mm: compaction: minimise the time IRQs are disabled while isolating free pages
[linux-2.6/next.git] / mm / compaction.c
blobb27802e04b916e1dfc081e779b38f9ed5ac7487e
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
23 * compact_control is used to track pages being migrated and the free pages
24 * they are being migrated to during memory compaction. The free_pfn starts
25 * at the end of a zone and migrate_pfn begins at the start. Movable pages
26 * are moved to the end of a zone during a compaction run and the run
27 * completes when free_pfn <= migrate_pfn
29 struct compact_control {
30 struct list_head freepages; /* List of free pages to migrate to */
31 struct list_head migratepages; /* List of pages being migrated */
32 unsigned long nr_freepages; /* Number of isolated free pages */
33 unsigned long nr_migratepages; /* Number of pages to migrate */
34 unsigned long free_pfn; /* isolate_freepages search base */
35 unsigned long migrate_pfn; /* isolate_migratepages search base */
36 bool sync; /* Synchronous migration */
38 /* Account for isolated anon and file pages */
39 unsigned long nr_anon;
40 unsigned long nr_file;
42 unsigned int order; /* order a direct compactor needs */
43 int migratetype; /* MOVABLE, RECLAIMABLE etc */
44 struct zone *zone;
47 static unsigned long release_freepages(struct list_head *freelist)
49 struct page *page, *next;
50 unsigned long count = 0;
52 list_for_each_entry_safe(page, next, freelist, lru) {
53 list_del(&page->lru);
54 __free_page(page);
55 count++;
58 return count;
61 /* Isolate free pages onto a private freelist. Must hold zone->lock */
62 static unsigned long isolate_freepages_block(struct zone *zone,
63 unsigned long blockpfn,
64 struct list_head *freelist)
66 unsigned long zone_end_pfn, end_pfn;
67 int nr_scanned = 0, total_isolated = 0;
68 struct page *cursor;
70 /* Get the last PFN we should scan for free pages at */
71 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
72 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
74 /* Find the first usable PFN in the block to initialse page cursor */
75 for (; blockpfn < end_pfn; blockpfn++) {
76 if (pfn_valid_within(blockpfn))
77 break;
79 cursor = pfn_to_page(blockpfn);
81 /* Isolate free pages. This assumes the block is valid */
82 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
83 int isolated, i;
84 struct page *page = cursor;
86 if (!pfn_valid_within(blockpfn))
87 continue;
88 nr_scanned++;
90 if (!PageBuddy(page))
91 continue;
93 /* Found a free page, break it into order-0 pages */
94 isolated = split_free_page(page);
95 total_isolated += isolated;
96 for (i = 0; i < isolated; i++) {
97 list_add(&page->lru, freelist);
98 page++;
101 /* If a page was split, advance to the end of it */
102 if (isolated) {
103 blockpfn += isolated - 1;
104 cursor += isolated - 1;
108 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
109 return total_isolated;
112 /* Returns true if the page is within a block suitable for migration to */
113 static bool suitable_migration_target(struct page *page)
116 int migratetype = get_pageblock_migratetype(page);
118 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
119 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
120 return false;
122 /* If the page is a large free page, then allow migration */
123 if (PageBuddy(page) && page_order(page) >= pageblock_order)
124 return true;
126 /* If the block is MIGRATE_MOVABLE, allow migration */
127 if (migratetype == MIGRATE_MOVABLE)
128 return true;
130 /* Otherwise skip the block */
131 return false;
135 * Based on information in the current compact_control, find blocks
136 * suitable for isolating free pages from and then isolate them.
138 static void isolate_freepages(struct zone *zone,
139 struct compact_control *cc)
141 struct page *page;
142 unsigned long high_pfn, low_pfn, pfn;
143 unsigned long flags;
144 int nr_freepages = cc->nr_freepages;
145 struct list_head *freelist = &cc->freepages;
147 pfn = cc->free_pfn;
148 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
149 high_pfn = low_pfn;
152 * Isolate free pages until enough are available to migrate the
153 * pages on cc->migratepages. We stop searching if the migrate
154 * and free page scanners meet or enough free pages are isolated.
156 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
157 pfn -= pageblock_nr_pages) {
158 unsigned long isolated;
160 if (!pfn_valid(pfn))
161 continue;
164 * Check for overlapping nodes/zones. It's possible on some
165 * configurations to have a setup like
166 * node0 node1 node0
167 * i.e. it's possible that all pages within a zones range of
168 * pages do not belong to a single zone.
170 page = pfn_to_page(pfn);
171 if (page_zone(page) != zone)
172 continue;
174 /* Check the block is suitable for migration */
175 if (!suitable_migration_target(page))
176 continue;
179 * Found a block suitable for isolating free pages from. Now
180 * we disabled interrupts, double check things are ok and
181 * isolate the pages. This is to minimise the time IRQs
182 * are disabled
184 isolated = 0;
185 spin_lock_irqsave(&zone->lock, flags);
186 if (suitable_migration_target(page)) {
187 isolated = isolate_freepages_block(zone, pfn, freelist);
188 nr_freepages += isolated;
190 spin_unlock_irqrestore(&zone->lock, flags);
193 * Record the highest PFN we isolated pages from. When next
194 * looking for free pages, the search will restart here as
195 * page migration may have returned some pages to the allocator
197 if (isolated)
198 high_pfn = max(high_pfn, pfn);
201 /* split_free_page does not map the pages */
202 list_for_each_entry(page, freelist, lru) {
203 arch_alloc_page(page, 0);
204 kernel_map_pages(page, 1, 1);
207 cc->free_pfn = high_pfn;
208 cc->nr_freepages = nr_freepages;
211 /* Update the number of anon and file isolated pages in the zone */
212 static void acct_isolated(struct zone *zone, struct compact_control *cc)
214 struct page *page;
215 unsigned int count[NR_LRU_LISTS] = { 0, };
217 list_for_each_entry(page, &cc->migratepages, lru) {
218 int lru = page_lru_base_type(page);
219 count[lru]++;
222 cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
223 cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
224 __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
225 __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
228 /* Similar to reclaim, but different enough that they don't share logic */
229 static bool too_many_isolated(struct zone *zone)
231 unsigned long active, inactive, isolated;
233 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
234 zone_page_state(zone, NR_INACTIVE_ANON);
235 active = zone_page_state(zone, NR_ACTIVE_FILE) +
236 zone_page_state(zone, NR_ACTIVE_ANON);
237 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
238 zone_page_state(zone, NR_ISOLATED_ANON);
240 return isolated > (inactive + active) / 2;
244 * Isolate all pages that can be migrated from the block pointed to by
245 * the migrate scanner within compact_control.
247 static unsigned long isolate_migratepages(struct zone *zone,
248 struct compact_control *cc)
250 unsigned long low_pfn, end_pfn;
251 unsigned long last_pageblock_nr = 0, pageblock_nr;
252 unsigned long nr_scanned = 0, nr_isolated = 0;
253 struct list_head *migratelist = &cc->migratepages;
255 /* Do not scan outside zone boundaries */
256 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
258 /* Only scan within a pageblock boundary */
259 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
261 /* Do not cross the free scanner or scan within a memory hole */
262 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
263 cc->migrate_pfn = end_pfn;
264 return 0;
268 * Ensure that there are not too many pages isolated from the LRU
269 * list by either parallel reclaimers or compaction. If there are,
270 * delay for some time until fewer pages are isolated
272 while (unlikely(too_many_isolated(zone))) {
273 congestion_wait(BLK_RW_ASYNC, HZ/10);
275 if (fatal_signal_pending(current))
276 return 0;
279 /* Time to isolate some pages for migration */
280 spin_lock_irq(&zone->lru_lock);
281 for (; low_pfn < end_pfn; low_pfn++) {
282 struct page *page;
283 if (!pfn_valid_within(low_pfn))
284 continue;
285 nr_scanned++;
287 /* Get the page and skip if free */
288 page = pfn_to_page(low_pfn);
289 if (PageBuddy(page))
290 continue;
293 * For async migration, also only scan in MOVABLE blocks. Async
294 * migration is optimistic to see if the minimum amount of work
295 * satisfies the allocation
297 pageblock_nr = low_pfn >> pageblock_order;
298 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
299 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
300 low_pfn += pageblock_nr_pages;
301 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
302 last_pageblock_nr = pageblock_nr;
303 continue;
306 if (!PageLRU(page))
307 continue;
310 * PageLRU is set, and lru_lock excludes isolation,
311 * splitting and collapsing (collapsing has already
312 * happened if PageLRU is set).
314 if (PageTransHuge(page)) {
315 low_pfn += (1 << compound_order(page)) - 1;
316 continue;
319 /* Try isolate the page */
320 if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
321 continue;
323 VM_BUG_ON(PageTransCompound(page));
325 /* Successfully isolated */
326 del_page_from_lru_list(zone, page, page_lru(page));
327 list_add(&page->lru, migratelist);
328 cc->nr_migratepages++;
329 nr_isolated++;
331 /* Avoid isolating too much */
332 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
333 break;
336 acct_isolated(zone, cc);
338 spin_unlock_irq(&zone->lru_lock);
339 cc->migrate_pfn = low_pfn;
341 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
343 return cc->nr_migratepages;
347 * This is a migrate-callback that "allocates" freepages by taking pages
348 * from the isolated freelists in the block we are migrating to.
350 static struct page *compaction_alloc(struct page *migratepage,
351 unsigned long data,
352 int **result)
354 struct compact_control *cc = (struct compact_control *)data;
355 struct page *freepage;
357 /* Isolate free pages if necessary */
358 if (list_empty(&cc->freepages)) {
359 isolate_freepages(cc->zone, cc);
361 if (list_empty(&cc->freepages))
362 return NULL;
365 freepage = list_entry(cc->freepages.next, struct page, lru);
366 list_del(&freepage->lru);
367 cc->nr_freepages--;
369 return freepage;
373 * We cannot control nr_migratepages and nr_freepages fully when migration is
374 * running as migrate_pages() has no knowledge of compact_control. When
375 * migration is complete, we count the number of pages on the lists by hand.
377 static void update_nr_listpages(struct compact_control *cc)
379 int nr_migratepages = 0;
380 int nr_freepages = 0;
381 struct page *page;
383 list_for_each_entry(page, &cc->migratepages, lru)
384 nr_migratepages++;
385 list_for_each_entry(page, &cc->freepages, lru)
386 nr_freepages++;
388 cc->nr_migratepages = nr_migratepages;
389 cc->nr_freepages = nr_freepages;
392 static int compact_finished(struct zone *zone,
393 struct compact_control *cc)
395 unsigned int order;
396 unsigned long watermark;
398 if (fatal_signal_pending(current))
399 return COMPACT_PARTIAL;
401 /* Compaction run completes if the migrate and free scanner meet */
402 if (cc->free_pfn <= cc->migrate_pfn)
403 return COMPACT_COMPLETE;
405 /* Compaction run is not finished if the watermark is not met */
406 watermark = low_wmark_pages(zone);
407 watermark += (1 << cc->order);
409 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
410 return COMPACT_CONTINUE;
413 * order == -1 is expected when compacting via
414 * /proc/sys/vm/compact_memory
416 if (cc->order == -1)
417 return COMPACT_CONTINUE;
419 /* Direct compactor: Is a suitable page free? */
420 for (order = cc->order; order < MAX_ORDER; order++) {
421 /* Job done if page is free of the right migratetype */
422 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
423 return COMPACT_PARTIAL;
425 /* Job done if allocation would set block type */
426 if (order >= pageblock_order && zone->free_area[order].nr_free)
427 return COMPACT_PARTIAL;
430 return COMPACT_CONTINUE;
434 * compaction_suitable: Is this suitable to run compaction on this zone now?
435 * Returns
436 * COMPACT_SKIPPED - If there are too few free pages for compaction
437 * COMPACT_PARTIAL - If the allocation would succeed without compaction
438 * COMPACT_CONTINUE - If compaction should run now
440 unsigned long compaction_suitable(struct zone *zone, int order)
442 int fragindex;
443 unsigned long watermark;
446 * Watermarks for order-0 must be met for compaction. Note the 2UL.
447 * This is because during migration, copies of pages need to be
448 * allocated and for a short time, the footprint is higher
450 watermark = low_wmark_pages(zone) + (2UL << order);
451 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
452 return COMPACT_SKIPPED;
455 * order == -1 is expected when compacting via
456 * /proc/sys/vm/compact_memory
458 if (order == -1)
459 return COMPACT_CONTINUE;
462 * fragmentation index determines if allocation failures are due to
463 * low memory or external fragmentation
465 * index of -1 implies allocations might succeed dependingon watermarks
466 * index towards 0 implies failure is due to lack of memory
467 * index towards 1000 implies failure is due to fragmentation
469 * Only compact if a failure would be due to fragmentation.
471 fragindex = fragmentation_index(zone, order);
472 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
473 return COMPACT_SKIPPED;
475 if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0))
476 return COMPACT_PARTIAL;
478 return COMPACT_CONTINUE;
481 static int compact_zone(struct zone *zone, struct compact_control *cc)
483 int ret;
485 ret = compaction_suitable(zone, cc->order);
486 switch (ret) {
487 case COMPACT_PARTIAL:
488 case COMPACT_SKIPPED:
489 /* Compaction is likely to fail */
490 return ret;
491 case COMPACT_CONTINUE:
492 /* Fall through to compaction */
496 /* Setup to move all movable pages to the end of the zone */
497 cc->migrate_pfn = zone->zone_start_pfn;
498 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
499 cc->free_pfn &= ~(pageblock_nr_pages-1);
501 migrate_prep_local();
503 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
504 unsigned long nr_migrate, nr_remaining;
505 int err;
507 if (!isolate_migratepages(zone, cc))
508 continue;
510 nr_migrate = cc->nr_migratepages;
511 err = migrate_pages(&cc->migratepages, compaction_alloc,
512 (unsigned long)cc, false,
513 cc->sync);
514 update_nr_listpages(cc);
515 nr_remaining = cc->nr_migratepages;
517 count_vm_event(COMPACTBLOCKS);
518 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
519 if (nr_remaining)
520 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
521 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
522 nr_remaining);
524 /* Release LRU pages not migrated */
525 if (err) {
526 putback_lru_pages(&cc->migratepages);
527 cc->nr_migratepages = 0;
532 /* Release free pages and check accounting */
533 cc->nr_freepages -= release_freepages(&cc->freepages);
534 VM_BUG_ON(cc->nr_freepages != 0);
536 return ret;
539 unsigned long compact_zone_order(struct zone *zone,
540 int order, gfp_t gfp_mask,
541 bool sync)
543 struct compact_control cc = {
544 .nr_freepages = 0,
545 .nr_migratepages = 0,
546 .order = order,
547 .migratetype = allocflags_to_migratetype(gfp_mask),
548 .zone = zone,
549 .sync = sync,
551 INIT_LIST_HEAD(&cc.freepages);
552 INIT_LIST_HEAD(&cc.migratepages);
554 return compact_zone(zone, &cc);
557 int sysctl_extfrag_threshold = 500;
560 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
561 * @zonelist: The zonelist used for the current allocation
562 * @order: The order of the current allocation
563 * @gfp_mask: The GFP mask of the current allocation
564 * @nodemask: The allowed nodes to allocate from
565 * @sync: Whether migration is synchronous or not
567 * This is the main entry point for direct page compaction.
569 unsigned long try_to_compact_pages(struct zonelist *zonelist,
570 int order, gfp_t gfp_mask, nodemask_t *nodemask,
571 bool sync)
573 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
574 int may_enter_fs = gfp_mask & __GFP_FS;
575 int may_perform_io = gfp_mask & __GFP_IO;
576 struct zoneref *z;
577 struct zone *zone;
578 int rc = COMPACT_SKIPPED;
581 * Check whether it is worth even starting compaction. The order check is
582 * made because an assumption is made that the page allocator can satisfy
583 * the "cheaper" orders without taking special steps
585 if (!order || !may_enter_fs || !may_perform_io)
586 return rc;
588 count_vm_event(COMPACTSTALL);
590 /* Compact each zone in the list */
591 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
592 nodemask) {
593 int status;
595 status = compact_zone_order(zone, order, gfp_mask, sync);
596 rc = max(status, rc);
598 /* If a normal allocation would succeed, stop compacting */
599 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
600 break;
603 return rc;
607 /* Compact all zones within a node */
608 static int compact_node(int nid)
610 int zoneid;
611 pg_data_t *pgdat;
612 struct zone *zone;
614 if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
615 return -EINVAL;
616 pgdat = NODE_DATA(nid);
618 /* Flush pending updates to the LRU lists */
619 lru_add_drain_all();
621 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
622 struct compact_control cc = {
623 .nr_freepages = 0,
624 .nr_migratepages = 0,
625 .order = -1,
628 zone = &pgdat->node_zones[zoneid];
629 if (!populated_zone(zone))
630 continue;
632 cc.zone = zone;
633 INIT_LIST_HEAD(&cc.freepages);
634 INIT_LIST_HEAD(&cc.migratepages);
636 compact_zone(zone, &cc);
638 VM_BUG_ON(!list_empty(&cc.freepages));
639 VM_BUG_ON(!list_empty(&cc.migratepages));
642 return 0;
645 /* Compact all nodes in the system */
646 static int compact_nodes(void)
648 int nid;
650 for_each_online_node(nid)
651 compact_node(nid);
653 return COMPACT_COMPLETE;
656 /* The written value is actually unused, all memory is compacted */
657 int sysctl_compact_memory;
659 /* This is the entry point for compacting all nodes via /proc/sys/vm */
660 int sysctl_compaction_handler(struct ctl_table *table, int write,
661 void __user *buffer, size_t *length, loff_t *ppos)
663 if (write)
664 return compact_nodes();
666 return 0;
669 int sysctl_extfrag_handler(struct ctl_table *table, int write,
670 void __user *buffer, size_t *length, loff_t *ppos)
672 proc_dointvec_minmax(table, write, buffer, length, ppos);
674 return 0;
677 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
678 ssize_t sysfs_compact_node(struct sys_device *dev,
679 struct sysdev_attribute *attr,
680 const char *buf, size_t count)
682 compact_node(dev->id);
684 return count;
686 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
688 int compaction_register_node(struct node *node)
690 return sysdev_create_file(&node->sysdev, &attr_compact);
693 void compaction_unregister_node(struct node *node)
695 return sysdev_remove_file(&node->sysdev, &attr_compact);
697 #endif /* CONFIG_SYSFS && CONFIG_NUMA */