cciss: Don't check h->busy_initializing in cciss_open().
[linux-2.6/next.git] / fs / btrfs / extent_io.c
blob0cb88f8146ea85efa5bc944c9d95995a3d0ad772
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
23 static LIST_HEAD(buffers);
24 static LIST_HEAD(states);
26 #define LEAK_DEBUG 0
27 #if LEAK_DEBUG
28 static DEFINE_SPINLOCK(leak_lock);
29 #endif
31 #define BUFFER_LRU_MAX 64
33 struct tree_entry {
34 u64 start;
35 u64 end;
36 struct rb_node rb_node;
39 struct extent_page_data {
40 struct bio *bio;
41 struct extent_io_tree *tree;
42 get_extent_t *get_extent;
44 /* tells writepage not to lock the state bits for this range
45 * it still does the unlocking
47 unsigned int extent_locked:1;
49 /* tells the submit_bio code to use a WRITE_SYNC */
50 unsigned int sync_io:1;
53 int __init extent_io_init(void)
55 extent_state_cache = kmem_cache_create("extent_state",
56 sizeof(struct extent_state), 0,
57 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
58 if (!extent_state_cache)
59 return -ENOMEM;
61 extent_buffer_cache = kmem_cache_create("extent_buffers",
62 sizeof(struct extent_buffer), 0,
63 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
64 if (!extent_buffer_cache)
65 goto free_state_cache;
66 return 0;
68 free_state_cache:
69 kmem_cache_destroy(extent_state_cache);
70 return -ENOMEM;
73 void extent_io_exit(void)
75 struct extent_state *state;
76 struct extent_buffer *eb;
78 while (!list_empty(&states)) {
79 state = list_entry(states.next, struct extent_state, leak_list);
80 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
81 "state %lu in tree %p refs %d\n",
82 (unsigned long long)state->start,
83 (unsigned long long)state->end,
84 state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
93 "refs %d\n", (unsigned long long)eb->start,
94 eb->len, atomic_read(&eb->refs));
95 list_del(&eb->leak_list);
96 kmem_cache_free(extent_buffer_cache, eb);
98 if (extent_state_cache)
99 kmem_cache_destroy(extent_state_cache);
100 if (extent_buffer_cache)
101 kmem_cache_destroy(extent_buffer_cache);
104 void extent_io_tree_init(struct extent_io_tree *tree,
105 struct address_space *mapping, gfp_t mask)
107 tree->state.rb_node = NULL;
108 tree->buffer.rb_node = NULL;
109 tree->ops = NULL;
110 tree->dirty_bytes = 0;
111 spin_lock_init(&tree->lock);
112 spin_lock_init(&tree->buffer_lock);
113 tree->mapping = mapping;
116 static struct extent_state *alloc_extent_state(gfp_t mask)
118 struct extent_state *state;
119 #if LEAK_DEBUG
120 unsigned long flags;
121 #endif
123 state = kmem_cache_alloc(extent_state_cache, mask);
124 if (!state)
125 return state;
126 state->state = 0;
127 state->private = 0;
128 state->tree = NULL;
129 #if LEAK_DEBUG
130 spin_lock_irqsave(&leak_lock, flags);
131 list_add(&state->leak_list, &states);
132 spin_unlock_irqrestore(&leak_lock, flags);
133 #endif
134 atomic_set(&state->refs, 1);
135 init_waitqueue_head(&state->wq);
136 return state;
139 static void free_extent_state(struct extent_state *state)
141 if (!state)
142 return;
143 if (atomic_dec_and_test(&state->refs)) {
144 #if LEAK_DEBUG
145 unsigned long flags;
146 #endif
147 WARN_ON(state->tree);
148 #if LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 kmem_cache_free(extent_state_cache, state);
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158 struct rb_node *node)
160 struct rb_node **p = &root->rb_node;
161 struct rb_node *parent = NULL;
162 struct tree_entry *entry;
164 while (*p) {
165 parent = *p;
166 entry = rb_entry(parent, struct tree_entry, rb_node);
168 if (offset < entry->start)
169 p = &(*p)->rb_left;
170 else if (offset > entry->end)
171 p = &(*p)->rb_right;
172 else
173 return parent;
176 entry = rb_entry(node, struct tree_entry, rb_node);
177 rb_link_node(node, parent, p);
178 rb_insert_color(node, root);
179 return NULL;
182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
183 struct rb_node **prev_ret,
184 struct rb_node **next_ret)
186 struct rb_root *root = &tree->state;
187 struct rb_node *n = root->rb_node;
188 struct rb_node *prev = NULL;
189 struct rb_node *orig_prev = NULL;
190 struct tree_entry *entry;
191 struct tree_entry *prev_entry = NULL;
193 while (n) {
194 entry = rb_entry(n, struct tree_entry, rb_node);
195 prev = n;
196 prev_entry = entry;
198 if (offset < entry->start)
199 n = n->rb_left;
200 else if (offset > entry->end)
201 n = n->rb_right;
202 else
203 return n;
206 if (prev_ret) {
207 orig_prev = prev;
208 while (prev && offset > prev_entry->end) {
209 prev = rb_next(prev);
210 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
212 *prev_ret = prev;
213 prev = orig_prev;
216 if (next_ret) {
217 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218 while (prev && offset < prev_entry->start) {
219 prev = rb_prev(prev);
220 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
222 *next_ret = prev;
224 return NULL;
227 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
228 u64 offset)
230 struct rb_node *prev = NULL;
231 struct rb_node *ret;
233 ret = __etree_search(tree, offset, &prev, NULL);
234 if (!ret)
235 return prev;
236 return ret;
239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
240 u64 offset, struct rb_node *node)
242 struct rb_root *root = &tree->buffer;
243 struct rb_node **p = &root->rb_node;
244 struct rb_node *parent = NULL;
245 struct extent_buffer *eb;
247 while (*p) {
248 parent = *p;
249 eb = rb_entry(parent, struct extent_buffer, rb_node);
251 if (offset < eb->start)
252 p = &(*p)->rb_left;
253 else if (offset > eb->start)
254 p = &(*p)->rb_right;
255 else
256 return eb;
259 rb_link_node(node, parent, p);
260 rb_insert_color(node, root);
261 return NULL;
264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
265 u64 offset)
267 struct rb_root *root = &tree->buffer;
268 struct rb_node *n = root->rb_node;
269 struct extent_buffer *eb;
271 while (n) {
272 eb = rb_entry(n, struct extent_buffer, rb_node);
273 if (offset < eb->start)
274 n = n->rb_left;
275 else if (offset > eb->start)
276 n = n->rb_right;
277 else
278 return eb;
280 return NULL;
284 * utility function to look for merge candidates inside a given range.
285 * Any extents with matching state are merged together into a single
286 * extent in the tree. Extents with EXTENT_IO in their state field
287 * are not merged because the end_io handlers need to be able to do
288 * operations on them without sleeping (or doing allocations/splits).
290 * This should be called with the tree lock held.
292 static int merge_state(struct extent_io_tree *tree,
293 struct extent_state *state)
295 struct extent_state *other;
296 struct rb_node *other_node;
298 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
299 return 0;
301 other_node = rb_prev(&state->rb_node);
302 if (other_node) {
303 other = rb_entry(other_node, struct extent_state, rb_node);
304 if (other->end == state->start - 1 &&
305 other->state == state->state) {
306 state->start = other->start;
307 other->tree = NULL;
308 rb_erase(&other->rb_node, &tree->state);
309 free_extent_state(other);
312 other_node = rb_next(&state->rb_node);
313 if (other_node) {
314 other = rb_entry(other_node, struct extent_state, rb_node);
315 if (other->start == state->end + 1 &&
316 other->state == state->state) {
317 other->start = state->start;
318 state->tree = NULL;
319 rb_erase(&state->rb_node, &tree->state);
320 free_extent_state(state);
323 return 0;
326 static void set_state_cb(struct extent_io_tree *tree,
327 struct extent_state *state,
328 unsigned long bits)
330 if (tree->ops && tree->ops->set_bit_hook) {
331 tree->ops->set_bit_hook(tree->mapping->host, state->start,
332 state->end, state->state, bits);
336 static void clear_state_cb(struct extent_io_tree *tree,
337 struct extent_state *state,
338 unsigned long bits)
340 if (tree->ops && tree->ops->clear_bit_hook) {
341 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
342 state->end, state->state, bits);
347 * insert an extent_state struct into the tree. 'bits' are set on the
348 * struct before it is inserted.
350 * This may return -EEXIST if the extent is already there, in which case the
351 * state struct is freed.
353 * The tree lock is not taken internally. This is a utility function and
354 * probably isn't what you want to call (see set/clear_extent_bit).
356 static int insert_state(struct extent_io_tree *tree,
357 struct extent_state *state, u64 start, u64 end,
358 int bits)
360 struct rb_node *node;
362 if (end < start) {
363 printk(KERN_ERR "btrfs end < start %llu %llu\n",
364 (unsigned long long)end,
365 (unsigned long long)start);
366 WARN_ON(1);
368 if (bits & EXTENT_DIRTY)
369 tree->dirty_bytes += end - start + 1;
370 state->start = start;
371 state->end = end;
372 set_state_cb(tree, state, bits);
373 state->state |= bits;
374 node = tree_insert(&tree->state, end, &state->rb_node);
375 if (node) {
376 struct extent_state *found;
377 found = rb_entry(node, struct extent_state, rb_node);
378 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
379 "%llu %llu\n", (unsigned long long)found->start,
380 (unsigned long long)found->end,
381 (unsigned long long)start, (unsigned long long)end);
382 free_extent_state(state);
383 return -EEXIST;
385 state->tree = tree;
386 merge_state(tree, state);
387 return 0;
391 * split a given extent state struct in two, inserting the preallocated
392 * struct 'prealloc' as the newly created second half. 'split' indicates an
393 * offset inside 'orig' where it should be split.
395 * Before calling,
396 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
397 * are two extent state structs in the tree:
398 * prealloc: [orig->start, split - 1]
399 * orig: [ split, orig->end ]
401 * The tree locks are not taken by this function. They need to be held
402 * by the caller.
404 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
405 struct extent_state *prealloc, u64 split)
407 struct rb_node *node;
408 prealloc->start = orig->start;
409 prealloc->end = split - 1;
410 prealloc->state = orig->state;
411 orig->start = split;
413 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
414 if (node) {
415 free_extent_state(prealloc);
416 return -EEXIST;
418 prealloc->tree = tree;
419 return 0;
423 * utility function to clear some bits in an extent state struct.
424 * it will optionally wake up any one waiting on this state (wake == 1), or
425 * forcibly remove the state from the tree (delete == 1).
427 * If no bits are set on the state struct after clearing things, the
428 * struct is freed and removed from the tree
430 static int clear_state_bit(struct extent_io_tree *tree,
431 struct extent_state *state, int bits, int wake,
432 int delete)
434 int ret = state->state & bits;
436 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
437 u64 range = state->end - state->start + 1;
438 WARN_ON(range > tree->dirty_bytes);
439 tree->dirty_bytes -= range;
441 clear_state_cb(tree, state, bits);
442 state->state &= ~bits;
443 if (wake)
444 wake_up(&state->wq);
445 if (delete || state->state == 0) {
446 if (state->tree) {
447 clear_state_cb(tree, state, state->state);
448 rb_erase(&state->rb_node, &tree->state);
449 state->tree = NULL;
450 free_extent_state(state);
451 } else {
452 WARN_ON(1);
454 } else {
455 merge_state(tree, state);
457 return ret;
461 * clear some bits on a range in the tree. This may require splitting
462 * or inserting elements in the tree, so the gfp mask is used to
463 * indicate which allocations or sleeping are allowed.
465 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
466 * the given range from the tree regardless of state (ie for truncate).
468 * the range [start, end] is inclusive.
470 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
471 * bits were already set, or zero if none of the bits were already set.
473 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
474 int bits, int wake, int delete,
475 struct extent_state **cached_state,
476 gfp_t mask)
478 struct extent_state *state;
479 struct extent_state *cached;
480 struct extent_state *prealloc = NULL;
481 struct rb_node *next_node;
482 struct rb_node *node;
483 u64 last_end;
484 int err;
485 int set = 0;
487 again:
488 if (!prealloc && (mask & __GFP_WAIT)) {
489 prealloc = alloc_extent_state(mask);
490 if (!prealloc)
491 return -ENOMEM;
494 spin_lock(&tree->lock);
495 if (cached_state) {
496 cached = *cached_state;
497 *cached_state = NULL;
498 cached_state = NULL;
499 if (cached && cached->tree && cached->start == start) {
500 atomic_dec(&cached->refs);
501 state = cached;
502 goto hit_next;
504 free_extent_state(cached);
507 * this search will find the extents that end after
508 * our range starts
510 node = tree_search(tree, start);
511 if (!node)
512 goto out;
513 state = rb_entry(node, struct extent_state, rb_node);
514 hit_next:
515 if (state->start > end)
516 goto out;
517 WARN_ON(state->end < start);
518 last_end = state->end;
521 * | ---- desired range ---- |
522 * | state | or
523 * | ------------- state -------------- |
525 * We need to split the extent we found, and may flip
526 * bits on second half.
528 * If the extent we found extends past our range, we
529 * just split and search again. It'll get split again
530 * the next time though.
532 * If the extent we found is inside our range, we clear
533 * the desired bit on it.
536 if (state->start < start) {
537 if (!prealloc)
538 prealloc = alloc_extent_state(GFP_ATOMIC);
539 err = split_state(tree, state, prealloc, start);
540 BUG_ON(err == -EEXIST);
541 prealloc = NULL;
542 if (err)
543 goto out;
544 if (state->end <= end) {
545 set |= clear_state_bit(tree, state, bits,
546 wake, delete);
547 if (last_end == (u64)-1)
548 goto out;
549 start = last_end + 1;
551 goto search_again;
554 * | ---- desired range ---- |
555 * | state |
556 * We need to split the extent, and clear the bit
557 * on the first half
559 if (state->start <= end && state->end > end) {
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562 err = split_state(tree, state, prealloc, end + 1);
563 BUG_ON(err == -EEXIST);
565 if (wake)
566 wake_up(&state->wq);
568 set |= clear_state_bit(tree, prealloc, bits,
569 wake, delete);
570 prealloc = NULL;
571 goto out;
574 if (state->end < end && prealloc && !need_resched())
575 next_node = rb_next(&state->rb_node);
576 else
577 next_node = NULL;
579 set |= clear_state_bit(tree, state, bits, wake, delete);
580 if (last_end == (u64)-1)
581 goto out;
582 start = last_end + 1;
583 if (start <= end && next_node) {
584 state = rb_entry(next_node, struct extent_state,
585 rb_node);
586 if (state->start == start)
587 goto hit_next;
589 goto search_again;
591 out:
592 spin_unlock(&tree->lock);
593 if (prealloc)
594 free_extent_state(prealloc);
596 return set;
598 search_again:
599 if (start > end)
600 goto out;
601 spin_unlock(&tree->lock);
602 if (mask & __GFP_WAIT)
603 cond_resched();
604 goto again;
607 static int wait_on_state(struct extent_io_tree *tree,
608 struct extent_state *state)
609 __releases(tree->lock)
610 __acquires(tree->lock)
612 DEFINE_WAIT(wait);
613 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
614 spin_unlock(&tree->lock);
615 schedule();
616 spin_lock(&tree->lock);
617 finish_wait(&state->wq, &wait);
618 return 0;
622 * waits for one or more bits to clear on a range in the state tree.
623 * The range [start, end] is inclusive.
624 * The tree lock is taken by this function
626 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
628 struct extent_state *state;
629 struct rb_node *node;
631 spin_lock(&tree->lock);
632 again:
633 while (1) {
635 * this search will find all the extents that end after
636 * our range starts
638 node = tree_search(tree, start);
639 if (!node)
640 break;
642 state = rb_entry(node, struct extent_state, rb_node);
644 if (state->start > end)
645 goto out;
647 if (state->state & bits) {
648 start = state->start;
649 atomic_inc(&state->refs);
650 wait_on_state(tree, state);
651 free_extent_state(state);
652 goto again;
654 start = state->end + 1;
656 if (start > end)
657 break;
659 if (need_resched()) {
660 spin_unlock(&tree->lock);
661 cond_resched();
662 spin_lock(&tree->lock);
665 out:
666 spin_unlock(&tree->lock);
667 return 0;
670 static void set_state_bits(struct extent_io_tree *tree,
671 struct extent_state *state,
672 int bits)
674 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
675 u64 range = state->end - state->start + 1;
676 tree->dirty_bytes += range;
678 set_state_cb(tree, state, bits);
679 state->state |= bits;
682 static void cache_state(struct extent_state *state,
683 struct extent_state **cached_ptr)
685 if (cached_ptr && !(*cached_ptr)) {
686 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
687 *cached_ptr = state;
688 atomic_inc(&state->refs);
694 * set some bits on a range in the tree. This may require allocations or
695 * sleeping, so the gfp mask is used to indicate what is allowed.
697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
698 * part of the range already has the desired bits set. The start of the
699 * existing range is returned in failed_start in this case.
701 * [start, end] is inclusive This takes the tree lock.
704 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 int bits, int exclusive_bits, u64 *failed_start,
706 struct extent_state **cached_state,
707 gfp_t mask)
709 struct extent_state *state;
710 struct extent_state *prealloc = NULL;
711 struct rb_node *node;
712 int err = 0;
713 u64 last_start;
714 u64 last_end;
716 again:
717 if (!prealloc && (mask & __GFP_WAIT)) {
718 prealloc = alloc_extent_state(mask);
719 if (!prealloc)
720 return -ENOMEM;
723 spin_lock(&tree->lock);
724 if (cached_state && *cached_state) {
725 state = *cached_state;
726 if (state->start == start && state->tree) {
727 node = &state->rb_node;
728 goto hit_next;
732 * this search will find all the extents that end after
733 * our range starts.
735 node = tree_search(tree, start);
736 if (!node) {
737 err = insert_state(tree, prealloc, start, end, bits);
738 prealloc = NULL;
739 BUG_ON(err == -EEXIST);
740 goto out;
742 state = rb_entry(node, struct extent_state, rb_node);
743 hit_next:
744 last_start = state->start;
745 last_end = state->end;
748 * | ---- desired range ---- |
749 * | state |
751 * Just lock what we found and keep going
753 if (state->start == start && state->end <= end) {
754 struct rb_node *next_node;
755 if (state->state & exclusive_bits) {
756 *failed_start = state->start;
757 err = -EEXIST;
758 goto out;
761 set_state_bits(tree, state, bits);
762 cache_state(state, cached_state);
763 merge_state(tree, state);
764 if (last_end == (u64)-1)
765 goto out;
767 start = last_end + 1;
768 if (start < end && prealloc && !need_resched()) {
769 next_node = rb_next(node);
770 if (next_node) {
771 state = rb_entry(next_node, struct extent_state,
772 rb_node);
773 if (state->start == start)
774 goto hit_next;
777 goto search_again;
781 * | ---- desired range ---- |
782 * | state |
783 * or
784 * | ------------- state -------------- |
786 * We need to split the extent we found, and may flip bits on
787 * second half.
789 * If the extent we found extends past our
790 * range, we just split and search again. It'll get split
791 * again the next time though.
793 * If the extent we found is inside our range, we set the
794 * desired bit on it.
796 if (state->start < start) {
797 if (state->state & exclusive_bits) {
798 *failed_start = start;
799 err = -EEXIST;
800 goto out;
802 err = split_state(tree, state, prealloc, start);
803 BUG_ON(err == -EEXIST);
804 prealloc = NULL;
805 if (err)
806 goto out;
807 if (state->end <= end) {
808 set_state_bits(tree, state, bits);
809 cache_state(state, cached_state);
810 merge_state(tree, state);
811 if (last_end == (u64)-1)
812 goto out;
813 start = last_end + 1;
815 goto search_again;
818 * | ---- desired range ---- |
819 * | state | or | state |
821 * There's a hole, we need to insert something in it and
822 * ignore the extent we found.
824 if (state->start > start) {
825 u64 this_end;
826 if (end < last_start)
827 this_end = end;
828 else
829 this_end = last_start - 1;
830 err = insert_state(tree, prealloc, start, this_end,
831 bits);
832 cache_state(prealloc, cached_state);
833 prealloc = NULL;
834 BUG_ON(err == -EEXIST);
835 if (err)
836 goto out;
837 start = this_end + 1;
838 goto search_again;
841 * | ---- desired range ---- |
842 * | state |
843 * We need to split the extent, and set the bit
844 * on the first half
846 if (state->start <= end && state->end > end) {
847 if (state->state & exclusive_bits) {
848 *failed_start = start;
849 err = -EEXIST;
850 goto out;
852 err = split_state(tree, state, prealloc, end + 1);
853 BUG_ON(err == -EEXIST);
855 set_state_bits(tree, prealloc, bits);
856 cache_state(prealloc, cached_state);
857 merge_state(tree, prealloc);
858 prealloc = NULL;
859 goto out;
862 goto search_again;
864 out:
865 spin_unlock(&tree->lock);
866 if (prealloc)
867 free_extent_state(prealloc);
869 return err;
871 search_again:
872 if (start > end)
873 goto out;
874 spin_unlock(&tree->lock);
875 if (mask & __GFP_WAIT)
876 cond_resched();
877 goto again;
880 /* wrappers around set/clear extent bit */
881 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
882 gfp_t mask)
884 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
885 NULL, mask);
888 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
889 int bits, gfp_t mask)
891 return set_extent_bit(tree, start, end, bits, 0, NULL,
892 NULL, mask);
895 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
896 int bits, gfp_t mask)
898 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
901 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
902 gfp_t mask)
904 return set_extent_bit(tree, start, end,
905 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
906 0, NULL, NULL, mask);
909 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
910 gfp_t mask)
912 return clear_extent_bit(tree, start, end,
913 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
914 NULL, mask);
917 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
918 gfp_t mask)
920 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
921 NULL, mask);
924 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
925 gfp_t mask)
927 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
928 NULL, mask);
931 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
932 gfp_t mask)
934 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
935 NULL, mask);
938 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
939 u64 end, gfp_t mask)
941 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
942 NULL, mask);
945 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
947 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
951 * either insert or lock state struct between start and end use mask to tell
952 * us if waiting is desired.
954 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
955 int bits, struct extent_state **cached_state, gfp_t mask)
957 int err;
958 u64 failed_start;
959 while (1) {
960 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
961 EXTENT_LOCKED, &failed_start,
962 cached_state, mask);
963 if (err == -EEXIST && (mask & __GFP_WAIT)) {
964 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
965 start = failed_start;
966 } else {
967 break;
969 WARN_ON(start > end);
971 return err;
974 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
976 return lock_extent_bits(tree, start, end, 0, NULL, mask);
979 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
980 gfp_t mask)
982 int err;
983 u64 failed_start;
985 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
986 &failed_start, NULL, mask);
987 if (err == -EEXIST) {
988 if (failed_start > start)
989 clear_extent_bit(tree, start, failed_start - 1,
990 EXTENT_LOCKED, 1, 0, NULL, mask);
991 return 0;
993 return 1;
996 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
997 struct extent_state **cached, gfp_t mask)
999 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1000 mask);
1003 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1004 gfp_t mask)
1006 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1007 mask);
1011 * helper function to set pages and extents in the tree dirty
1013 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1015 unsigned long index = start >> PAGE_CACHE_SHIFT;
1016 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1017 struct page *page;
1019 while (index <= end_index) {
1020 page = find_get_page(tree->mapping, index);
1021 BUG_ON(!page);
1022 __set_page_dirty_nobuffers(page);
1023 page_cache_release(page);
1024 index++;
1026 return 0;
1030 * helper function to set both pages and extents in the tree writeback
1032 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1034 unsigned long index = start >> PAGE_CACHE_SHIFT;
1035 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1036 struct page *page;
1038 while (index <= end_index) {
1039 page = find_get_page(tree->mapping, index);
1040 BUG_ON(!page);
1041 set_page_writeback(page);
1042 page_cache_release(page);
1043 index++;
1045 return 0;
1049 * find the first offset in the io tree with 'bits' set. zero is
1050 * returned if we find something, and *start_ret and *end_ret are
1051 * set to reflect the state struct that was found.
1053 * If nothing was found, 1 is returned, < 0 on error
1055 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1056 u64 *start_ret, u64 *end_ret, int bits)
1058 struct rb_node *node;
1059 struct extent_state *state;
1060 int ret = 1;
1062 spin_lock(&tree->lock);
1064 * this search will find all the extents that end after
1065 * our range starts.
1067 node = tree_search(tree, start);
1068 if (!node)
1069 goto out;
1071 while (1) {
1072 state = rb_entry(node, struct extent_state, rb_node);
1073 if (state->end >= start && (state->state & bits)) {
1074 *start_ret = state->start;
1075 *end_ret = state->end;
1076 ret = 0;
1077 break;
1079 node = rb_next(node);
1080 if (!node)
1081 break;
1083 out:
1084 spin_unlock(&tree->lock);
1085 return ret;
1088 /* find the first state struct with 'bits' set after 'start', and
1089 * return it. tree->lock must be held. NULL will returned if
1090 * nothing was found after 'start'
1092 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1093 u64 start, int bits)
1095 struct rb_node *node;
1096 struct extent_state *state;
1099 * this search will find all the extents that end after
1100 * our range starts.
1102 node = tree_search(tree, start);
1103 if (!node)
1104 goto out;
1106 while (1) {
1107 state = rb_entry(node, struct extent_state, rb_node);
1108 if (state->end >= start && (state->state & bits))
1109 return state;
1111 node = rb_next(node);
1112 if (!node)
1113 break;
1115 out:
1116 return NULL;
1120 * find a contiguous range of bytes in the file marked as delalloc, not
1121 * more than 'max_bytes'. start and end are used to return the range,
1123 * 1 is returned if we find something, 0 if nothing was in the tree
1125 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1126 u64 *start, u64 *end, u64 max_bytes)
1128 struct rb_node *node;
1129 struct extent_state *state;
1130 u64 cur_start = *start;
1131 u64 found = 0;
1132 u64 total_bytes = 0;
1134 spin_lock(&tree->lock);
1137 * this search will find all the extents that end after
1138 * our range starts.
1140 node = tree_search(tree, cur_start);
1141 if (!node) {
1142 if (!found)
1143 *end = (u64)-1;
1144 goto out;
1147 while (1) {
1148 state = rb_entry(node, struct extent_state, rb_node);
1149 if (found && (state->start != cur_start ||
1150 (state->state & EXTENT_BOUNDARY))) {
1151 goto out;
1153 if (!(state->state & EXTENT_DELALLOC)) {
1154 if (!found)
1155 *end = state->end;
1156 goto out;
1158 if (!found)
1159 *start = state->start;
1160 found++;
1161 *end = state->end;
1162 cur_start = state->end + 1;
1163 node = rb_next(node);
1164 if (!node)
1165 break;
1166 total_bytes += state->end - state->start + 1;
1167 if (total_bytes >= max_bytes)
1168 break;
1170 out:
1171 spin_unlock(&tree->lock);
1172 return found;
1175 static noinline int __unlock_for_delalloc(struct inode *inode,
1176 struct page *locked_page,
1177 u64 start, u64 end)
1179 int ret;
1180 struct page *pages[16];
1181 unsigned long index = start >> PAGE_CACHE_SHIFT;
1182 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1183 unsigned long nr_pages = end_index - index + 1;
1184 int i;
1186 if (index == locked_page->index && end_index == index)
1187 return 0;
1189 while (nr_pages > 0) {
1190 ret = find_get_pages_contig(inode->i_mapping, index,
1191 min_t(unsigned long, nr_pages,
1192 ARRAY_SIZE(pages)), pages);
1193 for (i = 0; i < ret; i++) {
1194 if (pages[i] != locked_page)
1195 unlock_page(pages[i]);
1196 page_cache_release(pages[i]);
1198 nr_pages -= ret;
1199 index += ret;
1200 cond_resched();
1202 return 0;
1205 static noinline int lock_delalloc_pages(struct inode *inode,
1206 struct page *locked_page,
1207 u64 delalloc_start,
1208 u64 delalloc_end)
1210 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1211 unsigned long start_index = index;
1212 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1213 unsigned long pages_locked = 0;
1214 struct page *pages[16];
1215 unsigned long nrpages;
1216 int ret;
1217 int i;
1219 /* the caller is responsible for locking the start index */
1220 if (index == locked_page->index && index == end_index)
1221 return 0;
1223 /* skip the page at the start index */
1224 nrpages = end_index - index + 1;
1225 while (nrpages > 0) {
1226 ret = find_get_pages_contig(inode->i_mapping, index,
1227 min_t(unsigned long,
1228 nrpages, ARRAY_SIZE(pages)), pages);
1229 if (ret == 0) {
1230 ret = -EAGAIN;
1231 goto done;
1233 /* now we have an array of pages, lock them all */
1234 for (i = 0; i < ret; i++) {
1236 * the caller is taking responsibility for
1237 * locked_page
1239 if (pages[i] != locked_page) {
1240 lock_page(pages[i]);
1241 if (!PageDirty(pages[i]) ||
1242 pages[i]->mapping != inode->i_mapping) {
1243 ret = -EAGAIN;
1244 unlock_page(pages[i]);
1245 page_cache_release(pages[i]);
1246 goto done;
1249 page_cache_release(pages[i]);
1250 pages_locked++;
1252 nrpages -= ret;
1253 index += ret;
1254 cond_resched();
1256 ret = 0;
1257 done:
1258 if (ret && pages_locked) {
1259 __unlock_for_delalloc(inode, locked_page,
1260 delalloc_start,
1261 ((u64)(start_index + pages_locked - 1)) <<
1262 PAGE_CACHE_SHIFT);
1264 return ret;
1268 * find a contiguous range of bytes in the file marked as delalloc, not
1269 * more than 'max_bytes'. start and end are used to return the range,
1271 * 1 is returned if we find something, 0 if nothing was in the tree
1273 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1274 struct extent_io_tree *tree,
1275 struct page *locked_page,
1276 u64 *start, u64 *end,
1277 u64 max_bytes)
1279 u64 delalloc_start;
1280 u64 delalloc_end;
1281 u64 found;
1282 struct extent_state *cached_state = NULL;
1283 int ret;
1284 int loops = 0;
1286 again:
1287 /* step one, find a bunch of delalloc bytes starting at start */
1288 delalloc_start = *start;
1289 delalloc_end = 0;
1290 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1291 max_bytes);
1292 if (!found || delalloc_end <= *start) {
1293 *start = delalloc_start;
1294 *end = delalloc_end;
1295 return found;
1299 * start comes from the offset of locked_page. We have to lock
1300 * pages in order, so we can't process delalloc bytes before
1301 * locked_page
1303 if (delalloc_start < *start)
1304 delalloc_start = *start;
1307 * make sure to limit the number of pages we try to lock down
1308 * if we're looping.
1310 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1311 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1313 /* step two, lock all the pages after the page that has start */
1314 ret = lock_delalloc_pages(inode, locked_page,
1315 delalloc_start, delalloc_end);
1316 if (ret == -EAGAIN) {
1317 /* some of the pages are gone, lets avoid looping by
1318 * shortening the size of the delalloc range we're searching
1320 free_extent_state(cached_state);
1321 if (!loops) {
1322 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1323 max_bytes = PAGE_CACHE_SIZE - offset;
1324 loops = 1;
1325 goto again;
1326 } else {
1327 found = 0;
1328 goto out_failed;
1331 BUG_ON(ret);
1333 /* step three, lock the state bits for the whole range */
1334 lock_extent_bits(tree, delalloc_start, delalloc_end,
1335 0, &cached_state, GFP_NOFS);
1337 /* then test to make sure it is all still delalloc */
1338 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1339 EXTENT_DELALLOC, 1, cached_state);
1340 if (!ret) {
1341 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1342 &cached_state, GFP_NOFS);
1343 __unlock_for_delalloc(inode, locked_page,
1344 delalloc_start, delalloc_end);
1345 cond_resched();
1346 goto again;
1348 free_extent_state(cached_state);
1349 *start = delalloc_start;
1350 *end = delalloc_end;
1351 out_failed:
1352 return found;
1355 int extent_clear_unlock_delalloc(struct inode *inode,
1356 struct extent_io_tree *tree,
1357 u64 start, u64 end, struct page *locked_page,
1358 int unlock_pages,
1359 int clear_unlock,
1360 int clear_delalloc, int clear_dirty,
1361 int set_writeback,
1362 int end_writeback,
1363 int set_private2)
1365 int ret;
1366 struct page *pages[16];
1367 unsigned long index = start >> PAGE_CACHE_SHIFT;
1368 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1369 unsigned long nr_pages = end_index - index + 1;
1370 int i;
1371 int clear_bits = 0;
1373 if (clear_unlock)
1374 clear_bits |= EXTENT_LOCKED;
1375 if (clear_dirty)
1376 clear_bits |= EXTENT_DIRTY;
1378 if (clear_delalloc)
1379 clear_bits |= EXTENT_DELALLOC;
1381 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1382 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback ||
1383 set_private2))
1384 return 0;
1386 while (nr_pages > 0) {
1387 ret = find_get_pages_contig(inode->i_mapping, index,
1388 min_t(unsigned long,
1389 nr_pages, ARRAY_SIZE(pages)), pages);
1390 for (i = 0; i < ret; i++) {
1392 if (set_private2)
1393 SetPagePrivate2(pages[i]);
1395 if (pages[i] == locked_page) {
1396 page_cache_release(pages[i]);
1397 continue;
1399 if (clear_dirty)
1400 clear_page_dirty_for_io(pages[i]);
1401 if (set_writeback)
1402 set_page_writeback(pages[i]);
1403 if (end_writeback)
1404 end_page_writeback(pages[i]);
1405 if (unlock_pages)
1406 unlock_page(pages[i]);
1407 page_cache_release(pages[i]);
1409 nr_pages -= ret;
1410 index += ret;
1411 cond_resched();
1413 return 0;
1417 * count the number of bytes in the tree that have a given bit(s)
1418 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1419 * cached. The total number found is returned.
1421 u64 count_range_bits(struct extent_io_tree *tree,
1422 u64 *start, u64 search_end, u64 max_bytes,
1423 unsigned long bits)
1425 struct rb_node *node;
1426 struct extent_state *state;
1427 u64 cur_start = *start;
1428 u64 total_bytes = 0;
1429 int found = 0;
1431 if (search_end <= cur_start) {
1432 WARN_ON(1);
1433 return 0;
1436 spin_lock(&tree->lock);
1437 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1438 total_bytes = tree->dirty_bytes;
1439 goto out;
1442 * this search will find all the extents that end after
1443 * our range starts.
1445 node = tree_search(tree, cur_start);
1446 if (!node)
1447 goto out;
1449 while (1) {
1450 state = rb_entry(node, struct extent_state, rb_node);
1451 if (state->start > search_end)
1452 break;
1453 if (state->end >= cur_start && (state->state & bits)) {
1454 total_bytes += min(search_end, state->end) + 1 -
1455 max(cur_start, state->start);
1456 if (total_bytes >= max_bytes)
1457 break;
1458 if (!found) {
1459 *start = state->start;
1460 found = 1;
1463 node = rb_next(node);
1464 if (!node)
1465 break;
1467 out:
1468 spin_unlock(&tree->lock);
1469 return total_bytes;
1473 * set the private field for a given byte offset in the tree. If there isn't
1474 * an extent_state there already, this does nothing.
1476 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1478 struct rb_node *node;
1479 struct extent_state *state;
1480 int ret = 0;
1482 spin_lock(&tree->lock);
1484 * this search will find all the extents that end after
1485 * our range starts.
1487 node = tree_search(tree, start);
1488 if (!node) {
1489 ret = -ENOENT;
1490 goto out;
1492 state = rb_entry(node, struct extent_state, rb_node);
1493 if (state->start != start) {
1494 ret = -ENOENT;
1495 goto out;
1497 state->private = private;
1498 out:
1499 spin_unlock(&tree->lock);
1500 return ret;
1503 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1505 struct rb_node *node;
1506 struct extent_state *state;
1507 int ret = 0;
1509 spin_lock(&tree->lock);
1511 * this search will find all the extents that end after
1512 * our range starts.
1514 node = tree_search(tree, start);
1515 if (!node) {
1516 ret = -ENOENT;
1517 goto out;
1519 state = rb_entry(node, struct extent_state, rb_node);
1520 if (state->start != start) {
1521 ret = -ENOENT;
1522 goto out;
1524 *private = state->private;
1525 out:
1526 spin_unlock(&tree->lock);
1527 return ret;
1531 * searches a range in the state tree for a given mask.
1532 * If 'filled' == 1, this returns 1 only if every extent in the tree
1533 * has the bits set. Otherwise, 1 is returned if any bit in the
1534 * range is found set.
1536 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1537 int bits, int filled, struct extent_state *cached)
1539 struct extent_state *state = NULL;
1540 struct rb_node *node;
1541 int bitset = 0;
1543 spin_lock(&tree->lock);
1544 if (cached && cached->tree && cached->start == start)
1545 node = &cached->rb_node;
1546 else
1547 node = tree_search(tree, start);
1548 while (node && start <= end) {
1549 state = rb_entry(node, struct extent_state, rb_node);
1551 if (filled && state->start > start) {
1552 bitset = 0;
1553 break;
1556 if (state->start > end)
1557 break;
1559 if (state->state & bits) {
1560 bitset = 1;
1561 if (!filled)
1562 break;
1563 } else if (filled) {
1564 bitset = 0;
1565 break;
1568 if (state->end == (u64)-1)
1569 break;
1571 start = state->end + 1;
1572 if (start > end)
1573 break;
1574 node = rb_next(node);
1575 if (!node) {
1576 if (filled)
1577 bitset = 0;
1578 break;
1581 spin_unlock(&tree->lock);
1582 return bitset;
1586 * helper function to set a given page up to date if all the
1587 * extents in the tree for that page are up to date
1589 static int check_page_uptodate(struct extent_io_tree *tree,
1590 struct page *page)
1592 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1593 u64 end = start + PAGE_CACHE_SIZE - 1;
1594 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1595 SetPageUptodate(page);
1596 return 0;
1600 * helper function to unlock a page if all the extents in the tree
1601 * for that page are unlocked
1603 static int check_page_locked(struct extent_io_tree *tree,
1604 struct page *page)
1606 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1607 u64 end = start + PAGE_CACHE_SIZE - 1;
1608 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1609 unlock_page(page);
1610 return 0;
1614 * helper function to end page writeback if all the extents
1615 * in the tree for that page are done with writeback
1617 static int check_page_writeback(struct extent_io_tree *tree,
1618 struct page *page)
1620 end_page_writeback(page);
1621 return 0;
1624 /* lots and lots of room for performance fixes in the end_bio funcs */
1627 * after a writepage IO is done, we need to:
1628 * clear the uptodate bits on error
1629 * clear the writeback bits in the extent tree for this IO
1630 * end_page_writeback if the page has no more pending IO
1632 * Scheduling is not allowed, so the extent state tree is expected
1633 * to have one and only one object corresponding to this IO.
1635 static void end_bio_extent_writepage(struct bio *bio, int err)
1637 int uptodate = err == 0;
1638 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1639 struct extent_io_tree *tree;
1640 u64 start;
1641 u64 end;
1642 int whole_page;
1643 int ret;
1645 do {
1646 struct page *page = bvec->bv_page;
1647 tree = &BTRFS_I(page->mapping->host)->io_tree;
1649 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1650 bvec->bv_offset;
1651 end = start + bvec->bv_len - 1;
1653 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1654 whole_page = 1;
1655 else
1656 whole_page = 0;
1658 if (--bvec >= bio->bi_io_vec)
1659 prefetchw(&bvec->bv_page->flags);
1660 if (tree->ops && tree->ops->writepage_end_io_hook) {
1661 ret = tree->ops->writepage_end_io_hook(page, start,
1662 end, NULL, uptodate);
1663 if (ret)
1664 uptodate = 0;
1667 if (!uptodate && tree->ops &&
1668 tree->ops->writepage_io_failed_hook) {
1669 ret = tree->ops->writepage_io_failed_hook(bio, page,
1670 start, end, NULL);
1671 if (ret == 0) {
1672 uptodate = (err == 0);
1673 continue;
1677 if (!uptodate) {
1678 clear_extent_uptodate(tree, start, end, GFP_NOFS);
1679 ClearPageUptodate(page);
1680 SetPageError(page);
1683 if (whole_page)
1684 end_page_writeback(page);
1685 else
1686 check_page_writeback(tree, page);
1687 } while (bvec >= bio->bi_io_vec);
1689 bio_put(bio);
1693 * after a readpage IO is done, we need to:
1694 * clear the uptodate bits on error
1695 * set the uptodate bits if things worked
1696 * set the page up to date if all extents in the tree are uptodate
1697 * clear the lock bit in the extent tree
1698 * unlock the page if there are no other extents locked for it
1700 * Scheduling is not allowed, so the extent state tree is expected
1701 * to have one and only one object corresponding to this IO.
1703 static void end_bio_extent_readpage(struct bio *bio, int err)
1705 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1706 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1707 struct extent_io_tree *tree;
1708 u64 start;
1709 u64 end;
1710 int whole_page;
1711 int ret;
1713 if (err)
1714 uptodate = 0;
1716 do {
1717 struct page *page = bvec->bv_page;
1718 tree = &BTRFS_I(page->mapping->host)->io_tree;
1720 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1721 bvec->bv_offset;
1722 end = start + bvec->bv_len - 1;
1724 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1725 whole_page = 1;
1726 else
1727 whole_page = 0;
1729 if (--bvec >= bio->bi_io_vec)
1730 prefetchw(&bvec->bv_page->flags);
1732 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1733 ret = tree->ops->readpage_end_io_hook(page, start, end,
1734 NULL);
1735 if (ret)
1736 uptodate = 0;
1738 if (!uptodate && tree->ops &&
1739 tree->ops->readpage_io_failed_hook) {
1740 ret = tree->ops->readpage_io_failed_hook(bio, page,
1741 start, end, NULL);
1742 if (ret == 0) {
1743 uptodate =
1744 test_bit(BIO_UPTODATE, &bio->bi_flags);
1745 if (err)
1746 uptodate = 0;
1747 continue;
1751 if (uptodate) {
1752 set_extent_uptodate(tree, start, end,
1753 GFP_ATOMIC);
1755 unlock_extent(tree, start, end, GFP_ATOMIC);
1757 if (whole_page) {
1758 if (uptodate) {
1759 SetPageUptodate(page);
1760 } else {
1761 ClearPageUptodate(page);
1762 SetPageError(page);
1764 unlock_page(page);
1765 } else {
1766 if (uptodate) {
1767 check_page_uptodate(tree, page);
1768 } else {
1769 ClearPageUptodate(page);
1770 SetPageError(page);
1772 check_page_locked(tree, page);
1774 } while (bvec >= bio->bi_io_vec);
1776 bio_put(bio);
1780 * IO done from prepare_write is pretty simple, we just unlock
1781 * the structs in the extent tree when done, and set the uptodate bits
1782 * as appropriate.
1784 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1786 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1787 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1788 struct extent_io_tree *tree;
1789 u64 start;
1790 u64 end;
1792 do {
1793 struct page *page = bvec->bv_page;
1794 tree = &BTRFS_I(page->mapping->host)->io_tree;
1796 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1797 bvec->bv_offset;
1798 end = start + bvec->bv_len - 1;
1800 if (--bvec >= bio->bi_io_vec)
1801 prefetchw(&bvec->bv_page->flags);
1803 if (uptodate) {
1804 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1805 } else {
1806 ClearPageUptodate(page);
1807 SetPageError(page);
1810 unlock_extent(tree, start, end, GFP_ATOMIC);
1812 } while (bvec >= bio->bi_io_vec);
1814 bio_put(bio);
1817 static struct bio *
1818 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1819 gfp_t gfp_flags)
1821 struct bio *bio;
1823 bio = bio_alloc(gfp_flags, nr_vecs);
1825 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1826 while (!bio && (nr_vecs /= 2))
1827 bio = bio_alloc(gfp_flags, nr_vecs);
1830 if (bio) {
1831 bio->bi_size = 0;
1832 bio->bi_bdev = bdev;
1833 bio->bi_sector = first_sector;
1835 return bio;
1838 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1839 unsigned long bio_flags)
1841 int ret = 0;
1842 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1843 struct page *page = bvec->bv_page;
1844 struct extent_io_tree *tree = bio->bi_private;
1845 u64 start;
1846 u64 end;
1848 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1849 end = start + bvec->bv_len - 1;
1851 bio->bi_private = NULL;
1853 bio_get(bio);
1855 if (tree->ops && tree->ops->submit_bio_hook)
1856 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1857 mirror_num, bio_flags);
1858 else
1859 submit_bio(rw, bio);
1860 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1861 ret = -EOPNOTSUPP;
1862 bio_put(bio);
1863 return ret;
1866 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1867 struct page *page, sector_t sector,
1868 size_t size, unsigned long offset,
1869 struct block_device *bdev,
1870 struct bio **bio_ret,
1871 unsigned long max_pages,
1872 bio_end_io_t end_io_func,
1873 int mirror_num,
1874 unsigned long prev_bio_flags,
1875 unsigned long bio_flags)
1877 int ret = 0;
1878 struct bio *bio;
1879 int nr;
1880 int contig = 0;
1881 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1882 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1883 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1885 if (bio_ret && *bio_ret) {
1886 bio = *bio_ret;
1887 if (old_compressed)
1888 contig = bio->bi_sector == sector;
1889 else
1890 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1891 sector;
1893 if (prev_bio_flags != bio_flags || !contig ||
1894 (tree->ops && tree->ops->merge_bio_hook &&
1895 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1896 bio_flags)) ||
1897 bio_add_page(bio, page, page_size, offset) < page_size) {
1898 ret = submit_one_bio(rw, bio, mirror_num,
1899 prev_bio_flags);
1900 bio = NULL;
1901 } else {
1902 return 0;
1905 if (this_compressed)
1906 nr = BIO_MAX_PAGES;
1907 else
1908 nr = bio_get_nr_vecs(bdev);
1910 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1912 bio_add_page(bio, page, page_size, offset);
1913 bio->bi_end_io = end_io_func;
1914 bio->bi_private = tree;
1916 if (bio_ret)
1917 *bio_ret = bio;
1918 else
1919 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1921 return ret;
1924 void set_page_extent_mapped(struct page *page)
1926 if (!PagePrivate(page)) {
1927 SetPagePrivate(page);
1928 page_cache_get(page);
1929 set_page_private(page, EXTENT_PAGE_PRIVATE);
1933 static void set_page_extent_head(struct page *page, unsigned long len)
1935 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1939 * basic readpage implementation. Locked extent state structs are inserted
1940 * into the tree that are removed when the IO is done (by the end_io
1941 * handlers)
1943 static int __extent_read_full_page(struct extent_io_tree *tree,
1944 struct page *page,
1945 get_extent_t *get_extent,
1946 struct bio **bio, int mirror_num,
1947 unsigned long *bio_flags)
1949 struct inode *inode = page->mapping->host;
1950 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1951 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1952 u64 end;
1953 u64 cur = start;
1954 u64 extent_offset;
1955 u64 last_byte = i_size_read(inode);
1956 u64 block_start;
1957 u64 cur_end;
1958 sector_t sector;
1959 struct extent_map *em;
1960 struct block_device *bdev;
1961 int ret;
1962 int nr = 0;
1963 size_t page_offset = 0;
1964 size_t iosize;
1965 size_t disk_io_size;
1966 size_t blocksize = inode->i_sb->s_blocksize;
1967 unsigned long this_bio_flag = 0;
1969 set_page_extent_mapped(page);
1971 end = page_end;
1972 lock_extent(tree, start, end, GFP_NOFS);
1974 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1975 char *userpage;
1976 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1978 if (zero_offset) {
1979 iosize = PAGE_CACHE_SIZE - zero_offset;
1980 userpage = kmap_atomic(page, KM_USER0);
1981 memset(userpage + zero_offset, 0, iosize);
1982 flush_dcache_page(page);
1983 kunmap_atomic(userpage, KM_USER0);
1986 while (cur <= end) {
1987 if (cur >= last_byte) {
1988 char *userpage;
1989 iosize = PAGE_CACHE_SIZE - page_offset;
1990 userpage = kmap_atomic(page, KM_USER0);
1991 memset(userpage + page_offset, 0, iosize);
1992 flush_dcache_page(page);
1993 kunmap_atomic(userpage, KM_USER0);
1994 set_extent_uptodate(tree, cur, cur + iosize - 1,
1995 GFP_NOFS);
1996 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1997 break;
1999 em = get_extent(inode, page, page_offset, cur,
2000 end - cur + 1, 0);
2001 if (IS_ERR(em) || !em) {
2002 SetPageError(page);
2003 unlock_extent(tree, cur, end, GFP_NOFS);
2004 break;
2006 extent_offset = cur - em->start;
2007 BUG_ON(extent_map_end(em) <= cur);
2008 BUG_ON(end < cur);
2010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2011 this_bio_flag = EXTENT_BIO_COMPRESSED;
2013 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2014 cur_end = min(extent_map_end(em) - 1, end);
2015 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2016 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2017 disk_io_size = em->block_len;
2018 sector = em->block_start >> 9;
2019 } else {
2020 sector = (em->block_start + extent_offset) >> 9;
2021 disk_io_size = iosize;
2023 bdev = em->bdev;
2024 block_start = em->block_start;
2025 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2026 block_start = EXTENT_MAP_HOLE;
2027 free_extent_map(em);
2028 em = NULL;
2030 /* we've found a hole, just zero and go on */
2031 if (block_start == EXTENT_MAP_HOLE) {
2032 char *userpage;
2033 userpage = kmap_atomic(page, KM_USER0);
2034 memset(userpage + page_offset, 0, iosize);
2035 flush_dcache_page(page);
2036 kunmap_atomic(userpage, KM_USER0);
2038 set_extent_uptodate(tree, cur, cur + iosize - 1,
2039 GFP_NOFS);
2040 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2041 cur = cur + iosize;
2042 page_offset += iosize;
2043 continue;
2045 /* the get_extent function already copied into the page */
2046 if (test_range_bit(tree, cur, cur_end,
2047 EXTENT_UPTODATE, 1, NULL)) {
2048 check_page_uptodate(tree, page);
2049 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2050 cur = cur + iosize;
2051 page_offset += iosize;
2052 continue;
2054 /* we have an inline extent but it didn't get marked up
2055 * to date. Error out
2057 if (block_start == EXTENT_MAP_INLINE) {
2058 SetPageError(page);
2059 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2060 cur = cur + iosize;
2061 page_offset += iosize;
2062 continue;
2065 ret = 0;
2066 if (tree->ops && tree->ops->readpage_io_hook) {
2067 ret = tree->ops->readpage_io_hook(page, cur,
2068 cur + iosize - 1);
2070 if (!ret) {
2071 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2072 pnr -= page->index;
2073 ret = submit_extent_page(READ, tree, page,
2074 sector, disk_io_size, page_offset,
2075 bdev, bio, pnr,
2076 end_bio_extent_readpage, mirror_num,
2077 *bio_flags,
2078 this_bio_flag);
2079 nr++;
2080 *bio_flags = this_bio_flag;
2082 if (ret)
2083 SetPageError(page);
2084 cur = cur + iosize;
2085 page_offset += iosize;
2087 if (!nr) {
2088 if (!PageError(page))
2089 SetPageUptodate(page);
2090 unlock_page(page);
2092 return 0;
2095 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2096 get_extent_t *get_extent)
2098 struct bio *bio = NULL;
2099 unsigned long bio_flags = 0;
2100 int ret;
2102 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2103 &bio_flags);
2104 if (bio)
2105 submit_one_bio(READ, bio, 0, bio_flags);
2106 return ret;
2109 static noinline void update_nr_written(struct page *page,
2110 struct writeback_control *wbc,
2111 unsigned long nr_written)
2113 wbc->nr_to_write -= nr_written;
2114 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2115 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2116 page->mapping->writeback_index = page->index + nr_written;
2120 * the writepage semantics are similar to regular writepage. extent
2121 * records are inserted to lock ranges in the tree, and as dirty areas
2122 * are found, they are marked writeback. Then the lock bits are removed
2123 * and the end_io handler clears the writeback ranges
2125 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2126 void *data)
2128 struct inode *inode = page->mapping->host;
2129 struct extent_page_data *epd = data;
2130 struct extent_io_tree *tree = epd->tree;
2131 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2132 u64 delalloc_start;
2133 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2134 u64 end;
2135 u64 cur = start;
2136 u64 extent_offset;
2137 u64 last_byte = i_size_read(inode);
2138 u64 block_start;
2139 u64 iosize;
2140 u64 unlock_start;
2141 sector_t sector;
2142 struct extent_state *cached_state = NULL;
2143 struct extent_map *em;
2144 struct block_device *bdev;
2145 int ret;
2146 int nr = 0;
2147 size_t pg_offset = 0;
2148 size_t blocksize;
2149 loff_t i_size = i_size_read(inode);
2150 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2151 u64 nr_delalloc;
2152 u64 delalloc_end;
2153 int page_started;
2154 int compressed;
2155 int write_flags;
2156 unsigned long nr_written = 0;
2158 if (wbc->sync_mode == WB_SYNC_ALL)
2159 write_flags = WRITE_SYNC_PLUG;
2160 else
2161 write_flags = WRITE;
2163 WARN_ON(!PageLocked(page));
2164 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2165 if (page->index > end_index ||
2166 (page->index == end_index && !pg_offset)) {
2167 page->mapping->a_ops->invalidatepage(page, 0);
2168 unlock_page(page);
2169 return 0;
2172 if (page->index == end_index) {
2173 char *userpage;
2175 userpage = kmap_atomic(page, KM_USER0);
2176 memset(userpage + pg_offset, 0,
2177 PAGE_CACHE_SIZE - pg_offset);
2178 kunmap_atomic(userpage, KM_USER0);
2179 flush_dcache_page(page);
2181 pg_offset = 0;
2183 set_page_extent_mapped(page);
2185 delalloc_start = start;
2186 delalloc_end = 0;
2187 page_started = 0;
2188 if (!epd->extent_locked) {
2189 u64 delalloc_to_write = 0;
2191 * make sure the wbc mapping index is at least updated
2192 * to this page.
2194 update_nr_written(page, wbc, 0);
2196 while (delalloc_end < page_end) {
2197 nr_delalloc = find_lock_delalloc_range(inode, tree,
2198 page,
2199 &delalloc_start,
2200 &delalloc_end,
2201 128 * 1024 * 1024);
2202 if (nr_delalloc == 0) {
2203 delalloc_start = delalloc_end + 1;
2204 continue;
2206 tree->ops->fill_delalloc(inode, page, delalloc_start,
2207 delalloc_end, &page_started,
2208 &nr_written);
2210 * delalloc_end is already one less than the total
2211 * length, so we don't subtract one from
2212 * PAGE_CACHE_SIZE
2214 delalloc_to_write += (delalloc_end - delalloc_start +
2215 PAGE_CACHE_SIZE) >>
2216 PAGE_CACHE_SHIFT;
2217 delalloc_start = delalloc_end + 1;
2219 if (wbc->nr_to_write < delalloc_to_write) {
2220 int thresh = 8192;
2222 if (delalloc_to_write < thresh * 2)
2223 thresh = delalloc_to_write;
2224 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2225 thresh);
2228 /* did the fill delalloc function already unlock and start
2229 * the IO?
2231 if (page_started) {
2232 ret = 0;
2234 * we've unlocked the page, so we can't update
2235 * the mapping's writeback index, just update
2236 * nr_to_write.
2238 wbc->nr_to_write -= nr_written;
2239 goto done_unlocked;
2242 if (tree->ops && tree->ops->writepage_start_hook) {
2243 ret = tree->ops->writepage_start_hook(page, start,
2244 page_end);
2245 if (ret == -EAGAIN) {
2246 redirty_page_for_writepage(wbc, page);
2247 update_nr_written(page, wbc, nr_written);
2248 unlock_page(page);
2249 ret = 0;
2250 goto done_unlocked;
2255 * we don't want to touch the inode after unlocking the page,
2256 * so we update the mapping writeback index now
2258 update_nr_written(page, wbc, nr_written + 1);
2260 end = page_end;
2261 if (last_byte <= start) {
2262 if (tree->ops && tree->ops->writepage_end_io_hook)
2263 tree->ops->writepage_end_io_hook(page, start,
2264 page_end, NULL, 1);
2265 unlock_start = page_end + 1;
2266 goto done;
2269 blocksize = inode->i_sb->s_blocksize;
2271 while (cur <= end) {
2272 if (cur >= last_byte) {
2273 if (tree->ops && tree->ops->writepage_end_io_hook)
2274 tree->ops->writepage_end_io_hook(page, cur,
2275 page_end, NULL, 1);
2276 unlock_start = page_end + 1;
2277 break;
2279 em = epd->get_extent(inode, page, pg_offset, cur,
2280 end - cur + 1, 1);
2281 if (IS_ERR(em) || !em) {
2282 SetPageError(page);
2283 break;
2286 extent_offset = cur - em->start;
2287 BUG_ON(extent_map_end(em) <= cur);
2288 BUG_ON(end < cur);
2289 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2290 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2291 sector = (em->block_start + extent_offset) >> 9;
2292 bdev = em->bdev;
2293 block_start = em->block_start;
2294 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2295 free_extent_map(em);
2296 em = NULL;
2299 * compressed and inline extents are written through other
2300 * paths in the FS
2302 if (compressed || block_start == EXTENT_MAP_HOLE ||
2303 block_start == EXTENT_MAP_INLINE) {
2305 * end_io notification does not happen here for
2306 * compressed extents
2308 if (!compressed && tree->ops &&
2309 tree->ops->writepage_end_io_hook)
2310 tree->ops->writepage_end_io_hook(page, cur,
2311 cur + iosize - 1,
2312 NULL, 1);
2313 else if (compressed) {
2314 /* we don't want to end_page_writeback on
2315 * a compressed extent. this happens
2316 * elsewhere
2318 nr++;
2321 cur += iosize;
2322 pg_offset += iosize;
2323 unlock_start = cur;
2324 continue;
2326 /* leave this out until we have a page_mkwrite call */
2327 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2328 EXTENT_DIRTY, 0, NULL)) {
2329 cur = cur + iosize;
2330 pg_offset += iosize;
2331 continue;
2334 if (tree->ops && tree->ops->writepage_io_hook) {
2335 ret = tree->ops->writepage_io_hook(page, cur,
2336 cur + iosize - 1);
2337 } else {
2338 ret = 0;
2340 if (ret) {
2341 SetPageError(page);
2342 } else {
2343 unsigned long max_nr = end_index + 1;
2345 set_range_writeback(tree, cur, cur + iosize - 1);
2346 if (!PageWriteback(page)) {
2347 printk(KERN_ERR "btrfs warning page %lu not "
2348 "writeback, cur %llu end %llu\n",
2349 page->index, (unsigned long long)cur,
2350 (unsigned long long)end);
2353 ret = submit_extent_page(write_flags, tree, page,
2354 sector, iosize, pg_offset,
2355 bdev, &epd->bio, max_nr,
2356 end_bio_extent_writepage,
2357 0, 0, 0);
2358 if (ret)
2359 SetPageError(page);
2361 cur = cur + iosize;
2362 pg_offset += iosize;
2363 nr++;
2365 done:
2366 if (nr == 0) {
2367 /* make sure the mapping tag for page dirty gets cleared */
2368 set_page_writeback(page);
2369 end_page_writeback(page);
2371 unlock_page(page);
2373 done_unlocked:
2375 /* drop our reference on any cached states */
2376 free_extent_state(cached_state);
2377 return 0;
2381 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2382 * @mapping: address space structure to write
2383 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2384 * @writepage: function called for each page
2385 * @data: data passed to writepage function
2387 * If a page is already under I/O, write_cache_pages() skips it, even
2388 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2389 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2390 * and msync() need to guarantee that all the data which was dirty at the time
2391 * the call was made get new I/O started against them. If wbc->sync_mode is
2392 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2393 * existing IO to complete.
2395 static int extent_write_cache_pages(struct extent_io_tree *tree,
2396 struct address_space *mapping,
2397 struct writeback_control *wbc,
2398 writepage_t writepage, void *data,
2399 void (*flush_fn)(void *))
2401 int ret = 0;
2402 int done = 0;
2403 int nr_to_write_done = 0;
2404 struct pagevec pvec;
2405 int nr_pages;
2406 pgoff_t index;
2407 pgoff_t end; /* Inclusive */
2408 int scanned = 0;
2409 int range_whole = 0;
2411 pagevec_init(&pvec, 0);
2412 if (wbc->range_cyclic) {
2413 index = mapping->writeback_index; /* Start from prev offset */
2414 end = -1;
2415 } else {
2416 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2417 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2418 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2419 range_whole = 1;
2420 scanned = 1;
2422 retry:
2423 while (!done && !nr_to_write_done && (index <= end) &&
2424 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2425 PAGECACHE_TAG_DIRTY, min(end - index,
2426 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2427 unsigned i;
2429 scanned = 1;
2430 for (i = 0; i < nr_pages; i++) {
2431 struct page *page = pvec.pages[i];
2434 * At this point we hold neither mapping->tree_lock nor
2435 * lock on the page itself: the page may be truncated or
2436 * invalidated (changing page->mapping to NULL), or even
2437 * swizzled back from swapper_space to tmpfs file
2438 * mapping
2440 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2441 tree->ops->write_cache_pages_lock_hook(page);
2442 else
2443 lock_page(page);
2445 if (unlikely(page->mapping != mapping)) {
2446 unlock_page(page);
2447 continue;
2450 if (!wbc->range_cyclic && page->index > end) {
2451 done = 1;
2452 unlock_page(page);
2453 continue;
2456 if (wbc->sync_mode != WB_SYNC_NONE) {
2457 if (PageWriteback(page))
2458 flush_fn(data);
2459 wait_on_page_writeback(page);
2462 if (PageWriteback(page) ||
2463 !clear_page_dirty_for_io(page)) {
2464 unlock_page(page);
2465 continue;
2468 ret = (*writepage)(page, wbc, data);
2470 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2471 unlock_page(page);
2472 ret = 0;
2474 if (ret)
2475 done = 1;
2478 * the filesystem may choose to bump up nr_to_write.
2479 * We have to make sure to honor the new nr_to_write
2480 * at any time
2482 nr_to_write_done = wbc->nr_to_write <= 0;
2484 pagevec_release(&pvec);
2485 cond_resched();
2487 if (!scanned && !done) {
2489 * We hit the last page and there is more work to be done: wrap
2490 * back to the start of the file
2492 scanned = 1;
2493 index = 0;
2494 goto retry;
2496 return ret;
2499 static void flush_epd_write_bio(struct extent_page_data *epd)
2501 if (epd->bio) {
2502 if (epd->sync_io)
2503 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2504 else
2505 submit_one_bio(WRITE, epd->bio, 0, 0);
2506 epd->bio = NULL;
2510 static noinline void flush_write_bio(void *data)
2512 struct extent_page_data *epd = data;
2513 flush_epd_write_bio(epd);
2516 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2517 get_extent_t *get_extent,
2518 struct writeback_control *wbc)
2520 int ret;
2521 struct address_space *mapping = page->mapping;
2522 struct extent_page_data epd = {
2523 .bio = NULL,
2524 .tree = tree,
2525 .get_extent = get_extent,
2526 .extent_locked = 0,
2527 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2529 struct writeback_control wbc_writepages = {
2530 .bdi = wbc->bdi,
2531 .sync_mode = wbc->sync_mode,
2532 .older_than_this = NULL,
2533 .nr_to_write = 64,
2534 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2535 .range_end = (loff_t)-1,
2538 ret = __extent_writepage(page, wbc, &epd);
2540 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2541 __extent_writepage, &epd, flush_write_bio);
2542 flush_epd_write_bio(&epd);
2543 return ret;
2546 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2547 u64 start, u64 end, get_extent_t *get_extent,
2548 int mode)
2550 int ret = 0;
2551 struct address_space *mapping = inode->i_mapping;
2552 struct page *page;
2553 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2554 PAGE_CACHE_SHIFT;
2556 struct extent_page_data epd = {
2557 .bio = NULL,
2558 .tree = tree,
2559 .get_extent = get_extent,
2560 .extent_locked = 1,
2561 .sync_io = mode == WB_SYNC_ALL,
2563 struct writeback_control wbc_writepages = {
2564 .bdi = inode->i_mapping->backing_dev_info,
2565 .sync_mode = mode,
2566 .older_than_this = NULL,
2567 .nr_to_write = nr_pages * 2,
2568 .range_start = start,
2569 .range_end = end + 1,
2572 while (start <= end) {
2573 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2574 if (clear_page_dirty_for_io(page))
2575 ret = __extent_writepage(page, &wbc_writepages, &epd);
2576 else {
2577 if (tree->ops && tree->ops->writepage_end_io_hook)
2578 tree->ops->writepage_end_io_hook(page, start,
2579 start + PAGE_CACHE_SIZE - 1,
2580 NULL, 1);
2581 unlock_page(page);
2583 page_cache_release(page);
2584 start += PAGE_CACHE_SIZE;
2587 flush_epd_write_bio(&epd);
2588 return ret;
2591 int extent_writepages(struct extent_io_tree *tree,
2592 struct address_space *mapping,
2593 get_extent_t *get_extent,
2594 struct writeback_control *wbc)
2596 int ret = 0;
2597 struct extent_page_data epd = {
2598 .bio = NULL,
2599 .tree = tree,
2600 .get_extent = get_extent,
2601 .extent_locked = 0,
2602 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2605 ret = extent_write_cache_pages(tree, mapping, wbc,
2606 __extent_writepage, &epd,
2607 flush_write_bio);
2608 flush_epd_write_bio(&epd);
2609 return ret;
2612 int extent_readpages(struct extent_io_tree *tree,
2613 struct address_space *mapping,
2614 struct list_head *pages, unsigned nr_pages,
2615 get_extent_t get_extent)
2617 struct bio *bio = NULL;
2618 unsigned page_idx;
2619 struct pagevec pvec;
2620 unsigned long bio_flags = 0;
2622 pagevec_init(&pvec, 0);
2623 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2624 struct page *page = list_entry(pages->prev, struct page, lru);
2626 prefetchw(&page->flags);
2627 list_del(&page->lru);
2629 * what we want to do here is call add_to_page_cache_lru,
2630 * but that isn't exported, so we reproduce it here
2632 if (!add_to_page_cache(page, mapping,
2633 page->index, GFP_KERNEL)) {
2635 /* open coding of lru_cache_add, also not exported */
2636 page_cache_get(page);
2637 if (!pagevec_add(&pvec, page))
2638 __pagevec_lru_add_file(&pvec);
2639 __extent_read_full_page(tree, page, get_extent,
2640 &bio, 0, &bio_flags);
2642 page_cache_release(page);
2644 if (pagevec_count(&pvec))
2645 __pagevec_lru_add_file(&pvec);
2646 BUG_ON(!list_empty(pages));
2647 if (bio)
2648 submit_one_bio(READ, bio, 0, bio_flags);
2649 return 0;
2653 * basic invalidatepage code, this waits on any locked or writeback
2654 * ranges corresponding to the page, and then deletes any extent state
2655 * records from the tree
2657 int extent_invalidatepage(struct extent_io_tree *tree,
2658 struct page *page, unsigned long offset)
2660 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2661 u64 end = start + PAGE_CACHE_SIZE - 1;
2662 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2664 start += (offset + blocksize - 1) & ~(blocksize - 1);
2665 if (start > end)
2666 return 0;
2668 lock_extent(tree, start, end, GFP_NOFS);
2669 wait_on_page_writeback(page);
2670 clear_extent_bit(tree, start, end,
2671 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2672 1, 1, NULL, GFP_NOFS);
2673 return 0;
2677 * simple commit_write call, set_range_dirty is used to mark both
2678 * the pages and the extent records as dirty
2680 int extent_commit_write(struct extent_io_tree *tree,
2681 struct inode *inode, struct page *page,
2682 unsigned from, unsigned to)
2684 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2686 set_page_extent_mapped(page);
2687 set_page_dirty(page);
2689 if (pos > inode->i_size) {
2690 i_size_write(inode, pos);
2691 mark_inode_dirty(inode);
2693 return 0;
2696 int extent_prepare_write(struct extent_io_tree *tree,
2697 struct inode *inode, struct page *page,
2698 unsigned from, unsigned to, get_extent_t *get_extent)
2700 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2701 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2702 u64 block_start;
2703 u64 orig_block_start;
2704 u64 block_end;
2705 u64 cur_end;
2706 struct extent_map *em;
2707 unsigned blocksize = 1 << inode->i_blkbits;
2708 size_t page_offset = 0;
2709 size_t block_off_start;
2710 size_t block_off_end;
2711 int err = 0;
2712 int iocount = 0;
2713 int ret = 0;
2714 int isnew;
2716 set_page_extent_mapped(page);
2718 block_start = (page_start + from) & ~((u64)blocksize - 1);
2719 block_end = (page_start + to - 1) | (blocksize - 1);
2720 orig_block_start = block_start;
2722 lock_extent(tree, page_start, page_end, GFP_NOFS);
2723 while (block_start <= block_end) {
2724 em = get_extent(inode, page, page_offset, block_start,
2725 block_end - block_start + 1, 1);
2726 if (IS_ERR(em) || !em)
2727 goto err;
2729 cur_end = min(block_end, extent_map_end(em) - 1);
2730 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2731 block_off_end = block_off_start + blocksize;
2732 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2734 if (!PageUptodate(page) && isnew &&
2735 (block_off_end > to || block_off_start < from)) {
2736 void *kaddr;
2738 kaddr = kmap_atomic(page, KM_USER0);
2739 if (block_off_end > to)
2740 memset(kaddr + to, 0, block_off_end - to);
2741 if (block_off_start < from)
2742 memset(kaddr + block_off_start, 0,
2743 from - block_off_start);
2744 flush_dcache_page(page);
2745 kunmap_atomic(kaddr, KM_USER0);
2747 if ((em->block_start != EXTENT_MAP_HOLE &&
2748 em->block_start != EXTENT_MAP_INLINE) &&
2749 !isnew && !PageUptodate(page) &&
2750 (block_off_end > to || block_off_start < from) &&
2751 !test_range_bit(tree, block_start, cur_end,
2752 EXTENT_UPTODATE, 1, NULL)) {
2753 u64 sector;
2754 u64 extent_offset = block_start - em->start;
2755 size_t iosize;
2756 sector = (em->block_start + extent_offset) >> 9;
2757 iosize = (cur_end - block_start + blocksize) &
2758 ~((u64)blocksize - 1);
2760 * we've already got the extent locked, but we
2761 * need to split the state such that our end_bio
2762 * handler can clear the lock.
2764 set_extent_bit(tree, block_start,
2765 block_start + iosize - 1,
2766 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2767 ret = submit_extent_page(READ, tree, page,
2768 sector, iosize, page_offset, em->bdev,
2769 NULL, 1,
2770 end_bio_extent_preparewrite, 0,
2771 0, 0);
2772 iocount++;
2773 block_start = block_start + iosize;
2774 } else {
2775 set_extent_uptodate(tree, block_start, cur_end,
2776 GFP_NOFS);
2777 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2778 block_start = cur_end + 1;
2780 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2781 free_extent_map(em);
2783 if (iocount) {
2784 wait_extent_bit(tree, orig_block_start,
2785 block_end, EXTENT_LOCKED);
2787 check_page_uptodate(tree, page);
2788 err:
2789 /* FIXME, zero out newly allocated blocks on error */
2790 return err;
2794 * a helper for releasepage, this tests for areas of the page that
2795 * are locked or under IO and drops the related state bits if it is safe
2796 * to drop the page.
2798 int try_release_extent_state(struct extent_map_tree *map,
2799 struct extent_io_tree *tree, struct page *page,
2800 gfp_t mask)
2802 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2803 u64 end = start + PAGE_CACHE_SIZE - 1;
2804 int ret = 1;
2806 if (test_range_bit(tree, start, end,
2807 EXTENT_IOBITS, 0, NULL))
2808 ret = 0;
2809 else {
2810 if ((mask & GFP_NOFS) == GFP_NOFS)
2811 mask = GFP_NOFS;
2813 * at this point we can safely clear everything except the
2814 * locked bit and the nodatasum bit
2816 clear_extent_bit(tree, start, end,
2817 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2818 0, 0, NULL, mask);
2820 return ret;
2824 * a helper for releasepage. As long as there are no locked extents
2825 * in the range corresponding to the page, both state records and extent
2826 * map records are removed
2828 int try_release_extent_mapping(struct extent_map_tree *map,
2829 struct extent_io_tree *tree, struct page *page,
2830 gfp_t mask)
2832 struct extent_map *em;
2833 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2834 u64 end = start + PAGE_CACHE_SIZE - 1;
2836 if ((mask & __GFP_WAIT) &&
2837 page->mapping->host->i_size > 16 * 1024 * 1024) {
2838 u64 len;
2839 while (start <= end) {
2840 len = end - start + 1;
2841 write_lock(&map->lock);
2842 em = lookup_extent_mapping(map, start, len);
2843 if (!em || IS_ERR(em)) {
2844 write_unlock(&map->lock);
2845 break;
2847 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2848 em->start != start) {
2849 write_unlock(&map->lock);
2850 free_extent_map(em);
2851 break;
2853 if (!test_range_bit(tree, em->start,
2854 extent_map_end(em) - 1,
2855 EXTENT_LOCKED | EXTENT_WRITEBACK,
2856 0, NULL)) {
2857 remove_extent_mapping(map, em);
2858 /* once for the rb tree */
2859 free_extent_map(em);
2861 start = extent_map_end(em);
2862 write_unlock(&map->lock);
2864 /* once for us */
2865 free_extent_map(em);
2868 return try_release_extent_state(map, tree, page, mask);
2871 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2872 get_extent_t *get_extent)
2874 struct inode *inode = mapping->host;
2875 u64 start = iblock << inode->i_blkbits;
2876 sector_t sector = 0;
2877 size_t blksize = (1 << inode->i_blkbits);
2878 struct extent_map *em;
2880 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2881 GFP_NOFS);
2882 em = get_extent(inode, NULL, 0, start, blksize, 0);
2883 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2884 GFP_NOFS);
2885 if (!em || IS_ERR(em))
2886 return 0;
2888 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2889 goto out;
2891 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2892 out:
2893 free_extent_map(em);
2894 return sector;
2897 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2898 __u64 start, __u64 len, get_extent_t *get_extent)
2900 int ret;
2901 u64 off = start;
2902 u64 max = start + len;
2903 u32 flags = 0;
2904 u64 disko = 0;
2905 struct extent_map *em = NULL;
2906 int end = 0;
2907 u64 em_start = 0, em_len = 0;
2908 unsigned long emflags;
2909 ret = 0;
2911 if (len == 0)
2912 return -EINVAL;
2914 lock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2915 GFP_NOFS);
2916 em = get_extent(inode, NULL, 0, off, max - off, 0);
2917 if (!em)
2918 goto out;
2919 if (IS_ERR(em)) {
2920 ret = PTR_ERR(em);
2921 goto out;
2923 while (!end) {
2924 off = em->start + em->len;
2925 if (off >= max)
2926 end = 1;
2928 em_start = em->start;
2929 em_len = em->len;
2931 disko = 0;
2932 flags = 0;
2934 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2935 end = 1;
2936 flags |= FIEMAP_EXTENT_LAST;
2937 } else if (em->block_start == EXTENT_MAP_HOLE) {
2938 flags |= FIEMAP_EXTENT_UNWRITTEN;
2939 } else if (em->block_start == EXTENT_MAP_INLINE) {
2940 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2941 FIEMAP_EXTENT_NOT_ALIGNED);
2942 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2943 flags |= (FIEMAP_EXTENT_DELALLOC |
2944 FIEMAP_EXTENT_UNKNOWN);
2945 } else {
2946 disko = em->block_start;
2948 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2949 flags |= FIEMAP_EXTENT_ENCODED;
2951 emflags = em->flags;
2952 free_extent_map(em);
2953 em = NULL;
2955 if (!end) {
2956 em = get_extent(inode, NULL, 0, off, max - off, 0);
2957 if (!em)
2958 goto out;
2959 if (IS_ERR(em)) {
2960 ret = PTR_ERR(em);
2961 goto out;
2963 emflags = em->flags;
2965 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
2966 flags |= FIEMAP_EXTENT_LAST;
2967 end = 1;
2970 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2971 em_len, flags);
2972 if (ret)
2973 goto out_free;
2975 out_free:
2976 free_extent_map(em);
2977 out:
2978 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2979 GFP_NOFS);
2980 return ret;
2983 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2984 unsigned long i)
2986 struct page *p;
2987 struct address_space *mapping;
2989 if (i == 0)
2990 return eb->first_page;
2991 i += eb->start >> PAGE_CACHE_SHIFT;
2992 mapping = eb->first_page->mapping;
2993 if (!mapping)
2994 return NULL;
2997 * extent_buffer_page is only called after pinning the page
2998 * by increasing the reference count. So we know the page must
2999 * be in the radix tree.
3001 rcu_read_lock();
3002 p = radix_tree_lookup(&mapping->page_tree, i);
3003 rcu_read_unlock();
3005 return p;
3008 static inline unsigned long num_extent_pages(u64 start, u64 len)
3010 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3011 (start >> PAGE_CACHE_SHIFT);
3014 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3015 u64 start,
3016 unsigned long len,
3017 gfp_t mask)
3019 struct extent_buffer *eb = NULL;
3020 #if LEAK_DEBUG
3021 unsigned long flags;
3022 #endif
3024 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3025 eb->start = start;
3026 eb->len = len;
3027 spin_lock_init(&eb->lock);
3028 init_waitqueue_head(&eb->lock_wq);
3030 #if LEAK_DEBUG
3031 spin_lock_irqsave(&leak_lock, flags);
3032 list_add(&eb->leak_list, &buffers);
3033 spin_unlock_irqrestore(&leak_lock, flags);
3034 #endif
3035 atomic_set(&eb->refs, 1);
3037 return eb;
3040 static void __free_extent_buffer(struct extent_buffer *eb)
3042 #if LEAK_DEBUG
3043 unsigned long flags;
3044 spin_lock_irqsave(&leak_lock, flags);
3045 list_del(&eb->leak_list);
3046 spin_unlock_irqrestore(&leak_lock, flags);
3047 #endif
3048 kmem_cache_free(extent_buffer_cache, eb);
3051 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3052 u64 start, unsigned long len,
3053 struct page *page0,
3054 gfp_t mask)
3056 unsigned long num_pages = num_extent_pages(start, len);
3057 unsigned long i;
3058 unsigned long index = start >> PAGE_CACHE_SHIFT;
3059 struct extent_buffer *eb;
3060 struct extent_buffer *exists = NULL;
3061 struct page *p;
3062 struct address_space *mapping = tree->mapping;
3063 int uptodate = 1;
3065 spin_lock(&tree->buffer_lock);
3066 eb = buffer_search(tree, start);
3067 if (eb) {
3068 atomic_inc(&eb->refs);
3069 spin_unlock(&tree->buffer_lock);
3070 mark_page_accessed(eb->first_page);
3071 return eb;
3073 spin_unlock(&tree->buffer_lock);
3075 eb = __alloc_extent_buffer(tree, start, len, mask);
3076 if (!eb)
3077 return NULL;
3079 if (page0) {
3080 eb->first_page = page0;
3081 i = 1;
3082 index++;
3083 page_cache_get(page0);
3084 mark_page_accessed(page0);
3085 set_page_extent_mapped(page0);
3086 set_page_extent_head(page0, len);
3087 uptodate = PageUptodate(page0);
3088 } else {
3089 i = 0;
3091 for (; i < num_pages; i++, index++) {
3092 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3093 if (!p) {
3094 WARN_ON(1);
3095 goto free_eb;
3097 set_page_extent_mapped(p);
3098 mark_page_accessed(p);
3099 if (i == 0) {
3100 eb->first_page = p;
3101 set_page_extent_head(p, len);
3102 } else {
3103 set_page_private(p, EXTENT_PAGE_PRIVATE);
3105 if (!PageUptodate(p))
3106 uptodate = 0;
3107 unlock_page(p);
3109 if (uptodate)
3110 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3112 spin_lock(&tree->buffer_lock);
3113 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3114 if (exists) {
3115 /* add one reference for the caller */
3116 atomic_inc(&exists->refs);
3117 spin_unlock(&tree->buffer_lock);
3118 goto free_eb;
3120 spin_unlock(&tree->buffer_lock);
3122 /* add one reference for the tree */
3123 atomic_inc(&eb->refs);
3124 return eb;
3126 free_eb:
3127 if (!atomic_dec_and_test(&eb->refs))
3128 return exists;
3129 for (index = 1; index < i; index++)
3130 page_cache_release(extent_buffer_page(eb, index));
3131 page_cache_release(extent_buffer_page(eb, 0));
3132 __free_extent_buffer(eb);
3133 return exists;
3136 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3137 u64 start, unsigned long len,
3138 gfp_t mask)
3140 struct extent_buffer *eb;
3142 spin_lock(&tree->buffer_lock);
3143 eb = buffer_search(tree, start);
3144 if (eb)
3145 atomic_inc(&eb->refs);
3146 spin_unlock(&tree->buffer_lock);
3148 if (eb)
3149 mark_page_accessed(eb->first_page);
3151 return eb;
3154 void free_extent_buffer(struct extent_buffer *eb)
3156 if (!eb)
3157 return;
3159 if (!atomic_dec_and_test(&eb->refs))
3160 return;
3162 WARN_ON(1);
3165 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3166 struct extent_buffer *eb)
3168 unsigned long i;
3169 unsigned long num_pages;
3170 struct page *page;
3172 num_pages = num_extent_pages(eb->start, eb->len);
3174 for (i = 0; i < num_pages; i++) {
3175 page = extent_buffer_page(eb, i);
3176 if (!PageDirty(page))
3177 continue;
3179 lock_page(page);
3180 if (i == 0)
3181 set_page_extent_head(page, eb->len);
3182 else
3183 set_page_private(page, EXTENT_PAGE_PRIVATE);
3185 clear_page_dirty_for_io(page);
3186 spin_lock_irq(&page->mapping->tree_lock);
3187 if (!PageDirty(page)) {
3188 radix_tree_tag_clear(&page->mapping->page_tree,
3189 page_index(page),
3190 PAGECACHE_TAG_DIRTY);
3192 spin_unlock_irq(&page->mapping->tree_lock);
3193 unlock_page(page);
3195 return 0;
3198 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3199 struct extent_buffer *eb)
3201 return wait_on_extent_writeback(tree, eb->start,
3202 eb->start + eb->len - 1);
3205 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3206 struct extent_buffer *eb)
3208 unsigned long i;
3209 unsigned long num_pages;
3210 int was_dirty = 0;
3212 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3213 num_pages = num_extent_pages(eb->start, eb->len);
3214 for (i = 0; i < num_pages; i++)
3215 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3216 return was_dirty;
3219 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3220 struct extent_buffer *eb)
3222 unsigned long i;
3223 struct page *page;
3224 unsigned long num_pages;
3226 num_pages = num_extent_pages(eb->start, eb->len);
3227 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3229 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3230 GFP_NOFS);
3231 for (i = 0; i < num_pages; i++) {
3232 page = extent_buffer_page(eb, i);
3233 if (page)
3234 ClearPageUptodate(page);
3236 return 0;
3239 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3240 struct extent_buffer *eb)
3242 unsigned long i;
3243 struct page *page;
3244 unsigned long num_pages;
3246 num_pages = num_extent_pages(eb->start, eb->len);
3248 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3249 GFP_NOFS);
3250 for (i = 0; i < num_pages; i++) {
3251 page = extent_buffer_page(eb, i);
3252 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3253 ((i == num_pages - 1) &&
3254 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3255 check_page_uptodate(tree, page);
3256 continue;
3258 SetPageUptodate(page);
3260 return 0;
3263 int extent_range_uptodate(struct extent_io_tree *tree,
3264 u64 start, u64 end)
3266 struct page *page;
3267 int ret;
3268 int pg_uptodate = 1;
3269 int uptodate;
3270 unsigned long index;
3272 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3273 if (ret)
3274 return 1;
3275 while (start <= end) {
3276 index = start >> PAGE_CACHE_SHIFT;
3277 page = find_get_page(tree->mapping, index);
3278 uptodate = PageUptodate(page);
3279 page_cache_release(page);
3280 if (!uptodate) {
3281 pg_uptodate = 0;
3282 break;
3284 start += PAGE_CACHE_SIZE;
3286 return pg_uptodate;
3289 int extent_buffer_uptodate(struct extent_io_tree *tree,
3290 struct extent_buffer *eb)
3292 int ret = 0;
3293 unsigned long num_pages;
3294 unsigned long i;
3295 struct page *page;
3296 int pg_uptodate = 1;
3298 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3299 return 1;
3301 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3302 EXTENT_UPTODATE, 1, NULL);
3303 if (ret)
3304 return ret;
3306 num_pages = num_extent_pages(eb->start, eb->len);
3307 for (i = 0; i < num_pages; i++) {
3308 page = extent_buffer_page(eb, i);
3309 if (!PageUptodate(page)) {
3310 pg_uptodate = 0;
3311 break;
3314 return pg_uptodate;
3317 int read_extent_buffer_pages(struct extent_io_tree *tree,
3318 struct extent_buffer *eb,
3319 u64 start, int wait,
3320 get_extent_t *get_extent, int mirror_num)
3322 unsigned long i;
3323 unsigned long start_i;
3324 struct page *page;
3325 int err;
3326 int ret = 0;
3327 int locked_pages = 0;
3328 int all_uptodate = 1;
3329 int inc_all_pages = 0;
3330 unsigned long num_pages;
3331 struct bio *bio = NULL;
3332 unsigned long bio_flags = 0;
3334 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3335 return 0;
3337 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3338 EXTENT_UPTODATE, 1, NULL)) {
3339 return 0;
3342 if (start) {
3343 WARN_ON(start < eb->start);
3344 start_i = (start >> PAGE_CACHE_SHIFT) -
3345 (eb->start >> PAGE_CACHE_SHIFT);
3346 } else {
3347 start_i = 0;
3350 num_pages = num_extent_pages(eb->start, eb->len);
3351 for (i = start_i; i < num_pages; i++) {
3352 page = extent_buffer_page(eb, i);
3353 if (!wait) {
3354 if (!trylock_page(page))
3355 goto unlock_exit;
3356 } else {
3357 lock_page(page);
3359 locked_pages++;
3360 if (!PageUptodate(page))
3361 all_uptodate = 0;
3363 if (all_uptodate) {
3364 if (start_i == 0)
3365 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3366 goto unlock_exit;
3369 for (i = start_i; i < num_pages; i++) {
3370 page = extent_buffer_page(eb, i);
3371 if (inc_all_pages)
3372 page_cache_get(page);
3373 if (!PageUptodate(page)) {
3374 if (start_i == 0)
3375 inc_all_pages = 1;
3376 ClearPageError(page);
3377 err = __extent_read_full_page(tree, page,
3378 get_extent, &bio,
3379 mirror_num, &bio_flags);
3380 if (err)
3381 ret = err;
3382 } else {
3383 unlock_page(page);
3387 if (bio)
3388 submit_one_bio(READ, bio, mirror_num, bio_flags);
3390 if (ret || !wait)
3391 return ret;
3393 for (i = start_i; i < num_pages; i++) {
3394 page = extent_buffer_page(eb, i);
3395 wait_on_page_locked(page);
3396 if (!PageUptodate(page))
3397 ret = -EIO;
3400 if (!ret)
3401 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3402 return ret;
3404 unlock_exit:
3405 i = start_i;
3406 while (locked_pages > 0) {
3407 page = extent_buffer_page(eb, i);
3408 i++;
3409 unlock_page(page);
3410 locked_pages--;
3412 return ret;
3415 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3416 unsigned long start,
3417 unsigned long len)
3419 size_t cur;
3420 size_t offset;
3421 struct page *page;
3422 char *kaddr;
3423 char *dst = (char *)dstv;
3424 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3425 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3427 WARN_ON(start > eb->len);
3428 WARN_ON(start + len > eb->start + eb->len);
3430 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3432 while (len > 0) {
3433 page = extent_buffer_page(eb, i);
3435 cur = min(len, (PAGE_CACHE_SIZE - offset));
3436 kaddr = kmap_atomic(page, KM_USER1);
3437 memcpy(dst, kaddr + offset, cur);
3438 kunmap_atomic(kaddr, KM_USER1);
3440 dst += cur;
3441 len -= cur;
3442 offset = 0;
3443 i++;
3447 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3448 unsigned long min_len, char **token, char **map,
3449 unsigned long *map_start,
3450 unsigned long *map_len, int km)
3452 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3453 char *kaddr;
3454 struct page *p;
3455 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3456 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3457 unsigned long end_i = (start_offset + start + min_len - 1) >>
3458 PAGE_CACHE_SHIFT;
3460 if (i != end_i)
3461 return -EINVAL;
3463 if (i == 0) {
3464 offset = start_offset;
3465 *map_start = 0;
3466 } else {
3467 offset = 0;
3468 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3471 if (start + min_len > eb->len) {
3472 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3473 "wanted %lu %lu\n", (unsigned long long)eb->start,
3474 eb->len, start, min_len);
3475 WARN_ON(1);
3478 p = extent_buffer_page(eb, i);
3479 kaddr = kmap_atomic(p, km);
3480 *token = kaddr;
3481 *map = kaddr + offset;
3482 *map_len = PAGE_CACHE_SIZE - offset;
3483 return 0;
3486 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3487 unsigned long min_len,
3488 char **token, char **map,
3489 unsigned long *map_start,
3490 unsigned long *map_len, int km)
3492 int err;
3493 int save = 0;
3494 if (eb->map_token) {
3495 unmap_extent_buffer(eb, eb->map_token, km);
3496 eb->map_token = NULL;
3497 save = 1;
3499 err = map_private_extent_buffer(eb, start, min_len, token, map,
3500 map_start, map_len, km);
3501 if (!err && save) {
3502 eb->map_token = *token;
3503 eb->kaddr = *map;
3504 eb->map_start = *map_start;
3505 eb->map_len = *map_len;
3507 return err;
3510 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3512 kunmap_atomic(token, km);
3515 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3516 unsigned long start,
3517 unsigned long len)
3519 size_t cur;
3520 size_t offset;
3521 struct page *page;
3522 char *kaddr;
3523 char *ptr = (char *)ptrv;
3524 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3525 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3526 int ret = 0;
3528 WARN_ON(start > eb->len);
3529 WARN_ON(start + len > eb->start + eb->len);
3531 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3533 while (len > 0) {
3534 page = extent_buffer_page(eb, i);
3536 cur = min(len, (PAGE_CACHE_SIZE - offset));
3538 kaddr = kmap_atomic(page, KM_USER0);
3539 ret = memcmp(ptr, kaddr + offset, cur);
3540 kunmap_atomic(kaddr, KM_USER0);
3541 if (ret)
3542 break;
3544 ptr += cur;
3545 len -= cur;
3546 offset = 0;
3547 i++;
3549 return ret;
3552 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3553 unsigned long start, unsigned long len)
3555 size_t cur;
3556 size_t offset;
3557 struct page *page;
3558 char *kaddr;
3559 char *src = (char *)srcv;
3560 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3561 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3563 WARN_ON(start > eb->len);
3564 WARN_ON(start + len > eb->start + eb->len);
3566 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3568 while (len > 0) {
3569 page = extent_buffer_page(eb, i);
3570 WARN_ON(!PageUptodate(page));
3572 cur = min(len, PAGE_CACHE_SIZE - offset);
3573 kaddr = kmap_atomic(page, KM_USER1);
3574 memcpy(kaddr + offset, src, cur);
3575 kunmap_atomic(kaddr, KM_USER1);
3577 src += cur;
3578 len -= cur;
3579 offset = 0;
3580 i++;
3584 void memset_extent_buffer(struct extent_buffer *eb, char c,
3585 unsigned long start, unsigned long len)
3587 size_t cur;
3588 size_t offset;
3589 struct page *page;
3590 char *kaddr;
3591 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3592 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3594 WARN_ON(start > eb->len);
3595 WARN_ON(start + len > eb->start + eb->len);
3597 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3599 while (len > 0) {
3600 page = extent_buffer_page(eb, i);
3601 WARN_ON(!PageUptodate(page));
3603 cur = min(len, PAGE_CACHE_SIZE - offset);
3604 kaddr = kmap_atomic(page, KM_USER0);
3605 memset(kaddr + offset, c, cur);
3606 kunmap_atomic(kaddr, KM_USER0);
3608 len -= cur;
3609 offset = 0;
3610 i++;
3614 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3615 unsigned long dst_offset, unsigned long src_offset,
3616 unsigned long len)
3618 u64 dst_len = dst->len;
3619 size_t cur;
3620 size_t offset;
3621 struct page *page;
3622 char *kaddr;
3623 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3624 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3626 WARN_ON(src->len != dst_len);
3628 offset = (start_offset + dst_offset) &
3629 ((unsigned long)PAGE_CACHE_SIZE - 1);
3631 while (len > 0) {
3632 page = extent_buffer_page(dst, i);
3633 WARN_ON(!PageUptodate(page));
3635 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3637 kaddr = kmap_atomic(page, KM_USER0);
3638 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3639 kunmap_atomic(kaddr, KM_USER0);
3641 src_offset += cur;
3642 len -= cur;
3643 offset = 0;
3644 i++;
3648 static void move_pages(struct page *dst_page, struct page *src_page,
3649 unsigned long dst_off, unsigned long src_off,
3650 unsigned long len)
3652 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3653 if (dst_page == src_page) {
3654 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3655 } else {
3656 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3657 char *p = dst_kaddr + dst_off + len;
3658 char *s = src_kaddr + src_off + len;
3660 while (len--)
3661 *--p = *--s;
3663 kunmap_atomic(src_kaddr, KM_USER1);
3665 kunmap_atomic(dst_kaddr, KM_USER0);
3668 static void copy_pages(struct page *dst_page, struct page *src_page,
3669 unsigned long dst_off, unsigned long src_off,
3670 unsigned long len)
3672 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3673 char *src_kaddr;
3675 if (dst_page != src_page)
3676 src_kaddr = kmap_atomic(src_page, KM_USER1);
3677 else
3678 src_kaddr = dst_kaddr;
3680 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3681 kunmap_atomic(dst_kaddr, KM_USER0);
3682 if (dst_page != src_page)
3683 kunmap_atomic(src_kaddr, KM_USER1);
3686 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3687 unsigned long src_offset, unsigned long len)
3689 size_t cur;
3690 size_t dst_off_in_page;
3691 size_t src_off_in_page;
3692 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3693 unsigned long dst_i;
3694 unsigned long src_i;
3696 if (src_offset + len > dst->len) {
3697 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3698 "len %lu dst len %lu\n", src_offset, len, dst->len);
3699 BUG_ON(1);
3701 if (dst_offset + len > dst->len) {
3702 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3703 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3704 BUG_ON(1);
3707 while (len > 0) {
3708 dst_off_in_page = (start_offset + dst_offset) &
3709 ((unsigned long)PAGE_CACHE_SIZE - 1);
3710 src_off_in_page = (start_offset + src_offset) &
3711 ((unsigned long)PAGE_CACHE_SIZE - 1);
3713 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3714 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3716 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3717 src_off_in_page));
3718 cur = min_t(unsigned long, cur,
3719 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3721 copy_pages(extent_buffer_page(dst, dst_i),
3722 extent_buffer_page(dst, src_i),
3723 dst_off_in_page, src_off_in_page, cur);
3725 src_offset += cur;
3726 dst_offset += cur;
3727 len -= cur;
3731 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3732 unsigned long src_offset, unsigned long len)
3734 size_t cur;
3735 size_t dst_off_in_page;
3736 size_t src_off_in_page;
3737 unsigned long dst_end = dst_offset + len - 1;
3738 unsigned long src_end = src_offset + len - 1;
3739 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3740 unsigned long dst_i;
3741 unsigned long src_i;
3743 if (src_offset + len > dst->len) {
3744 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3745 "len %lu len %lu\n", src_offset, len, dst->len);
3746 BUG_ON(1);
3748 if (dst_offset + len > dst->len) {
3749 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3750 "len %lu len %lu\n", dst_offset, len, dst->len);
3751 BUG_ON(1);
3753 if (dst_offset < src_offset) {
3754 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3755 return;
3757 while (len > 0) {
3758 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3759 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3761 dst_off_in_page = (start_offset + dst_end) &
3762 ((unsigned long)PAGE_CACHE_SIZE - 1);
3763 src_off_in_page = (start_offset + src_end) &
3764 ((unsigned long)PAGE_CACHE_SIZE - 1);
3766 cur = min_t(unsigned long, len, src_off_in_page + 1);
3767 cur = min(cur, dst_off_in_page + 1);
3768 move_pages(extent_buffer_page(dst, dst_i),
3769 extent_buffer_page(dst, src_i),
3770 dst_off_in_page - cur + 1,
3771 src_off_in_page - cur + 1, cur);
3773 dst_end -= cur;
3774 src_end -= cur;
3775 len -= cur;
3779 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3781 u64 start = page_offset(page);
3782 struct extent_buffer *eb;
3783 int ret = 1;
3784 unsigned long i;
3785 unsigned long num_pages;
3787 spin_lock(&tree->buffer_lock);
3788 eb = buffer_search(tree, start);
3789 if (!eb)
3790 goto out;
3792 if (atomic_read(&eb->refs) > 1) {
3793 ret = 0;
3794 goto out;
3796 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3797 ret = 0;
3798 goto out;
3800 /* at this point we can safely release the extent buffer */
3801 num_pages = num_extent_pages(eb->start, eb->len);
3802 for (i = 0; i < num_pages; i++)
3803 page_cache_release(extent_buffer_page(eb, i));
3804 rb_erase(&eb->rb_node, &tree->buffer);
3805 __free_extent_buffer(eb);
3806 out:
3807 spin_unlock(&tree->buffer_lock);
3808 return ret;