2 * ECC algorithm for M-systems disk on chip. We use the excellent Reed
3 * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
4 * GNU GPL License. The rest is simply to convert the disk on chip
5 * syndrom into a standard syndom.
7 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
8 * Copyright (C) 2000 Netgem S.A.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <asm/errno.h>
28 #include <asm/uaccess.h>
29 #include <linux/delay.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/types.h>
34 #include <linux/mtd/compatmac.h> /* for min() in older kernels */
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/doc2000.h>
39 /* need to undef it (from asm/termbits.h) */
42 #define MM 10 /* Symbol size in bits */
43 #define KK (1023-4) /* Number of data symbols per block */
44 #define B0 510 /* First root of generator polynomial, alpha form */
45 #define PRIM 1 /* power of alpha used to generate roots of generator poly */
46 #define NN ((1 << MM) - 1)
48 typedef unsigned short dtype
;
51 static const int Pp
[MM
+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
53 /* This defines the type used to store an element of the Galois Field
54 * used by the code. Make sure this is something larger than a char if
55 * if anything larger than GF(256) is used.
57 * Note: unsigned char will work up to GF(256) but int seems to run
58 * faster on the Pentium.
62 /* No legal value in index form represents zero, so
63 * we need a special value for this purpose
67 /* Compute x % NN, where NN is 2**MM - 1,
68 * without a slow divide
75 x
= (x
>> MM
) + (x
& NN
);
82 for(ci=(n)-1;ci >=0;ci--)\
86 #define COPY(a,b,n) {\
88 for(ci=(n)-1;ci >=0;ci--)\
92 #define COPYDOWN(a,b,n) {\
94 for(ci=(n)-1;ci >=0;ci--)\
100 /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
101 lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
102 polynomial form -> index form index_of[j=alpha**i] = i
103 alpha=2 is the primitive element of GF(2**m)
104 HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
105 Let @ represent the primitive element commonly called "alpha" that
106 is the root of the primitive polynomial p(x). Then in GF(2^m), for any
108 @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
109 where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
110 of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
111 example the polynomial representation of @^5 would be given by the binary
112 representation of the integer "alpha_to[5]".
113 Similarily, index_of[] can be used as follows:
114 As above, let @ represent the primitive element of GF(2^m) that is
115 the root of the primitive polynomial p(x). In order to find the power
116 of @ (alpha) that has the polynomial representation
117 a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
118 we consider the integer "i" whose binary representation with a(0) being LSB
119 and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
120 "index_of[i]". Now, @^index_of[i] is that element whose polynomial
121 representation is (a(0),a(1),a(2),...,a(m-1)).
123 The element alpha_to[2^m-1] = 0 always signifying that the
124 representation of "@^infinity" = 0 is (0,0,0,...,0).
125 Similarily, the element index_of[0] = A0 always signifying
126 that the power of alpha which has the polynomial representation
127 (0,0,...,0) is "infinity".
132 generate_gf(dtype Alpha_to
[NN
+ 1], dtype Index_of
[NN
+ 1])
134 register int i
, mask
;
138 for (i
= 0; i
< MM
; i
++) {
140 Index_of
[Alpha_to
[i
]] = i
;
141 /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
143 Alpha_to
[MM
] ^= mask
; /* Bit-wise EXOR operation */
144 mask
<<= 1; /* single left-shift */
146 Index_of
[Alpha_to
[MM
]] = MM
;
148 * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
149 * poly-repr of @^i shifted left one-bit and accounting for any @^MM
150 * term that may occur when poly-repr of @^i is shifted.
153 for (i
= MM
+ 1; i
< NN
; i
++) {
154 if (Alpha_to
[i
- 1] >= mask
)
155 Alpha_to
[i
] = Alpha_to
[MM
] ^ ((Alpha_to
[i
- 1] ^ mask
) << 1);
157 Alpha_to
[i
] = Alpha_to
[i
- 1] << 1;
158 Index_of
[Alpha_to
[i
]] = i
;
165 * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
166 * of the feedback shift register after having processed the data and
169 * Return number of symbols corrected, or -1 if codeword is illegal
170 * or uncorrectable. If eras_pos is non-null, the detected error locations
171 * are written back. NOTE! This array must be at least NN-KK elements long.
172 * The corrected data are written in eras_val[]. They must be xor with the data
173 * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
175 * First "no_eras" erasures are declared by the calling program. Then, the
176 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
177 * If the number of channel errors is not greater than "t_after_eras" the
178 * transmitted codeword will be recovered. Details of algorithm can be found
179 * in R. Blahut's "Theory ... of Error-Correcting Codes".
181 * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
182 * will result. The decoder *could* check for this condition, but it would involve
183 * extra time on every decoding operation.
186 eras_dec_rs(dtype Alpha_to
[NN
+ 1], dtype Index_of
[NN
+ 1],
187 gf bb
[NN
- KK
+ 1], gf eras_val
[NN
-KK
], int eras_pos
[NN
-KK
],
190 int deg_lambda
, el
, deg_omega
;
192 gf u
,q
,tmp
,num1
,num2
,den
,discr_r
;
193 gf lambda
[NN
-KK
+ 1], s
[NN
-KK
+ 1]; /* Err+Eras Locator poly
194 * and syndrome poly */
195 gf b
[NN
-KK
+ 1], t
[NN
-KK
+ 1], omega
[NN
-KK
+ 1];
196 gf root
[NN
-KK
], reg
[NN
-KK
+ 1], loc
[NN
-KK
];
197 int syn_error
, count
;
204 /* if remainder is zero, data[] is a codeword and there are no
205 * errors to correct. So return data[] unmodified
211 for(i
=1;i
<=NN
-KK
;i
++){
214 for(j
=1;j
<NN
-KK
;j
++){
217 tmp
= Index_of
[bb
[j
]];
219 for(i
=1;i
<=NN
-KK
;i
++)
220 s
[i
] ^= Alpha_to
[modnn(tmp
+ (B0
+i
-1)*PRIM
*j
)];
223 /* undo the feedback register implicit multiplication and convert
224 syndromes to index form */
226 for(i
=1;i
<=NN
-KK
;i
++) {
227 tmp
= Index_of
[s
[i
]];
229 tmp
= modnn(tmp
+ 2 * KK
* (B0
+i
-1)*PRIM
);
233 CLEAR(&lambda
[1],NN
-KK
);
237 /* Init lambda to be the erasure locator polynomial */
238 lambda
[1] = Alpha_to
[modnn(PRIM
* eras_pos
[0])];
239 for (i
= 1; i
< no_eras
; i
++) {
240 u
= modnn(PRIM
*eras_pos
[i
]);
241 for (j
= i
+1; j
> 0; j
--) {
242 tmp
= Index_of
[lambda
[j
- 1]];
244 lambda
[j
] ^= Alpha_to
[modnn(u
+ tmp
)];
248 /* Test code that verifies the erasure locator polynomial just constructed
249 Needed only for decoder debugging. */
251 /* find roots of the erasure location polynomial */
252 for(i
=1;i
<=no_eras
;i
++)
253 reg
[i
] = Index_of
[lambda
[i
]];
255 for (i
= 1,k
=NN
-Ldec
; i
<= NN
; i
++,k
= modnn(NN
+k
-Ldec
)) {
257 for (j
= 1; j
<= no_eras
; j
++)
259 reg
[j
] = modnn(reg
[j
] + j
);
260 q
^= Alpha_to
[reg
[j
]];
264 /* store root and error location number indices */
269 if (count
!= no_eras
) {
270 printf("\n lambda(x) is WRONG\n");
275 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
276 for (i
= 0; i
< count
; i
++)
277 printf("%d ", loc
[i
]);
282 for(i
=0;i
<NN
-KK
+1;i
++)
283 b
[i
] = Index_of
[lambda
[i
]];
286 * Begin Berlekamp-Massey algorithm to determine error+erasure
291 while (++r
<= NN
-KK
) { /* r is the step number */
292 /* Compute discrepancy at the r-th step in poly-form */
294 for (i
= 0; i
< r
; i
++){
295 if ((lambda
[i
] != 0) && (s
[r
- i
] != A0
)) {
296 discr_r
^= Alpha_to
[modnn(Index_of
[lambda
[i
]] + s
[r
- i
])];
299 discr_r
= Index_of
[discr_r
]; /* Index form */
301 /* 2 lines below: B(x) <-- x*B(x) */
302 COPYDOWN(&b
[1],b
,NN
-KK
);
305 /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
307 for (i
= 0 ; i
< NN
-KK
; i
++) {
309 t
[i
+1] = lambda
[i
+1] ^ Alpha_to
[modnn(discr_r
+ b
[i
])];
311 t
[i
+1] = lambda
[i
+1];
313 if (2 * el
<= r
+ no_eras
- 1) {
314 el
= r
+ no_eras
- el
;
316 * 2 lines below: B(x) <-- inv(discr_r) *
319 for (i
= 0; i
<= NN
-KK
; i
++)
320 b
[i
] = (lambda
[i
] == 0) ? A0
: modnn(Index_of
[lambda
[i
]] - discr_r
+ NN
);
322 /* 2 lines below: B(x) <-- x*B(x) */
323 COPYDOWN(&b
[1],b
,NN
-KK
);
326 COPY(lambda
,t
,NN
-KK
+1);
330 /* Convert lambda to index form and compute deg(lambda(x)) */
332 for(i
=0;i
<NN
-KK
+1;i
++){
333 lambda
[i
] = Index_of
[lambda
[i
]];
338 * Find roots of the error+erasure locator polynomial by Chien
341 COPY(®
[1],&lambda
[1],NN
-KK
);
342 count
= 0; /* Number of roots of lambda(x) */
343 for (i
= 1,k
=NN
-Ldec
; i
<= NN
; i
++,k
= modnn(NN
+k
-Ldec
)) {
345 for (j
= deg_lambda
; j
> 0; j
--){
347 reg
[j
] = modnn(reg
[j
] + j
);
348 q
^= Alpha_to
[reg
[j
]];
353 /* store root (index-form) and error location number */
356 /* If we've already found max possible roots,
357 * abort the search to save time
359 if(++count
== deg_lambda
)
362 if (deg_lambda
!= count
) {
364 * deg(lambda) unequal to number of roots => uncorrectable
371 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
372 * x**(NN-KK)). in index form. Also find deg(omega).
375 for (i
= 0; i
< NN
-KK
;i
++){
377 j
= (deg_lambda
< i
) ? deg_lambda
: i
;
379 if ((s
[i
+ 1 - j
] != A0
) && (lambda
[j
] != A0
))
380 tmp
^= Alpha_to
[modnn(s
[i
+ 1 - j
] + lambda
[j
])];
384 omega
[i
] = Index_of
[tmp
];
389 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
390 * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
392 for (j
= count
-1; j
>=0; j
--) {
394 for (i
= deg_omega
; i
>= 0; i
--) {
396 num1
^= Alpha_to
[modnn(omega
[i
] + i
* root
[j
])];
398 num2
= Alpha_to
[modnn(root
[j
] * (B0
- 1) + NN
)];
401 /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
402 for (i
= min(deg_lambda
,NN
-KK
-1) & ~1; i
>= 0; i
-=2) {
403 if(lambda
[i
+1] != A0
)
404 den
^= Alpha_to
[modnn(lambda
[i
+1] + i
* root
[j
])];
408 printf("\n ERROR: denominator = 0\n");
410 /* Convert to dual- basis */
414 /* Apply error to data */
416 eras_val
[j
] = Alpha_to
[modnn(Index_of
[num1
] + Index_of
[num2
] + NN
- Index_of
[den
])];
423 eras_pos
[i
] = loc
[i
];
427 /***************************************************************************/
428 /* The DOC specific code begins here */
430 #define SECTOR_SIZE 512
431 /* The sector bytes are packed into NB_DATA MM bits words */
432 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
435 * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
436 * content of the feedback shift register applyied to the sector and
437 * the ECC. Return the number of errors corrected (and correct them in
438 * sector), or -1 if error
440 int doc_decode_ecc(unsigned char sector
[SECTOR_SIZE
], unsigned char ecc1
[6])
442 int parity
, i
, nb_errors
;
445 int error_pos
[NN
-KK
], pos
, bitpos
, index
, val
;
446 dtype
*Alpha_to
, *Index_of
;
448 /* init log and exp tables here to save memory. However, it is slower */
449 Alpha_to
= kmalloc((NN
+ 1) * sizeof(dtype
), GFP_KERNEL
);
453 Index_of
= kmalloc((NN
+ 1) * sizeof(dtype
), GFP_KERNEL
);
459 generate_gf(Alpha_to
, Index_of
);
463 bb
[0] = (ecc1
[4] & 0xff) | ((ecc1
[5] & 0x03) << 8);
464 bb
[1] = ((ecc1
[5] & 0xfc) >> 2) | ((ecc1
[2] & 0x0f) << 6);
465 bb
[2] = ((ecc1
[2] & 0xf0) >> 4) | ((ecc1
[3] & 0x3f) << 4);
466 bb
[3] = ((ecc1
[3] & 0xc0) >> 6) | ((ecc1
[0] & 0xff) << 2);
468 nb_errors
= eras_dec_rs(Alpha_to
, Index_of
, bb
,
469 error_val
, error_pos
, 0);
473 /* correct the errors */
474 for(i
=0;i
<nb_errors
;i
++) {
476 if (pos
>= NB_DATA
&& pos
< KK
) {
481 /* extract bit position (MSB first) */
482 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
483 /* now correct the following 10 bits. At most two bytes
484 can be modified since pos is even */
485 index
= (pos
>> 3) ^ 1;
487 if ((index
>= 0 && index
< SECTOR_SIZE
) ||
488 index
== (SECTOR_SIZE
+ 1)) {
489 val
= error_val
[i
] >> (2 + bitpos
);
491 if (index
< SECTOR_SIZE
)
492 sector
[index
] ^= val
;
494 index
= ((pos
>> 3) + 1) ^ 1;
495 bitpos
= (bitpos
+ 10) & 7;
498 if ((index
>= 0 && index
< SECTOR_SIZE
) ||
499 index
== (SECTOR_SIZE
+ 1)) {
500 val
= error_val
[i
] << (8 - bitpos
);
502 if (index
< SECTOR_SIZE
)
503 sector
[index
] ^= val
;
508 /* use parity to test extra errors */
509 if ((parity
& 0xff) != 0)
518 EXPORT_SYMBOL_GPL(doc_decode_ecc
);
520 MODULE_LICENSE("GPL");
521 MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");
522 MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");