slub: Disable interrupts in free_debug processing
[linux-2.6/next.git] / mm / slub.c
blob08c57a047548f10274c9a63eaf14949145749b0c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
32 #include <trace/events/kmem.h>
35 * Lock order:
36 * 1. slub_lock (Global Semaphore)
37 * 2. node->list_lock
38 * 3. slab_lock(page) (Only on some arches and for debugging)
40 * slub_lock
42 * The role of the slub_lock is to protect the list of all the slabs
43 * and to synchronize major metadata changes to slab cache structures.
45 * The slab_lock is only used for debugging and on arches that do not
46 * have the ability to do a cmpxchg_double. It only protects the second
47 * double word in the page struct. Meaning
48 * A. page->freelist -> List of object free in a page
49 * B. page->counters -> Counters of objects
50 * C. page->frozen -> frozen state
52 * If a slab is frozen then it is exempt from list management. It is not
53 * on any list. The processor that froze the slab is the one who can
54 * perform list operations on the page. Other processors may put objects
55 * onto the freelist but the processor that froze the slab is the only
56 * one that can retrieve the objects from the page's freelist.
58 * The list_lock protects the partial and full list on each node and
59 * the partial slab counter. If taken then no new slabs may be added or
60 * removed from the lists nor make the number of partial slabs be modified.
61 * (Note that the total number of slabs is an atomic value that may be
62 * modified without taking the list lock).
64 * The list_lock is a centralized lock and thus we avoid taking it as
65 * much as possible. As long as SLUB does not have to handle partial
66 * slabs, operations can continue without any centralized lock. F.e.
67 * allocating a long series of objects that fill up slabs does not require
68 * the list lock.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
111 SLAB_TRACE | SLAB_DEBUG_FREE)
113 static inline int kmem_cache_debug(struct kmem_cache *s)
115 #ifdef CONFIG_SLUB_DEBUG
116 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
117 #else
118 return 0;
119 #endif
123 * Issues still to be resolved:
125 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 * - Variable sizing of the per node arrays
130 /* Enable to test recovery from slab corruption on boot */
131 #undef SLUB_RESILIENCY_TEST
133 /* Enable to log cmpxchg failures */
134 #undef SLUB_DEBUG_CMPXCHG
137 * Mininum number of partial slabs. These will be left on the partial
138 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 #define MIN_PARTIAL 5
143 * Maximum number of desirable partial slabs.
144 * The existence of more partial slabs makes kmem_cache_shrink
145 * sort the partial list by the number of objects in the.
147 #define MAX_PARTIAL 10
149 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
150 SLAB_POISON | SLAB_STORE_USER)
153 * Debugging flags that require metadata to be stored in the slab. These get
154 * disabled when slub_debug=O is used and a cache's min order increases with
155 * metadata.
157 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160 * Set of flags that will prevent slab merging
162 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
163 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
164 SLAB_FAILSLAB)
166 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
167 SLAB_CACHE_DMA | SLAB_NOTRACK)
169 #define OO_SHIFT 16
170 #define OO_MASK ((1 << OO_SHIFT) - 1)
171 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
173 /* Internal SLUB flags */
174 #define __OBJECT_POISON 0x80000000UL /* Poison object */
175 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
177 static int kmem_size = sizeof(struct kmem_cache);
179 #ifdef CONFIG_SMP
180 static struct notifier_block slab_notifier;
181 #endif
183 static enum {
184 DOWN, /* No slab functionality available */
185 PARTIAL, /* Kmem_cache_node works */
186 UP, /* Everything works but does not show up in sysfs */
187 SYSFS /* Sysfs up */
188 } slab_state = DOWN;
190 /* A list of all slab caches on the system */
191 static DECLARE_RWSEM(slub_lock);
192 static LIST_HEAD(slab_caches);
195 * Tracking user of a slab.
197 struct track {
198 unsigned long addr; /* Called from address */
199 int cpu; /* Was running on cpu */
200 int pid; /* Pid context */
201 unsigned long when; /* When did the operation occur */
204 enum track_item { TRACK_ALLOC, TRACK_FREE };
206 #ifdef CONFIG_SYSFS
207 static int sysfs_slab_add(struct kmem_cache *);
208 static int sysfs_slab_alias(struct kmem_cache *, const char *);
209 static void sysfs_slab_remove(struct kmem_cache *);
211 #else
212 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
213 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
214 { return 0; }
215 static inline void sysfs_slab_remove(struct kmem_cache *s)
217 kfree(s->name);
218 kfree(s);
221 #endif
223 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 #ifdef CONFIG_SLUB_STATS
226 __this_cpu_inc(s->cpu_slab->stat[si]);
227 #endif
230 /********************************************************************
231 * Core slab cache functions
232 *******************************************************************/
234 int slab_is_available(void)
236 return slab_state >= UP;
239 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
241 return s->node[node];
244 /* Verify that a pointer has an address that is valid within a slab page */
245 static inline int check_valid_pointer(struct kmem_cache *s,
246 struct page *page, const void *object)
248 void *base;
250 if (!object)
251 return 1;
253 base = page_address(page);
254 if (object < base || object >= base + page->objects * s->size ||
255 (object - base) % s->size) {
256 return 0;
259 return 1;
262 static inline void *get_freepointer(struct kmem_cache *s, void *object)
264 return *(void **)(object + s->offset);
267 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 void *p;
271 #ifdef CONFIG_DEBUG_PAGEALLOC
272 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
273 #else
274 p = get_freepointer(s, object);
275 #endif
276 return p;
279 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 *(void **)(object + s->offset) = fp;
284 /* Loop over all objects in a slab */
285 #define for_each_object(__p, __s, __addr, __objects) \
286 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
287 __p += (__s)->size)
289 /* Determine object index from a given position */
290 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 return (p - addr) / s->size;
295 static inline size_t slab_ksize(const struct kmem_cache *s)
297 #ifdef CONFIG_SLUB_DEBUG
299 * Debugging requires use of the padding between object
300 * and whatever may come after it.
302 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
303 return s->objsize;
305 #endif
307 * If we have the need to store the freelist pointer
308 * back there or track user information then we can
309 * only use the space before that information.
311 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
312 return s->inuse;
314 * Else we can use all the padding etc for the allocation
316 return s->size;
319 static inline int order_objects(int order, unsigned long size, int reserved)
321 return ((PAGE_SIZE << order) - reserved) / size;
324 static inline struct kmem_cache_order_objects oo_make(int order,
325 unsigned long size, int reserved)
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
331 return x;
334 static inline int oo_order(struct kmem_cache_order_objects x)
336 return x.x >> OO_SHIFT;
339 static inline int oo_objects(struct kmem_cache_order_objects x)
341 return x.x & OO_MASK;
345 * Per slab locking using the pagelock
347 static __always_inline void slab_lock(struct page *page)
349 bit_spin_lock(PG_locked, &page->flags);
352 static __always_inline void slab_unlock(struct page *page)
354 __bit_spin_unlock(PG_locked, &page->flags);
357 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
358 void *freelist_old, unsigned long counters_old,
359 void *freelist_new, unsigned long counters_new,
360 const char *n)
362 #ifdef CONFIG_CMPXCHG_DOUBLE
363 if (s->flags & __CMPXCHG_DOUBLE) {
364 if (cmpxchg_double(&page->freelist,
365 freelist_old, counters_old,
366 freelist_new, counters_new))
367 return 1;
368 } else
369 #endif
371 slab_lock(page);
372 if (page->freelist == freelist_old && page->counters == counters_old) {
373 page->freelist = freelist_new;
374 page->counters = counters_new;
375 slab_unlock(page);
376 return 1;
378 slab_unlock(page);
381 cpu_relax();
382 stat(s, CMPXCHG_DOUBLE_FAIL);
384 #ifdef SLUB_DEBUG_CMPXCHG
385 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
386 #endif
388 return 0;
391 #ifdef CONFIG_SLUB_DEBUG
393 * Determine a map of object in use on a page.
395 * Node listlock must be held to guarantee that the page does
396 * not vanish from under us.
398 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
400 void *p;
401 void *addr = page_address(page);
403 for (p = page->freelist; p; p = get_freepointer(s, p))
404 set_bit(slab_index(p, s, addr), map);
408 * Debug settings:
410 #ifdef CONFIG_SLUB_DEBUG_ON
411 static int slub_debug = DEBUG_DEFAULT_FLAGS;
412 #else
413 static int slub_debug;
414 #endif
416 static char *slub_debug_slabs;
417 static int disable_higher_order_debug;
420 * Object debugging
422 static void print_section(char *text, u8 *addr, unsigned int length)
424 int i, offset;
425 int newline = 1;
426 char ascii[17];
428 ascii[16] = 0;
430 for (i = 0; i < length; i++) {
431 if (newline) {
432 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
433 newline = 0;
435 printk(KERN_CONT " %02x", addr[i]);
436 offset = i % 16;
437 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
438 if (offset == 15) {
439 printk(KERN_CONT " %s\n", ascii);
440 newline = 1;
443 if (!newline) {
444 i %= 16;
445 while (i < 16) {
446 printk(KERN_CONT " ");
447 ascii[i] = ' ';
448 i++;
450 printk(KERN_CONT " %s\n", ascii);
454 static struct track *get_track(struct kmem_cache *s, void *object,
455 enum track_item alloc)
457 struct track *p;
459 if (s->offset)
460 p = object + s->offset + sizeof(void *);
461 else
462 p = object + s->inuse;
464 return p + alloc;
467 static void set_track(struct kmem_cache *s, void *object,
468 enum track_item alloc, unsigned long addr)
470 struct track *p = get_track(s, object, alloc);
472 if (addr) {
473 p->addr = addr;
474 p->cpu = smp_processor_id();
475 p->pid = current->pid;
476 p->when = jiffies;
477 } else
478 memset(p, 0, sizeof(struct track));
481 static void init_tracking(struct kmem_cache *s, void *object)
483 if (!(s->flags & SLAB_STORE_USER))
484 return;
486 set_track(s, object, TRACK_FREE, 0UL);
487 set_track(s, object, TRACK_ALLOC, 0UL);
490 static void print_track(const char *s, struct track *t)
492 if (!t->addr)
493 return;
495 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
496 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
499 static void print_tracking(struct kmem_cache *s, void *object)
501 if (!(s->flags & SLAB_STORE_USER))
502 return;
504 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
505 print_track("Freed", get_track(s, object, TRACK_FREE));
508 static void print_page_info(struct page *page)
510 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
511 page, page->objects, page->inuse, page->freelist, page->flags);
515 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
517 va_list args;
518 char buf[100];
520 va_start(args, fmt);
521 vsnprintf(buf, sizeof(buf), fmt, args);
522 va_end(args);
523 printk(KERN_ERR "========================================"
524 "=====================================\n");
525 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
526 printk(KERN_ERR "----------------------------------------"
527 "-------------------------------------\n\n");
530 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
532 va_list args;
533 char buf[100];
535 va_start(args, fmt);
536 vsnprintf(buf, sizeof(buf), fmt, args);
537 va_end(args);
538 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
541 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
543 unsigned int off; /* Offset of last byte */
544 u8 *addr = page_address(page);
546 print_tracking(s, p);
548 print_page_info(page);
550 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
551 p, p - addr, get_freepointer(s, p));
553 if (p > addr + 16)
554 print_section("Bytes b4", p - 16, 16);
556 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
558 if (s->flags & SLAB_RED_ZONE)
559 print_section("Redzone", p + s->objsize,
560 s->inuse - s->objsize);
562 if (s->offset)
563 off = s->offset + sizeof(void *);
564 else
565 off = s->inuse;
567 if (s->flags & SLAB_STORE_USER)
568 off += 2 * sizeof(struct track);
570 if (off != s->size)
571 /* Beginning of the filler is the free pointer */
572 print_section("Padding", p + off, s->size - off);
574 dump_stack();
577 static void object_err(struct kmem_cache *s, struct page *page,
578 u8 *object, char *reason)
580 slab_bug(s, "%s", reason);
581 print_trailer(s, page, object);
584 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
586 va_list args;
587 char buf[100];
589 va_start(args, fmt);
590 vsnprintf(buf, sizeof(buf), fmt, args);
591 va_end(args);
592 slab_bug(s, "%s", buf);
593 print_page_info(page);
594 dump_stack();
597 static void init_object(struct kmem_cache *s, void *object, u8 val)
599 u8 *p = object;
601 if (s->flags & __OBJECT_POISON) {
602 memset(p, POISON_FREE, s->objsize - 1);
603 p[s->objsize - 1] = POISON_END;
606 if (s->flags & SLAB_RED_ZONE)
607 memset(p + s->objsize, val, s->inuse - s->objsize);
610 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
612 while (bytes) {
613 if (*start != (u8)value)
614 return start;
615 start++;
616 bytes--;
618 return NULL;
621 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
622 void *from, void *to)
624 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
625 memset(from, data, to - from);
628 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
629 u8 *object, char *what,
630 u8 *start, unsigned int value, unsigned int bytes)
632 u8 *fault;
633 u8 *end;
635 fault = check_bytes(start, value, bytes);
636 if (!fault)
637 return 1;
639 end = start + bytes;
640 while (end > fault && end[-1] == value)
641 end--;
643 slab_bug(s, "%s overwritten", what);
644 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
645 fault, end - 1, fault[0], value);
646 print_trailer(s, page, object);
648 restore_bytes(s, what, value, fault, end);
649 return 0;
653 * Object layout:
655 * object address
656 * Bytes of the object to be managed.
657 * If the freepointer may overlay the object then the free
658 * pointer is the first word of the object.
660 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
661 * 0xa5 (POISON_END)
663 * object + s->objsize
664 * Padding to reach word boundary. This is also used for Redzoning.
665 * Padding is extended by another word if Redzoning is enabled and
666 * objsize == inuse.
668 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
669 * 0xcc (RED_ACTIVE) for objects in use.
671 * object + s->inuse
672 * Meta data starts here.
674 * A. Free pointer (if we cannot overwrite object on free)
675 * B. Tracking data for SLAB_STORE_USER
676 * C. Padding to reach required alignment boundary or at mininum
677 * one word if debugging is on to be able to detect writes
678 * before the word boundary.
680 * Padding is done using 0x5a (POISON_INUSE)
682 * object + s->size
683 * Nothing is used beyond s->size.
685 * If slabcaches are merged then the objsize and inuse boundaries are mostly
686 * ignored. And therefore no slab options that rely on these boundaries
687 * may be used with merged slabcaches.
690 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
692 unsigned long off = s->inuse; /* The end of info */
694 if (s->offset)
695 /* Freepointer is placed after the object. */
696 off += sizeof(void *);
698 if (s->flags & SLAB_STORE_USER)
699 /* We also have user information there */
700 off += 2 * sizeof(struct track);
702 if (s->size == off)
703 return 1;
705 return check_bytes_and_report(s, page, p, "Object padding",
706 p + off, POISON_INUSE, s->size - off);
709 /* Check the pad bytes at the end of a slab page */
710 static int slab_pad_check(struct kmem_cache *s, struct page *page)
712 u8 *start;
713 u8 *fault;
714 u8 *end;
715 int length;
716 int remainder;
718 if (!(s->flags & SLAB_POISON))
719 return 1;
721 start = page_address(page);
722 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
723 end = start + length;
724 remainder = length % s->size;
725 if (!remainder)
726 return 1;
728 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
729 if (!fault)
730 return 1;
731 while (end > fault && end[-1] == POISON_INUSE)
732 end--;
734 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
735 print_section("Padding", end - remainder, remainder);
737 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
738 return 0;
741 static int check_object(struct kmem_cache *s, struct page *page,
742 void *object, u8 val)
744 u8 *p = object;
745 u8 *endobject = object + s->objsize;
747 if (s->flags & SLAB_RED_ZONE) {
748 if (!check_bytes_and_report(s, page, object, "Redzone",
749 endobject, val, s->inuse - s->objsize))
750 return 0;
751 } else {
752 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
753 check_bytes_and_report(s, page, p, "Alignment padding",
754 endobject, POISON_INUSE, s->inuse - s->objsize);
758 if (s->flags & SLAB_POISON) {
759 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
760 (!check_bytes_and_report(s, page, p, "Poison", p,
761 POISON_FREE, s->objsize - 1) ||
762 !check_bytes_and_report(s, page, p, "Poison",
763 p + s->objsize - 1, POISON_END, 1)))
764 return 0;
766 * check_pad_bytes cleans up on its own.
768 check_pad_bytes(s, page, p);
771 if (!s->offset && val == SLUB_RED_ACTIVE)
773 * Object and freepointer overlap. Cannot check
774 * freepointer while object is allocated.
776 return 1;
778 /* Check free pointer validity */
779 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
780 object_err(s, page, p, "Freepointer corrupt");
782 * No choice but to zap it and thus lose the remainder
783 * of the free objects in this slab. May cause
784 * another error because the object count is now wrong.
786 set_freepointer(s, p, NULL);
787 return 0;
789 return 1;
792 static int check_slab(struct kmem_cache *s, struct page *page)
794 int maxobj;
796 VM_BUG_ON(!irqs_disabled());
798 if (!PageSlab(page)) {
799 slab_err(s, page, "Not a valid slab page");
800 return 0;
803 maxobj = order_objects(compound_order(page), s->size, s->reserved);
804 if (page->objects > maxobj) {
805 slab_err(s, page, "objects %u > max %u",
806 s->name, page->objects, maxobj);
807 return 0;
809 if (page->inuse > page->objects) {
810 slab_err(s, page, "inuse %u > max %u",
811 s->name, page->inuse, page->objects);
812 return 0;
814 /* Slab_pad_check fixes things up after itself */
815 slab_pad_check(s, page);
816 return 1;
820 * Determine if a certain object on a page is on the freelist. Must hold the
821 * slab lock to guarantee that the chains are in a consistent state.
823 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
825 int nr = 0;
826 void *fp;
827 void *object = NULL;
828 unsigned long max_objects;
830 fp = page->freelist;
831 while (fp && nr <= page->objects) {
832 if (fp == search)
833 return 1;
834 if (!check_valid_pointer(s, page, fp)) {
835 if (object) {
836 object_err(s, page, object,
837 "Freechain corrupt");
838 set_freepointer(s, object, NULL);
839 break;
840 } else {
841 slab_err(s, page, "Freepointer corrupt");
842 page->freelist = NULL;
843 page->inuse = page->objects;
844 slab_fix(s, "Freelist cleared");
845 return 0;
847 break;
849 object = fp;
850 fp = get_freepointer(s, object);
851 nr++;
854 max_objects = order_objects(compound_order(page), s->size, s->reserved);
855 if (max_objects > MAX_OBJS_PER_PAGE)
856 max_objects = MAX_OBJS_PER_PAGE;
858 if (page->objects != max_objects) {
859 slab_err(s, page, "Wrong number of objects. Found %d but "
860 "should be %d", page->objects, max_objects);
861 page->objects = max_objects;
862 slab_fix(s, "Number of objects adjusted.");
864 if (page->inuse != page->objects - nr) {
865 slab_err(s, page, "Wrong object count. Counter is %d but "
866 "counted were %d", page->inuse, page->objects - nr);
867 page->inuse = page->objects - nr;
868 slab_fix(s, "Object count adjusted.");
870 return search == NULL;
873 static void trace(struct kmem_cache *s, struct page *page, void *object,
874 int alloc)
876 if (s->flags & SLAB_TRACE) {
877 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
878 s->name,
879 alloc ? "alloc" : "free",
880 object, page->inuse,
881 page->freelist);
883 if (!alloc)
884 print_section("Object", (void *)object, s->objsize);
886 dump_stack();
891 * Hooks for other subsystems that check memory allocations. In a typical
892 * production configuration these hooks all should produce no code at all.
894 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
896 flags &= gfp_allowed_mask;
897 lockdep_trace_alloc(flags);
898 might_sleep_if(flags & __GFP_WAIT);
900 return should_failslab(s->objsize, flags, s->flags);
903 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
905 flags &= gfp_allowed_mask;
906 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
907 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
910 static inline void slab_free_hook(struct kmem_cache *s, void *x)
912 kmemleak_free_recursive(x, s->flags);
915 * Trouble is that we may no longer disable interupts in the fast path
916 * So in order to make the debug calls that expect irqs to be
917 * disabled we need to disable interrupts temporarily.
919 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
921 unsigned long flags;
923 local_irq_save(flags);
924 kmemcheck_slab_free(s, x, s->objsize);
925 debug_check_no_locks_freed(x, s->objsize);
926 local_irq_restore(flags);
928 #endif
929 if (!(s->flags & SLAB_DEBUG_OBJECTS))
930 debug_check_no_obj_freed(x, s->objsize);
934 * Tracking of fully allocated slabs for debugging purposes.
936 * list_lock must be held.
938 static void add_full(struct kmem_cache *s,
939 struct kmem_cache_node *n, struct page *page)
941 if (!(s->flags & SLAB_STORE_USER))
942 return;
944 list_add(&page->lru, &n->full);
948 * list_lock must be held.
950 static void remove_full(struct kmem_cache *s, struct page *page)
952 if (!(s->flags & SLAB_STORE_USER))
953 return;
955 list_del(&page->lru);
958 /* Tracking of the number of slabs for debugging purposes */
959 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
961 struct kmem_cache_node *n = get_node(s, node);
963 return atomic_long_read(&n->nr_slabs);
966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
968 return atomic_long_read(&n->nr_slabs);
971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
973 struct kmem_cache_node *n = get_node(s, node);
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
981 if (n) {
982 atomic_long_inc(&n->nr_slabs);
983 atomic_long_add(objects, &n->total_objects);
986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
988 struct kmem_cache_node *n = get_node(s, node);
990 atomic_long_dec(&n->nr_slabs);
991 atomic_long_sub(objects, &n->total_objects);
994 /* Object debug checks for alloc/free paths */
995 static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1001 init_object(s, object, SLUB_RED_INACTIVE);
1002 init_tracking(s, object);
1005 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1006 void *object, unsigned long addr)
1008 if (!check_slab(s, page))
1009 goto bad;
1011 if (!check_valid_pointer(s, page, object)) {
1012 object_err(s, page, object, "Freelist Pointer check fails");
1013 goto bad;
1016 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1017 goto bad;
1019 /* Success perform special debug activities for allocs */
1020 if (s->flags & SLAB_STORE_USER)
1021 set_track(s, object, TRACK_ALLOC, addr);
1022 trace(s, page, object, 1);
1023 init_object(s, object, SLUB_RED_ACTIVE);
1024 return 1;
1026 bad:
1027 if (PageSlab(page)) {
1029 * If this is a slab page then lets do the best we can
1030 * to avoid issues in the future. Marking all objects
1031 * as used avoids touching the remaining objects.
1033 slab_fix(s, "Marking all objects used");
1034 page->inuse = page->objects;
1035 page->freelist = NULL;
1037 return 0;
1040 static noinline int free_debug_processing(struct kmem_cache *s,
1041 struct page *page, void *object, unsigned long addr)
1043 unsigned long flags;
1044 int rc = 0;
1046 local_irq_save(flags);
1047 slab_lock(page);
1049 if (!check_slab(s, page))
1050 goto fail;
1052 if (!check_valid_pointer(s, page, object)) {
1053 slab_err(s, page, "Invalid object pointer 0x%p", object);
1054 goto fail;
1057 if (on_freelist(s, page, object)) {
1058 object_err(s, page, object, "Object already free");
1059 goto fail;
1062 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1063 goto out;
1065 if (unlikely(s != page->slab)) {
1066 if (!PageSlab(page)) {
1067 slab_err(s, page, "Attempt to free object(0x%p) "
1068 "outside of slab", object);
1069 } else if (!page->slab) {
1070 printk(KERN_ERR
1071 "SLUB <none>: no slab for object 0x%p.\n",
1072 object);
1073 dump_stack();
1074 } else
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
1077 goto fail;
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
1083 init_object(s, object, SLUB_RED_INACTIVE);
1084 rc = 1;
1085 out:
1086 slab_unlock(page);
1087 local_irq_restore(flags);
1088 return rc;
1090 fail:
1091 slab_fix(s, "Object at 0x%p not freed", object);
1092 goto out;
1095 static int __init setup_slub_debug(char *str)
1097 slub_debug = DEBUG_DEFAULT_FLAGS;
1098 if (*str++ != '=' || !*str)
1100 * No options specified. Switch on full debugging.
1102 goto out;
1104 if (*str == ',')
1106 * No options but restriction on slabs. This means full
1107 * debugging for slabs matching a pattern.
1109 goto check_slabs;
1111 if (tolower(*str) == 'o') {
1113 * Avoid enabling debugging on caches if its minimum order
1114 * would increase as a result.
1116 disable_higher_order_debug = 1;
1117 goto out;
1120 slub_debug = 0;
1121 if (*str == '-')
1123 * Switch off all debugging measures.
1125 goto out;
1128 * Determine which debug features should be switched on
1130 for (; *str && *str != ','; str++) {
1131 switch (tolower(*str)) {
1132 case 'f':
1133 slub_debug |= SLAB_DEBUG_FREE;
1134 break;
1135 case 'z':
1136 slub_debug |= SLAB_RED_ZONE;
1137 break;
1138 case 'p':
1139 slub_debug |= SLAB_POISON;
1140 break;
1141 case 'u':
1142 slub_debug |= SLAB_STORE_USER;
1143 break;
1144 case 't':
1145 slub_debug |= SLAB_TRACE;
1146 break;
1147 case 'a':
1148 slub_debug |= SLAB_FAILSLAB;
1149 break;
1150 default:
1151 printk(KERN_ERR "slub_debug option '%c' "
1152 "unknown. skipped\n", *str);
1156 check_slabs:
1157 if (*str == ',')
1158 slub_debug_slabs = str + 1;
1159 out:
1160 return 1;
1163 __setup("slub_debug", setup_slub_debug);
1165 static unsigned long kmem_cache_flags(unsigned long objsize,
1166 unsigned long flags, const char *name,
1167 void (*ctor)(void *))
1170 * Enable debugging if selected on the kernel commandline.
1172 if (slub_debug && (!slub_debug_slabs ||
1173 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1174 flags |= slub_debug;
1176 return flags;
1178 #else
1179 static inline void setup_object_debug(struct kmem_cache *s,
1180 struct page *page, void *object) {}
1182 static inline int alloc_debug_processing(struct kmem_cache *s,
1183 struct page *page, void *object, unsigned long addr) { return 0; }
1185 static inline int free_debug_processing(struct kmem_cache *s,
1186 struct page *page, void *object, unsigned long addr) { return 0; }
1188 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1189 { return 1; }
1190 static inline int check_object(struct kmem_cache *s, struct page *page,
1191 void *object, u8 val) { return 1; }
1192 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1193 struct page *page) {}
1194 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1195 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1196 unsigned long flags, const char *name,
1197 void (*ctor)(void *))
1199 return flags;
1201 #define slub_debug 0
1203 #define disable_higher_order_debug 0
1205 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1206 { return 0; }
1207 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1208 { return 0; }
1209 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1210 int objects) {}
1211 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1212 int objects) {}
1214 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1215 { return 0; }
1217 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1218 void *object) {}
1220 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1222 #endif /* CONFIG_SLUB_DEBUG */
1225 * Slab allocation and freeing
1227 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1228 struct kmem_cache_order_objects oo)
1230 int order = oo_order(oo);
1232 flags |= __GFP_NOTRACK;
1234 if (node == NUMA_NO_NODE)
1235 return alloc_pages(flags, order);
1236 else
1237 return alloc_pages_exact_node(node, flags, order);
1240 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1242 struct page *page;
1243 struct kmem_cache_order_objects oo = s->oo;
1244 gfp_t alloc_gfp;
1246 flags &= gfp_allowed_mask;
1248 if (flags & __GFP_WAIT)
1249 local_irq_enable();
1251 flags |= s->allocflags;
1254 * Let the initial higher-order allocation fail under memory pressure
1255 * so we fall-back to the minimum order allocation.
1257 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1259 page = alloc_slab_page(alloc_gfp, node, oo);
1260 if (unlikely(!page)) {
1261 oo = s->min;
1263 * Allocation may have failed due to fragmentation.
1264 * Try a lower order alloc if possible
1266 page = alloc_slab_page(flags, node, oo);
1268 if (page)
1269 stat(s, ORDER_FALLBACK);
1272 if (flags & __GFP_WAIT)
1273 local_irq_disable();
1275 if (!page)
1276 return NULL;
1278 if (kmemcheck_enabled
1279 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1280 int pages = 1 << oo_order(oo);
1282 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1285 * Objects from caches that have a constructor don't get
1286 * cleared when they're allocated, so we need to do it here.
1288 if (s->ctor)
1289 kmemcheck_mark_uninitialized_pages(page, pages);
1290 else
1291 kmemcheck_mark_unallocated_pages(page, pages);
1294 page->objects = oo_objects(oo);
1295 mod_zone_page_state(page_zone(page),
1296 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1297 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1298 1 << oo_order(oo));
1300 return page;
1303 static void setup_object(struct kmem_cache *s, struct page *page,
1304 void *object)
1306 setup_object_debug(s, page, object);
1307 if (unlikely(s->ctor))
1308 s->ctor(object);
1311 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1313 struct page *page;
1314 void *start;
1315 void *last;
1316 void *p;
1318 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1320 page = allocate_slab(s,
1321 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1322 if (!page)
1323 goto out;
1325 inc_slabs_node(s, page_to_nid(page), page->objects);
1326 page->slab = s;
1327 page->flags |= 1 << PG_slab;
1329 start = page_address(page);
1331 if (unlikely(s->flags & SLAB_POISON))
1332 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1334 last = start;
1335 for_each_object(p, s, start, page->objects) {
1336 setup_object(s, page, last);
1337 set_freepointer(s, last, p);
1338 last = p;
1340 setup_object(s, page, last);
1341 set_freepointer(s, last, NULL);
1343 page->freelist = start;
1344 page->inuse = 0;
1345 page->frozen = 1;
1346 out:
1347 return page;
1350 static void __free_slab(struct kmem_cache *s, struct page *page)
1352 int order = compound_order(page);
1353 int pages = 1 << order;
1355 if (kmem_cache_debug(s)) {
1356 void *p;
1358 slab_pad_check(s, page);
1359 for_each_object(p, s, page_address(page),
1360 page->objects)
1361 check_object(s, page, p, SLUB_RED_INACTIVE);
1364 kmemcheck_free_shadow(page, compound_order(page));
1366 mod_zone_page_state(page_zone(page),
1367 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1368 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1369 -pages);
1371 __ClearPageSlab(page);
1372 reset_page_mapcount(page);
1373 if (current->reclaim_state)
1374 current->reclaim_state->reclaimed_slab += pages;
1375 __free_pages(page, order);
1378 #define need_reserve_slab_rcu \
1379 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1381 static void rcu_free_slab(struct rcu_head *h)
1383 struct page *page;
1385 if (need_reserve_slab_rcu)
1386 page = virt_to_head_page(h);
1387 else
1388 page = container_of((struct list_head *)h, struct page, lru);
1390 __free_slab(page->slab, page);
1393 static void free_slab(struct kmem_cache *s, struct page *page)
1395 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1396 struct rcu_head *head;
1398 if (need_reserve_slab_rcu) {
1399 int order = compound_order(page);
1400 int offset = (PAGE_SIZE << order) - s->reserved;
1402 VM_BUG_ON(s->reserved != sizeof(*head));
1403 head = page_address(page) + offset;
1404 } else {
1406 * RCU free overloads the RCU head over the LRU
1408 head = (void *)&page->lru;
1411 call_rcu(head, rcu_free_slab);
1412 } else
1413 __free_slab(s, page);
1416 static void discard_slab(struct kmem_cache *s, struct page *page)
1418 dec_slabs_node(s, page_to_nid(page), page->objects);
1419 free_slab(s, page);
1423 * Management of partially allocated slabs.
1425 * list_lock must be held.
1427 static inline void add_partial(struct kmem_cache_node *n,
1428 struct page *page, int tail)
1430 n->nr_partial++;
1431 if (tail)
1432 list_add_tail(&page->lru, &n->partial);
1433 else
1434 list_add(&page->lru, &n->partial);
1438 * list_lock must be held.
1440 static inline void remove_partial(struct kmem_cache_node *n,
1441 struct page *page)
1443 list_del(&page->lru);
1444 n->nr_partial--;
1448 * Lock slab, remove from the partial list and put the object into the
1449 * per cpu freelist.
1451 * Must hold list_lock.
1453 static inline int acquire_slab(struct kmem_cache *s,
1454 struct kmem_cache_node *n, struct page *page)
1456 void *freelist;
1457 unsigned long counters;
1458 struct page new;
1461 * Zap the freelist and set the frozen bit.
1462 * The old freelist is the list of objects for the
1463 * per cpu allocation list.
1465 do {
1466 freelist = page->freelist;
1467 counters = page->counters;
1468 new.counters = counters;
1469 new.inuse = page->objects;
1471 VM_BUG_ON(new.frozen);
1472 new.frozen = 1;
1474 } while (!cmpxchg_double_slab(s, page,
1475 freelist, counters,
1476 NULL, new.counters,
1477 "lock and freeze"));
1479 remove_partial(n, page);
1481 if (freelist) {
1482 /* Populate the per cpu freelist */
1483 this_cpu_write(s->cpu_slab->freelist, freelist);
1484 this_cpu_write(s->cpu_slab->page, page);
1485 this_cpu_write(s->cpu_slab->node, page_to_nid(page));
1486 return 1;
1487 } else {
1489 * Slab page came from the wrong list. No object to allocate
1490 * from. Put it onto the correct list and continue partial
1491 * scan.
1493 printk(KERN_ERR "SLUB: %s : Page without available objects on"
1494 " partial list\n", s->name);
1495 return 0;
1500 * Try to allocate a partial slab from a specific node.
1502 static struct page *get_partial_node(struct kmem_cache *s,
1503 struct kmem_cache_node *n)
1505 struct page *page;
1508 * Racy check. If we mistakenly see no partial slabs then we
1509 * just allocate an empty slab. If we mistakenly try to get a
1510 * partial slab and there is none available then get_partials()
1511 * will return NULL.
1513 if (!n || !n->nr_partial)
1514 return NULL;
1516 spin_lock(&n->list_lock);
1517 list_for_each_entry(page, &n->partial, lru)
1518 if (acquire_slab(s, n, page))
1519 goto out;
1520 page = NULL;
1521 out:
1522 spin_unlock(&n->list_lock);
1523 return page;
1527 * Get a page from somewhere. Search in increasing NUMA distances.
1529 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1531 #ifdef CONFIG_NUMA
1532 struct zonelist *zonelist;
1533 struct zoneref *z;
1534 struct zone *zone;
1535 enum zone_type high_zoneidx = gfp_zone(flags);
1536 struct page *page;
1539 * The defrag ratio allows a configuration of the tradeoffs between
1540 * inter node defragmentation and node local allocations. A lower
1541 * defrag_ratio increases the tendency to do local allocations
1542 * instead of attempting to obtain partial slabs from other nodes.
1544 * If the defrag_ratio is set to 0 then kmalloc() always
1545 * returns node local objects. If the ratio is higher then kmalloc()
1546 * may return off node objects because partial slabs are obtained
1547 * from other nodes and filled up.
1549 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1550 * defrag_ratio = 1000) then every (well almost) allocation will
1551 * first attempt to defrag slab caches on other nodes. This means
1552 * scanning over all nodes to look for partial slabs which may be
1553 * expensive if we do it every time we are trying to find a slab
1554 * with available objects.
1556 if (!s->remote_node_defrag_ratio ||
1557 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1558 return NULL;
1560 get_mems_allowed();
1561 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1562 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1563 struct kmem_cache_node *n;
1565 n = get_node(s, zone_to_nid(zone));
1567 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1568 n->nr_partial > s->min_partial) {
1569 page = get_partial_node(s, n);
1570 if (page) {
1571 put_mems_allowed();
1572 return page;
1576 put_mems_allowed();
1577 #endif
1578 return NULL;
1582 * Get a partial page, lock it and return it.
1584 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1586 struct page *page;
1587 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1589 page = get_partial_node(s, get_node(s, searchnode));
1590 if (page || node != NUMA_NO_NODE)
1591 return page;
1593 return get_any_partial(s, flags);
1596 #ifdef CONFIG_PREEMPT
1598 * Calculate the next globally unique transaction for disambiguiation
1599 * during cmpxchg. The transactions start with the cpu number and are then
1600 * incremented by CONFIG_NR_CPUS.
1602 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1603 #else
1605 * No preemption supported therefore also no need to check for
1606 * different cpus.
1608 #define TID_STEP 1
1609 #endif
1611 static inline unsigned long next_tid(unsigned long tid)
1613 return tid + TID_STEP;
1616 static inline unsigned int tid_to_cpu(unsigned long tid)
1618 return tid % TID_STEP;
1621 static inline unsigned long tid_to_event(unsigned long tid)
1623 return tid / TID_STEP;
1626 static inline unsigned int init_tid(int cpu)
1628 return cpu;
1631 static inline void note_cmpxchg_failure(const char *n,
1632 const struct kmem_cache *s, unsigned long tid)
1634 #ifdef SLUB_DEBUG_CMPXCHG
1635 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1637 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1639 #ifdef CONFIG_PREEMPT
1640 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1641 printk("due to cpu change %d -> %d\n",
1642 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1643 else
1644 #endif
1645 if (tid_to_event(tid) != tid_to_event(actual_tid))
1646 printk("due to cpu running other code. Event %ld->%ld\n",
1647 tid_to_event(tid), tid_to_event(actual_tid));
1648 else
1649 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1650 actual_tid, tid, next_tid(tid));
1651 #endif
1652 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1655 void init_kmem_cache_cpus(struct kmem_cache *s)
1657 int cpu;
1659 for_each_possible_cpu(cpu)
1660 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1663 * Remove the cpu slab
1667 * Remove the cpu slab
1669 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1671 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1672 struct page *page = c->page;
1673 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1674 int lock = 0;
1675 enum slab_modes l = M_NONE, m = M_NONE;
1676 void *freelist;
1677 void *nextfree;
1678 int tail = 0;
1679 struct page new;
1680 struct page old;
1682 if (page->freelist) {
1683 stat(s, DEACTIVATE_REMOTE_FREES);
1684 tail = 1;
1687 c->tid = next_tid(c->tid);
1688 c->page = NULL;
1689 freelist = c->freelist;
1690 c->freelist = NULL;
1693 * Stage one: Free all available per cpu objects back
1694 * to the page freelist while it is still frozen. Leave the
1695 * last one.
1697 * There is no need to take the list->lock because the page
1698 * is still frozen.
1700 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1701 void *prior;
1702 unsigned long counters;
1704 do {
1705 prior = page->freelist;
1706 counters = page->counters;
1707 set_freepointer(s, freelist, prior);
1708 new.counters = counters;
1709 new.inuse--;
1710 VM_BUG_ON(!new.frozen);
1712 } while (!cmpxchg_double_slab(s, page,
1713 prior, counters,
1714 freelist, new.counters,
1715 "drain percpu freelist"));
1717 freelist = nextfree;
1721 * Stage two: Ensure that the page is unfrozen while the
1722 * list presence reflects the actual number of objects
1723 * during unfreeze.
1725 * We setup the list membership and then perform a cmpxchg
1726 * with the count. If there is a mismatch then the page
1727 * is not unfrozen but the page is on the wrong list.
1729 * Then we restart the process which may have to remove
1730 * the page from the list that we just put it on again
1731 * because the number of objects in the slab may have
1732 * changed.
1734 redo:
1736 old.freelist = page->freelist;
1737 old.counters = page->counters;
1738 VM_BUG_ON(!old.frozen);
1740 /* Determine target state of the slab */
1741 new.counters = old.counters;
1742 if (freelist) {
1743 new.inuse--;
1744 set_freepointer(s, freelist, old.freelist);
1745 new.freelist = freelist;
1746 } else
1747 new.freelist = old.freelist;
1749 new.frozen = 0;
1751 if (!new.inuse && n->nr_partial < s->min_partial)
1752 m = M_FREE;
1753 else if (new.freelist) {
1754 m = M_PARTIAL;
1755 if (!lock) {
1756 lock = 1;
1758 * Taking the spinlock removes the possiblity
1759 * that acquire_slab() will see a slab page that
1760 * is frozen
1762 spin_lock(&n->list_lock);
1764 } else {
1765 m = M_FULL;
1766 if (kmem_cache_debug(s) && !lock) {
1767 lock = 1;
1769 * This also ensures that the scanning of full
1770 * slabs from diagnostic functions will not see
1771 * any frozen slabs.
1773 spin_lock(&n->list_lock);
1777 if (l != m) {
1779 if (l == M_PARTIAL)
1781 remove_partial(n, page);
1783 else if (l == M_FULL)
1785 remove_full(s, page);
1787 if (m == M_PARTIAL) {
1789 add_partial(n, page, tail);
1790 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1792 } else if (m == M_FULL) {
1794 stat(s, DEACTIVATE_FULL);
1795 add_full(s, n, page);
1800 l = m;
1801 if (!cmpxchg_double_slab(s, page,
1802 old.freelist, old.counters,
1803 new.freelist, new.counters,
1804 "unfreezing slab"))
1805 goto redo;
1807 if (lock)
1808 spin_unlock(&n->list_lock);
1810 if (m == M_FREE) {
1811 stat(s, DEACTIVATE_EMPTY);
1812 discard_slab(s, page);
1813 stat(s, FREE_SLAB);
1817 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1819 stat(s, CPUSLAB_FLUSH);
1820 deactivate_slab(s, c);
1824 * Flush cpu slab.
1826 * Called from IPI handler with interrupts disabled.
1828 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1830 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1832 if (likely(c && c->page))
1833 flush_slab(s, c);
1836 static void flush_cpu_slab(void *d)
1838 struct kmem_cache *s = d;
1840 __flush_cpu_slab(s, smp_processor_id());
1843 static void flush_all(struct kmem_cache *s)
1845 on_each_cpu(flush_cpu_slab, s, 1);
1849 * Check if the objects in a per cpu structure fit numa
1850 * locality expectations.
1852 static inline int node_match(struct kmem_cache_cpu *c, int node)
1854 #ifdef CONFIG_NUMA
1855 if (node != NUMA_NO_NODE && c->node != node)
1856 return 0;
1857 #endif
1858 return 1;
1861 static int count_free(struct page *page)
1863 return page->objects - page->inuse;
1866 static unsigned long count_partial(struct kmem_cache_node *n,
1867 int (*get_count)(struct page *))
1869 unsigned long flags;
1870 unsigned long x = 0;
1871 struct page *page;
1873 spin_lock_irqsave(&n->list_lock, flags);
1874 list_for_each_entry(page, &n->partial, lru)
1875 x += get_count(page);
1876 spin_unlock_irqrestore(&n->list_lock, flags);
1877 return x;
1880 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1882 #ifdef CONFIG_SLUB_DEBUG
1883 return atomic_long_read(&n->total_objects);
1884 #else
1885 return 0;
1886 #endif
1889 static noinline void
1890 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1892 int node;
1894 printk(KERN_WARNING
1895 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1896 nid, gfpflags);
1897 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1898 "default order: %d, min order: %d\n", s->name, s->objsize,
1899 s->size, oo_order(s->oo), oo_order(s->min));
1901 if (oo_order(s->min) > get_order(s->objsize))
1902 printk(KERN_WARNING " %s debugging increased min order, use "
1903 "slub_debug=O to disable.\n", s->name);
1905 for_each_online_node(node) {
1906 struct kmem_cache_node *n = get_node(s, node);
1907 unsigned long nr_slabs;
1908 unsigned long nr_objs;
1909 unsigned long nr_free;
1911 if (!n)
1912 continue;
1914 nr_free = count_partial(n, count_free);
1915 nr_slabs = node_nr_slabs(n);
1916 nr_objs = node_nr_objs(n);
1918 printk(KERN_WARNING
1919 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1920 node, nr_slabs, nr_objs, nr_free);
1925 * Slow path. The lockless freelist is empty or we need to perform
1926 * debugging duties.
1928 * Interrupts are disabled.
1930 * Processing is still very fast if new objects have been freed to the
1931 * regular freelist. In that case we simply take over the regular freelist
1932 * as the lockless freelist and zap the regular freelist.
1934 * If that is not working then we fall back to the partial lists. We take the
1935 * first element of the freelist as the object to allocate now and move the
1936 * rest of the freelist to the lockless freelist.
1938 * And if we were unable to get a new slab from the partial slab lists then
1939 * we need to allocate a new slab. This is the slowest path since it involves
1940 * a call to the page allocator and the setup of a new slab.
1942 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1943 unsigned long addr, struct kmem_cache_cpu *c)
1945 void **object;
1946 struct page *page;
1947 unsigned long flags;
1948 struct page new;
1949 unsigned long counters;
1951 local_irq_save(flags);
1952 #ifdef CONFIG_PREEMPT
1954 * We may have been preempted and rescheduled on a different
1955 * cpu before disabling interrupts. Need to reload cpu area
1956 * pointer.
1958 c = this_cpu_ptr(s->cpu_slab);
1959 #endif
1961 /* We handle __GFP_ZERO in the caller */
1962 gfpflags &= ~__GFP_ZERO;
1964 page = c->page;
1965 if (!page)
1966 goto new_slab;
1968 if (unlikely(!node_match(c, node)))
1969 goto another_slab;
1971 stat(s, ALLOC_SLOWPATH);
1973 do {
1974 object = page->freelist;
1975 counters = page->counters;
1976 new.counters = counters;
1977 new.inuse = page->objects;
1978 VM_BUG_ON(!new.frozen);
1980 } while (!cmpxchg_double_slab(s, page,
1981 object, counters,
1982 NULL, new.counters,
1983 "__slab_alloc"));
1985 load_freelist:
1986 VM_BUG_ON(!page->frozen);
1988 if (unlikely(!object))
1989 goto another_slab;
1991 stat(s, ALLOC_REFILL);
1993 c->freelist = get_freepointer(s, object);
1994 c->tid = next_tid(c->tid);
1995 local_irq_restore(flags);
1996 return object;
1998 another_slab:
1999 deactivate_slab(s, c);
2001 new_slab:
2002 page = get_partial(s, gfpflags, node);
2003 if (page) {
2004 stat(s, ALLOC_FROM_PARTIAL);
2005 object = c->freelist;
2007 if (kmem_cache_debug(s))
2008 goto debug;
2009 goto load_freelist;
2012 page = new_slab(s, gfpflags, node);
2014 if (page) {
2015 c = __this_cpu_ptr(s->cpu_slab);
2016 if (c->page)
2017 flush_slab(s, c);
2020 * No other reference to the page yet so we can
2021 * muck around with it freely without cmpxchg
2023 object = page->freelist;
2024 page->freelist = NULL;
2025 page->inuse = page->objects;
2027 stat(s, ALLOC_SLAB);
2028 c->node = page_to_nid(page);
2029 c->page = page;
2030 goto load_freelist;
2032 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2033 slab_out_of_memory(s, gfpflags, node);
2034 local_irq_restore(flags);
2035 return NULL;
2037 debug:
2038 if (!object || !alloc_debug_processing(s, page, object, addr))
2039 goto new_slab;
2041 c->freelist = get_freepointer(s, object);
2042 deactivate_slab(s, c);
2043 c->page = NULL;
2044 c->node = NUMA_NO_NODE;
2045 local_irq_restore(flags);
2046 return object;
2050 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2051 * have the fastpath folded into their functions. So no function call
2052 * overhead for requests that can be satisfied on the fastpath.
2054 * The fastpath works by first checking if the lockless freelist can be used.
2055 * If not then __slab_alloc is called for slow processing.
2057 * Otherwise we can simply pick the next object from the lockless free list.
2059 static __always_inline void *slab_alloc(struct kmem_cache *s,
2060 gfp_t gfpflags, int node, unsigned long addr)
2062 void **object;
2063 struct kmem_cache_cpu *c;
2064 unsigned long tid;
2066 if (slab_pre_alloc_hook(s, gfpflags))
2067 return NULL;
2069 redo:
2072 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2073 * enabled. We may switch back and forth between cpus while
2074 * reading from one cpu area. That does not matter as long
2075 * as we end up on the original cpu again when doing the cmpxchg.
2077 c = __this_cpu_ptr(s->cpu_slab);
2080 * The transaction ids are globally unique per cpu and per operation on
2081 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2082 * occurs on the right processor and that there was no operation on the
2083 * linked list in between.
2085 tid = c->tid;
2086 barrier();
2088 object = c->freelist;
2089 if (unlikely(!object || !node_match(c, node)))
2091 object = __slab_alloc(s, gfpflags, node, addr, c);
2093 else {
2095 * The cmpxchg will only match if there was no additional
2096 * operation and if we are on the right processor.
2098 * The cmpxchg does the following atomically (without lock semantics!)
2099 * 1. Relocate first pointer to the current per cpu area.
2100 * 2. Verify that tid and freelist have not been changed
2101 * 3. If they were not changed replace tid and freelist
2103 * Since this is without lock semantics the protection is only against
2104 * code executing on this cpu *not* from access by other cpus.
2106 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2107 s->cpu_slab->freelist, s->cpu_slab->tid,
2108 object, tid,
2109 get_freepointer_safe(s, object), next_tid(tid)))) {
2111 note_cmpxchg_failure("slab_alloc", s, tid);
2112 goto redo;
2114 stat(s, ALLOC_FASTPATH);
2117 if (unlikely(gfpflags & __GFP_ZERO) && object)
2118 memset(object, 0, s->objsize);
2120 slab_post_alloc_hook(s, gfpflags, object);
2122 return object;
2125 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2127 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2129 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2131 return ret;
2133 EXPORT_SYMBOL(kmem_cache_alloc);
2135 #ifdef CONFIG_TRACING
2136 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2138 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2139 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2140 return ret;
2142 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2144 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2146 void *ret = kmalloc_order(size, flags, order);
2147 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2148 return ret;
2150 EXPORT_SYMBOL(kmalloc_order_trace);
2151 #endif
2153 #ifdef CONFIG_NUMA
2154 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2156 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2158 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2159 s->objsize, s->size, gfpflags, node);
2161 return ret;
2163 EXPORT_SYMBOL(kmem_cache_alloc_node);
2165 #ifdef CONFIG_TRACING
2166 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2167 gfp_t gfpflags,
2168 int node, size_t size)
2170 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2172 trace_kmalloc_node(_RET_IP_, ret,
2173 size, s->size, gfpflags, node);
2174 return ret;
2176 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2177 #endif
2178 #endif
2181 * Slow patch handling. This may still be called frequently since objects
2182 * have a longer lifetime than the cpu slabs in most processing loads.
2184 * So we still attempt to reduce cache line usage. Just take the slab
2185 * lock and free the item. If there is no additional partial page
2186 * handling required then we can return immediately.
2188 static void __slab_free(struct kmem_cache *s, struct page *page,
2189 void *x, unsigned long addr)
2191 void *prior;
2192 void **object = (void *)x;
2193 int was_frozen;
2194 int inuse;
2195 struct page new;
2196 unsigned long counters;
2197 struct kmem_cache_node *n = NULL;
2198 unsigned long uninitialized_var(flags);
2200 local_irq_save(flags);
2201 stat(s, FREE_SLOWPATH);
2203 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2204 goto out_unlock;
2206 do {
2207 prior = page->freelist;
2208 counters = page->counters;
2209 set_freepointer(s, object, prior);
2210 new.counters = counters;
2211 was_frozen = new.frozen;
2212 new.inuse--;
2213 if ((!new.inuse || !prior) && !was_frozen && !n) {
2214 n = get_node(s, page_to_nid(page));
2216 * Speculatively acquire the list_lock.
2217 * If the cmpxchg does not succeed then we may
2218 * drop the list_lock without any processing.
2220 * Otherwise the list_lock will synchronize with
2221 * other processors updating the list of slabs.
2223 spin_lock(&n->list_lock);
2225 inuse = new.inuse;
2227 } while (!cmpxchg_double_slab(s, page,
2228 prior, counters,
2229 object, new.counters,
2230 "__slab_free"));
2232 if (likely(!n)) {
2234 * The list lock was not taken therefore no list
2235 * activity can be necessary.
2237 if (was_frozen)
2238 stat(s, FREE_FROZEN);
2239 goto out_unlock;
2243 * was_frozen may have been set after we acquired the list_lock in
2244 * an earlier loop. So we need to check it here again.
2246 if (was_frozen)
2247 stat(s, FREE_FROZEN);
2248 else {
2249 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2250 goto slab_empty;
2253 * Objects left in the slab. If it was not on the partial list before
2254 * then add it.
2256 if (unlikely(!prior)) {
2257 remove_full(s, page);
2258 add_partial(n, page, 0);
2259 stat(s, FREE_ADD_PARTIAL);
2263 spin_unlock(&n->list_lock);
2265 out_unlock:
2266 local_irq_restore(flags);
2267 return;
2269 slab_empty:
2270 if (prior) {
2272 * Slab still on the partial list.
2274 remove_partial(n, page);
2275 stat(s, FREE_REMOVE_PARTIAL);
2278 spin_unlock(&n->list_lock);
2279 local_irq_restore(flags);
2280 stat(s, FREE_SLAB);
2281 discard_slab(s, page);
2285 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2286 * can perform fastpath freeing without additional function calls.
2288 * The fastpath is only possible if we are freeing to the current cpu slab
2289 * of this processor. This typically the case if we have just allocated
2290 * the item before.
2292 * If fastpath is not possible then fall back to __slab_free where we deal
2293 * with all sorts of special processing.
2295 static __always_inline void slab_free(struct kmem_cache *s,
2296 struct page *page, void *x, unsigned long addr)
2298 void **object = (void *)x;
2299 struct kmem_cache_cpu *c;
2300 unsigned long tid;
2302 slab_free_hook(s, x);
2304 redo:
2307 * Determine the currently cpus per cpu slab.
2308 * The cpu may change afterward. However that does not matter since
2309 * data is retrieved via this pointer. If we are on the same cpu
2310 * during the cmpxchg then the free will succedd.
2312 c = __this_cpu_ptr(s->cpu_slab);
2314 tid = c->tid;
2315 barrier();
2317 if (likely(page == c->page)) {
2318 set_freepointer(s, object, c->freelist);
2320 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2321 s->cpu_slab->freelist, s->cpu_slab->tid,
2322 c->freelist, tid,
2323 object, next_tid(tid)))) {
2325 note_cmpxchg_failure("slab_free", s, tid);
2326 goto redo;
2328 stat(s, FREE_FASTPATH);
2329 } else
2330 __slab_free(s, page, x, addr);
2334 void kmem_cache_free(struct kmem_cache *s, void *x)
2336 struct page *page;
2338 page = virt_to_head_page(x);
2340 slab_free(s, page, x, _RET_IP_);
2342 trace_kmem_cache_free(_RET_IP_, x);
2344 EXPORT_SYMBOL(kmem_cache_free);
2347 * Object placement in a slab is made very easy because we always start at
2348 * offset 0. If we tune the size of the object to the alignment then we can
2349 * get the required alignment by putting one properly sized object after
2350 * another.
2352 * Notice that the allocation order determines the sizes of the per cpu
2353 * caches. Each processor has always one slab available for allocations.
2354 * Increasing the allocation order reduces the number of times that slabs
2355 * must be moved on and off the partial lists and is therefore a factor in
2356 * locking overhead.
2360 * Mininum / Maximum order of slab pages. This influences locking overhead
2361 * and slab fragmentation. A higher order reduces the number of partial slabs
2362 * and increases the number of allocations possible without having to
2363 * take the list_lock.
2365 static int slub_min_order;
2366 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2367 static int slub_min_objects;
2370 * Merge control. If this is set then no merging of slab caches will occur.
2371 * (Could be removed. This was introduced to pacify the merge skeptics.)
2373 static int slub_nomerge;
2376 * Calculate the order of allocation given an slab object size.
2378 * The order of allocation has significant impact on performance and other
2379 * system components. Generally order 0 allocations should be preferred since
2380 * order 0 does not cause fragmentation in the page allocator. Larger objects
2381 * be problematic to put into order 0 slabs because there may be too much
2382 * unused space left. We go to a higher order if more than 1/16th of the slab
2383 * would be wasted.
2385 * In order to reach satisfactory performance we must ensure that a minimum
2386 * number of objects is in one slab. Otherwise we may generate too much
2387 * activity on the partial lists which requires taking the list_lock. This is
2388 * less a concern for large slabs though which are rarely used.
2390 * slub_max_order specifies the order where we begin to stop considering the
2391 * number of objects in a slab as critical. If we reach slub_max_order then
2392 * we try to keep the page order as low as possible. So we accept more waste
2393 * of space in favor of a small page order.
2395 * Higher order allocations also allow the placement of more objects in a
2396 * slab and thereby reduce object handling overhead. If the user has
2397 * requested a higher mininum order then we start with that one instead of
2398 * the smallest order which will fit the object.
2400 static inline int slab_order(int size, int min_objects,
2401 int max_order, int fract_leftover, int reserved)
2403 int order;
2404 int rem;
2405 int min_order = slub_min_order;
2407 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2408 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2410 for (order = max(min_order,
2411 fls(min_objects * size - 1) - PAGE_SHIFT);
2412 order <= max_order; order++) {
2414 unsigned long slab_size = PAGE_SIZE << order;
2416 if (slab_size < min_objects * size + reserved)
2417 continue;
2419 rem = (slab_size - reserved) % size;
2421 if (rem <= slab_size / fract_leftover)
2422 break;
2426 return order;
2429 static inline int calculate_order(int size, int reserved)
2431 int order;
2432 int min_objects;
2433 int fraction;
2434 int max_objects;
2437 * Attempt to find best configuration for a slab. This
2438 * works by first attempting to generate a layout with
2439 * the best configuration and backing off gradually.
2441 * First we reduce the acceptable waste in a slab. Then
2442 * we reduce the minimum objects required in a slab.
2444 min_objects = slub_min_objects;
2445 if (!min_objects)
2446 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2447 max_objects = order_objects(slub_max_order, size, reserved);
2448 min_objects = min(min_objects, max_objects);
2450 while (min_objects > 1) {
2451 fraction = 16;
2452 while (fraction >= 4) {
2453 order = slab_order(size, min_objects,
2454 slub_max_order, fraction, reserved);
2455 if (order <= slub_max_order)
2456 return order;
2457 fraction /= 2;
2459 min_objects--;
2463 * We were unable to place multiple objects in a slab. Now
2464 * lets see if we can place a single object there.
2466 order = slab_order(size, 1, slub_max_order, 1, reserved);
2467 if (order <= slub_max_order)
2468 return order;
2471 * Doh this slab cannot be placed using slub_max_order.
2473 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2474 if (order < MAX_ORDER)
2475 return order;
2476 return -ENOSYS;
2480 * Figure out what the alignment of the objects will be.
2482 static unsigned long calculate_alignment(unsigned long flags,
2483 unsigned long align, unsigned long size)
2486 * If the user wants hardware cache aligned objects then follow that
2487 * suggestion if the object is sufficiently large.
2489 * The hardware cache alignment cannot override the specified
2490 * alignment though. If that is greater then use it.
2492 if (flags & SLAB_HWCACHE_ALIGN) {
2493 unsigned long ralign = cache_line_size();
2494 while (size <= ralign / 2)
2495 ralign /= 2;
2496 align = max(align, ralign);
2499 if (align < ARCH_SLAB_MINALIGN)
2500 align = ARCH_SLAB_MINALIGN;
2502 return ALIGN(align, sizeof(void *));
2505 static void
2506 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2508 n->nr_partial = 0;
2509 spin_lock_init(&n->list_lock);
2510 INIT_LIST_HEAD(&n->partial);
2511 #ifdef CONFIG_SLUB_DEBUG
2512 atomic_long_set(&n->nr_slabs, 0);
2513 atomic_long_set(&n->total_objects, 0);
2514 INIT_LIST_HEAD(&n->full);
2515 #endif
2518 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2520 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2521 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2524 * Must align to double word boundary for the double cmpxchg
2525 * instructions to work; see __pcpu_double_call_return_bool().
2527 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2528 2 * sizeof(void *));
2530 if (!s->cpu_slab)
2531 return 0;
2533 init_kmem_cache_cpus(s);
2535 return 1;
2538 static struct kmem_cache *kmem_cache_node;
2541 * No kmalloc_node yet so do it by hand. We know that this is the first
2542 * slab on the node for this slabcache. There are no concurrent accesses
2543 * possible.
2545 * Note that this function only works on the kmalloc_node_cache
2546 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2547 * memory on a fresh node that has no slab structures yet.
2549 static void early_kmem_cache_node_alloc(int node)
2551 struct page *page;
2552 struct kmem_cache_node *n;
2554 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2556 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2558 BUG_ON(!page);
2559 if (page_to_nid(page) != node) {
2560 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2561 "node %d\n", node);
2562 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2563 "in order to be able to continue\n");
2566 n = page->freelist;
2567 BUG_ON(!n);
2568 page->freelist = get_freepointer(kmem_cache_node, n);
2569 page->inuse++;
2570 page->frozen = 0;
2571 kmem_cache_node->node[node] = n;
2572 #ifdef CONFIG_SLUB_DEBUG
2573 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2574 init_tracking(kmem_cache_node, n);
2575 #endif
2576 init_kmem_cache_node(n, kmem_cache_node);
2577 inc_slabs_node(kmem_cache_node, node, page->objects);
2579 add_partial(n, page, 0);
2582 static void free_kmem_cache_nodes(struct kmem_cache *s)
2584 int node;
2586 for_each_node_state(node, N_NORMAL_MEMORY) {
2587 struct kmem_cache_node *n = s->node[node];
2589 if (n)
2590 kmem_cache_free(kmem_cache_node, n);
2592 s->node[node] = NULL;
2596 static int init_kmem_cache_nodes(struct kmem_cache *s)
2598 int node;
2600 for_each_node_state(node, N_NORMAL_MEMORY) {
2601 struct kmem_cache_node *n;
2603 if (slab_state == DOWN) {
2604 early_kmem_cache_node_alloc(node);
2605 continue;
2607 n = kmem_cache_alloc_node(kmem_cache_node,
2608 GFP_KERNEL, node);
2610 if (!n) {
2611 free_kmem_cache_nodes(s);
2612 return 0;
2615 s->node[node] = n;
2616 init_kmem_cache_node(n, s);
2618 return 1;
2621 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2623 if (min < MIN_PARTIAL)
2624 min = MIN_PARTIAL;
2625 else if (min > MAX_PARTIAL)
2626 min = MAX_PARTIAL;
2627 s->min_partial = min;
2631 * calculate_sizes() determines the order and the distribution of data within
2632 * a slab object.
2634 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2636 unsigned long flags = s->flags;
2637 unsigned long size = s->objsize;
2638 unsigned long align = s->align;
2639 int order;
2642 * Round up object size to the next word boundary. We can only
2643 * place the free pointer at word boundaries and this determines
2644 * the possible location of the free pointer.
2646 size = ALIGN(size, sizeof(void *));
2648 #ifdef CONFIG_SLUB_DEBUG
2650 * Determine if we can poison the object itself. If the user of
2651 * the slab may touch the object after free or before allocation
2652 * then we should never poison the object itself.
2654 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2655 !s->ctor)
2656 s->flags |= __OBJECT_POISON;
2657 else
2658 s->flags &= ~__OBJECT_POISON;
2662 * If we are Redzoning then check if there is some space between the
2663 * end of the object and the free pointer. If not then add an
2664 * additional word to have some bytes to store Redzone information.
2666 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2667 size += sizeof(void *);
2668 #endif
2671 * With that we have determined the number of bytes in actual use
2672 * by the object. This is the potential offset to the free pointer.
2674 s->inuse = size;
2676 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2677 s->ctor)) {
2679 * Relocate free pointer after the object if it is not
2680 * permitted to overwrite the first word of the object on
2681 * kmem_cache_free.
2683 * This is the case if we do RCU, have a constructor or
2684 * destructor or are poisoning the objects.
2686 s->offset = size;
2687 size += sizeof(void *);
2690 #ifdef CONFIG_SLUB_DEBUG
2691 if (flags & SLAB_STORE_USER)
2693 * Need to store information about allocs and frees after
2694 * the object.
2696 size += 2 * sizeof(struct track);
2698 if (flags & SLAB_RED_ZONE)
2700 * Add some empty padding so that we can catch
2701 * overwrites from earlier objects rather than let
2702 * tracking information or the free pointer be
2703 * corrupted if a user writes before the start
2704 * of the object.
2706 size += sizeof(void *);
2707 #endif
2710 * Determine the alignment based on various parameters that the
2711 * user specified and the dynamic determination of cache line size
2712 * on bootup.
2714 align = calculate_alignment(flags, align, s->objsize);
2715 s->align = align;
2718 * SLUB stores one object immediately after another beginning from
2719 * offset 0. In order to align the objects we have to simply size
2720 * each object to conform to the alignment.
2722 size = ALIGN(size, align);
2723 s->size = size;
2724 if (forced_order >= 0)
2725 order = forced_order;
2726 else
2727 order = calculate_order(size, s->reserved);
2729 if (order < 0)
2730 return 0;
2732 s->allocflags = 0;
2733 if (order)
2734 s->allocflags |= __GFP_COMP;
2736 if (s->flags & SLAB_CACHE_DMA)
2737 s->allocflags |= SLUB_DMA;
2739 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2740 s->allocflags |= __GFP_RECLAIMABLE;
2743 * Determine the number of objects per slab
2745 s->oo = oo_make(order, size, s->reserved);
2746 s->min = oo_make(get_order(size), size, s->reserved);
2747 if (oo_objects(s->oo) > oo_objects(s->max))
2748 s->max = s->oo;
2750 return !!oo_objects(s->oo);
2754 static int kmem_cache_open(struct kmem_cache *s,
2755 const char *name, size_t size,
2756 size_t align, unsigned long flags,
2757 void (*ctor)(void *))
2759 memset(s, 0, kmem_size);
2760 s->name = name;
2761 s->ctor = ctor;
2762 s->objsize = size;
2763 s->align = align;
2764 s->flags = kmem_cache_flags(size, flags, name, ctor);
2765 s->reserved = 0;
2767 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2768 s->reserved = sizeof(struct rcu_head);
2770 if (!calculate_sizes(s, -1))
2771 goto error;
2772 if (disable_higher_order_debug) {
2774 * Disable debugging flags that store metadata if the min slab
2775 * order increased.
2777 if (get_order(s->size) > get_order(s->objsize)) {
2778 s->flags &= ~DEBUG_METADATA_FLAGS;
2779 s->offset = 0;
2780 if (!calculate_sizes(s, -1))
2781 goto error;
2785 #ifdef CONFIG_CMPXCHG_DOUBLE
2786 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2787 /* Enable fast mode */
2788 s->flags |= __CMPXCHG_DOUBLE;
2789 #endif
2792 * The larger the object size is, the more pages we want on the partial
2793 * list to avoid pounding the page allocator excessively.
2795 set_min_partial(s, ilog2(s->size));
2796 s->refcount = 1;
2797 #ifdef CONFIG_NUMA
2798 s->remote_node_defrag_ratio = 1000;
2799 #endif
2800 if (!init_kmem_cache_nodes(s))
2801 goto error;
2803 if (alloc_kmem_cache_cpus(s))
2804 return 1;
2806 free_kmem_cache_nodes(s);
2807 error:
2808 if (flags & SLAB_PANIC)
2809 panic("Cannot create slab %s size=%lu realsize=%u "
2810 "order=%u offset=%u flags=%lx\n",
2811 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2812 s->offset, flags);
2813 return 0;
2817 * Determine the size of a slab object
2819 unsigned int kmem_cache_size(struct kmem_cache *s)
2821 return s->objsize;
2823 EXPORT_SYMBOL(kmem_cache_size);
2825 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2826 const char *text)
2828 #ifdef CONFIG_SLUB_DEBUG
2829 void *addr = page_address(page);
2830 void *p;
2831 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2832 sizeof(long), GFP_ATOMIC);
2833 if (!map)
2834 return;
2835 slab_err(s, page, "%s", text);
2836 slab_lock(page);
2838 get_map(s, page, map);
2839 for_each_object(p, s, addr, page->objects) {
2841 if (!test_bit(slab_index(p, s, addr), map)) {
2842 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2843 p, p - addr);
2844 print_tracking(s, p);
2847 slab_unlock(page);
2848 kfree(map);
2849 #endif
2853 * Attempt to free all partial slabs on a node.
2855 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2857 unsigned long flags;
2858 struct page *page, *h;
2860 spin_lock_irqsave(&n->list_lock, flags);
2861 list_for_each_entry_safe(page, h, &n->partial, lru) {
2862 if (!page->inuse) {
2863 remove_partial(n, page);
2864 discard_slab(s, page);
2865 } else {
2866 list_slab_objects(s, page,
2867 "Objects remaining on kmem_cache_close()");
2870 spin_unlock_irqrestore(&n->list_lock, flags);
2874 * Release all resources used by a slab cache.
2876 static inline int kmem_cache_close(struct kmem_cache *s)
2878 int node;
2880 flush_all(s);
2881 free_percpu(s->cpu_slab);
2882 /* Attempt to free all objects */
2883 for_each_node_state(node, N_NORMAL_MEMORY) {
2884 struct kmem_cache_node *n = get_node(s, node);
2886 free_partial(s, n);
2887 if (n->nr_partial || slabs_node(s, node))
2888 return 1;
2890 free_kmem_cache_nodes(s);
2891 return 0;
2895 * Close a cache and release the kmem_cache structure
2896 * (must be used for caches created using kmem_cache_create)
2898 void kmem_cache_destroy(struct kmem_cache *s)
2900 down_write(&slub_lock);
2901 s->refcount--;
2902 if (!s->refcount) {
2903 list_del(&s->list);
2904 if (kmem_cache_close(s)) {
2905 printk(KERN_ERR "SLUB %s: %s called for cache that "
2906 "still has objects.\n", s->name, __func__);
2907 dump_stack();
2909 if (s->flags & SLAB_DESTROY_BY_RCU)
2910 rcu_barrier();
2911 sysfs_slab_remove(s);
2913 up_write(&slub_lock);
2915 EXPORT_SYMBOL(kmem_cache_destroy);
2917 /********************************************************************
2918 * Kmalloc subsystem
2919 *******************************************************************/
2921 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2922 EXPORT_SYMBOL(kmalloc_caches);
2924 static struct kmem_cache *kmem_cache;
2926 #ifdef CONFIG_ZONE_DMA
2927 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2928 #endif
2930 static int __init setup_slub_min_order(char *str)
2932 get_option(&str, &slub_min_order);
2934 return 1;
2937 __setup("slub_min_order=", setup_slub_min_order);
2939 static int __init setup_slub_max_order(char *str)
2941 get_option(&str, &slub_max_order);
2942 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2944 return 1;
2947 __setup("slub_max_order=", setup_slub_max_order);
2949 static int __init setup_slub_min_objects(char *str)
2951 get_option(&str, &slub_min_objects);
2953 return 1;
2956 __setup("slub_min_objects=", setup_slub_min_objects);
2958 static int __init setup_slub_nomerge(char *str)
2960 slub_nomerge = 1;
2961 return 1;
2964 __setup("slub_nomerge", setup_slub_nomerge);
2966 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2967 int size, unsigned int flags)
2969 struct kmem_cache *s;
2971 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2974 * This function is called with IRQs disabled during early-boot on
2975 * single CPU so there's no need to take slub_lock here.
2977 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2978 flags, NULL))
2979 goto panic;
2981 list_add(&s->list, &slab_caches);
2982 return s;
2984 panic:
2985 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2986 return NULL;
2990 * Conversion table for small slabs sizes / 8 to the index in the
2991 * kmalloc array. This is necessary for slabs < 192 since we have non power
2992 * of two cache sizes there. The size of larger slabs can be determined using
2993 * fls.
2995 static s8 size_index[24] = {
2996 3, /* 8 */
2997 4, /* 16 */
2998 5, /* 24 */
2999 5, /* 32 */
3000 6, /* 40 */
3001 6, /* 48 */
3002 6, /* 56 */
3003 6, /* 64 */
3004 1, /* 72 */
3005 1, /* 80 */
3006 1, /* 88 */
3007 1, /* 96 */
3008 7, /* 104 */
3009 7, /* 112 */
3010 7, /* 120 */
3011 7, /* 128 */
3012 2, /* 136 */
3013 2, /* 144 */
3014 2, /* 152 */
3015 2, /* 160 */
3016 2, /* 168 */
3017 2, /* 176 */
3018 2, /* 184 */
3019 2 /* 192 */
3022 static inline int size_index_elem(size_t bytes)
3024 return (bytes - 1) / 8;
3027 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3029 int index;
3031 if (size <= 192) {
3032 if (!size)
3033 return ZERO_SIZE_PTR;
3035 index = size_index[size_index_elem(size)];
3036 } else
3037 index = fls(size - 1);
3039 #ifdef CONFIG_ZONE_DMA
3040 if (unlikely((flags & SLUB_DMA)))
3041 return kmalloc_dma_caches[index];
3043 #endif
3044 return kmalloc_caches[index];
3047 void *__kmalloc(size_t size, gfp_t flags)
3049 struct kmem_cache *s;
3050 void *ret;
3052 if (unlikely(size > SLUB_MAX_SIZE))
3053 return kmalloc_large(size, flags);
3055 s = get_slab(size, flags);
3057 if (unlikely(ZERO_OR_NULL_PTR(s)))
3058 return s;
3060 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3062 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3064 return ret;
3066 EXPORT_SYMBOL(__kmalloc);
3068 #ifdef CONFIG_NUMA
3069 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3071 struct page *page;
3072 void *ptr = NULL;
3074 flags |= __GFP_COMP | __GFP_NOTRACK;
3075 page = alloc_pages_node(node, flags, get_order(size));
3076 if (page)
3077 ptr = page_address(page);
3079 kmemleak_alloc(ptr, size, 1, flags);
3080 return ptr;
3083 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3085 struct kmem_cache *s;
3086 void *ret;
3088 if (unlikely(size > SLUB_MAX_SIZE)) {
3089 ret = kmalloc_large_node(size, flags, node);
3091 trace_kmalloc_node(_RET_IP_, ret,
3092 size, PAGE_SIZE << get_order(size),
3093 flags, node);
3095 return ret;
3098 s = get_slab(size, flags);
3100 if (unlikely(ZERO_OR_NULL_PTR(s)))
3101 return s;
3103 ret = slab_alloc(s, flags, node, _RET_IP_);
3105 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3107 return ret;
3109 EXPORT_SYMBOL(__kmalloc_node);
3110 #endif
3112 size_t ksize(const void *object)
3114 struct page *page;
3116 if (unlikely(object == ZERO_SIZE_PTR))
3117 return 0;
3119 page = virt_to_head_page(object);
3121 if (unlikely(!PageSlab(page))) {
3122 WARN_ON(!PageCompound(page));
3123 return PAGE_SIZE << compound_order(page);
3126 return slab_ksize(page->slab);
3128 EXPORT_SYMBOL(ksize);
3130 void kfree(const void *x)
3132 struct page *page;
3133 void *object = (void *)x;
3135 trace_kfree(_RET_IP_, x);
3137 if (unlikely(ZERO_OR_NULL_PTR(x)))
3138 return;
3140 page = virt_to_head_page(x);
3141 if (unlikely(!PageSlab(page))) {
3142 BUG_ON(!PageCompound(page));
3143 kmemleak_free(x);
3144 put_page(page);
3145 return;
3147 slab_free(page->slab, page, object, _RET_IP_);
3149 EXPORT_SYMBOL(kfree);
3152 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3153 * the remaining slabs by the number of items in use. The slabs with the
3154 * most items in use come first. New allocations will then fill those up
3155 * and thus they can be removed from the partial lists.
3157 * The slabs with the least items are placed last. This results in them
3158 * being allocated from last increasing the chance that the last objects
3159 * are freed in them.
3161 int kmem_cache_shrink(struct kmem_cache *s)
3163 int node;
3164 int i;
3165 struct kmem_cache_node *n;
3166 struct page *page;
3167 struct page *t;
3168 int objects = oo_objects(s->max);
3169 struct list_head *slabs_by_inuse =
3170 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3171 unsigned long flags;
3173 if (!slabs_by_inuse)
3174 return -ENOMEM;
3176 flush_all(s);
3177 for_each_node_state(node, N_NORMAL_MEMORY) {
3178 n = get_node(s, node);
3180 if (!n->nr_partial)
3181 continue;
3183 for (i = 0; i < objects; i++)
3184 INIT_LIST_HEAD(slabs_by_inuse + i);
3186 spin_lock_irqsave(&n->list_lock, flags);
3189 * Build lists indexed by the items in use in each slab.
3191 * Note that concurrent frees may occur while we hold the
3192 * list_lock. page->inuse here is the upper limit.
3194 list_for_each_entry_safe(page, t, &n->partial, lru) {
3195 if (!page->inuse) {
3196 remove_partial(n, page);
3197 discard_slab(s, page);
3198 } else {
3199 list_move(&page->lru,
3200 slabs_by_inuse + page->inuse);
3205 * Rebuild the partial list with the slabs filled up most
3206 * first and the least used slabs at the end.
3208 for (i = objects - 1; i >= 0; i--)
3209 list_splice(slabs_by_inuse + i, n->partial.prev);
3211 spin_unlock_irqrestore(&n->list_lock, flags);
3214 kfree(slabs_by_inuse);
3215 return 0;
3217 EXPORT_SYMBOL(kmem_cache_shrink);
3219 #if defined(CONFIG_MEMORY_HOTPLUG)
3220 static int slab_mem_going_offline_callback(void *arg)
3222 struct kmem_cache *s;
3224 down_read(&slub_lock);
3225 list_for_each_entry(s, &slab_caches, list)
3226 kmem_cache_shrink(s);
3227 up_read(&slub_lock);
3229 return 0;
3232 static void slab_mem_offline_callback(void *arg)
3234 struct kmem_cache_node *n;
3235 struct kmem_cache *s;
3236 struct memory_notify *marg = arg;
3237 int offline_node;
3239 offline_node = marg->status_change_nid;
3242 * If the node still has available memory. we need kmem_cache_node
3243 * for it yet.
3245 if (offline_node < 0)
3246 return;
3248 down_read(&slub_lock);
3249 list_for_each_entry(s, &slab_caches, list) {
3250 n = get_node(s, offline_node);
3251 if (n) {
3253 * if n->nr_slabs > 0, slabs still exist on the node
3254 * that is going down. We were unable to free them,
3255 * and offline_pages() function shouldn't call this
3256 * callback. So, we must fail.
3258 BUG_ON(slabs_node(s, offline_node));
3260 s->node[offline_node] = NULL;
3261 kmem_cache_free(kmem_cache_node, n);
3264 up_read(&slub_lock);
3267 static int slab_mem_going_online_callback(void *arg)
3269 struct kmem_cache_node *n;
3270 struct kmem_cache *s;
3271 struct memory_notify *marg = arg;
3272 int nid = marg->status_change_nid;
3273 int ret = 0;
3276 * If the node's memory is already available, then kmem_cache_node is
3277 * already created. Nothing to do.
3279 if (nid < 0)
3280 return 0;
3283 * We are bringing a node online. No memory is available yet. We must
3284 * allocate a kmem_cache_node structure in order to bring the node
3285 * online.
3287 down_read(&slub_lock);
3288 list_for_each_entry(s, &slab_caches, list) {
3290 * XXX: kmem_cache_alloc_node will fallback to other nodes
3291 * since memory is not yet available from the node that
3292 * is brought up.
3294 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3295 if (!n) {
3296 ret = -ENOMEM;
3297 goto out;
3299 init_kmem_cache_node(n, s);
3300 s->node[nid] = n;
3302 out:
3303 up_read(&slub_lock);
3304 return ret;
3307 static int slab_memory_callback(struct notifier_block *self,
3308 unsigned long action, void *arg)
3310 int ret = 0;
3312 switch (action) {
3313 case MEM_GOING_ONLINE:
3314 ret = slab_mem_going_online_callback(arg);
3315 break;
3316 case MEM_GOING_OFFLINE:
3317 ret = slab_mem_going_offline_callback(arg);
3318 break;
3319 case MEM_OFFLINE:
3320 case MEM_CANCEL_ONLINE:
3321 slab_mem_offline_callback(arg);
3322 break;
3323 case MEM_ONLINE:
3324 case MEM_CANCEL_OFFLINE:
3325 break;
3327 if (ret)
3328 ret = notifier_from_errno(ret);
3329 else
3330 ret = NOTIFY_OK;
3331 return ret;
3334 #endif /* CONFIG_MEMORY_HOTPLUG */
3336 /********************************************************************
3337 * Basic setup of slabs
3338 *******************************************************************/
3341 * Used for early kmem_cache structures that were allocated using
3342 * the page allocator
3345 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3347 int node;
3349 list_add(&s->list, &slab_caches);
3350 s->refcount = -1;
3352 for_each_node_state(node, N_NORMAL_MEMORY) {
3353 struct kmem_cache_node *n = get_node(s, node);
3354 struct page *p;
3356 if (n) {
3357 list_for_each_entry(p, &n->partial, lru)
3358 p->slab = s;
3360 #ifdef CONFIG_SLUB_DEBUG
3361 list_for_each_entry(p, &n->full, lru)
3362 p->slab = s;
3363 #endif
3368 void __init kmem_cache_init(void)
3370 int i;
3371 int caches = 0;
3372 struct kmem_cache *temp_kmem_cache;
3373 int order;
3374 struct kmem_cache *temp_kmem_cache_node;
3375 unsigned long kmalloc_size;
3377 kmem_size = offsetof(struct kmem_cache, node) +
3378 nr_node_ids * sizeof(struct kmem_cache_node *);
3380 /* Allocate two kmem_caches from the page allocator */
3381 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3382 order = get_order(2 * kmalloc_size);
3383 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3386 * Must first have the slab cache available for the allocations of the
3387 * struct kmem_cache_node's. There is special bootstrap code in
3388 * kmem_cache_open for slab_state == DOWN.
3390 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3392 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3393 sizeof(struct kmem_cache_node),
3394 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3396 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3398 /* Able to allocate the per node structures */
3399 slab_state = PARTIAL;
3401 temp_kmem_cache = kmem_cache;
3402 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3403 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3404 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3405 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3408 * Allocate kmem_cache_node properly from the kmem_cache slab.
3409 * kmem_cache_node is separately allocated so no need to
3410 * update any list pointers.
3412 temp_kmem_cache_node = kmem_cache_node;
3414 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3415 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3417 kmem_cache_bootstrap_fixup(kmem_cache_node);
3419 caches++;
3420 kmem_cache_bootstrap_fixup(kmem_cache);
3421 caches++;
3422 /* Free temporary boot structure */
3423 free_pages((unsigned long)temp_kmem_cache, order);
3425 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3428 * Patch up the size_index table if we have strange large alignment
3429 * requirements for the kmalloc array. This is only the case for
3430 * MIPS it seems. The standard arches will not generate any code here.
3432 * Largest permitted alignment is 256 bytes due to the way we
3433 * handle the index determination for the smaller caches.
3435 * Make sure that nothing crazy happens if someone starts tinkering
3436 * around with ARCH_KMALLOC_MINALIGN
3438 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3439 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3441 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3442 int elem = size_index_elem(i);
3443 if (elem >= ARRAY_SIZE(size_index))
3444 break;
3445 size_index[elem] = KMALLOC_SHIFT_LOW;
3448 if (KMALLOC_MIN_SIZE == 64) {
3450 * The 96 byte size cache is not used if the alignment
3451 * is 64 byte.
3453 for (i = 64 + 8; i <= 96; i += 8)
3454 size_index[size_index_elem(i)] = 7;
3455 } else if (KMALLOC_MIN_SIZE == 128) {
3457 * The 192 byte sized cache is not used if the alignment
3458 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3459 * instead.
3461 for (i = 128 + 8; i <= 192; i += 8)
3462 size_index[size_index_elem(i)] = 8;
3465 /* Caches that are not of the two-to-the-power-of size */
3466 if (KMALLOC_MIN_SIZE <= 32) {
3467 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3468 caches++;
3471 if (KMALLOC_MIN_SIZE <= 64) {
3472 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3473 caches++;
3476 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3477 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3478 caches++;
3481 slab_state = UP;
3483 /* Provide the correct kmalloc names now that the caches are up */
3484 if (KMALLOC_MIN_SIZE <= 32) {
3485 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3486 BUG_ON(!kmalloc_caches[1]->name);
3489 if (KMALLOC_MIN_SIZE <= 64) {
3490 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3491 BUG_ON(!kmalloc_caches[2]->name);
3494 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3495 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3497 BUG_ON(!s);
3498 kmalloc_caches[i]->name = s;
3501 #ifdef CONFIG_SMP
3502 register_cpu_notifier(&slab_notifier);
3503 #endif
3505 #ifdef CONFIG_ZONE_DMA
3506 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3507 struct kmem_cache *s = kmalloc_caches[i];
3509 if (s && s->size) {
3510 char *name = kasprintf(GFP_NOWAIT,
3511 "dma-kmalloc-%d", s->objsize);
3513 BUG_ON(!name);
3514 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3515 s->objsize, SLAB_CACHE_DMA);
3518 #endif
3519 printk(KERN_INFO
3520 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3521 " CPUs=%d, Nodes=%d\n",
3522 caches, cache_line_size(),
3523 slub_min_order, slub_max_order, slub_min_objects,
3524 nr_cpu_ids, nr_node_ids);
3527 void __init kmem_cache_init_late(void)
3532 * Find a mergeable slab cache
3534 static int slab_unmergeable(struct kmem_cache *s)
3536 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3537 return 1;
3539 if (s->ctor)
3540 return 1;
3543 * We may have set a slab to be unmergeable during bootstrap.
3545 if (s->refcount < 0)
3546 return 1;
3548 return 0;
3551 static struct kmem_cache *find_mergeable(size_t size,
3552 size_t align, unsigned long flags, const char *name,
3553 void (*ctor)(void *))
3555 struct kmem_cache *s;
3557 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3558 return NULL;
3560 if (ctor)
3561 return NULL;
3563 size = ALIGN(size, sizeof(void *));
3564 align = calculate_alignment(flags, align, size);
3565 size = ALIGN(size, align);
3566 flags = kmem_cache_flags(size, flags, name, NULL);
3568 list_for_each_entry(s, &slab_caches, list) {
3569 if (slab_unmergeable(s))
3570 continue;
3572 if (size > s->size)
3573 continue;
3575 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3576 continue;
3578 * Check if alignment is compatible.
3579 * Courtesy of Adrian Drzewiecki
3581 if ((s->size & ~(align - 1)) != s->size)
3582 continue;
3584 if (s->size - size >= sizeof(void *))
3585 continue;
3587 return s;
3589 return NULL;
3592 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3593 size_t align, unsigned long flags, void (*ctor)(void *))
3595 struct kmem_cache *s;
3596 char *n;
3598 if (WARN_ON(!name))
3599 return NULL;
3601 down_write(&slub_lock);
3602 s = find_mergeable(size, align, flags, name, ctor);
3603 if (s) {
3604 s->refcount++;
3606 * Adjust the object sizes so that we clear
3607 * the complete object on kzalloc.
3609 s->objsize = max(s->objsize, (int)size);
3610 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3612 if (sysfs_slab_alias(s, name)) {
3613 s->refcount--;
3614 goto err;
3616 up_write(&slub_lock);
3617 return s;
3620 n = kstrdup(name, GFP_KERNEL);
3621 if (!n)
3622 goto err;
3624 s = kmalloc(kmem_size, GFP_KERNEL);
3625 if (s) {
3626 if (kmem_cache_open(s, n,
3627 size, align, flags, ctor)) {
3628 list_add(&s->list, &slab_caches);
3629 if (sysfs_slab_add(s)) {
3630 list_del(&s->list);
3631 kfree(n);
3632 kfree(s);
3633 goto err;
3635 up_write(&slub_lock);
3636 return s;
3638 kfree(n);
3639 kfree(s);
3641 err:
3642 up_write(&slub_lock);
3644 if (flags & SLAB_PANIC)
3645 panic("Cannot create slabcache %s\n", name);
3646 else
3647 s = NULL;
3648 return s;
3650 EXPORT_SYMBOL(kmem_cache_create);
3652 #ifdef CONFIG_SMP
3654 * Use the cpu notifier to insure that the cpu slabs are flushed when
3655 * necessary.
3657 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3658 unsigned long action, void *hcpu)
3660 long cpu = (long)hcpu;
3661 struct kmem_cache *s;
3662 unsigned long flags;
3664 switch (action) {
3665 case CPU_UP_CANCELED:
3666 case CPU_UP_CANCELED_FROZEN:
3667 case CPU_DEAD:
3668 case CPU_DEAD_FROZEN:
3669 down_read(&slub_lock);
3670 list_for_each_entry(s, &slab_caches, list) {
3671 local_irq_save(flags);
3672 __flush_cpu_slab(s, cpu);
3673 local_irq_restore(flags);
3675 up_read(&slub_lock);
3676 break;
3677 default:
3678 break;
3680 return NOTIFY_OK;
3683 static struct notifier_block __cpuinitdata slab_notifier = {
3684 .notifier_call = slab_cpuup_callback
3687 #endif
3689 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3691 struct kmem_cache *s;
3692 void *ret;
3694 if (unlikely(size > SLUB_MAX_SIZE))
3695 return kmalloc_large(size, gfpflags);
3697 s = get_slab(size, gfpflags);
3699 if (unlikely(ZERO_OR_NULL_PTR(s)))
3700 return s;
3702 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3704 /* Honor the call site pointer we received. */
3705 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3707 return ret;
3710 #ifdef CONFIG_NUMA
3711 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3712 int node, unsigned long caller)
3714 struct kmem_cache *s;
3715 void *ret;
3717 if (unlikely(size > SLUB_MAX_SIZE)) {
3718 ret = kmalloc_large_node(size, gfpflags, node);
3720 trace_kmalloc_node(caller, ret,
3721 size, PAGE_SIZE << get_order(size),
3722 gfpflags, node);
3724 return ret;
3727 s = get_slab(size, gfpflags);
3729 if (unlikely(ZERO_OR_NULL_PTR(s)))
3730 return s;
3732 ret = slab_alloc(s, gfpflags, node, caller);
3734 /* Honor the call site pointer we received. */
3735 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3737 return ret;
3739 #endif
3741 #ifdef CONFIG_SYSFS
3742 static int count_inuse(struct page *page)
3744 return page->inuse;
3747 static int count_total(struct page *page)
3749 return page->objects;
3751 #endif
3753 #ifdef CONFIG_SLUB_DEBUG
3754 static int validate_slab(struct kmem_cache *s, struct page *page,
3755 unsigned long *map)
3757 void *p;
3758 void *addr = page_address(page);
3760 if (!check_slab(s, page) ||
3761 !on_freelist(s, page, NULL))
3762 return 0;
3764 /* Now we know that a valid freelist exists */
3765 bitmap_zero(map, page->objects);
3767 get_map(s, page, map);
3768 for_each_object(p, s, addr, page->objects) {
3769 if (test_bit(slab_index(p, s, addr), map))
3770 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3771 return 0;
3774 for_each_object(p, s, addr, page->objects)
3775 if (!test_bit(slab_index(p, s, addr), map))
3776 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3777 return 0;
3778 return 1;
3781 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3782 unsigned long *map)
3784 slab_lock(page);
3785 validate_slab(s, page, map);
3786 slab_unlock(page);
3789 static int validate_slab_node(struct kmem_cache *s,
3790 struct kmem_cache_node *n, unsigned long *map)
3792 unsigned long count = 0;
3793 struct page *page;
3794 unsigned long flags;
3796 spin_lock_irqsave(&n->list_lock, flags);
3798 list_for_each_entry(page, &n->partial, lru) {
3799 validate_slab_slab(s, page, map);
3800 count++;
3802 if (count != n->nr_partial)
3803 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3804 "counter=%ld\n", s->name, count, n->nr_partial);
3806 if (!(s->flags & SLAB_STORE_USER))
3807 goto out;
3809 list_for_each_entry(page, &n->full, lru) {
3810 validate_slab_slab(s, page, map);
3811 count++;
3813 if (count != atomic_long_read(&n->nr_slabs))
3814 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3815 "counter=%ld\n", s->name, count,
3816 atomic_long_read(&n->nr_slabs));
3818 out:
3819 spin_unlock_irqrestore(&n->list_lock, flags);
3820 return count;
3823 static long validate_slab_cache(struct kmem_cache *s)
3825 int node;
3826 unsigned long count = 0;
3827 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3828 sizeof(unsigned long), GFP_KERNEL);
3830 if (!map)
3831 return -ENOMEM;
3833 flush_all(s);
3834 for_each_node_state(node, N_NORMAL_MEMORY) {
3835 struct kmem_cache_node *n = get_node(s, node);
3837 count += validate_slab_node(s, n, map);
3839 kfree(map);
3840 return count;
3843 * Generate lists of code addresses where slabcache objects are allocated
3844 * and freed.
3847 struct location {
3848 unsigned long count;
3849 unsigned long addr;
3850 long long sum_time;
3851 long min_time;
3852 long max_time;
3853 long min_pid;
3854 long max_pid;
3855 DECLARE_BITMAP(cpus, NR_CPUS);
3856 nodemask_t nodes;
3859 struct loc_track {
3860 unsigned long max;
3861 unsigned long count;
3862 struct location *loc;
3865 static void free_loc_track(struct loc_track *t)
3867 if (t->max)
3868 free_pages((unsigned long)t->loc,
3869 get_order(sizeof(struct location) * t->max));
3872 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3874 struct location *l;
3875 int order;
3877 order = get_order(sizeof(struct location) * max);
3879 l = (void *)__get_free_pages(flags, order);
3880 if (!l)
3881 return 0;
3883 if (t->count) {
3884 memcpy(l, t->loc, sizeof(struct location) * t->count);
3885 free_loc_track(t);
3887 t->max = max;
3888 t->loc = l;
3889 return 1;
3892 static int add_location(struct loc_track *t, struct kmem_cache *s,
3893 const struct track *track)
3895 long start, end, pos;
3896 struct location *l;
3897 unsigned long caddr;
3898 unsigned long age = jiffies - track->when;
3900 start = -1;
3901 end = t->count;
3903 for ( ; ; ) {
3904 pos = start + (end - start + 1) / 2;
3907 * There is nothing at "end". If we end up there
3908 * we need to add something to before end.
3910 if (pos == end)
3911 break;
3913 caddr = t->loc[pos].addr;
3914 if (track->addr == caddr) {
3916 l = &t->loc[pos];
3917 l->count++;
3918 if (track->when) {
3919 l->sum_time += age;
3920 if (age < l->min_time)
3921 l->min_time = age;
3922 if (age > l->max_time)
3923 l->max_time = age;
3925 if (track->pid < l->min_pid)
3926 l->min_pid = track->pid;
3927 if (track->pid > l->max_pid)
3928 l->max_pid = track->pid;
3930 cpumask_set_cpu(track->cpu,
3931 to_cpumask(l->cpus));
3933 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3934 return 1;
3937 if (track->addr < caddr)
3938 end = pos;
3939 else
3940 start = pos;
3944 * Not found. Insert new tracking element.
3946 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3947 return 0;
3949 l = t->loc + pos;
3950 if (pos < t->count)
3951 memmove(l + 1, l,
3952 (t->count - pos) * sizeof(struct location));
3953 t->count++;
3954 l->count = 1;
3955 l->addr = track->addr;
3956 l->sum_time = age;
3957 l->min_time = age;
3958 l->max_time = age;
3959 l->min_pid = track->pid;
3960 l->max_pid = track->pid;
3961 cpumask_clear(to_cpumask(l->cpus));
3962 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3963 nodes_clear(l->nodes);
3964 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3965 return 1;
3968 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3969 struct page *page, enum track_item alloc,
3970 unsigned long *map)
3972 void *addr = page_address(page);
3973 void *p;
3975 bitmap_zero(map, page->objects);
3976 get_map(s, page, map);
3978 for_each_object(p, s, addr, page->objects)
3979 if (!test_bit(slab_index(p, s, addr), map))
3980 add_location(t, s, get_track(s, p, alloc));
3983 static int list_locations(struct kmem_cache *s, char *buf,
3984 enum track_item alloc)
3986 int len = 0;
3987 unsigned long i;
3988 struct loc_track t = { 0, 0, NULL };
3989 int node;
3990 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3991 sizeof(unsigned long), GFP_KERNEL);
3993 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3994 GFP_TEMPORARY)) {
3995 kfree(map);
3996 return sprintf(buf, "Out of memory\n");
3998 /* Push back cpu slabs */
3999 flush_all(s);
4001 for_each_node_state(node, N_NORMAL_MEMORY) {
4002 struct kmem_cache_node *n = get_node(s, node);
4003 unsigned long flags;
4004 struct page *page;
4006 if (!atomic_long_read(&n->nr_slabs))
4007 continue;
4009 spin_lock_irqsave(&n->list_lock, flags);
4010 list_for_each_entry(page, &n->partial, lru)
4011 process_slab(&t, s, page, alloc, map);
4012 list_for_each_entry(page, &n->full, lru)
4013 process_slab(&t, s, page, alloc, map);
4014 spin_unlock_irqrestore(&n->list_lock, flags);
4017 for (i = 0; i < t.count; i++) {
4018 struct location *l = &t.loc[i];
4020 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4021 break;
4022 len += sprintf(buf + len, "%7ld ", l->count);
4024 if (l->addr)
4025 len += sprintf(buf + len, "%pS", (void *)l->addr);
4026 else
4027 len += sprintf(buf + len, "<not-available>");
4029 if (l->sum_time != l->min_time) {
4030 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4031 l->min_time,
4032 (long)div_u64(l->sum_time, l->count),
4033 l->max_time);
4034 } else
4035 len += sprintf(buf + len, " age=%ld",
4036 l->min_time);
4038 if (l->min_pid != l->max_pid)
4039 len += sprintf(buf + len, " pid=%ld-%ld",
4040 l->min_pid, l->max_pid);
4041 else
4042 len += sprintf(buf + len, " pid=%ld",
4043 l->min_pid);
4045 if (num_online_cpus() > 1 &&
4046 !cpumask_empty(to_cpumask(l->cpus)) &&
4047 len < PAGE_SIZE - 60) {
4048 len += sprintf(buf + len, " cpus=");
4049 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4050 to_cpumask(l->cpus));
4053 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4054 len < PAGE_SIZE - 60) {
4055 len += sprintf(buf + len, " nodes=");
4056 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4057 l->nodes);
4060 len += sprintf(buf + len, "\n");
4063 free_loc_track(&t);
4064 kfree(map);
4065 if (!t.count)
4066 len += sprintf(buf, "No data\n");
4067 return len;
4069 #endif
4071 #ifdef SLUB_RESILIENCY_TEST
4072 static void resiliency_test(void)
4074 u8 *p;
4076 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4078 printk(KERN_ERR "SLUB resiliency testing\n");
4079 printk(KERN_ERR "-----------------------\n");
4080 printk(KERN_ERR "A. Corruption after allocation\n");
4082 p = kzalloc(16, GFP_KERNEL);
4083 p[16] = 0x12;
4084 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4085 " 0x12->0x%p\n\n", p + 16);
4087 validate_slab_cache(kmalloc_caches[4]);
4089 /* Hmmm... The next two are dangerous */
4090 p = kzalloc(32, GFP_KERNEL);
4091 p[32 + sizeof(void *)] = 0x34;
4092 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4093 " 0x34 -> -0x%p\n", p);
4094 printk(KERN_ERR
4095 "If allocated object is overwritten then not detectable\n\n");
4097 validate_slab_cache(kmalloc_caches[5]);
4098 p = kzalloc(64, GFP_KERNEL);
4099 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4100 *p = 0x56;
4101 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4103 printk(KERN_ERR
4104 "If allocated object is overwritten then not detectable\n\n");
4105 validate_slab_cache(kmalloc_caches[6]);
4107 printk(KERN_ERR "\nB. Corruption after free\n");
4108 p = kzalloc(128, GFP_KERNEL);
4109 kfree(p);
4110 *p = 0x78;
4111 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4112 validate_slab_cache(kmalloc_caches[7]);
4114 p = kzalloc(256, GFP_KERNEL);
4115 kfree(p);
4116 p[50] = 0x9a;
4117 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4119 validate_slab_cache(kmalloc_caches[8]);
4121 p = kzalloc(512, GFP_KERNEL);
4122 kfree(p);
4123 p[512] = 0xab;
4124 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4125 validate_slab_cache(kmalloc_caches[9]);
4127 #else
4128 #ifdef CONFIG_SYSFS
4129 static void resiliency_test(void) {};
4130 #endif
4131 #endif
4133 #ifdef CONFIG_SYSFS
4134 enum slab_stat_type {
4135 SL_ALL, /* All slabs */
4136 SL_PARTIAL, /* Only partially allocated slabs */
4137 SL_CPU, /* Only slabs used for cpu caches */
4138 SL_OBJECTS, /* Determine allocated objects not slabs */
4139 SL_TOTAL /* Determine object capacity not slabs */
4142 #define SO_ALL (1 << SL_ALL)
4143 #define SO_PARTIAL (1 << SL_PARTIAL)
4144 #define SO_CPU (1 << SL_CPU)
4145 #define SO_OBJECTS (1 << SL_OBJECTS)
4146 #define SO_TOTAL (1 << SL_TOTAL)
4148 static ssize_t show_slab_objects(struct kmem_cache *s,
4149 char *buf, unsigned long flags)
4151 unsigned long total = 0;
4152 int node;
4153 int x;
4154 unsigned long *nodes;
4155 unsigned long *per_cpu;
4157 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4158 if (!nodes)
4159 return -ENOMEM;
4160 per_cpu = nodes + nr_node_ids;
4162 if (flags & SO_CPU) {
4163 int cpu;
4165 for_each_possible_cpu(cpu) {
4166 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4168 if (!c || c->node < 0)
4169 continue;
4171 if (c->page) {
4172 if (flags & SO_TOTAL)
4173 x = c->page->objects;
4174 else if (flags & SO_OBJECTS)
4175 x = c->page->inuse;
4176 else
4177 x = 1;
4179 total += x;
4180 nodes[c->node] += x;
4182 per_cpu[c->node]++;
4186 lock_memory_hotplug();
4187 #ifdef CONFIG_SLUB_DEBUG
4188 if (flags & SO_ALL) {
4189 for_each_node_state(node, N_NORMAL_MEMORY) {
4190 struct kmem_cache_node *n = get_node(s, node);
4192 if (flags & SO_TOTAL)
4193 x = atomic_long_read(&n->total_objects);
4194 else if (flags & SO_OBJECTS)
4195 x = atomic_long_read(&n->total_objects) -
4196 count_partial(n, count_free);
4198 else
4199 x = atomic_long_read(&n->nr_slabs);
4200 total += x;
4201 nodes[node] += x;
4204 } else
4205 #endif
4206 if (flags & SO_PARTIAL) {
4207 for_each_node_state(node, N_NORMAL_MEMORY) {
4208 struct kmem_cache_node *n = get_node(s, node);
4210 if (flags & SO_TOTAL)
4211 x = count_partial(n, count_total);
4212 else if (flags & SO_OBJECTS)
4213 x = count_partial(n, count_inuse);
4214 else
4215 x = n->nr_partial;
4216 total += x;
4217 nodes[node] += x;
4220 x = sprintf(buf, "%lu", total);
4221 #ifdef CONFIG_NUMA
4222 for_each_node_state(node, N_NORMAL_MEMORY)
4223 if (nodes[node])
4224 x += sprintf(buf + x, " N%d=%lu",
4225 node, nodes[node]);
4226 #endif
4227 unlock_memory_hotplug();
4228 kfree(nodes);
4229 return x + sprintf(buf + x, "\n");
4232 #ifdef CONFIG_SLUB_DEBUG
4233 static int any_slab_objects(struct kmem_cache *s)
4235 int node;
4237 for_each_online_node(node) {
4238 struct kmem_cache_node *n = get_node(s, node);
4240 if (!n)
4241 continue;
4243 if (atomic_long_read(&n->total_objects))
4244 return 1;
4246 return 0;
4248 #endif
4250 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4251 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4253 struct slab_attribute {
4254 struct attribute attr;
4255 ssize_t (*show)(struct kmem_cache *s, char *buf);
4256 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4259 #define SLAB_ATTR_RO(_name) \
4260 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4262 #define SLAB_ATTR(_name) \
4263 static struct slab_attribute _name##_attr = \
4264 __ATTR(_name, 0644, _name##_show, _name##_store)
4266 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4268 return sprintf(buf, "%d\n", s->size);
4270 SLAB_ATTR_RO(slab_size);
4272 static ssize_t align_show(struct kmem_cache *s, char *buf)
4274 return sprintf(buf, "%d\n", s->align);
4276 SLAB_ATTR_RO(align);
4278 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4280 return sprintf(buf, "%d\n", s->objsize);
4282 SLAB_ATTR_RO(object_size);
4284 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4286 return sprintf(buf, "%d\n", oo_objects(s->oo));
4288 SLAB_ATTR_RO(objs_per_slab);
4290 static ssize_t order_store(struct kmem_cache *s,
4291 const char *buf, size_t length)
4293 unsigned long order;
4294 int err;
4296 err = strict_strtoul(buf, 10, &order);
4297 if (err)
4298 return err;
4300 if (order > slub_max_order || order < slub_min_order)
4301 return -EINVAL;
4303 calculate_sizes(s, order);
4304 return length;
4307 static ssize_t order_show(struct kmem_cache *s, char *buf)
4309 return sprintf(buf, "%d\n", oo_order(s->oo));
4311 SLAB_ATTR(order);
4313 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4315 return sprintf(buf, "%lu\n", s->min_partial);
4318 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4319 size_t length)
4321 unsigned long min;
4322 int err;
4324 err = strict_strtoul(buf, 10, &min);
4325 if (err)
4326 return err;
4328 set_min_partial(s, min);
4329 return length;
4331 SLAB_ATTR(min_partial);
4333 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4335 if (!s->ctor)
4336 return 0;
4337 return sprintf(buf, "%pS\n", s->ctor);
4339 SLAB_ATTR_RO(ctor);
4341 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4343 return sprintf(buf, "%d\n", s->refcount - 1);
4345 SLAB_ATTR_RO(aliases);
4347 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4349 return show_slab_objects(s, buf, SO_PARTIAL);
4351 SLAB_ATTR_RO(partial);
4353 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4355 return show_slab_objects(s, buf, SO_CPU);
4357 SLAB_ATTR_RO(cpu_slabs);
4359 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4361 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4363 SLAB_ATTR_RO(objects);
4365 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4367 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4369 SLAB_ATTR_RO(objects_partial);
4371 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4373 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4376 static ssize_t reclaim_account_store(struct kmem_cache *s,
4377 const char *buf, size_t length)
4379 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4380 if (buf[0] == '1')
4381 s->flags |= SLAB_RECLAIM_ACCOUNT;
4382 return length;
4384 SLAB_ATTR(reclaim_account);
4386 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4388 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4390 SLAB_ATTR_RO(hwcache_align);
4392 #ifdef CONFIG_ZONE_DMA
4393 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4395 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4397 SLAB_ATTR_RO(cache_dma);
4398 #endif
4400 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4402 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4404 SLAB_ATTR_RO(destroy_by_rcu);
4406 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4408 return sprintf(buf, "%d\n", s->reserved);
4410 SLAB_ATTR_RO(reserved);
4412 #ifdef CONFIG_SLUB_DEBUG
4413 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4415 return show_slab_objects(s, buf, SO_ALL);
4417 SLAB_ATTR_RO(slabs);
4419 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4421 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4423 SLAB_ATTR_RO(total_objects);
4425 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4427 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4430 static ssize_t sanity_checks_store(struct kmem_cache *s,
4431 const char *buf, size_t length)
4433 s->flags &= ~SLAB_DEBUG_FREE;
4434 if (buf[0] == '1') {
4435 s->flags &= ~__CMPXCHG_DOUBLE;
4436 s->flags |= SLAB_DEBUG_FREE;
4438 return length;
4440 SLAB_ATTR(sanity_checks);
4442 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4444 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4447 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4448 size_t length)
4450 s->flags &= ~SLAB_TRACE;
4451 if (buf[0] == '1') {
4452 s->flags &= ~__CMPXCHG_DOUBLE;
4453 s->flags |= SLAB_TRACE;
4455 return length;
4457 SLAB_ATTR(trace);
4459 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4461 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4464 static ssize_t red_zone_store(struct kmem_cache *s,
4465 const char *buf, size_t length)
4467 if (any_slab_objects(s))
4468 return -EBUSY;
4470 s->flags &= ~SLAB_RED_ZONE;
4471 if (buf[0] == '1') {
4472 s->flags &= ~__CMPXCHG_DOUBLE;
4473 s->flags |= SLAB_RED_ZONE;
4475 calculate_sizes(s, -1);
4476 return length;
4478 SLAB_ATTR(red_zone);
4480 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4482 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4485 static ssize_t poison_store(struct kmem_cache *s,
4486 const char *buf, size_t length)
4488 if (any_slab_objects(s))
4489 return -EBUSY;
4491 s->flags &= ~SLAB_POISON;
4492 if (buf[0] == '1') {
4493 s->flags &= ~__CMPXCHG_DOUBLE;
4494 s->flags |= SLAB_POISON;
4496 calculate_sizes(s, -1);
4497 return length;
4499 SLAB_ATTR(poison);
4501 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4503 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4506 static ssize_t store_user_store(struct kmem_cache *s,
4507 const char *buf, size_t length)
4509 if (any_slab_objects(s))
4510 return -EBUSY;
4512 s->flags &= ~SLAB_STORE_USER;
4513 if (buf[0] == '1') {
4514 s->flags &= ~__CMPXCHG_DOUBLE;
4515 s->flags |= SLAB_STORE_USER;
4517 calculate_sizes(s, -1);
4518 return length;
4520 SLAB_ATTR(store_user);
4522 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4524 return 0;
4527 static ssize_t validate_store(struct kmem_cache *s,
4528 const char *buf, size_t length)
4530 int ret = -EINVAL;
4532 if (buf[0] == '1') {
4533 ret = validate_slab_cache(s);
4534 if (ret >= 0)
4535 ret = length;
4537 return ret;
4539 SLAB_ATTR(validate);
4541 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4543 if (!(s->flags & SLAB_STORE_USER))
4544 return -ENOSYS;
4545 return list_locations(s, buf, TRACK_ALLOC);
4547 SLAB_ATTR_RO(alloc_calls);
4549 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4551 if (!(s->flags & SLAB_STORE_USER))
4552 return -ENOSYS;
4553 return list_locations(s, buf, TRACK_FREE);
4555 SLAB_ATTR_RO(free_calls);
4556 #endif /* CONFIG_SLUB_DEBUG */
4558 #ifdef CONFIG_FAILSLAB
4559 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4561 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4564 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4565 size_t length)
4567 s->flags &= ~SLAB_FAILSLAB;
4568 if (buf[0] == '1')
4569 s->flags |= SLAB_FAILSLAB;
4570 return length;
4572 SLAB_ATTR(failslab);
4573 #endif
4575 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4577 return 0;
4580 static ssize_t shrink_store(struct kmem_cache *s,
4581 const char *buf, size_t length)
4583 if (buf[0] == '1') {
4584 int rc = kmem_cache_shrink(s);
4586 if (rc)
4587 return rc;
4588 } else
4589 return -EINVAL;
4590 return length;
4592 SLAB_ATTR(shrink);
4594 #ifdef CONFIG_NUMA
4595 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4597 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4600 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4601 const char *buf, size_t length)
4603 unsigned long ratio;
4604 int err;
4606 err = strict_strtoul(buf, 10, &ratio);
4607 if (err)
4608 return err;
4610 if (ratio <= 100)
4611 s->remote_node_defrag_ratio = ratio * 10;
4613 return length;
4615 SLAB_ATTR(remote_node_defrag_ratio);
4616 #endif
4618 #ifdef CONFIG_SLUB_STATS
4619 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4621 unsigned long sum = 0;
4622 int cpu;
4623 int len;
4624 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4626 if (!data)
4627 return -ENOMEM;
4629 for_each_online_cpu(cpu) {
4630 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4632 data[cpu] = x;
4633 sum += x;
4636 len = sprintf(buf, "%lu", sum);
4638 #ifdef CONFIG_SMP
4639 for_each_online_cpu(cpu) {
4640 if (data[cpu] && len < PAGE_SIZE - 20)
4641 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4643 #endif
4644 kfree(data);
4645 return len + sprintf(buf + len, "\n");
4648 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4650 int cpu;
4652 for_each_online_cpu(cpu)
4653 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4656 #define STAT_ATTR(si, text) \
4657 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4659 return show_stat(s, buf, si); \
4661 static ssize_t text##_store(struct kmem_cache *s, \
4662 const char *buf, size_t length) \
4664 if (buf[0] != '0') \
4665 return -EINVAL; \
4666 clear_stat(s, si); \
4667 return length; \
4669 SLAB_ATTR(text); \
4671 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4672 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4673 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4674 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4675 STAT_ATTR(FREE_FROZEN, free_frozen);
4676 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4677 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4678 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4679 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4680 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4681 STAT_ATTR(FREE_SLAB, free_slab);
4682 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4683 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4684 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4685 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4686 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4687 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4688 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4689 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4690 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4691 #endif
4693 static struct attribute *slab_attrs[] = {
4694 &slab_size_attr.attr,
4695 &object_size_attr.attr,
4696 &objs_per_slab_attr.attr,
4697 &order_attr.attr,
4698 &min_partial_attr.attr,
4699 &objects_attr.attr,
4700 &objects_partial_attr.attr,
4701 &partial_attr.attr,
4702 &cpu_slabs_attr.attr,
4703 &ctor_attr.attr,
4704 &aliases_attr.attr,
4705 &align_attr.attr,
4706 &hwcache_align_attr.attr,
4707 &reclaim_account_attr.attr,
4708 &destroy_by_rcu_attr.attr,
4709 &shrink_attr.attr,
4710 &reserved_attr.attr,
4711 #ifdef CONFIG_SLUB_DEBUG
4712 &total_objects_attr.attr,
4713 &slabs_attr.attr,
4714 &sanity_checks_attr.attr,
4715 &trace_attr.attr,
4716 &red_zone_attr.attr,
4717 &poison_attr.attr,
4718 &store_user_attr.attr,
4719 &validate_attr.attr,
4720 &alloc_calls_attr.attr,
4721 &free_calls_attr.attr,
4722 #endif
4723 #ifdef CONFIG_ZONE_DMA
4724 &cache_dma_attr.attr,
4725 #endif
4726 #ifdef CONFIG_NUMA
4727 &remote_node_defrag_ratio_attr.attr,
4728 #endif
4729 #ifdef CONFIG_SLUB_STATS
4730 &alloc_fastpath_attr.attr,
4731 &alloc_slowpath_attr.attr,
4732 &free_fastpath_attr.attr,
4733 &free_slowpath_attr.attr,
4734 &free_frozen_attr.attr,
4735 &free_add_partial_attr.attr,
4736 &free_remove_partial_attr.attr,
4737 &alloc_from_partial_attr.attr,
4738 &alloc_slab_attr.attr,
4739 &alloc_refill_attr.attr,
4740 &free_slab_attr.attr,
4741 &cpuslab_flush_attr.attr,
4742 &deactivate_full_attr.attr,
4743 &deactivate_empty_attr.attr,
4744 &deactivate_to_head_attr.attr,
4745 &deactivate_to_tail_attr.attr,
4746 &deactivate_remote_frees_attr.attr,
4747 &order_fallback_attr.attr,
4748 &cmpxchg_double_fail_attr.attr,
4749 &cmpxchg_double_cpu_fail_attr.attr,
4750 #endif
4751 #ifdef CONFIG_FAILSLAB
4752 &failslab_attr.attr,
4753 #endif
4755 NULL
4758 static struct attribute_group slab_attr_group = {
4759 .attrs = slab_attrs,
4762 static ssize_t slab_attr_show(struct kobject *kobj,
4763 struct attribute *attr,
4764 char *buf)
4766 struct slab_attribute *attribute;
4767 struct kmem_cache *s;
4768 int err;
4770 attribute = to_slab_attr(attr);
4771 s = to_slab(kobj);
4773 if (!attribute->show)
4774 return -EIO;
4776 err = attribute->show(s, buf);
4778 return err;
4781 static ssize_t slab_attr_store(struct kobject *kobj,
4782 struct attribute *attr,
4783 const char *buf, size_t len)
4785 struct slab_attribute *attribute;
4786 struct kmem_cache *s;
4787 int err;
4789 attribute = to_slab_attr(attr);
4790 s = to_slab(kobj);
4792 if (!attribute->store)
4793 return -EIO;
4795 err = attribute->store(s, buf, len);
4797 return err;
4800 static void kmem_cache_release(struct kobject *kobj)
4802 struct kmem_cache *s = to_slab(kobj);
4804 kfree(s->name);
4805 kfree(s);
4808 static const struct sysfs_ops slab_sysfs_ops = {
4809 .show = slab_attr_show,
4810 .store = slab_attr_store,
4813 static struct kobj_type slab_ktype = {
4814 .sysfs_ops = &slab_sysfs_ops,
4815 .release = kmem_cache_release
4818 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4820 struct kobj_type *ktype = get_ktype(kobj);
4822 if (ktype == &slab_ktype)
4823 return 1;
4824 return 0;
4827 static const struct kset_uevent_ops slab_uevent_ops = {
4828 .filter = uevent_filter,
4831 static struct kset *slab_kset;
4833 #define ID_STR_LENGTH 64
4835 /* Create a unique string id for a slab cache:
4837 * Format :[flags-]size
4839 static char *create_unique_id(struct kmem_cache *s)
4841 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4842 char *p = name;
4844 BUG_ON(!name);
4846 *p++ = ':';
4848 * First flags affecting slabcache operations. We will only
4849 * get here for aliasable slabs so we do not need to support
4850 * too many flags. The flags here must cover all flags that
4851 * are matched during merging to guarantee that the id is
4852 * unique.
4854 if (s->flags & SLAB_CACHE_DMA)
4855 *p++ = 'd';
4856 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4857 *p++ = 'a';
4858 if (s->flags & SLAB_DEBUG_FREE)
4859 *p++ = 'F';
4860 if (!(s->flags & SLAB_NOTRACK))
4861 *p++ = 't';
4862 if (p != name + 1)
4863 *p++ = '-';
4864 p += sprintf(p, "%07d", s->size);
4865 BUG_ON(p > name + ID_STR_LENGTH - 1);
4866 return name;
4869 static int sysfs_slab_add(struct kmem_cache *s)
4871 int err;
4872 const char *name;
4873 int unmergeable;
4875 if (slab_state < SYSFS)
4876 /* Defer until later */
4877 return 0;
4879 unmergeable = slab_unmergeable(s);
4880 if (unmergeable) {
4882 * Slabcache can never be merged so we can use the name proper.
4883 * This is typically the case for debug situations. In that
4884 * case we can catch duplicate names easily.
4886 sysfs_remove_link(&slab_kset->kobj, s->name);
4887 name = s->name;
4888 } else {
4890 * Create a unique name for the slab as a target
4891 * for the symlinks.
4893 name = create_unique_id(s);
4896 s->kobj.kset = slab_kset;
4897 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4898 if (err) {
4899 kobject_put(&s->kobj);
4900 return err;
4903 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4904 if (err) {
4905 kobject_del(&s->kobj);
4906 kobject_put(&s->kobj);
4907 return err;
4909 kobject_uevent(&s->kobj, KOBJ_ADD);
4910 if (!unmergeable) {
4911 /* Setup first alias */
4912 sysfs_slab_alias(s, s->name);
4913 kfree(name);
4915 return 0;
4918 static void sysfs_slab_remove(struct kmem_cache *s)
4920 if (slab_state < SYSFS)
4922 * Sysfs has not been setup yet so no need to remove the
4923 * cache from sysfs.
4925 return;
4927 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4928 kobject_del(&s->kobj);
4929 kobject_put(&s->kobj);
4933 * Need to buffer aliases during bootup until sysfs becomes
4934 * available lest we lose that information.
4936 struct saved_alias {
4937 struct kmem_cache *s;
4938 const char *name;
4939 struct saved_alias *next;
4942 static struct saved_alias *alias_list;
4944 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4946 struct saved_alias *al;
4948 if (slab_state == SYSFS) {
4950 * If we have a leftover link then remove it.
4952 sysfs_remove_link(&slab_kset->kobj, name);
4953 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4956 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4957 if (!al)
4958 return -ENOMEM;
4960 al->s = s;
4961 al->name = name;
4962 al->next = alias_list;
4963 alias_list = al;
4964 return 0;
4967 static int __init slab_sysfs_init(void)
4969 struct kmem_cache *s;
4970 int err;
4972 down_write(&slub_lock);
4974 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4975 if (!slab_kset) {
4976 up_write(&slub_lock);
4977 printk(KERN_ERR "Cannot register slab subsystem.\n");
4978 return -ENOSYS;
4981 slab_state = SYSFS;
4983 list_for_each_entry(s, &slab_caches, list) {
4984 err = sysfs_slab_add(s);
4985 if (err)
4986 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4987 " to sysfs\n", s->name);
4990 while (alias_list) {
4991 struct saved_alias *al = alias_list;
4993 alias_list = alias_list->next;
4994 err = sysfs_slab_alias(al->s, al->name);
4995 if (err)
4996 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4997 " %s to sysfs\n", s->name);
4998 kfree(al);
5001 up_write(&slub_lock);
5002 resiliency_test();
5003 return 0;
5006 __initcall(slab_sysfs_init);
5007 #endif /* CONFIG_SYSFS */
5010 * The /proc/slabinfo ABI
5012 #ifdef CONFIG_SLABINFO
5013 static void print_slabinfo_header(struct seq_file *m)
5015 seq_puts(m, "slabinfo - version: 2.1\n");
5016 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5017 "<objperslab> <pagesperslab>");
5018 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5019 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5020 seq_putc(m, '\n');
5023 static void *s_start(struct seq_file *m, loff_t *pos)
5025 loff_t n = *pos;
5027 down_read(&slub_lock);
5028 if (!n)
5029 print_slabinfo_header(m);
5031 return seq_list_start(&slab_caches, *pos);
5034 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5036 return seq_list_next(p, &slab_caches, pos);
5039 static void s_stop(struct seq_file *m, void *p)
5041 up_read(&slub_lock);
5044 static int s_show(struct seq_file *m, void *p)
5046 unsigned long nr_partials = 0;
5047 unsigned long nr_slabs = 0;
5048 unsigned long nr_inuse = 0;
5049 unsigned long nr_objs = 0;
5050 unsigned long nr_free = 0;
5051 struct kmem_cache *s;
5052 int node;
5054 s = list_entry(p, struct kmem_cache, list);
5056 for_each_online_node(node) {
5057 struct kmem_cache_node *n = get_node(s, node);
5059 if (!n)
5060 continue;
5062 nr_partials += n->nr_partial;
5063 nr_slabs += atomic_long_read(&n->nr_slabs);
5064 nr_objs += atomic_long_read(&n->total_objects);
5065 nr_free += count_partial(n, count_free);
5068 nr_inuse = nr_objs - nr_free;
5070 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5071 nr_objs, s->size, oo_objects(s->oo),
5072 (1 << oo_order(s->oo)));
5073 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5074 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5075 0UL);
5076 seq_putc(m, '\n');
5077 return 0;
5080 static const struct seq_operations slabinfo_op = {
5081 .start = s_start,
5082 .next = s_next,
5083 .stop = s_stop,
5084 .show = s_show,
5087 static int slabinfo_open(struct inode *inode, struct file *file)
5089 return seq_open(file, &slabinfo_op);
5092 static const struct file_operations proc_slabinfo_operations = {
5093 .open = slabinfo_open,
5094 .read = seq_read,
5095 .llseek = seq_lseek,
5096 .release = seq_release,
5099 static int __init slab_proc_init(void)
5101 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5102 return 0;
5104 module_init(slab_proc_init);
5105 #endif /* CONFIG_SLABINFO */