2935 rq
= __task_rq_lock(p
);
2936 activate_task(rq
, p
, 0);
2938 trace_sched_wakeup_new(p
, true);
2939 check_preempt_curr(rq
, p
, WF_FORK
);
2941 if (p
->sched_class
->task_woken
)
2942 p
->sched_class
->task_woken(rq
, p
);
2944 task_rq_unlock(rq
, p
, &flags
);
2947 #ifdef CONFIG_PREEMPT_NOTIFIERS
2950 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2951 * @notifier: notifier struct to register
2953 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2955 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2957 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2960 * preempt_notifier_unregister - no longer interested in preemption notifications
2961 * @notifier: notifier struct to unregister
2963 * This is safe to call from within a preemption notifier.
2965 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2967 hlist_del(¬ifier
->link
);
2969 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2971 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2973 struct preempt_notifier
*notifier
;
2974 struct hlist_node
*node
;
2976 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2977 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2981 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2982 struct task_struct
*next
)
2984 struct preempt_notifier
*notifier
;
2985 struct hlist_node
*node
;
2987 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2988 notifier
->ops
->sched_out(notifier
, next
);
2991 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2993 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2998 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2999 struct task_struct
*next
)
3003 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3006 * prepare_task_switch - prepare to switch tasks
3007 * @rq: the runqueue preparing to switch
3008 * @prev: the current task that is being switched out
3009 * @next: the task we are going to switch to.
3011 * This is called with the rq lock held and interrupts off. It must
3012 * be paired with a subsequent finish_task_switch after the context
3015 * prepare_task_switch sets up locking and calls architecture specific
3019 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
3020 struct task_struct
*next
)
3022 sched_info_switch(prev
, next
);
3023 perf_event_task_sched_out(prev
, next
);
3024 fire_sched_out_preempt_notifiers(prev
, next
);
3025 prepare_lock_switch(rq
, next
);
3026 prepare_arch_switch(next
);
3027 trace_sched_switch(prev
, next
);
3031 * finish_task_switch - clean up after a task-switch
3032 * @rq: runqueue associated with task-switch
3033 * @prev: the thread we just switched away from.
3035 * finish_task_switch must be called after the context switch, paired
3036 * with a prepare_task_switch call before the context switch.
3037 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3038 * and do any other architecture-specific cleanup actions.
3040 * Note that we may have delayed dropping an mm in context_switch(). If
3041 * so, we finish that here outside of the runqueue lock. (Doing it
3042 * with the lock held can cause deadlocks; see schedule() for
3045 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
3046 __releases(rq
->lock
)
3048 struct mm_struct
*mm
= rq
->prev_mm
;
3054 * A task struct has one reference for the use as "current".
3055 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3056 * schedule one last time. The schedule call will never return, and
3057 * the scheduled task must drop that reference.
3058 * The test for TASK_DEAD must occur while the runqueue locks are
3059 * still held, otherwise prev could be scheduled on another cpu, die
3060 * there before we look at prev->state, and then the reference would
3062 * Manfred Spraul <manfred@colorfullife.com>
3064 prev_state
= prev
->state
;
3065 finish_arch_switch(prev
);
3066 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3067 local_irq_disable();
3068 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3069 perf_event_task_sched_in(current
);
3070 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3072 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3073 finish_lock_switch(rq
, prev
);
3075 fire_sched_in_preempt_notifiers(current
);
3078 if (unlikely(prev_state
== TASK_DEAD
)) {
3080 * Remove function-return probe instances associated with this
3081 * task and put them back on the free list.
3083 kprobe_flush_task(prev
);
3084 put_task_struct(prev
);
3090 /* assumes rq->lock is held */
3091 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
3093 if (prev
->sched_class
->pre_schedule
)
3094 prev
->sched_class
->pre_schedule(rq
, prev
);
3097 /* rq->lock is NOT held, but preemption is disabled */
3098 static inline void post_schedule(struct rq
*rq
)
3100 if (rq
->post_schedule
) {
3101 unsigned long flags
;
3103 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3104 if (rq
->curr
->sched_class
->post_schedule
)
3105 rq
->curr
->sched_class
->post_schedule(rq
);
3106 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3108 rq
->post_schedule
= 0;
3114 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3118 static inline void post_schedule(struct rq
*rq
)
3125 * schedule_tail - first thing a freshly forked thread must call.
3126 * @prev: the thread we just switched away from.
3128 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3129 __releases(rq
->lock
)
3131 struct rq
*rq
= this_rq();
3133 finish_task_switch(rq
, prev
);
3136 * FIXME: do we need to worry about rq being invalidated by the
3141 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3142 /* In this case, finish_task_switch does not reenable preemption */
3145 if (current
->set_child_tid
)
3146 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3150 * context_switch - switch to the new MM and the new
3151 * thread's register state.
3154 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3155 struct task_struct
*next
)
3157 struct mm_struct
*mm
, *oldmm
;
3159 prepare_task_switch(rq
, prev
, next
);
3162 oldmm
= prev
->active_mm
;
3164 * For paravirt, this is coupled with an exit in switch_to to
3165 * combine the page table reload and the switch backend into
3168 arch_start_context_switch(prev
);
3171 next
->active_mm
= oldmm
;
3172 atomic_inc(&oldmm
->mm_count
);
3173 enter_lazy_tlb(oldmm
, next
);
3175 switch_mm(oldmm
, mm
, next
);
3178 prev
->active_mm
= NULL
;
3179 rq
->prev_mm
= oldmm
;
3182 * Since the runqueue lock will be released by the next
3183 * task (which is an invalid locking op but in the case
3184 * of the scheduler it's an obvious special-case), so we
3185 * do an early lockdep release here:
3187 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3188 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3191 /* Here we just switch the register state and the stack. */
3192 switch_to(prev
, next
, prev
);
3196 * this_rq must be evaluated again because prev may have moved
3197 * CPUs since it called schedule(), thus the 'rq' on its stack
3198 * frame will be invalid.
3200 finish_task_switch(this_rq(), prev
);
3204 * nr_running, nr_uninterruptible and nr_context_switches:
3206 * externally visible scheduler statistics: current number of runnable
3207 * threads, current number of uninterruptible-sleeping threads, total
3208 * number of context switches performed since bootup.
3210 unsigned long nr_running(void)
3212 unsigned long i
, sum
= 0;
3214 for_each_online_cpu(i
)
3215 sum
+= cpu_rq(i
)->nr_running
;
3220 unsigned long nr_uninterruptible(void)
3222 unsigned long i
, sum
= 0;
3224 for_each_possible_cpu(i
)
3225 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3228 * Since we read the counters lockless, it might be slightly
3229 * inaccurate. Do not allow it to go below zero though:
3231 if (unlikely((long)sum
< 0))
3237 unsigned long long nr_context_switches(void)
3240 unsigned long long sum
= 0;
3242 for_each_possible_cpu(i
)
3243 sum
+= cpu_rq(i
)->nr_switches
;
3248 unsigned long nr_iowait(void)
3250 unsigned long i
, sum
= 0;
3252 for_each_possible_cpu(i
)
3253 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3258 unsigned long nr_iowait_cpu(int cpu
)
3260 struct rq
*this = cpu_rq(cpu
);
3261 return atomic_read(&this->nr_iowait
);
3264 unsigned long this_cpu_load(void)
3266 struct rq
*this = this_rq();
3267 return this->cpu_load
[0];
3271 /* Variables and functions for calc_load */
3272 static atomic_long_t calc_load_tasks
;
3273 static unsigned long calc_load_update
;
3274 unsigned long avenrun
[3];
3275 EXPORT_SYMBOL(avenrun
);
3277 static long calc_load_fold_active(struct rq
*this_rq
)
3279 long nr_active
, delta
= 0;
3281 nr_active
= this_rq
->nr_running
;
3282 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3284 if (nr_active
!= this_rq
->calc_load_active
) {
3285 delta
= nr_active
- this_rq
->calc_load_active
;
3286 this_rq
->calc_load_active
= nr_active
;
3292 static unsigned long
3293 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3296 load
+= active
* (FIXED_1
- exp
);
3297 load
+= 1UL << (FSHIFT
- 1);
3298 return load
>> FSHIFT
;
3303 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3305 * When making the ILB scale, we should try to pull this in as well.
3307 static atomic_long_t calc_load_tasks_idle
;
3309 static void calc_load_account_idle(struct rq
*this_rq
)
3313 delta
= calc_load_fold_active(this_rq
);
3315 atomic_long_add(delta
, &calc_load_tasks_idle
);
3318 static long calc_load_fold_idle(void)
3323 * Its got a race, we don't care...
3325 if (atomic_long_read(&calc_load_tasks_idle
))
3326 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3332 * fixed_power_int - compute: x^n, in O(log n) time
3334 * @x: base of the power
3335 * @frac_bits: fractional bits of @x
3336 * @n: power to raise @x to.
3338 * By exploiting the relation between the definition of the natural power
3339 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3340 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3341 * (where: n_i \elem {0, 1}, the binary vector representing n),
3342 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3343 * of course trivially computable in O(log_2 n), the length of our binary
3346 static unsigned long
3347 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3349 unsigned long result
= 1UL << frac_bits
;
3354 result
+= 1UL << (frac_bits
- 1);
3355 result
>>= frac_bits
;
3361 x
+= 1UL << (frac_bits
- 1);
3369 * a1 = a0 * e + a * (1 - e)
3371 * a2 = a1 * e + a * (1 - e)
3372 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3373 * = a0 * e^2 + a * (1 - e) * (1 + e)
3375 * a3 = a2 * e + a * (1 - e)
3376 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3377 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3381 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3382 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3383 * = a0 * e^n + a * (1 - e^n)
3385 * [1] application of the geometric series:
3388 * S_n := \Sum x^i = -------------
3391 static unsigned long
3392 calc_load_n(unsigned long load
, unsigned long exp
,
3393 unsigned long active
, unsigned int n
)
3396 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3400 * NO_HZ can leave us missing all per-cpu ticks calling
3401 * calc_load_account_active(), but since an idle CPU folds its delta into
3402 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3403 * in the pending idle delta if our idle period crossed a load cycle boundary.
3405 * Once we've updated the global active value, we need to apply the exponential
3406 * weights adjusted to the number of cycles missed.
3408 static void calc_global_nohz(unsigned long ticks
)
3410 long delta
, active
, n
;
3412 if (time_before(jiffies
, calc_load_update
))
3416 * If we crossed a calc_load_update boundary, make sure to fold
3417 * any pending idle changes, the respective CPUs might have
3418 * missed the tick driven calc_load_account_active() update
3421 delta
= calc_load_fold_idle();
3423 atomic_long_add(delta
, &calc_load_tasks
);
3426 * If we were idle for multiple load cycles, apply them.
3428 if (ticks
>= LOAD_FREQ
) {
3429 n
= ticks
/ LOAD_FREQ
;
3431 active
= atomic_long_read(&calc_load_tasks
);
3432 active
= active
> 0 ? active
* FIXED_1
: 0;
3434 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3435 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3436 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3438 calc_load_update
+= n
* LOAD_FREQ
;
3442 * Its possible the remainder of the above division also crosses
3443 * a LOAD_FREQ period, the regular check in calc_global_load()
3444 * which comes after this will take care of that.
3446 * Consider us being 11 ticks before a cycle completion, and us
3447 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3448 * age us 4 cycles, and the test in calc_global_load() will
3449 * pick up the final one.
3453 static void calc_load_account_idle(struct rq
*this_rq
)
3457 static inline long calc_load_fold_idle(void)
3462 static void calc_global_nohz(unsigned long ticks
)
3468 * get_avenrun - get the load average array
3469 * @loads: pointer to dest load array
3470 * @offset: offset to add
3471 * @shift: shift count to shift the result left
3473 * These values are estimates at best, so no need for locking.
3475 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3477 loads
[0] = (avenrun
[0] + offset
) << shift
;
3478 loads
[1] = (avenrun
[1] + offset
) << shift
;
3479 loads
[2] = (avenrun
[2] + offset
) << shift
;
3483 * calc_load - update the avenrun load estimates 10 ticks after the
3484 * CPUs have updated calc_load_tasks.
3486 void calc_global_load(unsigned long ticks
)
3490 calc_global_nohz(ticks
);
3492 if (time_before(jiffies
, calc_load_update
+ 10))
3495 active
= atomic_long_read(&calc_load_tasks
);
3496 active
= active
> 0 ? active
* FIXED_1
: 0;
3498 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3499 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3500 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3502 calc_load_update
+= LOAD_FREQ
;
3506 * Called from update_cpu_load() to periodically update this CPU's
3509 static void calc_load_account_active(struct rq
*this_rq
)
3513 if (time_before(jiffies
, this_rq
->calc_load_update
))
3516 delta
= calc_load_fold_active(this_rq
);
3517 delta
+= calc_load_fold_idle();
3519 atomic_long_add(delta
, &calc_load_tasks
);
3521 this_rq
->calc_load_update
+= LOAD_FREQ
;
3525 * The exact cpuload at various idx values, calculated at every tick would be
3526 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3528 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3529 * on nth tick when cpu may be busy, then we have:
3530 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3531 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3533 * decay_load_missed() below does efficient calculation of
3534 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3535 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3537 * The calculation is approximated on a 128 point scale.
3538 * degrade_zero_ticks is the number of ticks after which load at any
3539 * particular idx is approximated to be zero.
3540 * degrade_factor is a precomputed table, a row for each load idx.
3541 * Each column corresponds to degradation factor for a power of two ticks,
3542 * based on 128 point scale.
3544 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3545 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3547 * With this power of 2 load factors, we can degrade the load n times
3548 * by looking at 1 bits in n and doing as many mult/shift instead of
3549 * n mult/shifts needed by the exact degradation.
3551 #define DEGRADE_SHIFT 7
3552 static const unsigned char
3553 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3554 static const unsigned char
3555 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3556 {0, 0, 0, 0, 0, 0, 0, 0},
3557 {64, 32, 8, 0, 0, 0, 0, 0},
3558 {96, 72, 40, 12, 1, 0, 0},
3559 {112, 98, 75, 43, 15, 1, 0},
3560 {120, 112, 98, 76, 45, 16, 2} };
3563 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3564 * would be when CPU is idle and so we just decay the old load without
3565 * adding any new load.
3567 static unsigned long
3568 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3572 if (!missed_updates
)
3575 if (missed_updates
>= degrade_zero_ticks
[idx
])
3579 return load
>> missed_updates
;
3581 while (missed_updates
) {
3582 if (missed_updates
% 2)
3583 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3585 missed_updates
>>= 1;
3592 * Update rq->cpu_load[] statistics. This function is usually called every
3593 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3594 * every tick. We fix it up based on jiffies.
3596 static void update_cpu_load(struct rq
*this_rq
)
3598 unsigned long this_load
= this_rq
->load
.weight
;
3599 unsigned long curr_jiffies
= jiffies
;
3600 unsigned long pending_updates
;
3603 this_rq
->nr_load_updates
++;
3605 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3606 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3609 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3610 this_rq
->last_load_update_tick
= curr_jiffies
;
3612 /* Update our load: */
3613 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3614 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3615 unsigned long old_load
, new_load
;
3617 /* scale is effectively 1 << i now, and >> i divides by scale */
3619 old_load
= this_rq
->cpu_load
[i
];
3620 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3621 new_load
= this_load
;
3623 * Round up the averaging division if load is increasing. This
3624 * prevents us from getting stuck on 9 if the load is 10, for
3627 if (new_load
> old_load
)
3628 new_load
+= scale
- 1;
3630 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3633 sched_avg_update(this_rq
);
3636 static void update_cpu_load_active(struct rq
*this_rq
)
3638 update_cpu_load(this_rq
);
3640 calc_load_account_active(this_rq
);
3646 * sched_exec - execve() is a valuable balancing opportunity, because at
3647 * this point the task has the smallest effective memory and cache footprint.
3649 void sched_exec(void)
3651 struct task_struct
*p
= current
;
3652 unsigned long flags
;
3655 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3656 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3657 if (dest_cpu
== smp_processor_id())
3660 if (likely(cpu_active(dest_cpu
))) {
3661 struct migration_arg arg
= { p
, dest_cpu
};
3663 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3664 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3668 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3673 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3675 EXPORT_PER_CPU_SYMBOL(kstat
);
3678 * Return any ns on the sched_clock that have not yet been accounted in
3679 * @p in case that task is currently running.
3681 * Called with task_rq_lock() held on @rq.
3683 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3687 if (task_current(rq
, p
)) {
3688 update_rq_clock(rq
);
3689 ns
= rq
->clock_task
- p
->se
.exec_start
;
3697 unsigned long long task_delta_exec(struct task_struct
*p
)
3699 unsigned long flags
;
3703 rq
= task_rq_lock(p
, &flags
);
3704 ns
= do_task_delta_exec(p
, rq
);
3705 task_rq_unlock(rq
, p
, &flags
);
3711 * Return accounted runtime for the task.
3712 * In case the task is currently running, return the runtime plus current's
3713 * pending runtime that have not been accounted yet.
3715 unsigned long long task_sched_runtime(struct task_struct
*p
)
3717 unsigned long flags
;
3721 rq
= task_rq_lock(p
, &flags
);
3722 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3723 task_rq_unlock(rq
, p
, &flags
);
3729 * Return sum_exec_runtime for the thread group.
3730 * In case the task is currently running, return the sum plus current's
3731 * pending runtime that have not been accounted yet.
3733 * Note that the thread group might have other running tasks as well,
3734 * so the return value not includes other pending runtime that other
3735 * running tasks might have.
3737 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3739 struct task_cputime totals
;
3740 unsigned long flags
;
3744 rq
= task_rq_lock(p
, &flags
);
3745 thread_group_cputime(p
, &totals
);
3746 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3747 task_rq_unlock(rq
, p
, &flags
);
3753 * Account user cpu time to a process.
3754 * @p: the process that the cpu time gets accounted to
3755 * @cputime: the cpu time spent in user space since the last update
3756 * @cputime_scaled: cputime scaled by cpu frequency
3758 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3759 cputime_t cputime_scaled
)
3761 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3764 /* Add user time to process. */
3765 p
->utime
= cputime_add(p
->utime
, cputime
);
3766 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3767 account_group_user_time(p
, cputime
);
3769 /* Add user time to cpustat. */
3770 tmp
= cputime_to_cputime64(cputime
);
3771 if (TASK_NICE(p
) > 0)
3772 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3774 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3776 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3777 /* Account for user time used */
3778 acct_update_integrals(p
);
3782 * Account guest cpu time to a process.
3783 * @p: the process that the cpu time gets accounted to
3784 * @cputime: the cpu time spent in virtual machine since the last update
3785 * @cputime_scaled: cputime scaled by cpu frequency
3787 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3788 cputime_t cputime_scaled
)
3791 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3793 tmp
= cputime_to_cputime64(cputime
);
3795 /* Add guest time to process. */
3796 p
->utime
= cputime_add(p
->utime
, cputime
);
3797 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3798 account_group_user_time(p
, cputime
);
3799 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3801 /* Add guest time to cpustat. */
3802 if (TASK_NICE(p
) > 0) {
3803 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3804 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3806 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3807 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3812 * Account system cpu time to a process and desired cpustat field
3813 * @p: the process that the cpu time gets accounted to
3814 * @cputime: the cpu time spent in kernel space since the last update
3815 * @cputime_scaled: cputime scaled by cpu frequency
3816 * @target_cputime64: pointer to cpustat field that has to be updated
3819 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
3820 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
3822 cputime64_t tmp
= cputime_to_cputime64(cputime
);
3824 /* Add system time to process. */
3825 p
->stime
= cputime_add(p
->stime
, cputime
);
3826 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3827 account_group_system_time(p
, cputime
);
3829 /* Add system time to cpustat. */
3830 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
3831 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3833 /* Account for system time used */
3834 acct_update_integrals(p
);
3838 * Account system cpu time to a process.
3839 * @p: the process that the cpu time gets accounted to
3840 * @hardirq_offset: the offset to subtract from hardirq_count()
3841 * @cputime: the cpu time spent in kernel space since the last update
3842 * @cputime_scaled: cputime scaled by cpu frequency
3844 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3845 cputime_t cputime
, cputime_t cputime_scaled
)
3847 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3848 cputime64_t
*target_cputime64
;
3850 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3851 account_guest_time(p
, cputime
, cputime_scaled
);
3855 if (hardirq_count() - hardirq_offset
)
3856 target_cputime64
= &cpustat
->irq
;
3857 else if (in_serving_softirq())
3858 target_cputime64
= &cpustat
->softirq
;
3860 target_cputime64
= &cpustat
->system
;
3862 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
3866 * Account for involuntary wait time.
3867 * @cputime: the cpu time spent in involuntary wait
3869 void account_steal_time(cputime_t cputime
)
3871 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3872 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3874 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3878 * Account for idle time.
3879 * @cputime: the cpu time spent in idle wait
3881 void account_idle_time(cputime_t cputime
)
3883 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3884 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3885 struct rq
*rq
= this_rq();
3887 if (atomic_read(&rq
->nr_iowait
) > 0)
3888 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3890 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3893 static __always_inline
bool steal_account_process_tick(void)
3895 #ifdef CONFIG_PARAVIRT
3896 if (static_branch(¶virt_steal_enabled
)) {
3899 steal
= paravirt_steal_clock(smp_processor_id());
3900 steal
-= this_rq()->prev_steal_time
;
3902 st
= steal_ticks(steal
);
3903 this_rq()->prev_steal_time
+= st
* TICK_NSEC
;
3905 account_steal_time(st
);
3912 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3914 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3916 * Account a tick to a process and cpustat
3917 * @p: the process that the cpu time gets accounted to
3918 * @user_tick: is the tick from userspace
3919 * @rq: the pointer to rq
3921 * Tick demultiplexing follows the order
3922 * - pending hardirq update
3923 * - pending softirq update
3927 * - check for guest_time
3928 * - else account as system_time
3930 * Check for hardirq is done both for system and user time as there is
3931 * no timer going off while we are on hardirq and hence we may never get an
3932 * opportunity to update it solely in system time.
3933 * p->stime and friends are only updated on system time and not on irq
3934 * softirq as those do not count in task exec_runtime any more.
3936 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3939 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3940 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
3941 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3943 if (steal_account_process_tick())
3946 if (irqtime_account_hi_update()) {
3947 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3948 } else if (irqtime_account_si_update()) {
3949 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3950 } else if (this_cpu_ksoftirqd() == p
) {
3952 * ksoftirqd time do not get accounted in cpu_softirq_time.
3953 * So, we have to handle it separately here.
3954 * Also, p->stime needs to be updated for ksoftirqd.
3956 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3958 } else if (user_tick
) {
3959 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3960 } else if (p
== rq
->idle
) {
3961 account_idle_time(cputime_one_jiffy
);
3962 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
3963 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3965 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3970 static void irqtime_account_idle_ticks(int ticks
)
3973 struct rq
*rq
= this_rq();
3975 for (i
= 0; i
< ticks
; i
++)
3976 irqtime_account_process_tick(current
, 0, rq
);
3978 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3979 static void irqtime_account_idle_ticks(int ticks
) {}
3980 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3982 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3985 * Account a single tick of cpu time.
3986 * @p: the process that the cpu time gets accounted to
3987 * @user_tick: indicates if the tick is a user or a system tick
3989 void account_process_tick(struct task_struct
*p
, int user_tick
)
3991 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3992 struct rq
*rq
= this_rq();
3994 if (sched_clock_irqtime
) {
3995 irqtime_account_process_tick(p
, user_tick
, rq
);
3999 if (steal_account_process_tick())
4003 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4004 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
4005 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
4008 account_idle_time(cputime_one_jiffy
);
4012 * Account multiple ticks of steal time.
4013 * @p: the process from which the cpu time has been stolen
4014 * @ticks: number of stolen ticks
4016 void account_steal_ticks(unsigned long ticks
)
4018 account_steal_time(jiffies_to_cputime(ticks
));
4022 * Account multiple ticks of idle time.
4023 * @ticks: number of stolen ticks
4025 void account_idle_ticks(unsigned long ticks
)
4028 if (sched_clock_irqtime
) {
4029 irqtime_account_idle_ticks(ticks
);
4033 account_idle_time(jiffies_to_cputime(ticks
));
4039 * Use precise platform statistics if available:
4041 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4042 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4048 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4050 struct task_cputime cputime
;
4052 thread_group_cputime(p
, &cputime
);
4054 *ut
= cputime
.utime
;
4055 *st
= cputime
.stime
;
4059 #ifndef nsecs_to_cputime
4060 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4063 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4065 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
4068 * Use CFS's precise accounting:
4070 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
4076 do_div(temp
, total
);
4077 utime
= (cputime_t
)temp
;
4082 * Compare with previous values, to keep monotonicity:
4084 p
->prev_utime
= max(p
->prev_utime
, utime
);
4085 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
4087 *ut
= p
->prev_utime
;
4088 *st
= p
->prev_stime
;
4092 * Must be called with siglock held.
4094 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4096 struct signal_struct
*sig
= p
->signal
;
4097 struct task_cputime cputime
;
4098 cputime_t rtime
, utime
, total
;
4100 thread_group_cputime(p
, &cputime
);
4102 total
= cputime_add(cputime
.utime
, cputime
.stime
);
4103 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
4108 temp
*= cputime
.utime
;
4109 do_div(temp
, total
);
4110 utime
= (cputime_t
)temp
;
4114 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
4115 sig
->prev_stime
= max(sig
->prev_stime
,
4116 cputime_sub(rtime
, sig
->prev_utime
));
4118 *ut
= sig
->prev_utime
;
4119 *st
= sig
->prev_stime
;
4124 * This function gets called by the timer code, with HZ frequency.
4125 * We call it with interrupts disabled.
4127 void scheduler_tick(void)
4129 int cpu
= smp_processor_id();
4130 struct rq
*rq
= cpu_rq(cpu
);
4131 struct task_struct
*curr
= rq
->curr
;
4135 raw_spin_lock(&rq
->lock
);
4136 update_rq_clock(rq
);
4137 update_cpu_load_active(rq
);
4138 curr
->sched_class
->task_tick(rq
, curr
, 0);
4139 raw_spin_unlock(&rq
->lock
);
4141 perf_event_task_tick();
4144 rq
->idle_at_tick
= idle_cpu(cpu
);
4145 trigger_load_balance(rq
, cpu
);
4149 notrace
unsigned long get_parent_ip(unsigned long addr
)
4151 if (in_lock_functions(addr
)) {
4152 addr
= CALLER_ADDR2
;
4153 if (in_lock_functions(addr
))
4154 addr
= CALLER_ADDR3
;
4159 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4160 defined(CONFIG_PREEMPT_TRACER))
4162 void __kprobes
add_preempt_count(int val
)
4164 #ifdef CONFIG_DEBUG_PREEMPT
4168 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4171 preempt_count() += val
;
4172 #ifdef CONFIG_DEBUG_PREEMPT
4174 * Spinlock count overflowing soon?
4176 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4179 if (preempt_count() == val
)
4180 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4182 EXPORT_SYMBOL(add_preempt_count
);
4184 void __kprobes
sub_preempt_count(int val
)
4186 #ifdef CONFIG_DEBUG_PREEMPT
4190 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4193 * Is the spinlock portion underflowing?
4195 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4196 !(preempt_count() & PREEMPT_MASK
)))
4200 if (preempt_count() == val
)
4201 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4202 preempt_count() -= val
;
4204 EXPORT_SYMBOL(sub_preempt_count
);
4209 * Print scheduling while atomic bug:
4211 static noinline
void __schedule_bug(struct task_struct
*prev
)
4213 struct pt_regs
*regs
= get_irq_regs();
4215 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4216 prev
->comm
, prev
->pid
, preempt_count());
4218 debug_show_held_locks(prev
);
4220 if (irqs_disabled())
4221 print_irqtrace_events(prev
);
4230 * Various schedule()-time debugging checks and statistics:
4232 static inline void schedule_debug(struct task_struct
*prev
)
4235 * Test if we are atomic. Since do_exit() needs to call into
4236 * schedule() atomically, we ignore that path for now.
4237 * Otherwise, whine if we are scheduling when we should not be.
4239 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4240 __schedule_bug(prev
);
4242 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4244 schedstat_inc(this_rq(), sched_count
);
4247 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4249 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
4250 update_rq_clock(rq
);
4251 prev
->sched_class
->put_prev_task(rq
, prev
);
4255 * Pick up the highest-prio task:
4257 static inline struct task_struct
*
4258 pick_next_task(struct rq
*rq
)
4260 const struct sched_class
*class;
4261 struct task_struct
*p
;
4264 * Optimization: we know that if all tasks are in
4265 * the fair class we can call that function directly:
4267 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4268 p
= fair_sched_class
.pick_next_task(rq
);
4273 for_each_class(class) {
4274 p
= class->pick_next_task(rq
);
4279 BUG(); /* the idle class will always have a runnable task */
4283 * schedule() is the main scheduler function.
4285 asmlinkage
void __sched
schedule(void)
4287 struct task_struct
*prev
, *next
;
4288 unsigned long *switch_count
;
4294 cpu
= smp_processor_id();
4296 rcu_note_context_switch(cpu
);
4299 schedule_debug(prev
);
4301 if (sched_feat(HRTICK
))
4304 raw_spin_lock_irq(&rq
->lock
);
4306 switch_count
= &prev
->nivcsw
;
4307 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4308 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4309 prev
->state
= TASK_RUNNING
;
4311 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4315 * If a worker went to sleep, notify and ask workqueue
4316 * whether it wants to wake up a task to maintain
4319 if (prev
->flags
& PF_WQ_WORKER
) {
4320 struct task_struct
*to_wakeup
;
4322 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4324 try_to_wake_up_local(to_wakeup
);
4328 * If we are going to sleep and we have plugged IO
4329 * queued, make sure to submit it to avoid deadlocks.
4331 if (blk_needs_flush_plug(prev
)) {
4332 raw_spin_unlock(&rq
->lock
);
4333 blk_schedule_flush_plug(prev
);
4334 raw_spin_lock(&rq
->lock
);
4337 switch_count
= &prev
->nvcsw
;
4340 pre_schedule(rq
, prev
);
4342 if (unlikely(!rq
->nr_running
))
4343 idle_balance(cpu
, rq
);
4345 put_prev_task(rq
, prev
);
4346 next
= pick_next_task(rq
);
4347 clear_tsk_need_resched(prev
);
4348 rq
->skip_clock_update
= 0;
4350 if (likely(prev
!= next
)) {
4355 context_switch(rq
, prev
, next
); /* unlocks the rq */
4357 * The context switch have flipped the stack from under us
4358 * and restored the local variables which were saved when
4359 * this task called schedule() in the past. prev == current
4360 * is still correct, but it can be moved to another cpu/rq.
4362 cpu
= smp_processor_id();
4365 raw_spin_unlock_irq(&rq
->lock
);
4369 preempt_enable_no_resched();
4373 EXPORT_SYMBOL(schedule
);
4375 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4377 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
4379 if (lock
->owner
!= owner
)
4383 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4384 * lock->owner still matches owner, if that fails, owner might
4385 * point to free()d memory, if it still matches, the rcu_read_lock()
4386 * ensures the memory stays valid.
4390 return owner
->on_cpu
;
4394 * Look out! "owner" is an entirely speculative pointer
4395 * access and not reliable.
4397 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
4399 if (!sched_feat(OWNER_SPIN
))
4403 while (owner_running(lock
, owner
)) {
4407 arch_mutex_cpu_relax();
4412 * We break out the loop above on need_resched() and when the
4413 * owner changed, which is a sign for heavy contention. Return
4414 * success only when lock->owner is NULL.
4416 return lock
->owner
== NULL
;
4420 #ifdef CONFIG_PREEMPT
4422 * this is the entry point to schedule() from in-kernel preemption
4423 * off of preempt_enable. Kernel preemptions off return from interrupt
4424 * occur there and call schedule directly.
4426 asmlinkage
void __sched notrace
preempt_schedule(void)
4428 struct thread_info
*ti
= current_thread_info();
4431 * If there is a non-zero preempt_count or interrupts are disabled,
4432 * we do not want to preempt the current task. Just return..
4434 if (likely(ti
->preempt_count
|| irqs_disabled()))
4438 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4440 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4443 * Check again in case we missed a preemption opportunity
4444 * between schedule and now.
4447 } while (need_resched());
4449 EXPORT_SYMBOL(preempt_schedule
);
4452 * this is the entry point to schedule() from kernel preemption
4453 * off of irq context.
4454 * Note, that this is called and return with irqs disabled. This will
4455 * protect us against recursive calling from irq.
4457 asmlinkage
void __sched
preempt_schedule_irq(void)
4459 struct thread_info
*ti
= current_thread_info();
4461 /* Catch callers which need to be fixed */
4462 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4465 add_preempt_count(PREEMPT_ACTIVE
);
4468 local_irq_disable();
4469 sub_preempt_count(PREEMPT_ACTIVE
);
4472 * Check again in case we missed a preemption opportunity
4473 * between schedule and now.
4476 } while (need_resched());
4479 #endif /* CONFIG_PREEMPT */
4481 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4484 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4486 EXPORT_SYMBOL(default_wake_function
);
4489 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4490 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4491 * number) then we wake all the non-exclusive tasks and one exclusive task.
4493 * There are circumstances in which we can try to wake a task which has already
4494 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4495 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4497 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4498 int nr_exclusive
, int wake_flags
, void *key
)
4500 wait_queue_t
*curr
, *next
;
4502 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4503 unsigned flags
= curr
->flags
;
4505 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4506 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4512 * __wake_up - wake up threads blocked on a waitqueue.
4514 * @mode: which threads
4515 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4516 * @key: is directly passed to the wakeup function
4518 * It may be assumed that this function implies a write memory barrier before
4519 * changing the task state if and only if any tasks are woken up.
4521 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4522 int nr_exclusive
, void *key
)
4524 unsigned long flags
;
4526 spin_lock_irqsave(&q
->lock
, flags
);
4527 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4528 spin_unlock_irqrestore(&q
->lock
, flags
);
4530 EXPORT_SYMBOL(__wake_up
);
4533 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4535 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4537 __wake_up_common(q
, mode
, 1, 0, NULL
);
4539 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4541 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4543 __wake_up_common(q
, mode
, 1, 0, key
);
4545 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4548 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4550 * @mode: which threads
4551 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4552 * @key: opaque value to be passed to wakeup targets
4554 * The sync wakeup differs that the waker knows that it will schedule
4555 * away soon, so while the target thread will be woken up, it will not
4556 * be migrated to another CPU - ie. the two threads are 'synchronized'
4557 * with each other. This can prevent needless bouncing between CPUs.
4559 * On UP it can prevent extra preemption.
4561 * It may be assumed that this function implies a write memory barrier before
4562 * changing the task state if and only if any tasks are woken up.
4564 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4565 int nr_exclusive
, void *key
)
4567 unsigned long flags
;
4568 int wake_flags
= WF_SYNC
;
4573 if (unlikely(!nr_exclusive
))
4576 spin_lock_irqsave(&q
->lock
, flags
);
4577 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4578 spin_unlock_irqrestore(&q
->lock
, flags
);
4580 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4583 * __wake_up_sync - see __wake_up_sync_key()
4585 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4587 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4589 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4592 * complete: - signals a single thread waiting on this completion
4593 * @x: holds the state of this particular completion
4595 * This will wake up a single thread waiting on this completion. Threads will be
4596 * awakened in the same order in which they were queued.
4598 * See also complete_all(), wait_for_completion() and related routines.
4600 * It may be assumed that this function implies a write memory barrier before
4601 * changing the task state if and only if any tasks are woken up.
4603 void complete(struct completion
*x
)
4605 unsigned long flags
;
4607 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4609 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4610 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4612 EXPORT_SYMBOL(complete
);
4615 * complete_all: - signals all threads waiting on this completion
4616 * @x: holds the state of this particular completion
4618 * This will wake up all threads waiting on this particular completion event.
4620 * It may be assumed that this function implies a write memory barrier before
4621 * changing the task state if and only if any tasks are woken up.
4623 void complete_all(struct completion
*x
)
4625 unsigned long flags
;
4627 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4628 x
->done
+= UINT_MAX
/2;
4629 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4630 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4632 EXPORT_SYMBOL(complete_all
);
4634 static inline long __sched
4635 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4638 DECLARE_WAITQUEUE(wait
, current
);
4640 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4642 if (signal_pending_state(state
, current
)) {
4643 timeout
= -ERESTARTSYS
;
4646 __set_current_state(state
);
4647 spin_unlock_irq(&x
->wait
.lock
);
4648 timeout
= schedule_timeout(timeout
);
4649 spin_lock_irq(&x
->wait
.lock
);
4650 } while (!x
->done
&& timeout
);
4651 __remove_wait_queue(&x
->wait
, &wait
);
4656 return timeout
?: 1;
4660 wait_for_common(struct completion
*x
, long timeout
, int state
)
4664 spin_lock_irq(&x
->wait
.lock
);
4665 timeout
= do_wait_for_common(x
, timeout
, state
);
4666 spin_unlock_irq(&x
->wait
.lock
);
4671 * wait_for_completion: - waits for completion of a task
4672 * @x: holds the state of this particular completion
4674 * This waits to be signaled for completion of a specific task. It is NOT
4675 * interruptible and there is no timeout.
4677 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4678 * and interrupt capability. Also see complete().
4680 void __sched
wait_for_completion(struct completion
*x
)
4682 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4684 EXPORT_SYMBOL(wait_for_completion
);
4687 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4688 * @x: holds the state of this particular completion
4689 * @timeout: timeout value in jiffies
4691 * This waits for either a completion of a specific task to be signaled or for a
4692 * specified timeout to expire. The timeout is in jiffies. It is not
4695 unsigned long __sched
4696 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4698 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4700 EXPORT_SYMBOL(wait_for_completion_timeout
);
4703 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4704 * @x: holds the state of this particular completion
4706 * This waits for completion of a specific task to be signaled. It is
4709 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4711 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4712 if (t
== -ERESTARTSYS
)
4716 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4719 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4720 * @x: holds the state of this particular completion
4721 * @timeout: timeout value in jiffies
4723 * This waits for either a completion of a specific task to be signaled or for a
4724 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4727 wait_for_completion_interruptible_timeout(struct completion
*x
,
4728 unsigned long timeout
)
4730 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4732 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4735 * wait_for_completion_killable: - waits for completion of a task (killable)
4736 * @x: holds the state of this particular completion
4738 * This waits to be signaled for completion of a specific task. It can be
4739 * interrupted by a kill signal.
4741 int __sched
wait_for_completion_killable(struct completion
*x
)
4743 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4744 if (t
== -ERESTARTSYS
)
4748 EXPORT_SYMBOL(wait_for_completion_killable
);
4751 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4752 * @x: holds the state of this particular completion
4753 * @timeout: timeout value in jiffies
4755 * This waits for either a completion of a specific task to be
4756 * signaled or for a specified timeout to expire. It can be
4757 * interrupted by a kill signal. The timeout is in jiffies.
4760 wait_for_completion_killable_timeout(struct completion
*x
,
4761 unsigned long timeout
)
4763 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4765 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4768 * try_wait_for_completion - try to decrement a completion without blocking
4769 * @x: completion structure
4771 * Returns: 0 if a decrement cannot be done without blocking
4772 * 1 if a decrement succeeded.
4774 * If a completion is being used as a counting completion,
4775 * attempt to decrement the counter without blocking. This
4776 * enables us to avoid waiting if the resource the completion
4777 * is protecting is not available.
4779 bool try_wait_for_completion(struct completion
*x
)
4781 unsigned long flags
;
4784 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4789 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4792 EXPORT_SYMBOL(try_wait_for_completion
);
4795 * completion_done - Test to see if a completion has any waiters
4796 * @x: completion structure
4798 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4799 * 1 if there are no waiters.
4802 bool completion_done(struct completion
*x
)
4804 unsigned long flags
;
4807 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4810 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4813 EXPORT_SYMBOL(completion_done
);
4816 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4818 unsigned long flags
;
4821 init_waitqueue_entry(&wait
, current
);
4823 __set_current_state(state
);
4825 spin_lock_irqsave(&q
->lock
, flags
);
4826 __add_wait_queue(q
, &wait
);
4827 spin_unlock(&q
->lock
);
4828 timeout
= schedule_timeout(timeout
);
4829 spin_lock_irq(&q
->lock
);
4830 __remove_wait_queue(q
, &wait
);
4831 spin_unlock_irqrestore(&q
->lock
, flags
);
4836 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4838 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4840 EXPORT_SYMBOL(interruptible_sleep_on
);
4843 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4845 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4847 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4849 void __sched
sleep_on(wait_queue_head_t
*q
)
4851 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4853 EXPORT_SYMBOL(sleep_on
);
4855 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4857 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4859 EXPORT_SYMBOL(sleep_on_timeout
);
4861 #ifdef CONFIG_RT_MUTEXES
4864 * rt_mutex_setprio - set the current priority of a task
4866 * @prio: prio value (kernel-internal form)
4868 * This function changes the 'effective' priority of a task. It does
4869 * not touch ->normal_prio like __setscheduler().
4871 * Used by the rt_mutex code to implement priority inheritance logic.
4873 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4875 int oldprio
, on_rq
, running
;
4877 const struct sched_class
*prev_class
;
4879 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4881 rq
= __task_rq_lock(p
);
4883 trace_sched_pi_setprio(p
, prio
);
4885 prev_class
= p
->sched_class
;
4887 running
= task_current(rq
, p
);
4889 dequeue_task(rq
, p
, 0);
4891 p
->sched_class
->put_prev_task(rq
, p
);
4894 p
->sched_class
= &rt_sched_class
;
4896 p
->sched_class
= &fair_sched_class
;
4901 p
->sched_class
->set_curr_task(rq
);
4903 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4905 check_class_changed(rq
, p
, prev_class
, oldprio
);
4906 __task_rq_unlock(rq
);
4911 void set_user_nice(struct task_struct
*p
, long nice
)
4913 int old_prio
, delta
, on_rq
;
4914 unsigned long flags
;
4917 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4920 * We have to be careful, if called from sys_setpriority(),
4921 * the task might be in the middle of scheduling on another CPU.
4923 rq
= task_rq_lock(p
, &flags
);
4925 * The RT priorities are set via sched_setscheduler(), but we still
4926 * allow the 'normal' nice value to be set - but as expected
4927 * it wont have any effect on scheduling until the task is
4928 * SCHED_FIFO/SCHED_RR:
4930 if (task_has_rt_policy(p
)) {
4931 p
->static_prio
= NICE_TO_PRIO(nice
);
4936 dequeue_task(rq
, p
, 0);
4938 p
->static_prio
= NICE_TO_PRIO(nice
);
4941 p
->prio
= effective_prio(p
);
4942 delta
= p
->prio
- old_prio
;
4945 enqueue_task(rq
, p
, 0);
4947 * If the task increased its priority or is running and
4948 * lowered its priority, then reschedule its CPU:
4950 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4951 resched_task(rq
->curr
);
4954 task_rq_unlock(rq
, p
, &flags
);
4956 EXPORT_SYMBOL(set_user_nice
);
4959 * can_nice - check if a task can reduce its nice value
4963 int can_nice(const struct task_struct
*p
, const int nice
)
4965 /* convert nice value [19,-20] to rlimit style value [1,40] */
4966 int nice_rlim
= 20 - nice
;
4968 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4969 capable(CAP_SYS_NICE
));
4972 #ifdef __ARCH_WANT_SYS_NICE
4975 * sys_nice - change the priority of the current process.
4976 * @increment: priority increment
4978 * sys_setpriority is a more generic, but much slower function that
4979 * does similar things.
4981 SYSCALL_DEFINE1(nice
, int, increment
)
4986 * Setpriority might change our priority at the same moment.
4987 * We don't have to worry. Conceptually one call occurs first
4988 * and we have a single winner.
4990 if (increment
< -40)
4995 nice
= TASK_NICE(current
) + increment
;
5001 if (increment
< 0 && !can_nice(current
, nice
))
5004 retval
= security_task_setnice(current
, nice
);
5008 set_user_nice(current
, nice
);
5015 * task_prio - return the priority value of a given task.
5016 * @p: the task in question.
5018 * This is the priority value as seen by users in /proc.
5019 * RT tasks are offset by -200. Normal tasks are centered
5020 * around 0, value goes from -16 to +15.
5022 int task_prio(const struct task_struct
*p
)
5024 return p
->prio
- MAX_RT_PRIO
;
5028 * task_nice - return the nice value of a given task.
5029 * @p: the task in question.
5031 int task_nice(const struct task_struct
*p
)
5033 return TASK_NICE(p
);
5035 EXPORT_SYMBOL(task_nice
);
5038 * idle_cpu - is a given cpu idle currently?
5039 * @cpu: the processor in question.
5041 int idle_cpu(int cpu
)
5043 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5047 * idle_task - return the idle task for a given cpu.
5048 * @cpu: the processor in question.
5050 struct task_struct
*idle_task(int cpu
)
5052 return cpu_rq(cpu
)->idle
;
5056 * find_process_by_pid - find a process with a matching PID value.
5057 * @pid: the pid in question.
5059 static struct task_struct
*find_process_by_pid(pid_t pid
)
5061 return pid
? find_task_by_vpid(pid
) : current
;
5064 /* Actually do priority change: must hold rq lock. */
5066 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5069 p
->rt_priority
= prio
;
5070 p
->normal_prio
= normal_prio(p
);
5071 /* we are holding p->pi_lock already */
5072 p
->prio
= rt_mutex_getprio(p
);
5073 if (rt_prio(p
->prio
))
5074 p
->sched_class
= &rt_sched_class
;
5076 p
->sched_class
= &fair_sched_class
;
5081 * check the target process has a UID that matches the current process's
5083 static bool check_same_owner(struct task_struct
*p
)
5085 const struct cred
*cred
= current_cred(), *pcred
;
5089 pcred
= __task_cred(p
);
5090 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
5091 match
= (cred
->euid
== pcred
->euid
||
5092 cred
->euid
== pcred
->uid
);
5099 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5100 const struct sched_param
*param
, bool user
)
5102 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5103 unsigned long flags
;
5104 const struct sched_class
*prev_class
;
5108 /* may grab non-irq protected spin_locks */
5109 BUG_ON(in_interrupt());
5111 /* double check policy once rq lock held */
5113 reset_on_fork
= p
->sched_reset_on_fork
;
5114 policy
= oldpolicy
= p
->policy
;
5116 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
5117 policy
&= ~SCHED_RESET_ON_FORK
;
5119 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5120 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5121 policy
!= SCHED_IDLE
)
5126 * Valid priorities for SCHED_FIFO and SCHED_RR are
5127 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5128 * SCHED_BATCH and SCHED_IDLE is 0.
5130 if (param
->sched_priority
< 0 ||
5131 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5132 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5134 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5138 * Allow unprivileged RT tasks to decrease priority:
5140 if (user
&& !capable(CAP_SYS_NICE
)) {
5141 if (rt_policy(policy
)) {
5142 unsigned long rlim_rtprio
=
5143 task_rlimit(p
, RLIMIT_RTPRIO
);
5145 /* can't set/change the rt policy */
5146 if (policy
!= p
->policy
&& !rlim_rtprio
)
5149 /* can't increase priority */
5150 if (param
->sched_priority
> p
->rt_priority
&&
5151 param
->sched_priority
> rlim_rtprio
)
5156 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5157 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5159 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
5160 if (!can_nice(p
, TASK_NICE(p
)))
5164 /* can't change other user's priorities */
5165 if (!check_same_owner(p
))
5168 /* Normal users shall not reset the sched_reset_on_fork flag */
5169 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5174 retval
= security_task_setscheduler(p
);
5180 * make sure no PI-waiters arrive (or leave) while we are
5181 * changing the priority of the task:
5183 * To be able to change p->policy safely, the appropriate
5184 * runqueue lock must be held.
5186 rq
= task_rq_lock(p
, &flags
);
5189 * Changing the policy of the stop threads its a very bad idea
5191 if (p
== rq
->stop
) {
5192 task_rq_unlock(rq
, p
, &flags
);
5197 * If not changing anything there's no need to proceed further:
5199 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5200 param
->sched_priority
== p
->rt_priority
))) {
5202 __task_rq_unlock(rq
);
5203 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5207 #ifdef CONFIG_RT_GROUP_SCHED
5210 * Do not allow realtime tasks into groups that have no runtime
5213 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5214 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5215 !task_group_is_autogroup(task_group(p
))) {
5216 task_rq_unlock(rq
, p
, &flags
);
5222 /* recheck policy now with rq lock held */
5223 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5224 policy
= oldpolicy
= -1;
5225 task_rq_unlock(rq
, p
, &flags
);
5229 running
= task_current(rq
, p
);
5231 deactivate_task(rq
, p
, 0);
5233 p
->sched_class
->put_prev_task(rq
, p
);
5235 p
->sched_reset_on_fork
= reset_on_fork
;
5238 prev_class
= p
->sched_class
;
5239 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5242 p
->sched_class
->set_curr_task(rq
);
5244 activate_task(rq
, p
, 0);
5246 check_class_changed(rq
, p
, prev_class
, oldprio
);
5247 task_rq_unlock(rq
, p
, &flags
);
5249 rt_mutex_adjust_pi(p
);
5255 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5256 * @p: the task in question.
5257 * @policy: new policy.
5258 * @param: structure containing the new RT priority.
5260 * NOTE that the task may be already dead.
5262 int sched_setscheduler(struct task_struct
*p
, int policy
,
5263 const struct sched_param
*param
)
5265 return __sched_setscheduler(p
, policy
, param
, true);
5267 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5270 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5271 * @p: the task in question.
5272 * @policy: new policy.
5273 * @param: structure containing the new RT priority.
5275 * Just like sched_setscheduler, only don't bother checking if the
5276 * current context has permission. For example, this is needed in
5277 * stop_machine(): we create temporary high priority worker threads,
5278 * but our caller might not have that capability.
5280 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5281 const struct sched_param
*param
)
5283 return __sched_setscheduler(p
, policy
, param
, false);
5287 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5289 struct sched_param lparam
;
5290 struct task_struct
*p
;
5293 if (!param
|| pid
< 0)
5295 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5300 p
= find_process_by_pid(pid
);
5302 retval
= sched_setscheduler(p
, policy
, &lparam
);
5309 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5310 * @pid: the pid in question.
5311 * @policy: new policy.
5312 * @param: structure containing the new RT priority.
5314 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5315 struct sched_param __user
*, param
)
5317 /* negative values for policy are not valid */
5321 return do_sched_setscheduler(pid
, policy
, param
);
5325 * sys_sched_setparam - set/change the RT priority of a thread
5326 * @pid: the pid in question.
5327 * @param: structure containing the new RT priority.
5329 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5331 return do_sched_setscheduler(pid
, -1, param
);
5335 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5336 * @pid: the pid in question.
5338 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5340 struct task_struct
*p
;
5348 p
= find_process_by_pid(pid
);
5350 retval
= security_task_getscheduler(p
);
5353 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5360 * sys_sched_getparam - get the RT priority of a thread
5361 * @pid: the pid in question.
5362 * @param: structure containing the RT priority.
5364 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5366 struct sched_param lp
;
5367 struct task_struct
*p
;
5370 if (!param
|| pid
< 0)
5374 p
= find_process_by_pid(pid
);
5379 retval
= security_task_getscheduler(p
);
5383 lp
.sched_priority
= p
->rt_priority
;
5387 * This one might sleep, we cannot do it with a spinlock held ...
5389 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5398 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5400 cpumask_var_t cpus_allowed
, new_mask
;
5401 struct task_struct
*p
;
5407 p
= find_process_by_pid(pid
);
5414 /* Prevent p going away */
5418 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5422 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5424 goto out_free_cpus_allowed
;
5427 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5430 retval
= security_task_setscheduler(p
);
5434 cpuset_cpus_allowed(p
, cpus_allowed
);
5435 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5437 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5440 cpuset_cpus_allowed(p
, cpus_allowed
);
5441 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5443 * We must have raced with a concurrent cpuset
5444 * update. Just reset the cpus_allowed to the
5445 * cpuset's cpus_allowed
5447 cpumask_copy(new_mask
, cpus_allowed
);
5452 free_cpumask_var(new_mask
);
5453 out_free_cpus_allowed
:
5454 free_cpumask_var(cpus_allowed
);
5461 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5462 struct cpumask
*new_mask
)
5464 if (len
< cpumask_size())
5465 cpumask_clear(new_mask
);
5466 else if (len
> cpumask_size())
5467 len
= cpumask_size();
5469 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5473 * sys_sched_setaffinity - set the cpu affinity of a process
5474 * @pid: pid of the process
5475 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5476 * @user_mask_ptr: user-space pointer to the new cpu mask
5478 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5479 unsigned long __user
*, user_mask_ptr
)
5481 cpumask_var_t new_mask
;
5484 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5487 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5489 retval
= sched_setaffinity(pid
, new_mask
);
5490 free_cpumask_var(new_mask
);
5494 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5496 struct task_struct
*p
;
5497 unsigned long flags
;
5504 p
= find_process_by_pid(pid
);
5508 retval
= security_task_getscheduler(p
);
5512 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5513 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5514 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5524 * sys_sched_getaffinity - get the cpu affinity of a process
5525 * @pid: pid of the process
5526 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5527 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5529 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5530 unsigned long __user
*, user_mask_ptr
)
5535 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5537 if (len
& (sizeof(unsigned long)-1))
5540 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5543 ret
= sched_getaffinity(pid
, mask
);
5545 size_t retlen
= min_t(size_t, len
, cpumask_size());
5547 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5552 free_cpumask_var(mask
);
5558 * sys_sched_yield - yield the current processor to other threads.
5560 * This function yields the current CPU to other tasks. If there are no
5561 * other threads running on this CPU then this function will return.
5563 SYSCALL_DEFINE0(sched_yield
)
5565 struct rq
*rq
= this_rq_lock();
5567 schedstat_inc(rq
, yld_count
);
5568 current
->sched_class
->yield_task(rq
);
5571 * Since we are going to call schedule() anyway, there's
5572 * no need to preempt or enable interrupts:
5574 __release(rq
->lock
);
5575 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5576 do_raw_spin_unlock(&rq
->lock
);
5577 preempt_enable_no_resched();
5584 static inline int should_resched(void)
5586 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5589 static void __cond_resched(void)
5591 add_preempt_count(PREEMPT_ACTIVE
);
5593 sub_preempt_count(PREEMPT_ACTIVE
);
5596 int __sched
_cond_resched(void)
5598 if (should_resched()) {
5604 EXPORT_SYMBOL(_cond_resched
);
5607 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5608 * call schedule, and on return reacquire the lock.
5610 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5611 * operations here to prevent schedule() from being called twice (once via
5612 * spin_unlock(), once by hand).
5614 int __cond_resched_lock(spinlock_t
*lock
)
5616 int resched
= should_resched();
5619 lockdep_assert_held(lock
);
5621 if (spin_needbreak(lock
) || resched
) {
5632 EXPORT_SYMBOL(__cond_resched_lock
);
5634 int __sched
__cond_resched_softirq(void)
5636 BUG_ON(!in_softirq());
5638 if (should_resched()) {
5646 EXPORT_SYMBOL(__cond_resched_softirq
);
5649 * yield - yield the current processor to other threads.
5651 * This is a shortcut for kernel-space yielding - it marks the
5652 * thread runnable and calls sys_sched_yield().
5654 void __sched
yield(void)
5656 set_current_state(TASK_RUNNING
);
5659 EXPORT_SYMBOL(yield
);
5662 * yield_to - yield the current processor to another thread in
5663 * your thread group, or accelerate that thread toward the
5664 * processor it's on.
5666 * @preempt: whether task preemption is allowed or not
5668 * It's the caller's job to ensure that the target task struct
5669 * can't go away on us before we can do any checks.
5671 * Returns true if we indeed boosted the target task.
5673 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
5675 struct task_struct
*curr
= current
;
5676 struct rq
*rq
, *p_rq
;
5677 unsigned long flags
;
5680 local_irq_save(flags
);
5685 double_rq_lock(rq
, p_rq
);
5686 while (task_rq(p
) != p_rq
) {
5687 double_rq_unlock(rq
, p_rq
);
5691 if (!curr
->sched_class
->yield_to_task
)
5694 if (curr
->sched_class
!= p
->sched_class
)
5697 if (task_running(p_rq
, p
) || p
->state
)
5700 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5702 schedstat_inc(rq
, yld_count
);
5704 * Make p's CPU reschedule; pick_next_entity takes care of
5707 if (preempt
&& rq
!= p_rq
)
5708 resched_task(p_rq
->curr
);
5712 double_rq_unlock(rq
, p_rq
);
5713 local_irq_restore(flags
);
5720 EXPORT_SYMBOL_GPL(yield_to
);
5723 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5724 * that process accounting knows that this is a task in IO wait state.
5726 void __sched
io_schedule(void)
5728 struct rq
*rq
= raw_rq();
5730 delayacct_blkio_start();
5731 atomic_inc(&rq
->nr_iowait
);
5732 blk_flush_plug(current
);
5733 current
->in_iowait
= 1;
5735 current
->in_iowait
= 0;
5736 atomic_dec(&rq
->nr_iowait
);
5737 delayacct_blkio_end();
5739 EXPORT_SYMBOL(io_schedule
);
5741 long __sched
io_schedule_timeout(long timeout
)
5743 struct rq
*rq
= raw_rq();
5746 delayacct_blkio_start();
5747 atomic_inc(&rq
->nr_iowait
);
5748 blk_flush_plug(current
);
5749 current
->in_iowait
= 1;
5750 ret
= schedule_timeout(timeout
);
5751 current
->in_iowait
= 0;
5752 atomic_dec(&rq
->nr_iowait
);
5753 delayacct_blkio_end();
5758 * sys_sched_get_priority_max - return maximum RT priority.
5759 * @policy: scheduling class.
5761 * this syscall returns the maximum rt_priority that can be used
5762 * by a given scheduling class.
5764 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5771 ret
= MAX_USER_RT_PRIO
-1;
5783 * sys_sched_get_priority_min - return minimum RT priority.
5784 * @policy: scheduling class.
5786 * this syscall returns the minimum rt_priority that can be used
5787 * by a given scheduling class.
5789 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5807 * sys_sched_rr_get_interval - return the default timeslice of a process.
5808 * @pid: pid of the process.
5809 * @interval: userspace pointer to the timeslice value.
5811 * this syscall writes the default timeslice value of a given process
5812 * into the user-space timespec buffer. A value of '0' means infinity.
5814 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5815 struct timespec __user
*, interval
)
5817 struct task_struct
*p
;
5818 unsigned int time_slice
;
5819 unsigned long flags
;
5829 p
= find_process_by_pid(pid
);
5833 retval
= security_task_getscheduler(p
);
5837 rq
= task_rq_lock(p
, &flags
);
5838 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5839 task_rq_unlock(rq
, p
, &flags
);
5842 jiffies_to_timespec(time_slice
, &t
);
5843 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5851 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5853 void sched_show_task(struct task_struct
*p
)
5855 unsigned long free
= 0;
5858 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5859 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5860 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5861 #if BITS_PER_LONG == 32
5862 if (state
== TASK_RUNNING
)
5863 printk(KERN_CONT
" running ");
5865 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5867 if (state
== TASK_RUNNING
)
5868 printk(KERN_CONT
" running task ");
5870 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5872 #ifdef CONFIG_DEBUG_STACK_USAGE
5873 free
= stack_not_used(p
);
5875 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5876 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5877 (unsigned long)task_thread_info(p
)->flags
);
5879 show_stack(p
, NULL
);
5882 void show_state_filter(unsigned long state_filter
)
5884 struct task_struct
*g
, *p
;
5886 #if BITS_PER_LONG == 32
5888 " task PC stack pid father\n");
5891 " task PC stack pid father\n");
5893 read_lock(&tasklist_lock
);
5894 do_each_thread(g
, p
) {
5896 * reset the NMI-timeout, listing all files on a slow
5897 * console might take a lot of time:
5899 touch_nmi_watchdog();
5900 if (!state_filter
|| (p
->state
& state_filter
))
5902 } while_each_thread(g
, p
);
5904 touch_all_softlockup_watchdogs();
5906 #ifdef CONFIG_SCHED_DEBUG
5907 sysrq_sched_debug_show();
5909 read_unlock(&tasklist_lock
);
5911 * Only show locks if all tasks are dumped:
5914 debug_show_all_locks();
5917 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5919 idle
->sched_class
= &idle_sched_class
;
5923 * init_idle - set up an idle thread for a given CPU
5924 * @idle: task in question
5925 * @cpu: cpu the idle task belongs to
5927 * NOTE: this function does not set the idle thread's NEED_RESCHED
5928 * flag, to make booting more robust.
5930 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5932 struct rq
*rq
= cpu_rq(cpu
);
5933 unsigned long flags
;
5935 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5938 idle
->state
= TASK_RUNNING
;
5939 idle
->se
.exec_start
= sched_clock();
5941 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
5943 * We're having a chicken and egg problem, even though we are
5944 * holding rq->lock, the cpu isn't yet set to this cpu so the
5945 * lockdep check in task_group() will fail.
5947 * Similar case to sched_fork(). / Alternatively we could
5948 * use task_rq_lock() here and obtain the other rq->lock.
5953 __set_task_cpu(idle
, cpu
);
5956 rq
->curr
= rq
->idle
= idle
;
5957 #if defined(CONFIG_SMP)
5960 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5962 /* Set the preempt count _outside_ the spinlocks! */
5963 task_thread_info(idle
)->preempt_count
= 0;
5966 * The idle tasks have their own, simple scheduling class:
5968 idle
->sched_class
= &idle_sched_class
;
5969 ftrace_graph_init_idle_task(idle
, cpu
);
5973 * In a system that switches off the HZ timer nohz_cpu_mask
5974 * indicates which cpus entered this state. This is used
5975 * in the rcu update to wait only for active cpus. For system
5976 * which do not switch off the HZ timer nohz_cpu_mask should
5977 * always be CPU_BITS_NONE.
5979 cpumask_var_t nohz_cpu_mask
;
5982 * Increase the granularity value when there are more CPUs,
5983 * because with more CPUs the 'effective latency' as visible
5984 * to users decreases. But the relationship is not linear,
5985 * so pick a second-best guess by going with the log2 of the
5988 * This idea comes from the SD scheduler of Con Kolivas:
5990 static int get_update_sysctl_factor(void)
5992 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5993 unsigned int factor
;
5995 switch (sysctl_sched_tunable_scaling
) {
5996 case SCHED_TUNABLESCALING_NONE
:
5999 case SCHED_TUNABLESCALING_LINEAR
:
6002 case SCHED_TUNABLESCALING_LOG
:
6004 factor
= 1 + ilog2(cpus
);
6011 static void update_sysctl(void)
6013 unsigned int factor
= get_update_sysctl_factor();
6015 #define SET_SYSCTL(name) \
6016 (sysctl_##name = (factor) * normalized_sysctl_##name)
6017 SET_SYSCTL(sched_min_granularity
);
6018 SET_SYSCTL(sched_latency
);
6019 SET_SYSCTL(sched_wakeup_granularity
);
6023 static inline void sched_init_granularity(void)
6029 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
6031 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
6032 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6034 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6035 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6040 * This is how migration works:
6042 * 1) we invoke migration_cpu_stop() on the target CPU using
6044 * 2) stopper starts to run (implicitly forcing the migrated thread
6046 * 3) it checks whether the migrated task is still in the wrong runqueue.
6047 * 4) if it's in the wrong runqueue then the migration thread removes
6048 * it and puts it into the right queue.
6049 * 5) stopper completes and stop_one_cpu() returns and the migration
6054 * Change a given task's CPU affinity. Migrate the thread to a
6055 * proper CPU and schedule it away if the CPU it's executing on
6056 * is removed from the allowed bitmask.
6058 * NOTE: the caller must have a valid reference to the task, the
6059 * task must not exit() & deallocate itself prematurely. The
6060 * call is not atomic; no spinlocks may be held.
6062 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6064 unsigned long flags
;
6066 unsigned int dest_cpu
;
6069 rq
= task_rq_lock(p
, &flags
);
6071 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
6074 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
6079 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
6084 do_set_cpus_allowed(p
, new_mask
);
6086 /* Can the task run on the task's current CPU? If so, we're done */
6087 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6090 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
6092 struct migration_arg arg
= { p
, dest_cpu
};
6093 /* Need help from migration thread: drop lock and wait. */
6094 task_rq_unlock(rq
, p
, &flags
);
6095 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
6096 tlb_migrate_finish(p
->mm
);
6100 task_rq_unlock(rq
, p
, &flags
);
6104 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6107 * Move (not current) task off this cpu, onto dest cpu. We're doing
6108 * this because either it can't run here any more (set_cpus_allowed()
6109 * away from this CPU, or CPU going down), or because we're
6110 * attempting to rebalance this task on exec (sched_exec).
6112 * So we race with normal scheduler movements, but that's OK, as long
6113 * as the task is no longer on this CPU.
6115 * Returns non-zero if task was successfully migrated.
6117 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6119 struct rq
*rq_dest
, *rq_src
;
6122 if (unlikely(!cpu_active(dest_cpu
)))
6125 rq_src
= cpu_rq(src_cpu
);
6126 rq_dest
= cpu_rq(dest_cpu
);
6128 raw_spin_lock(&p
->pi_lock
);
6129 double_rq_lock(rq_src
, rq_dest
);
6130 /* Already moved. */
6131 if (task_cpu(p
) != src_cpu
)
6133 /* Affinity changed (again). */
6134 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6138 * If we're not on a rq, the next wake-up will ensure we're
6142 deactivate_task(rq_src
, p
, 0);
6143 set_task_cpu(p
, dest_cpu
);
6144 activate_task(rq_dest
, p
, 0);
6145 check_preempt_curr(rq_dest
, p
, 0);
6150 double_rq_unlock(rq_src
, rq_dest
);
6151 raw_spin_unlock(&p
->pi_lock
);
6156 * migration_cpu_stop - this will be executed by a highprio stopper thread
6157 * and performs thread migration by bumping thread off CPU then
6158 * 'pushing' onto another runqueue.
6160 static int migration_cpu_stop(void *data
)
6162 struct migration_arg
*arg
= data
;
6165 * The original target cpu might have gone down and we might
6166 * be on another cpu but it doesn't matter.
6168 local_irq_disable();
6169 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6174 #ifdef CONFIG_HOTPLUG_CPU
6177 * Ensures that the idle task is using init_mm right before its cpu goes
6180 void idle_task_exit(void)
6182 struct mm_struct
*mm
= current
->active_mm
;
6184 BUG_ON(cpu_online(smp_processor_id()));
6187 switch_mm(mm
, &init_mm
, current
);
6192 * While a dead CPU has no uninterruptible tasks queued at this point,
6193 * it might still have a nonzero ->nr_uninterruptible counter, because
6194 * for performance reasons the counter is not stricly tracking tasks to
6195 * their home CPUs. So we just add the counter to another CPU's counter,
6196 * to keep the global sum constant after CPU-down:
6198 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6200 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6202 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6203 rq_src
->nr_uninterruptible
= 0;
6207 * remove the tasks which were accounted by rq from calc_load_tasks.
6209 static void calc_global_load_remove(struct rq
*rq
)
6211 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6212 rq
->calc_load_active
= 0;
6216 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6217 * try_to_wake_up()->select_task_rq().
6219 * Called with rq->lock held even though we'er in stop_machine() and
6220 * there's no concurrency possible, we hold the required locks anyway
6221 * because of lock validation efforts.
6223 static void migrate_tasks(unsigned int dead_cpu
)
6225 struct rq
*rq
= cpu_rq(dead_cpu
);
6226 struct task_struct
*next
, *stop
= rq
->stop
;
6230 * Fudge the rq selection such that the below task selection loop
6231 * doesn't get stuck on the currently eligible stop task.
6233 * We're currently inside stop_machine() and the rq is either stuck
6234 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6235 * either way we should never end up calling schedule() until we're
6242 * There's this thread running, bail when that's the only
6245 if (rq
->nr_running
== 1)
6248 next
= pick_next_task(rq
);
6250 next
->sched_class
->put_prev_task(rq
, next
);
6252 /* Find suitable destination for @next, with force if needed. */
6253 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6254 raw_spin_unlock(&rq
->lock
);
6256 __migrate_task(next
, dead_cpu
, dest_cpu
);
6258 raw_spin_lock(&rq
->lock
);
6264 #endif /* CONFIG_HOTPLUG_CPU */
6266 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6268 static struct ctl_table sd_ctl_dir
[] = {
6270 .procname
= "sched_domain",
6276 static struct ctl_table sd_ctl_root
[] = {
6278 .procname
= "kernel",
6280 .child
= sd_ctl_dir
,
6285 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6287 struct ctl_table
*entry
=
6288 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6293 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6295 struct ctl_table
*entry
;
6298 * In the intermediate directories, both the child directory and
6299 * procname are dynamically allocated and could fail but the mode
6300 * will always be set. In the lowest directory the names are
6301 * static strings and all have proc handlers.
6303 for (entry
= *tablep
; entry
->mode
; entry
++) {
6305 sd_free_ctl_entry(&entry
->child
);
6306 if (entry
->proc_handler
== NULL
)
6307 kfree(entry
->procname
);
6315 set_table_entry(struct ctl_table
*entry
,
6316 const char *procname
, void *data
, int maxlen
,
6317 mode_t mode
, proc_handler
*proc_handler
)
6319 entry
->procname
= procname
;
6321 entry
->maxlen
= maxlen
;
6323 entry
->proc_handler
= proc_handler
;
6326 static struct ctl_table
*
6327 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6329 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6334 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6335 sizeof(long), 0644, proc_doulongvec_minmax
);
6336 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6337 sizeof(long), 0644, proc_doulongvec_minmax
);
6338 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6339 sizeof(int), 0644, proc_dointvec_minmax
);
6340 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6341 sizeof(int), 0644, proc_dointvec_minmax
);
6342 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6343 sizeof(int), 0644, proc_dointvec_minmax
);
6344 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6345 sizeof(int), 0644, proc_dointvec_minmax
);
6346 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6347 sizeof(int), 0644, proc_dointvec_minmax
);
6348 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6349 sizeof(int), 0644, proc_dointvec_minmax
);
6350 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6351 sizeof(int), 0644, proc_dointvec_minmax
);
6352 set_table_entry(&table
[9], "cache_nice_tries",
6353 &sd
->cache_nice_tries
,
6354 sizeof(int), 0644, proc_dointvec_minmax
);
6355 set_table_entry(&table
[10], "flags", &sd
->flags
,
6356 sizeof(int), 0644, proc_dointvec_minmax
);
6357 set_table_entry(&table
[11], "name", sd
->name
,
6358 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6359 /* &table[12] is terminator */
6364 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6366 struct ctl_table
*entry
, *table
;
6367 struct sched_domain
*sd
;
6368 int domain_num
= 0, i
;
6371 for_each_domain(cpu
, sd
)
6373 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6378 for_each_domain(cpu
, sd
) {
6379 snprintf(buf
, 32, "domain%d", i
);
6380 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6382 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6389 static struct ctl_table_header
*sd_sysctl_header
;
6390 static void register_sched_domain_sysctl(void)
6392 int i
, cpu_num
= num_possible_cpus();
6393 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6396 WARN_ON(sd_ctl_dir
[0].child
);
6397 sd_ctl_dir
[0].child
= entry
;
6402 for_each_possible_cpu(i
) {
6403 snprintf(buf
, 32, "cpu%d", i
);
6404 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6406 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6410 WARN_ON(sd_sysctl_header
);
6411 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6414 /* may be called multiple times per register */
6415 static void unregister_sched_domain_sysctl(void)
6417 if (sd_sysctl_header
)
6418 unregister_sysctl_table(sd_sysctl_header
);
6419 sd_sysctl_header
= NULL
;
6420 if (sd_ctl_dir
[0].child
)
6421 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6424 static void register_sched_domain_sysctl(void)
6427 static void unregister_sched_domain_sysctl(void)
6432 static void set_rq_online(struct rq
*rq
)
6435 const struct sched_class
*class;
6437 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6440 for_each_class(class) {
6441 if (class->rq_online
)
6442 class->rq_online(rq
);
6447 static void set_rq_offline(struct rq
*rq
)
6450 const struct sched_class
*class;
6452 for_each_class(class) {
6453 if (class->rq_offline
)
6454 class->rq_offline(rq
);
6457 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6463 * migration_call - callback that gets triggered when a CPU is added.
6464 * Here we can start up the necessary migration thread for the new CPU.
6466 static int __cpuinit
6467 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6469 int cpu
= (long)hcpu
;
6470 unsigned long flags
;
6471 struct rq
*rq
= cpu_rq(cpu
);
6473 switch (action
& ~CPU_TASKS_FROZEN
) {
6475 case CPU_UP_PREPARE
:
6476 rq
->calc_load_update
= calc_load_update
;
6480 /* Update our root-domain */
6481 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6483 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6487 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6490 #ifdef CONFIG_HOTPLUG_CPU
6492 sched_ttwu_pending();
6493 /* Update our root-domain */
6494 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6496 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6500 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6501 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6503 migrate_nr_uninterruptible(rq
);
6504 calc_global_load_remove(rq
);
6509 update_max_interval();
6515 * Register at high priority so that task migration (migrate_all_tasks)
6516 * happens before everything else. This has to be lower priority than
6517 * the notifier in the perf_event subsystem, though.
6519 static struct notifier_block __cpuinitdata migration_notifier
= {
6520 .notifier_call
= migration_call
,
6521 .priority
= CPU_PRI_MIGRATION
,
6524 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6525 unsigned long action
, void *hcpu
)
6527 switch (action
& ~CPU_TASKS_FROZEN
) {
6529 case CPU_DOWN_FAILED
:
6530 set_cpu_active((long)hcpu
, true);
6537 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6538 unsigned long action
, void *hcpu
)
6540 switch (action
& ~CPU_TASKS_FROZEN
) {
6541 case CPU_DOWN_PREPARE
:
6542 set_cpu_active((long)hcpu
, false);
6549 static int __init
migration_init(void)
6551 void *cpu
= (void *)(long)smp_processor_id();
6554 /* Initialize migration for the boot CPU */
6555 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6556 BUG_ON(err
== NOTIFY_BAD
);
6557 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6558 register_cpu_notifier(&migration_notifier
);
6560 /* Register cpu active notifiers */
6561 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6562 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6566 early_initcall(migration_init
);
6571 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
6573 #ifdef CONFIG_SCHED_DEBUG
6575 static __read_mostly
int sched_domain_debug_enabled
;
6577 static int __init
sched_domain_debug_setup(char *str
)
6579 sched_domain_debug_enabled
= 1;
6583 early_param("sched_debug", sched_domain_debug_setup
);
6585 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6586 struct cpumask
*groupmask
)
6588 struct sched_group
*group
= sd
->groups
;
6591 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6592 cpumask_clear(groupmask
);
6594 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6596 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6597 printk("does not load-balance\n");
6599 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6604 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6606 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6607 printk(KERN_ERR
"ERROR: domain->span does not contain "
6610 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6611 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6615 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6619 printk(KERN_ERR
"ERROR: group is NULL\n");
6623 if (!group
->sgp
->power
) {
6624 printk(KERN_CONT
"\n");
6625 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6630 if (!cpumask_weight(sched_group_cpus(group
))) {
6631 printk(KERN_CONT
"\n");
6632 printk(KERN_ERR
"ERROR: empty group\n");
6636 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6637 printk(KERN_CONT
"\n");
6638 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6642 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6644 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6646 printk(KERN_CONT
" %s", str
);
6647 if (group
->sgp
->power
!= SCHED_POWER_SCALE
) {
6648 printk(KERN_CONT
" (cpu_power = %d)",
6652 group
= group
->next
;
6653 } while (group
!= sd
->groups
);
6654 printk(KERN_CONT
"\n");
6656 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6657 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6660 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6661 printk(KERN_ERR
"ERROR: parent span is not a superset "
6662 "of domain->span\n");
6666 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6670 if (!sched_domain_debug_enabled
)
6674 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6678 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6681 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
6689 #else /* !CONFIG_SCHED_DEBUG */
6690 # define sched_domain_debug(sd, cpu) do { } while (0)
6691 #endif /* CONFIG_SCHED_DEBUG */
6693 static int sd_degenerate(struct sched_domain
*sd
)
6695 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6698 /* Following flags need at least 2 groups */
6699 if (sd
->flags
& (SD_LOAD_BALANCE
|
6700 SD_BALANCE_NEWIDLE
|
6704 SD_SHARE_PKG_RESOURCES
)) {
6705 if (sd
->groups
!= sd
->groups
->next
)
6709 /* Following flags don't use groups */
6710 if (sd
->flags
& (SD_WAKE_AFFINE
))
6717 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6719 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6721 if (sd_degenerate(parent
))
6724 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6727 /* Flags needing groups don't count if only 1 group in parent */
6728 if (parent
->groups
== parent
->groups
->next
) {
6729 pflags
&= ~(SD_LOAD_BALANCE
|
6730 SD_BALANCE_NEWIDLE
|
6734 SD_SHARE_PKG_RESOURCES
);
6735 if (nr_node_ids
== 1)
6736 pflags
&= ~SD_SERIALIZE
;
6738 if (~cflags
& pflags
)
6744 static void free_rootdomain(struct rcu_head
*rcu
)
6746 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
6748 cpupri_cleanup(&rd
->cpupri
);
6749 free_cpumask_var(rd
->rto_mask
);
6750 free_cpumask_var(rd
->online
);
6751 free_cpumask_var(rd
->span
);
6755 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6757 struct root_domain
*old_rd
= NULL
;
6758 unsigned long flags
;
6760 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6765 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6768 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6771 * If we dont want to free the old_rt yet then
6772 * set old_rd to NULL to skip the freeing later
6775 if (!atomic_dec_and_test(&old_rd
->refcount
))
6779 atomic_inc(&rd
->refcount
);
6782 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6783 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6786 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6789 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
6792 static int init_rootdomain(struct root_domain
*rd
)
6794 memset(rd
, 0, sizeof(*rd
));
6796 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6798 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6800 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6803 if (cpupri_init(&rd
->cpupri
) != 0)
6808 free_cpumask_var(rd
->rto_mask
);
6810 free_cpumask_var(rd
->online
);
6812 free_cpumask_var(rd
->span
);
6817 static void init_defrootdomain(void)
6819 init_rootdomain(&def_root_domain
);
6821 atomic_set(&def_root_domain
.refcount
, 1);
6824 static struct root_domain
*alloc_rootdomain(void)
6826 struct root_domain
*rd
;
6828 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6832 if (init_rootdomain(rd
) != 0) {
6840 static void free_sched_groups(struct sched_group
*sg
, int free_sgp
)
6842 struct sched_group
*tmp
, *first
;
6851 if (free_sgp
&& atomic_dec_and_test(&sg
->sgp
->ref
))
6856 } while (sg
!= first
);
6859 static void free_sched_domain(struct rcu_head
*rcu
)
6861 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
6864 * If its an overlapping domain it has private groups, iterate and
6867 if (sd
->flags
& SD_OVERLAP
) {
6868 free_sched_groups(sd
->groups
, 1);
6869 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
6870 kfree(sd
->groups
->sgp
);
6876 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
6878 call_rcu(&sd
->rcu
, free_sched_domain
);
6881 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
6883 for (; sd
; sd
= sd
->parent
)
6884 destroy_sched_domain(sd
, cpu
);
6888 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6889 * hold the hotplug lock.
6892 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6894 struct rq
*rq
= cpu_rq(cpu
);
6895 struct sched_domain
*tmp
;
6897 /* Remove the sched domains which do not contribute to scheduling. */
6898 for (tmp
= sd
; tmp
; ) {
6899 struct sched_domain
*parent
= tmp
->parent
;
6903 if (sd_parent_degenerate(tmp
, parent
)) {
6904 tmp
->parent
= parent
->parent
;
6906 parent
->parent
->child
= tmp
;
6907 destroy_sched_domain(parent
, cpu
);
6912 if (sd
&& sd_degenerate(sd
)) {
6915 destroy_sched_domain(tmp
, cpu
);
6920 sched_domain_debug(sd
, cpu
);
6922 rq_attach_root(rq
, rd
);
6924 rcu_assign_pointer(rq
->sd
, sd
);
6925 destroy_sched_domains(tmp
, cpu
);
6928 /* cpus with isolated domains */
6929 static cpumask_var_t cpu_isolated_map
;
6931 /* Setup the mask of cpus configured for isolated domains */
6932 static int __init
isolated_cpu_setup(char *str
)
6934 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6935 cpulist_parse(str
, cpu_isolated_map
);
6939 __setup("isolcpus=", isolated_cpu_setup
);
6941 #define SD_NODES_PER_DOMAIN 16
6946 * find_next_best_node - find the next node to include in a sched_domain
6947 * @node: node whose sched_domain we're building
6948 * @used_nodes: nodes already in the sched_domain
6950 * Find the next node to include in a given scheduling domain. Simply
6951 * finds the closest node not already in the @used_nodes map.
6953 * Should use nodemask_t.
6955 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6957 int i
, n
, val
, min_val
, best_node
= -1;
6961 for (i
= 0; i
< nr_node_ids
; i
++) {
6962 /* Start at @node */
6963 n
= (node
+ i
) % nr_node_ids
;
6965 if (!nr_cpus_node(n
))
6968 /* Skip already used nodes */
6969 if (node_isset(n
, *used_nodes
))
6972 /* Simple min distance search */
6973 val
= node_distance(node
, n
);
6975 if (val
< min_val
) {
6981 if (best_node
!= -1)
6982 node_set(best_node
, *used_nodes
);
6987 * sched_domain_node_span - get a cpumask for a node's sched_domain
6988 * @node: node whose cpumask we're constructing
6989 * @span: resulting cpumask
6991 * Given a node, construct a good cpumask for its sched_domain to span. It
6992 * should be one that prevents unnecessary balancing, but also spreads tasks
6995 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6997 nodemask_t used_nodes
;
7000 cpumask_clear(span
);
7001 nodes_clear(used_nodes
);
7003 cpumask_or(span
, span
, cpumask_of_node(node
));
7004 node_set(node
, used_nodes
);
7006 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7007 int next_node
= find_next_best_node(node
, &used_nodes
);
7010 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7014 static const struct cpumask
*cpu_node_mask(int cpu
)
7016 lockdep_assert_held(&sched_domains_mutex
);
7018 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
7020 return sched_domains_tmpmask
;
7023 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
7025 return cpu_possible_mask
;
7027 #endif /* CONFIG_NUMA */
7029 static const struct cpumask
*cpu_cpu_mask(int cpu
)
7031 return cpumask_of_node(cpu_to_node(cpu
));
7034 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7037 struct sched_domain
**__percpu sd
;
7038 struct sched_group
**__percpu sg
;
7039 struct sched_group_power
**__percpu sgp
;
7043 struct sched_domain
** __percpu sd
;
7044 struct root_domain
*rd
;
7054 struct sched_domain_topology_level
;
7056 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
7057 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
7059 #define SDTL_OVERLAP 0x01
7061 struct sched_domain_topology_level
{
7062 sched_domain_init_f init
;
7063 sched_domain_mask_f mask
;
7065 struct sd_data data
;
7069 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
7071 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
7072 const struct cpumask
*span
= sched_domain_span(sd
);
7073 struct cpumask
*covered
= sched_domains_tmpmask
;
7074 struct sd_data
*sdd
= sd
->private;
7075 struct sched_domain
*child
;
7078 cpumask_clear(covered
);
7080 for_each_cpu(i
, span
) {
7081 struct cpumask
*sg_span
;
7083 if (cpumask_test_cpu(i
, covered
))
7086 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7087 GFP_KERNEL
, cpu_to_node(i
));
7092 sg_span
= sched_group_cpus(sg
);
7094 child
= *per_cpu_ptr(sdd
->sd
, i
);
7096 child
= child
->child
;
7097 cpumask_copy(sg_span
, sched_domain_span(child
));
7099 cpumask_set_cpu(i
, sg_span
);
7101 cpumask_or(covered
, covered
, sg_span
);
7103 sg
->sgp
= *per_cpu_ptr(sdd
->sgp
, cpumask_first(sg_span
));
7104 atomic_inc(&sg
->sgp
->ref
);
7106 if (cpumask_test_cpu(cpu
, sg_span
))
7116 sd
->groups
= groups
;
7121 free_sched_groups(first
, 0);
7126 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
7128 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
7129 struct sched_domain
*child
= sd
->child
;
7132 cpu
= cpumask_first(sched_domain_span(child
));
7135 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
7136 (*sg
)->sgp
= *per_cpu_ptr(sdd
->sgp
, cpu
);
7137 atomic_set(&(*sg
)->sgp
->ref
, 1); /* for claim_allocations */
7144 * build_sched_groups will build a circular linked list of the groups
7145 * covered by the given span, and will set each group's ->cpumask correctly,
7146 * and ->cpu_power to 0.
7148 * Assumes the sched_domain tree is fully constructed
7151 build_sched_groups(struct sched_domain
*sd
, int cpu
)
7153 struct sched_group
*first
= NULL
, *last
= NULL
;
7154 struct sd_data
*sdd
= sd
->private;
7155 const struct cpumask
*span
= sched_domain_span(sd
);
7156 struct cpumask
*covered
;
7159 get_group(cpu
, sdd
, &sd
->groups
);
7160 atomic_inc(&sd
->groups
->ref
);
7162 if (cpu
!= cpumask_first(sched_domain_span(sd
)))
7165 lockdep_assert_held(&sched_domains_mutex
);
7166 covered
= sched_domains_tmpmask
;
7168 cpumask_clear(covered
);
7170 for_each_cpu(i
, span
) {
7171 struct sched_group
*sg
;
7172 int group
= get_group(i
, sdd
, &sg
);
7175 if (cpumask_test_cpu(i
, covered
))
7178 cpumask_clear(sched_group_cpus(sg
));
7181 for_each_cpu(j
, span
) {
7182 if (get_group(j
, sdd
, NULL
) != group
)
7185 cpumask_set_cpu(j
, covered
);
7186 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7201 * Initialize sched groups cpu_power.
7203 * cpu_power indicates the capacity of sched group, which is used while
7204 * distributing the load between different sched groups in a sched domain.
7205 * Typically cpu_power for all the groups in a sched domain will be same unless
7206 * there are asymmetries in the topology. If there are asymmetries, group
7207 * having more cpu_power will pickup more load compared to the group having
7210 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7212 struct sched_group
*sg
= sd
->groups
;
7214 WARN_ON(!sd
|| !sg
);
7217 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
7219 } while (sg
!= sd
->groups
);
7221 if (cpu
!= group_first_cpu(sg
))
7224 update_group_power(sd
, cpu
);
7228 * Initializers for schedule domains
7229 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7232 #ifdef CONFIG_SCHED_DEBUG
7233 # define SD_INIT_NAME(sd, type) sd->name = #type
7235 # define SD_INIT_NAME(sd, type) do { } while (0)
7238 #define SD_INIT_FUNC(type) \
7239 static noinline struct sched_domain * \
7240 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7242 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7243 *sd = SD_##type##_INIT; \
7244 SD_INIT_NAME(sd, type); \
7245 sd->private = &tl->data; \
7251 SD_INIT_FUNC(ALLNODES
)
7254 #ifdef CONFIG_SCHED_SMT
7255 SD_INIT_FUNC(SIBLING
)
7257 #ifdef CONFIG_SCHED_MC
7260 #ifdef CONFIG_SCHED_BOOK
7264 static int default_relax_domain_level
= -1;
7265 int sched_domain_level_max
;
7267 static int __init
setup_relax_domain_level(char *str
)
7271 val
= simple_strtoul(str
, NULL
, 0);
7272 if (val
< sched_domain_level_max
)
7273 default_relax_domain_level
= val
;
7277 __setup("relax_domain_level=", setup_relax_domain_level
);
7279 static void set_domain_attribute(struct sched_domain
*sd
,
7280 struct sched_domain_attr
*attr
)
7284 if (!attr
|| attr
->relax_domain_level
< 0) {
7285 if (default_relax_domain_level
< 0)
7288 request
= default_relax_domain_level
;
7290 request
= attr
->relax_domain_level
;
7291 if (request
< sd
->level
) {
7292 /* turn off idle balance on this domain */
7293 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7295 /* turn on idle balance on this domain */
7296 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7300 static void __sdt_free(const struct cpumask
*cpu_map
);
7301 static int __sdt_alloc(const struct cpumask
*cpu_map
);
7303 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7304 const struct cpumask
*cpu_map
)
7308 if (!atomic_read(&d
->rd
->refcount
))
7309 free_rootdomain(&d
->rd
->rcu
); /* fall through */
7311 free_percpu(d
->sd
); /* fall through */
7313 __sdt_free(cpu_map
); /* fall through */
7319 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7320 const struct cpumask
*cpu_map
)
7322 memset(d
, 0, sizeof(*d
));
7324 if (__sdt_alloc(cpu_map
))
7325 return sa_sd_storage
;
7326 d
->sd
= alloc_percpu(struct sched_domain
*);
7328 return sa_sd_storage
;
7329 d
->rd
= alloc_rootdomain();
7332 return sa_rootdomain
;
7336 * NULL the sd_data elements we've used to build the sched_domain and
7337 * sched_group structure so that the subsequent __free_domain_allocs()
7338 * will not free the data we're using.
7340 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
7342 struct sd_data
*sdd
= sd
->private;
7344 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
7345 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
7347 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
7348 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
7350 if (atomic_read(&(*per_cpu_ptr(sdd
->sgp
, cpu
))->ref
))
7351 *per_cpu_ptr(sdd
->sgp
, cpu
) = NULL
;
7354 #ifdef CONFIG_SCHED_SMT
7355 static const struct cpumask
*cpu_smt_mask(int cpu
)
7357 return topology_thread_cpumask(cpu
);
7362 * Topology list, bottom-up.
7364 static struct sched_domain_topology_level default_topology
[] = {
7365 #ifdef CONFIG_SCHED_SMT
7366 { sd_init_SIBLING
, cpu_smt_mask
, },
7368 #ifdef CONFIG_SCHED_MC
7369 { sd_init_MC
, cpu_coregroup_mask
, },
7371 #ifdef CONFIG_SCHED_BOOK
7372 { sd_init_BOOK
, cpu_book_mask
, },
7374 { sd_init_CPU
, cpu_cpu_mask
, },
7376 { sd_init_NODE
, cpu_node_mask
, SDTL_OVERLAP
, },
7377 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
7382 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
7384 static int __sdt_alloc(const struct cpumask
*cpu_map
)
7386 struct sched_domain_topology_level
*tl
;
7389 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7390 struct sd_data
*sdd
= &tl
->data
;
7392 sdd
->sd
= alloc_percpu(struct sched_domain
*);
7396 sdd
->sg
= alloc_percpu(struct sched_group
*);
7400 sdd
->sgp
= alloc_percpu(struct sched_group_power
*);
7404 for_each_cpu(j
, cpu_map
) {
7405 struct sched_domain
*sd
;
7406 struct sched_group
*sg
;
7407 struct sched_group_power
*sgp
;
7409 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
7410 GFP_KERNEL
, cpu_to_node(j
));
7414 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
7416 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7417 GFP_KERNEL
, cpu_to_node(j
));
7421 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
7423 sgp
= kzalloc_node(sizeof(struct sched_group_power
),
7424 GFP_KERNEL
, cpu_to_node(j
));
7428 *per_cpu_ptr(sdd
->sgp
, j
) = sgp
;
7435 static void __sdt_free(const struct cpumask
*cpu_map
)
7437 struct sched_domain_topology_level
*tl
;
7440 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7441 struct sd_data
*sdd
= &tl
->data
;
7443 for_each_cpu(j
, cpu_map
) {
7444 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, j
);
7445 if (sd
&& (sd
->flags
& SD_OVERLAP
))
7446 free_sched_groups(sd
->groups
, 0);
7447 kfree(*per_cpu_ptr(sdd
->sg
, j
));
7448 kfree(*per_cpu_ptr(sdd
->sgp
, j
));
7450 free_percpu(sdd
->sd
);
7451 free_percpu(sdd
->sg
);
7452 free_percpu(sdd
->sgp
);
7456 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
7457 struct s_data
*d
, const struct cpumask
*cpu_map
,
7458 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
7461 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
7465 set_domain_attribute(sd
, attr
);
7466 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7468 sd
->level
= child
->level
+ 1;
7469 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7478 * Build sched domains for a given set of cpus and attach the sched domains
7479 * to the individual cpus
7481 static int build_sched_domains(const struct cpumask
*cpu_map
,
7482 struct sched_domain_attr
*attr
)
7484 enum s_alloc alloc_state
= sa_none
;
7485 struct sched_domain
*sd
;
7487 int i
, ret
= -ENOMEM
;
7489 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7490 if (alloc_state
!= sa_rootdomain
)
7493 /* Set up domains for cpus specified by the cpu_map. */
7494 for_each_cpu(i
, cpu_map
) {
7495 struct sched_domain_topology_level
*tl
;
7498 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7499 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
7500 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
7501 sd
->flags
|= SD_OVERLAP
;
7502 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
7509 *per_cpu_ptr(d
.sd
, i
) = sd
;
7512 /* Build the groups for the domains */
7513 for_each_cpu(i
, cpu_map
) {
7514 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7515 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7516 if (sd
->flags
& SD_OVERLAP
) {
7517 if (build_overlap_sched_groups(sd
, i
))
7520 if (build_sched_groups(sd
, i
))
7526 /* Calculate CPU power for physical packages and nodes */
7527 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7528 if (!cpumask_test_cpu(i
, cpu_map
))
7531 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7532 claim_allocations(i
, sd
);
7533 init_sched_groups_power(i
, sd
);
7537 /* Attach the domains */
7539 for_each_cpu(i
, cpu_map
) {
7540 sd
= *per_cpu_ptr(d
.sd
, i
);
7541 cpu_attach_domain(sd
, d
.rd
, i
);
7547 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7551 static cpumask_var_t
*doms_cur
; /* current sched domains */
7552 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7553 static struct sched_domain_attr
*dattr_cur
;
7554 /* attribues of custom domains in 'doms_cur' */
7557 * Special case: If a kmalloc of a doms_cur partition (array of
7558 * cpumask) fails, then fallback to a single sched domain,
7559 * as determined by the single cpumask fallback_doms.
7561 static cpumask_var_t fallback_doms
;
7564 * arch_update_cpu_topology lets virtualized architectures update the
7565 * cpu core maps. It is supposed to return 1 if the topology changed
7566 * or 0 if it stayed the same.
7568 int __attribute__((weak
)) arch_update_cpu_topology(void)
7573 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7576 cpumask_var_t
*doms
;
7578 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7581 for (i
= 0; i
< ndoms
; i
++) {
7582 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7583 free_sched_domains(doms
, i
);
7590 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7593 for (i
= 0; i
< ndoms
; i
++)
7594 free_cpumask_var(doms
[i
]);
7599 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7600 * For now this just excludes isolated cpus, but could be used to
7601 * exclude other special cases in the future.
7603 static int init_sched_domains(const struct cpumask
*cpu_map
)
7607 arch_update_cpu_topology();
7609 doms_cur
= alloc_sched_domains(ndoms_cur
);
7611 doms_cur
= &fallback_doms
;
7612 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7614 err
= build_sched_domains(doms_cur
[0], NULL
);
7615 register_sched_domain_sysctl();
7621 * Detach sched domains from a group of cpus specified in cpu_map
7622 * These cpus will now be attached to the NULL domain
7624 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7629 for_each_cpu(i
, cpu_map
)
7630 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7634 /* handle null as "default" */
7635 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7636 struct sched_domain_attr
*new, int idx_new
)
7638 struct sched_domain_attr tmp
;
7645 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7646 new ? (new + idx_new
) : &tmp
,
7647 sizeof(struct sched_domain_attr
));
7651 * Partition sched domains as specified by the 'ndoms_new'
7652 * cpumasks in the array doms_new[] of cpumasks. This compares
7653 * doms_new[] to the current sched domain partitioning, doms_cur[].
7654 * It destroys each deleted domain and builds each new domain.
7656 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7657 * The masks don't intersect (don't overlap.) We should setup one
7658 * sched domain for each mask. CPUs not in any of the cpumasks will
7659 * not be load balanced. If the same cpumask appears both in the
7660 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7663 * The passed in 'doms_new' should be allocated using
7664 * alloc_sched_domains. This routine takes ownership of it and will
7665 * free_sched_domains it when done with it. If the caller failed the
7666 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7667 * and partition_sched_domains() will fallback to the single partition
7668 * 'fallback_doms', it also forces the domains to be rebuilt.
7670 * If doms_new == NULL it will be replaced with cpu_online_mask.
7671 * ndoms_new == 0 is a special case for destroying existing domains,
7672 * and it will not create the default domain.
7674 * Call with hotplug lock held
7676 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7677 struct sched_domain_attr
*dattr_new
)
7682 mutex_lock(&sched_domains_mutex
);
7684 /* always unregister in case we don't destroy any domains */
7685 unregister_sched_domain_sysctl();
7687 /* Let architecture update cpu core mappings. */
7688 new_topology
= arch_update_cpu_topology();
7690 n
= doms_new
? ndoms_new
: 0;
7692 /* Destroy deleted domains */
7693 for (i
= 0; i
< ndoms_cur
; i
++) {
7694 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7695 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7696 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7699 /* no match - a current sched domain not in new doms_new[] */
7700 detach_destroy_domains(doms_cur
[i
]);
7705 if (doms_new
== NULL
) {
7707 doms_new
= &fallback_doms
;
7708 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7709 WARN_ON_ONCE(dattr_new
);
7712 /* Build new domains */
7713 for (i
= 0; i
< ndoms_new
; i
++) {
7714 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7715 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7716 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7719 /* no match - add a new doms_new */
7720 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
7725 /* Remember the new sched domains */
7726 if (doms_cur
!= &fallback_doms
)
7727 free_sched_domains(doms_cur
, ndoms_cur
);
7728 kfree(dattr_cur
); /* kfree(NULL) is safe */
7729 doms_cur
= doms_new
;
7730 dattr_cur
= dattr_new
;
7731 ndoms_cur
= ndoms_new
;
7733 register_sched_domain_sysctl();
7735 mutex_unlock(&sched_domains_mutex
);
7738 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7739 static void reinit_sched_domains(void)
7743 /* Destroy domains first to force the rebuild */
7744 partition_sched_domains(0, NULL
, NULL
);
7746 rebuild_sched_domains();
7750 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7752 unsigned int level
= 0;
7754 if (sscanf(buf
, "%u", &level
) != 1)
7758 * level is always be positive so don't check for
7759 * level < POWERSAVINGS_BALANCE_NONE which is 0
7760 * What happens on 0 or 1 byte write,
7761 * need to check for count as well?
7764 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7768 sched_smt_power_savings
= level
;
7770 sched_mc_power_savings
= level
;
7772 reinit_sched_domains();
7777 #ifdef CONFIG_SCHED_MC
7778 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7779 struct sysdev_class_attribute
*attr
,
7782 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7784 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7785 struct sysdev_class_attribute
*attr
,
7786 const char *buf
, size_t count
)
7788 return sched_power_savings_store(buf
, count
, 0);
7790 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7791 sched_mc_power_savings_show
,
7792 sched_mc_power_savings_store
);
7795 #ifdef CONFIG_SCHED_SMT
7796 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7797 struct sysdev_class_attribute
*attr
,
7800 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7802 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7803 struct sysdev_class_attribute
*attr
,
7804 const char *buf
, size_t count
)
7806 return sched_power_savings_store(buf
, count
, 1);
7808 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7809 sched_smt_power_savings_show
,
7810 sched_smt_power_savings_store
);
7813 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7817 #ifdef CONFIG_SCHED_SMT
7819 err
= sysfs_create_file(&cls
->kset
.kobj
,
7820 &attr_sched_smt_power_savings
.attr
);
7822 #ifdef CONFIG_SCHED_MC
7823 if (!err
&& mc_capable())
7824 err
= sysfs_create_file(&cls
->kset
.kobj
,
7825 &attr_sched_mc_power_savings
.attr
);
7829 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7832 * Update cpusets according to cpu_active mask. If cpusets are
7833 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7834 * around partition_sched_domains().
7836 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7839 switch (action
& ~CPU_TASKS_FROZEN
) {
7841 case CPU_DOWN_FAILED
:
7842 cpuset_update_active_cpus();
7849 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7852 switch (action
& ~CPU_TASKS_FROZEN
) {
7853 case CPU_DOWN_PREPARE
:
7854 cpuset_update_active_cpus();
7861 static int update_runtime(struct notifier_block
*nfb
,
7862 unsigned long action
, void *hcpu
)
7864 int cpu
= (int)(long)hcpu
;
7867 case CPU_DOWN_PREPARE
:
7868 case CPU_DOWN_PREPARE_FROZEN
:
7869 disable_runtime(cpu_rq(cpu
));
7872 case CPU_DOWN_FAILED
:
7873 case CPU_DOWN_FAILED_FROZEN
:
7875 case CPU_ONLINE_FROZEN
:
7876 enable_runtime(cpu_rq(cpu
));
7884 void __init
sched_init_smp(void)
7886 cpumask_var_t non_isolated_cpus
;
7888 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7889 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7892 mutex_lock(&sched_domains_mutex
);
7893 init_sched_domains(cpu_active_mask
);
7894 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7895 if (cpumask_empty(non_isolated_cpus
))
7896 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7897 mutex_unlock(&sched_domains_mutex
);
7900 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7901 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7903 /* RT runtime code needs to handle some hotplug events */
7904 hotcpu_notifier(update_runtime
, 0);
7908 /* Move init over to a non-isolated CPU */
7909 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7911 sched_init_granularity();
7912 free_cpumask_var(non_isolated_cpus
);
7914 init_sched_rt_class();
7917 void __init
sched_init_smp(void)
7919 sched_init_granularity();
7921 #endif /* CONFIG_SMP */
7923 const_debug
unsigned int sysctl_timer_migration
= 1;
7925 int in_sched_functions(unsigned long addr
)
7927 return in_lock_functions(addr
) ||
7928 (addr
>= (unsigned long)__sched_text_start
7929 && addr
< (unsigned long)__sched_text_end
);
7932 static void init_cfs_rq(struct cfs_rq
*cfs_rq
)
7934 cfs_rq
->tasks_timeline
= RB_ROOT
;
7935 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7936 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7937 #ifndef CONFIG_64BIT
7938 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
7942 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7944 struct rt_prio_array
*array
;
7947 array
= &rt_rq
->active
;
7948 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7949 INIT_LIST_HEAD(array
->queue
+ i
);
7950 __clear_bit(i
, array
->bitmap
);
7952 /* delimiter for bitsearch: */
7953 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7955 #if defined CONFIG_SMP
7956 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7957 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7958 rt_rq
->rt_nr_migratory
= 0;
7959 rt_rq
->overloaded
= 0;
7960 plist_head_init(&rt_rq
->pushable_tasks
);
7964 rt_rq
->rt_throttled
= 0;
7965 rt_rq
->rt_runtime
= 0;
7966 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7969 #ifdef CONFIG_FAIR_GROUP_SCHED
7970 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7971 struct sched_entity
*se
, int cpu
,
7972 struct sched_entity
*parent
)
7974 struct rq
*rq
= cpu_rq(cpu
);
7979 /* allow initial update_cfs_load() to truncate */
7980 cfs_rq
->load_stamp
= 1;
7983 tg
->cfs_rq
[cpu
] = cfs_rq
;
7986 /* se could be NULL for root_task_group */
7991 se
->cfs_rq
= &rq
->cfs
;
7993 se
->cfs_rq
= parent
->my_q
;
7996 update_load_set(&se
->load
, 0);
7997 se
->parent
= parent
;
8001 #ifdef CONFIG_RT_GROUP_SCHED
8002 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8003 struct sched_rt_entity
*rt_se
, int cpu
,
8004 struct sched_rt_entity
*parent
)
8006 struct rq
*rq
= cpu_rq(cpu
);
8008 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8009 rt_rq
->rt_nr_boosted
= 0;
8013 tg
->rt_rq
[cpu
] = rt_rq
;
8014 tg
->rt_se
[cpu
] = rt_se
;
8020 rt_se
->rt_rq
= &rq
->rt
;
8022 rt_se
->rt_rq
= parent
->my_q
;
8024 rt_se
->my_q
= rt_rq
;
8025 rt_se
->parent
= parent
;
8026 INIT_LIST_HEAD(&rt_se
->run_list
);
8030 void __init
sched_init(void)
8033 unsigned long alloc_size
= 0, ptr
;
8035 #ifdef CONFIG_FAIR_GROUP_SCHED
8036 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8038 #ifdef CONFIG_RT_GROUP_SCHED
8039 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8041 #ifdef CONFIG_CPUMASK_OFFSTACK
8042 alloc_size
+= num_possible_cpus() * cpumask_size();
8045 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
8047 #ifdef CONFIG_FAIR_GROUP_SCHED
8048 root_task_group
.se
= (struct sched_entity
**)ptr
;
8049 ptr
+= nr_cpu_ids
* sizeof(void **);
8051 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8052 ptr
+= nr_cpu_ids
* sizeof(void **);
8054 #endif /* CONFIG_FAIR_GROUP_SCHED */
8055 #ifdef CONFIG_RT_GROUP_SCHED
8056 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8057 ptr
+= nr_cpu_ids
* sizeof(void **);
8059 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8060 ptr
+= nr_cpu_ids
* sizeof(void **);
8062 #endif /* CONFIG_RT_GROUP_SCHED */
8063 #ifdef CONFIG_CPUMASK_OFFSTACK
8064 for_each_possible_cpu(i
) {
8065 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
8066 ptr
+= cpumask_size();
8068 #endif /* CONFIG_CPUMASK_OFFSTACK */
8072 init_defrootdomain();
8075 init_rt_bandwidth(&def_rt_bandwidth
,
8076 global_rt_period(), global_rt_runtime());
8078 #ifdef CONFIG_RT_GROUP_SCHED
8079 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8080 global_rt_period(), global_rt_runtime());
8081 #endif /* CONFIG_RT_GROUP_SCHED */
8083 #ifdef CONFIG_CGROUP_SCHED
8084 list_add(&root_task_group
.list
, &task_groups
);
8085 INIT_LIST_HEAD(&root_task_group
.children
);
8086 autogroup_init(&init_task
);
8087 #endif /* CONFIG_CGROUP_SCHED */
8089 for_each_possible_cpu(i
) {
8093 raw_spin_lock_init(&rq
->lock
);
8095 rq
->calc_load_active
= 0;
8096 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
8097 init_cfs_rq(&rq
->cfs
);
8098 init_rt_rq(&rq
->rt
, rq
);
8099 #ifdef CONFIG_FAIR_GROUP_SCHED
8100 root_task_group
.shares
= root_task_group_load
;
8101 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8103 * How much cpu bandwidth does root_task_group get?
8105 * In case of task-groups formed thr' the cgroup filesystem, it
8106 * gets 100% of the cpu resources in the system. This overall
8107 * system cpu resource is divided among the tasks of
8108 * root_task_group and its child task-groups in a fair manner,
8109 * based on each entity's (task or task-group's) weight
8110 * (se->load.weight).
8112 * In other words, if root_task_group has 10 tasks of weight
8113 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8114 * then A0's share of the cpu resource is:
8116 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8118 * We achieve this by letting root_task_group's tasks sit
8119 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8121 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
8122 #endif /* CONFIG_FAIR_GROUP_SCHED */
8124 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8125 #ifdef CONFIG_RT_GROUP_SCHED
8126 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8127 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
8130 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8131 rq
->cpu_load
[j
] = 0;
8133 rq
->last_load_update_tick
= jiffies
;
8138 rq
->cpu_power
= SCHED_POWER_SCALE
;
8139 rq
->post_schedule
= 0;
8140 rq
->active_balance
= 0;
8141 rq
->next_balance
= jiffies
;
8146 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8147 rq_attach_root(rq
, &def_root_domain
);
8149 rq
->nohz_balance_kick
= 0;
8150 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
8154 atomic_set(&rq
->nr_iowait
, 0);
8157 set_load_weight(&init_task
);
8159 #ifdef CONFIG_PREEMPT_NOTIFIERS
8160 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8164 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8167 #ifdef CONFIG_RT_MUTEXES
8168 plist_head_init(&init_task
.pi_waiters
);
8172 * The boot idle thread does lazy MMU switching as well:
8174 atomic_inc(&init_mm
.mm_count
);
8175 enter_lazy_tlb(&init_mm
, current
);
8178 * Make us the idle thread. Technically, schedule() should not be
8179 * called from this thread, however somewhere below it might be,
8180 * but because we are the idle thread, we just pick up running again
8181 * when this runqueue becomes "idle".
8183 init_idle(current
, smp_processor_id());
8185 calc_load_update
= jiffies
+ LOAD_FREQ
;
8188 * During early bootup we pretend to be a normal task:
8190 current
->sched_class
= &fair_sched_class
;
8192 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8193 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8195 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
8197 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8198 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8199 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8200 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8201 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8203 /* May be allocated at isolcpus cmdline parse time */
8204 if (cpu_isolated_map
== NULL
)
8205 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8208 scheduler_running
= 1;
8211 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8212 static inline int preempt_count_equals(int preempt_offset
)
8214 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8216 return (nested
== preempt_offset
);
8219 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8221 static unsigned long prev_jiffy
; /* ratelimiting */
8223 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8224 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8226 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8228 prev_jiffy
= jiffies
;
8231 "BUG: sleeping function called from invalid context at %s:%d\n",
8234 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8235 in_atomic(), irqs_disabled(),
8236 current
->pid
, current
->comm
);
8238 debug_show_held_locks(current
);
8239 if (irqs_disabled())
8240 print_irqtrace_events(current
);
8243 EXPORT_SYMBOL(__might_sleep
);
8246 #ifdef CONFIG_MAGIC_SYSRQ
8247 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8249 const struct sched_class
*prev_class
= p
->sched_class
;
8250 int old_prio
= p
->prio
;
8255 deactivate_task(rq
, p
, 0);
8256 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8258 activate_task(rq
, p
, 0);
8259 resched_task(rq
->curr
);
8262 check_class_changed(rq
, p
, prev_class
, old_prio
);
8265 void normalize_rt_tasks(void)
8267 struct task_struct
*g
, *p
;
8268 unsigned long flags
;
8271 read_lock_irqsave(&tasklist_lock
, flags
);
8272 do_each_thread(g
, p
) {
8274 * Only normalize user tasks:
8279 p
->se
.exec_start
= 0;
8280 #ifdef CONFIG_SCHEDSTATS
8281 p
->se
.statistics
.wait_start
= 0;
8282 p
->se
.statistics
.sleep_start
= 0;
8283 p
->se
.statistics
.block_start
= 0;
8288 * Renice negative nice level userspace
8291 if (TASK_NICE(p
) < 0 && p
->mm
)
8292 set_user_nice(p
, 0);
8296 raw_spin_lock(&p
->pi_lock
);
8297 rq
= __task_rq_lock(p
);
8299 normalize_task(rq
, p
);
8301 __task_rq_unlock(rq
);
8302 raw_spin_unlock(&p
->pi_lock
);
8303 } while_each_thread(g
, p
);
8305 read_unlock_irqrestore(&tasklist_lock
, flags
);
8308 #endif /* CONFIG_MAGIC_SYSRQ */
8310 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8312 * These functions are only useful for the IA64 MCA handling, or kdb.
8314 * They can only be called when the whole system has been
8315 * stopped - every CPU needs to be quiescent, and no scheduling
8316 * activity can take place. Using them for anything else would
8317 * be a serious bug, and as a result, they aren't even visible
8318 * under any other configuration.
8322 * curr_task - return the current task for a given cpu.
8323 * @cpu: the processor in question.
8325 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8327 struct task_struct
*curr_task(int cpu
)
8329 return cpu_curr(cpu
);
8332 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8336 * set_curr_task - set the current task for a given cpu.
8337 * @cpu: the processor in question.
8338 * @p: the task pointer to set.
8340 * Description: This function must only be used when non-maskable interrupts
8341 * are serviced on a separate stack. It allows the architecture to switch the
8342 * notion of the current task on a cpu in a non-blocking manner. This function
8343 * must be called with all CPU's synchronized, and interrupts disabled, the
8344 * and caller must save the original value of the current task (see
8345 * curr_task() above) and restore that value before reenabling interrupts and
8346 * re-starting the system.
8348 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8350 void set_curr_task(int cpu
, struct task_struct
*p
)
8357 #ifdef CONFIG_FAIR_GROUP_SCHED
8358 static void free_fair_sched_group(struct task_group
*tg
)
8362 for_each_possible_cpu(i
) {
8364 kfree(tg
->cfs_rq
[i
]);
8374 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8376 struct cfs_rq
*cfs_rq
;
8377 struct sched_entity
*se
;
8380 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8383 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8387 tg
->shares
= NICE_0_LOAD
;
8389 for_each_possible_cpu(i
) {
8390 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8391 GFP_KERNEL
, cpu_to_node(i
));
8395 se
= kzalloc_node(sizeof(struct sched_entity
),
8396 GFP_KERNEL
, cpu_to_node(i
));
8400 init_cfs_rq(cfs_rq
);
8401 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8412 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8414 struct rq
*rq
= cpu_rq(cpu
);
8415 unsigned long flags
;
8418 * Only empty task groups can be destroyed; so we can speculatively
8419 * check on_list without danger of it being re-added.
8421 if (!tg
->cfs_rq
[cpu
]->on_list
)
8424 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8425 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8426 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8428 #else /* !CONFIG_FAIR_GROUP_SCHED */
8429 static inline void free_fair_sched_group(struct task_group
*tg
)
8434 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8439 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8442 #endif /* CONFIG_FAIR_GROUP_SCHED */
8444 #ifdef CONFIG_RT_GROUP_SCHED
8445 static void free_rt_sched_group(struct task_group
*tg
)
8450 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8452 for_each_possible_cpu(i
) {
8454 kfree(tg
->rt_rq
[i
]);
8456 kfree(tg
->rt_se
[i
]);
8464 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8466 struct rt_rq
*rt_rq
;
8467 struct sched_rt_entity
*rt_se
;
8470 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8473 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8477 init_rt_bandwidth(&tg
->rt_bandwidth
,
8478 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8480 for_each_possible_cpu(i
) {
8481 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8482 GFP_KERNEL
, cpu_to_node(i
));
8486 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8487 GFP_KERNEL
, cpu_to_node(i
));
8491 init_rt_rq(rt_rq
, cpu_rq(i
));
8492 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8493 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8503 #else /* !CONFIG_RT_GROUP_SCHED */
8504 static inline void free_rt_sched_group(struct task_group
*tg
)
8509 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8513 #endif /* CONFIG_RT_GROUP_SCHED */
8515 #ifdef CONFIG_CGROUP_SCHED
8516 static void free_sched_group(struct task_group
*tg
)
8518 free_fair_sched_group(tg
);
8519 free_rt_sched_group(tg
);
8524 /* allocate runqueue etc for a new task group */
8525 struct task_group
*sched_create_group(struct task_group
*parent
)
8527 struct task_group
*tg
;
8528 unsigned long flags
;
8530 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8532 return ERR_PTR(-ENOMEM
);
8534 if (!alloc_fair_sched_group(tg
, parent
))
8537 if (!alloc_rt_sched_group(tg
, parent
))
8540 spin_lock_irqsave(&task_group_lock
, flags
);
8541 list_add_rcu(&tg
->list
, &task_groups
);
8543 WARN_ON(!parent
); /* root should already exist */
8545 tg
->parent
= parent
;
8546 INIT_LIST_HEAD(&tg
->children
);
8547 list_add_rcu(&tg
->siblings
, &parent
->children
);
8548 spin_unlock_irqrestore(&task_group_lock
, flags
);
8553 free_sched_group(tg
);
8554 return ERR_PTR(-ENOMEM
);
8557 /* rcu callback to free various structures associated with a task group */
8558 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8560 /* now it should be safe to free those cfs_rqs */
8561 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8564 /* Destroy runqueue etc associated with a task group */
8565 void sched_destroy_group(struct task_group
*tg
)
8567 unsigned long flags
;
8570 /* end participation in shares distribution */
8571 for_each_possible_cpu(i
)
8572 unregister_fair_sched_group(tg
, i
);
8574 spin_lock_irqsave(&task_group_lock
, flags
);
8575 list_del_rcu(&tg
->list
);
8576 list_del_rcu(&tg
->siblings
);
8577 spin_unlock_irqrestore(&task_group_lock
, flags
);
8579 /* wait for possible concurrent references to cfs_rqs complete */
8580 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8583 /* change task's runqueue when it moves between groups.
8584 * The caller of this function should have put the task in its new group
8585 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8586 * reflect its new group.
8588 void sched_move_task(struct task_struct
*tsk
)
8591 unsigned long flags
;
8594 rq
= task_rq_lock(tsk
, &flags
);
8596 running
= task_current(rq
, tsk
);
8600 dequeue_task(rq
, tsk
, 0);
8601 if (unlikely(running
))
8602 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8604 #ifdef CONFIG_FAIR_GROUP_SCHED
8605 if (tsk
->sched_class
->task_move_group
)
8606 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8609 set_task_rq(tsk
, task_cpu(tsk
));
8611 if (unlikely(running
))
8612 tsk
->sched_class
->set_curr_task(rq
);
8614 enqueue_task(rq
, tsk
, 0);
8616 task_rq_unlock(rq
, tsk
, &flags
);
8618 #endif /* CONFIG_CGROUP_SCHED */
8620 #ifdef CONFIG_FAIR_GROUP_SCHED
8621 static DEFINE_MUTEX(shares_mutex
);
8623 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8626 unsigned long flags
;
8629 * We can't change the weight of the root cgroup.
8634 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
8636 mutex_lock(&shares_mutex
);
8637 if (tg
->shares
== shares
)
8640 tg
->shares
= shares
;
8641 for_each_possible_cpu(i
) {
8642 struct rq
*rq
= cpu_rq(i
);
8643 struct sched_entity
*se
;
8646 /* Propagate contribution to hierarchy */
8647 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8648 for_each_sched_entity(se
)
8649 update_cfs_shares(group_cfs_rq(se
));
8650 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8654 mutex_unlock(&shares_mutex
);
8658 unsigned long sched_group_shares(struct task_group
*tg
)
8664 #ifdef CONFIG_RT_GROUP_SCHED
8666 * Ensure that the real time constraints are schedulable.
8668 static DEFINE_MUTEX(rt_constraints_mutex
);
8670 static unsigned long to_ratio(u64 period
, u64 runtime
)
8672 if (runtime
== RUNTIME_INF
)
8675 return div64_u64(runtime
<< 20, period
);
8678 /* Must be called with tasklist_lock held */
8679 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8681 struct task_struct
*g
, *p
;
8683 do_each_thread(g
, p
) {
8684 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8686 } while_each_thread(g
, p
);
8691 struct rt_schedulable_data
{
8692 struct task_group
*tg
;
8697 static int tg_schedulable(struct task_group
*tg
, void *data
)
8699 struct rt_schedulable_data
*d
= data
;
8700 struct task_group
*child
;
8701 unsigned long total
, sum
= 0;
8702 u64 period
, runtime
;
8704 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8705 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8708 period
= d
->rt_period
;
8709 runtime
= d
->rt_runtime
;
8713 * Cannot have more runtime than the period.
8715 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8719 * Ensure we don't starve existing RT tasks.
8721 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8724 total
= to_ratio(period
, runtime
);
8727 * Nobody can have more than the global setting allows.
8729 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8733 * The sum of our children's runtime should not exceed our own.
8735 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8736 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8737 runtime
= child
->rt_bandwidth
.rt_runtime
;
8739 if (child
== d
->tg
) {
8740 period
= d
->rt_period
;
8741 runtime
= d
->rt_runtime
;
8744 sum
+= to_ratio(period
, runtime
);
8753 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8755 struct rt_schedulable_data data
= {
8757 .rt_period
= period
,
8758 .rt_runtime
= runtime
,
8761 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8764 static int tg_set_bandwidth(struct task_group
*tg
,
8765 u64 rt_period
, u64 rt_runtime
)
8769 mutex_lock(&rt_constraints_mutex
);
8770 read_lock(&tasklist_lock
);
8771 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8775 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8776 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8777 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8779 for_each_possible_cpu(i
) {
8780 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8782 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8783 rt_rq
->rt_runtime
= rt_runtime
;
8784 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8786 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8788 read_unlock(&tasklist_lock
);
8789 mutex_unlock(&rt_constraints_mutex
);
8794 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8796 u64 rt_runtime
, rt_period
;
8798 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8799 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8800 if (rt_runtime_us
< 0)
8801 rt_runtime
= RUNTIME_INF
;
8803 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8806 long sched_group_rt_runtime(struct task_group
*tg
)
8810 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8813 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8814 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8815 return rt_runtime_us
;
8818 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8820 u64 rt_runtime
, rt_period
;
8822 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8823 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8828 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8831 long sched_group_rt_period(struct task_group
*tg
)
8835 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8836 do_div(rt_period_us
, NSEC_PER_USEC
);
8837 return rt_period_us
;
8840 static int sched_rt_global_constraints(void)
8842 u64 runtime
, period
;
8845 if (sysctl_sched_rt_period
<= 0)
8848 runtime
= global_rt_runtime();
8849 period
= global_rt_period();
8852 * Sanity check on the sysctl variables.
8854 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8857 mutex_lock(&rt_constraints_mutex
);
8858 read_lock(&tasklist_lock
);
8859 ret
= __rt_schedulable(NULL
, 0, 0);
8860 read_unlock(&tasklist_lock
);
8861 mutex_unlock(&rt_constraints_mutex
);
8866 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8868 /* Don't accept realtime tasks when there is no way for them to run */
8869 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8875 #else /* !CONFIG_RT_GROUP_SCHED */
8876 static int sched_rt_global_constraints(void)
8878 unsigned long flags
;
8881 if (sysctl_sched_rt_period
<= 0)
8885 * There's always some RT tasks in the root group
8886 * -- migration, kstopmachine etc..
8888 if (sysctl_sched_rt_runtime
== 0)
8891 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8892 for_each_possible_cpu(i
) {
8893 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8895 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8896 rt_rq
->rt_runtime
= global_rt_runtime();
8897 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8899 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8903 #endif /* CONFIG_RT_GROUP_SCHED */
8905 int sched_rt_handler(struct ctl_table
*table
, int write
,
8906 void __user
*buffer
, size_t *lenp
,
8910 int old_period
, old_runtime
;
8911 static DEFINE_MUTEX(mutex
);
8914 old_period
= sysctl_sched_rt_period
;
8915 old_runtime
= sysctl_sched_rt_runtime
;
8917 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8919 if (!ret
&& write
) {
8920 ret
= sched_rt_global_constraints();
8922 sysctl_sched_rt_period
= old_period
;
8923 sysctl_sched_rt_runtime
= old_runtime
;
8925 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8926 def_rt_bandwidth
.rt_period
=
8927 ns_to_ktime(global_rt_period());
8930 mutex_unlock(&mutex
);
8935 #ifdef CONFIG_CGROUP_SCHED
8937 /* return corresponding task_group object of a cgroup */
8938 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8940 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8941 struct task_group
, css
);
8944 static struct cgroup_subsys_state
*
8945 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8947 struct task_group
*tg
, *parent
;
8949 if (!cgrp
->parent
) {
8950 /* This is early initialization for the top cgroup */
8951 return &root_task_group
.css
;
8954 parent
= cgroup_tg(cgrp
->parent
);
8955 tg
= sched_create_group(parent
);
8957 return ERR_PTR(-ENOMEM
);
8963 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8965 struct task_group
*tg
= cgroup_tg(cgrp
);
8967 sched_destroy_group(tg
);
8971 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8973 #ifdef CONFIG_RT_GROUP_SCHED
8974 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8977 /* We don't support RT-tasks being in separate groups */
8978 if (tsk
->sched_class
!= &fair_sched_class
)
8985 cpu_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8987 sched_move_task(tsk
);
8991 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8992 struct cgroup
*old_cgrp
, struct task_struct
*task
)
8995 * cgroup_exit() is called in the copy_process() failure path.
8996 * Ignore this case since the task hasn't ran yet, this avoids
8997 * trying to poke a half freed task state from generic code.
8999 if (!(task
->flags
& PF_EXITING
))
9002 sched_move_task(task
);
9005 #ifdef CONFIG_FAIR_GROUP_SCHED
9006 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9009 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
9012 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9014 struct task_group
*tg
= cgroup_tg(cgrp
);
9016 return (u64
) scale_load_down(tg
->shares
);
9018 #endif /* CONFIG_FAIR_GROUP_SCHED */
9020 #ifdef CONFIG_RT_GROUP_SCHED
9021 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9024 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9027 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9029 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9032 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9035 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9038 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9040 return sched_group_rt_period(cgroup_tg(cgrp
));
9042 #endif /* CONFIG_RT_GROUP_SCHED */
9044 static struct cftype cpu_files
[] = {
9045 #ifdef CONFIG_FAIR_GROUP_SCHED
9048 .read_u64
= cpu_shares_read_u64
,
9049 .write_u64
= cpu_shares_write_u64
,
9052 #ifdef CONFIG_RT_GROUP_SCHED
9054 .name
= "rt_runtime_us",
9055 .read_s64
= cpu_rt_runtime_read
,
9056 .write_s64
= cpu_rt_runtime_write
,
9059 .name
= "rt_period_us",
9060 .read_u64
= cpu_rt_period_read_uint
,
9061 .write_u64
= cpu_rt_period_write_uint
,
9066 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9068 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9071 struct cgroup_subsys cpu_cgroup_subsys
= {
9073 .create
= cpu_cgroup_create
,
9074 .destroy
= cpu_cgroup_destroy
,
9075 .can_attach_task
= cpu_cgroup_can_attach_task
,
9076 .attach_task
= cpu_cgroup_attach_task
,
9077 .exit
= cpu_cgroup_exit
,
9078 .populate
= cpu_cgroup_populate
,
9079 .subsys_id
= cpu_cgroup_subsys_id
,
9083 #endif /* CONFIG_CGROUP_SCHED */
9085 #ifdef CONFIG_CGROUP_CPUACCT
9088 * CPU accounting code for task groups.
9090 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9091 * (balbir@in.ibm.com).
9094 /* track cpu usage of a group of tasks and its child groups */
9096 struct cgroup_subsys_state css
;
9097 /* cpuusage holds pointer to a u64-type object on every cpu */
9098 u64 __percpu
*cpuusage
;
9099 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9100 struct cpuacct
*parent
;
9103 struct cgroup_subsys cpuacct_subsys
;
9105 /* return cpu accounting group corresponding to this container */
9106 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9108 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9109 struct cpuacct
, css
);
9112 /* return cpu accounting group to which this task belongs */
9113 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9115 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9116 struct cpuacct
, css
);
9119 /* create a new cpu accounting group */
9120 static struct cgroup_subsys_state
*cpuacct_create(
9121 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9123 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9129 ca
->cpuusage
= alloc_percpu(u64
);
9133 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9134 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9135 goto out_free_counters
;
9138 ca
->parent
= cgroup_ca(cgrp
->parent
);
9144 percpu_counter_destroy(&ca
->cpustat
[i
]);
9145 free_percpu(ca
->cpuusage
);
9149 return ERR_PTR(-ENOMEM
);
9152 /* destroy an existing cpu accounting group */
9154 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9156 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9159 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9160 percpu_counter_destroy(&ca
->cpustat
[i
]);
9161 free_percpu(ca
->cpuusage
);
9165 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9167 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9170 #ifndef CONFIG_64BIT
9172 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9174 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9176 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9184 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9186 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9188 #ifndef CONFIG_64BIT
9190 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9192 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9194 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9200 /* return total cpu usage (in nanoseconds) of a group */
9201 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9203 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9204 u64 totalcpuusage
= 0;
9207 for_each_present_cpu(i
)
9208 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9210 return totalcpuusage
;
9213 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9216 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9225 for_each_present_cpu(i
)
9226 cpuacct_cpuusage_write(ca
, i
, 0);
9232 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9235 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9239 for_each_present_cpu(i
) {
9240 percpu
= cpuacct_cpuusage_read(ca
, i
);
9241 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9243 seq_printf(m
, "\n");
9247 static const char *cpuacct_stat_desc
[] = {
9248 [CPUACCT_STAT_USER
] = "user",
9249 [CPUACCT_STAT_SYSTEM
] = "system",
9252 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9253 struct cgroup_map_cb
*cb
)
9255 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9258 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9259 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9260 val
= cputime64_to_clock_t(val
);
9261 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9266 static struct cftype files
[] = {
9269 .read_u64
= cpuusage_read
,
9270 .write_u64
= cpuusage_write
,
9273 .name
= "usage_percpu",
9274 .read_seq_string
= cpuacct_percpu_seq_read
,
9278 .read_map
= cpuacct_stats_show
,
9282 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9284 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9288 * charge this task's execution time to its accounting group.
9290 * called with rq->lock held.
9292 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9297 if (unlikely(!cpuacct_subsys
.active
))
9300 cpu
= task_cpu(tsk
);
9306 for (; ca
; ca
= ca
->parent
) {
9307 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9308 *cpuusage
+= cputime
;
9315 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9316 * in cputime_t units. As a result, cpuacct_update_stats calls
9317 * percpu_counter_add with values large enough to always overflow the
9318 * per cpu batch limit causing bad SMP scalability.
9320 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9321 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9322 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9325 #define CPUACCT_BATCH \
9326 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9328 #define CPUACCT_BATCH 0
9332 * Charge the system/user time to the task's accounting group.
9334 static void cpuacct_update_stats(struct task_struct
*tsk
,
9335 enum cpuacct_stat_index idx
, cputime_t val
)
9338 int batch
= CPUACCT_BATCH
;
9340 if (unlikely(!cpuacct_subsys
.active
))
9347 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9353 struct cgroup_subsys cpuacct_subsys
= {
9355 .create
= cpuacct_create
,
9356 .destroy
= cpuacct_destroy
,
9357 .populate
= cpuacct_populate
,
9358 .subsys_id
= cpuacct_subsys_id
,
9360 #endif /* CONFIG_CGROUP_CPUACCT */