Merge commit 'v2.6.31.12' into mini2440-stable-v2.6.31
[linux-2.6/mini2440.git] / fs / ext4 / mballoc.c
blob099fd476273e06f354c5bd0f1008181515c0809c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "mballoc.h"
25 #include <trace/events/ext4.h>
28 * MUSTDO:
29 * - test ext4_ext_search_left() and ext4_ext_search_right()
30 * - search for metadata in few groups
32 * TODO v4:
33 * - normalization should take into account whether file is still open
34 * - discard preallocations if no free space left (policy?)
35 * - don't normalize tails
36 * - quota
37 * - reservation for superuser
39 * TODO v3:
40 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
41 * - track min/max extents in each group for better group selection
42 * - mb_mark_used() may allocate chunk right after splitting buddy
43 * - tree of groups sorted by number of free blocks
44 * - error handling
48 * The allocation request involve request for multiple number of blocks
49 * near to the goal(block) value specified.
51 * During initialization phase of the allocator we decide to use the
52 * group preallocation or inode preallocation depending on the size of
53 * the file. The size of the file could be the resulting file size we
54 * would have after allocation, or the current file size, which ever
55 * is larger. If the size is less than sbi->s_mb_stream_request we
56 * select to use the group preallocation. The default value of
57 * s_mb_stream_request is 16 blocks. This can also be tuned via
58 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
59 * terms of number of blocks.
61 * The main motivation for having small file use group preallocation is to
62 * ensure that we have small files closer together on the disk.
64 * First stage the allocator looks at the inode prealloc list,
65 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
66 * spaces for this particular inode. The inode prealloc space is
67 * represented as:
69 * pa_lstart -> the logical start block for this prealloc space
70 * pa_pstart -> the physical start block for this prealloc space
71 * pa_len -> lenght for this prealloc space
72 * pa_free -> free space available in this prealloc space
74 * The inode preallocation space is used looking at the _logical_ start
75 * block. If only the logical file block falls within the range of prealloc
76 * space we will consume the particular prealloc space. This make sure that
77 * that the we have contiguous physical blocks representing the file blocks
79 * The important thing to be noted in case of inode prealloc space is that
80 * we don't modify the values associated to inode prealloc space except
81 * pa_free.
83 * If we are not able to find blocks in the inode prealloc space and if we
84 * have the group allocation flag set then we look at the locality group
85 * prealloc space. These are per CPU prealloc list repreasented as
87 * ext4_sb_info.s_locality_groups[smp_processor_id()]
89 * The reason for having a per cpu locality group is to reduce the contention
90 * between CPUs. It is possible to get scheduled at this point.
92 * The locality group prealloc space is used looking at whether we have
93 * enough free space (pa_free) withing the prealloc space.
95 * If we can't allocate blocks via inode prealloc or/and locality group
96 * prealloc then we look at the buddy cache. The buddy cache is represented
97 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
98 * mapped to the buddy and bitmap information regarding different
99 * groups. The buddy information is attached to buddy cache inode so that
100 * we can access them through the page cache. The information regarding
101 * each group is loaded via ext4_mb_load_buddy. The information involve
102 * block bitmap and buddy information. The information are stored in the
103 * inode as:
105 * { page }
106 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 * one block each for bitmap and buddy information. So for each group we
110 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
111 * blocksize) blocks. So it can have information regarding groups_per_page
112 * which is blocks_per_page/2
114 * The buddy cache inode is not stored on disk. The inode is thrown
115 * away when the filesystem is unmounted.
117 * We look for count number of blocks in the buddy cache. If we were able
118 * to locate that many free blocks we return with additional information
119 * regarding rest of the contiguous physical block available
121 * Before allocating blocks via buddy cache we normalize the request
122 * blocks. This ensure we ask for more blocks that we needed. The extra
123 * blocks that we get after allocation is added to the respective prealloc
124 * list. In case of inode preallocation we follow a list of heuristics
125 * based on file size. This can be found in ext4_mb_normalize_request. If
126 * we are doing a group prealloc we try to normalize the request to
127 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
128 * 512 blocks. This can be tuned via
129 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
130 * terms of number of blocks. If we have mounted the file system with -O
131 * stripe=<value> option the group prealloc request is normalized to the
132 * stripe value (sbi->s_stripe)
134 * The regular allocator(using the buddy cache) supports few tunables.
136 * /sys/fs/ext4/<partition>/mb_min_to_scan
137 * /sys/fs/ext4/<partition>/mb_max_to_scan
138 * /sys/fs/ext4/<partition>/mb_order2_req
140 * The regular allocator uses buddy scan only if the request len is power of
141 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
142 * value of s_mb_order2_reqs can be tuned via
143 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
144 * stripe size (sbi->s_stripe), we try to search for contigous block in
145 * stripe size. This should result in better allocation on RAID setups. If
146 * not, we search in the specific group using bitmap for best extents. The
147 * tunable min_to_scan and max_to_scan control the behaviour here.
148 * min_to_scan indicate how long the mballoc __must__ look for a best
149 * extent and max_to_scan indicates how long the mballoc __can__ look for a
150 * best extent in the found extents. Searching for the blocks starts with
151 * the group specified as the goal value in allocation context via
152 * ac_g_ex. Each group is first checked based on the criteria whether it
153 * can used for allocation. ext4_mb_good_group explains how the groups are
154 * checked.
156 * Both the prealloc space are getting populated as above. So for the first
157 * request we will hit the buddy cache which will result in this prealloc
158 * space getting filled. The prealloc space is then later used for the
159 * subsequent request.
163 * mballoc operates on the following data:
164 * - on-disk bitmap
165 * - in-core buddy (actually includes buddy and bitmap)
166 * - preallocation descriptors (PAs)
168 * there are two types of preallocations:
169 * - inode
170 * assiged to specific inode and can be used for this inode only.
171 * it describes part of inode's space preallocated to specific
172 * physical blocks. any block from that preallocated can be used
173 * independent. the descriptor just tracks number of blocks left
174 * unused. so, before taking some block from descriptor, one must
175 * make sure corresponded logical block isn't allocated yet. this
176 * also means that freeing any block within descriptor's range
177 * must discard all preallocated blocks.
178 * - locality group
179 * assigned to specific locality group which does not translate to
180 * permanent set of inodes: inode can join and leave group. space
181 * from this type of preallocation can be used for any inode. thus
182 * it's consumed from the beginning to the end.
184 * relation between them can be expressed as:
185 * in-core buddy = on-disk bitmap + preallocation descriptors
187 * this mean blocks mballoc considers used are:
188 * - allocated blocks (persistent)
189 * - preallocated blocks (non-persistent)
191 * consistency in mballoc world means that at any time a block is either
192 * free or used in ALL structures. notice: "any time" should not be read
193 * literally -- time is discrete and delimited by locks.
195 * to keep it simple, we don't use block numbers, instead we count number of
196 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
198 * all operations can be expressed as:
199 * - init buddy: buddy = on-disk + PAs
200 * - new PA: buddy += N; PA = N
201 * - use inode PA: on-disk += N; PA -= N
202 * - discard inode PA buddy -= on-disk - PA; PA = 0
203 * - use locality group PA on-disk += N; PA -= N
204 * - discard locality group PA buddy -= PA; PA = 0
205 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
206 * is used in real operation because we can't know actual used
207 * bits from PA, only from on-disk bitmap
209 * if we follow this strict logic, then all operations above should be atomic.
210 * given some of them can block, we'd have to use something like semaphores
211 * killing performance on high-end SMP hardware. let's try to relax it using
212 * the following knowledge:
213 * 1) if buddy is referenced, it's already initialized
214 * 2) while block is used in buddy and the buddy is referenced,
215 * nobody can re-allocate that block
216 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
217 * bit set and PA claims same block, it's OK. IOW, one can set bit in
218 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
219 * block
221 * so, now we're building a concurrency table:
222 * - init buddy vs.
223 * - new PA
224 * blocks for PA are allocated in the buddy, buddy must be referenced
225 * until PA is linked to allocation group to avoid concurrent buddy init
226 * - use inode PA
227 * we need to make sure that either on-disk bitmap or PA has uptodate data
228 * given (3) we care that PA-=N operation doesn't interfere with init
229 * - discard inode PA
230 * the simplest way would be to have buddy initialized by the discard
231 * - use locality group PA
232 * again PA-=N must be serialized with init
233 * - discard locality group PA
234 * the simplest way would be to have buddy initialized by the discard
235 * - new PA vs.
236 * - use inode PA
237 * i_data_sem serializes them
238 * - discard inode PA
239 * discard process must wait until PA isn't used by another process
240 * - use locality group PA
241 * some mutex should serialize them
242 * - discard locality group PA
243 * discard process must wait until PA isn't used by another process
244 * - use inode PA
245 * - use inode PA
246 * i_data_sem or another mutex should serializes them
247 * - discard inode PA
248 * discard process must wait until PA isn't used by another process
249 * - use locality group PA
250 * nothing wrong here -- they're different PAs covering different blocks
251 * - discard locality group PA
252 * discard process must wait until PA isn't used by another process
254 * now we're ready to make few consequences:
255 * - PA is referenced and while it is no discard is possible
256 * - PA is referenced until block isn't marked in on-disk bitmap
257 * - PA changes only after on-disk bitmap
258 * - discard must not compete with init. either init is done before
259 * any discard or they're serialized somehow
260 * - buddy init as sum of on-disk bitmap and PAs is done atomically
262 * a special case when we've used PA to emptiness. no need to modify buddy
263 * in this case, but we should care about concurrent init
268 * Logic in few words:
270 * - allocation:
271 * load group
272 * find blocks
273 * mark bits in on-disk bitmap
274 * release group
276 * - use preallocation:
277 * find proper PA (per-inode or group)
278 * load group
279 * mark bits in on-disk bitmap
280 * release group
281 * release PA
283 * - free:
284 * load group
285 * mark bits in on-disk bitmap
286 * release group
288 * - discard preallocations in group:
289 * mark PAs deleted
290 * move them onto local list
291 * load on-disk bitmap
292 * load group
293 * remove PA from object (inode or locality group)
294 * mark free blocks in-core
296 * - discard inode's preallocations:
300 * Locking rules
302 * Locks:
303 * - bitlock on a group (group)
304 * - object (inode/locality) (object)
305 * - per-pa lock (pa)
307 * Paths:
308 * - new pa
309 * object
310 * group
312 * - find and use pa:
313 * pa
315 * - release consumed pa:
316 * pa
317 * group
318 * object
320 * - generate in-core bitmap:
321 * group
322 * pa
324 * - discard all for given object (inode, locality group):
325 * object
326 * pa
327 * group
329 * - discard all for given group:
330 * group
331 * pa
332 * group
333 * object
336 static struct kmem_cache *ext4_pspace_cachep;
337 static struct kmem_cache *ext4_ac_cachep;
338 static struct kmem_cache *ext4_free_ext_cachep;
339 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
340 ext4_group_t group);
341 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
342 ext4_group_t group);
343 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
345 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
347 #if BITS_PER_LONG == 64
348 *bit += ((unsigned long) addr & 7UL) << 3;
349 addr = (void *) ((unsigned long) addr & ~7UL);
350 #elif BITS_PER_LONG == 32
351 *bit += ((unsigned long) addr & 3UL) << 3;
352 addr = (void *) ((unsigned long) addr & ~3UL);
353 #else
354 #error "how many bits you are?!"
355 #endif
356 return addr;
359 static inline int mb_test_bit(int bit, void *addr)
362 * ext4_test_bit on architecture like powerpc
363 * needs unsigned long aligned address
365 addr = mb_correct_addr_and_bit(&bit, addr);
366 return ext4_test_bit(bit, addr);
369 static inline void mb_set_bit(int bit, void *addr)
371 addr = mb_correct_addr_and_bit(&bit, addr);
372 ext4_set_bit(bit, addr);
375 static inline void mb_clear_bit(int bit, void *addr)
377 addr = mb_correct_addr_and_bit(&bit, addr);
378 ext4_clear_bit(bit, addr);
381 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 int fix = 0, ret, tmpmax;
384 addr = mb_correct_addr_and_bit(&fix, addr);
385 tmpmax = max + fix;
386 start += fix;
388 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
389 if (ret > max)
390 return max;
391 return ret;
394 static inline int mb_find_next_bit(void *addr, int max, int start)
396 int fix = 0, ret, tmpmax;
397 addr = mb_correct_addr_and_bit(&fix, addr);
398 tmpmax = max + fix;
399 start += fix;
401 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
402 if (ret > max)
403 return max;
404 return ret;
407 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 char *bb;
411 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
412 BUG_ON(max == NULL);
414 if (order > e4b->bd_blkbits + 1) {
415 *max = 0;
416 return NULL;
419 /* at order 0 we see each particular block */
420 *max = 1 << (e4b->bd_blkbits + 3);
421 if (order == 0)
422 return EXT4_MB_BITMAP(e4b);
424 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
425 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427 return bb;
430 #ifdef DOUBLE_CHECK
431 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
432 int first, int count)
434 int i;
435 struct super_block *sb = e4b->bd_sb;
437 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
438 return;
439 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
440 for (i = 0; i < count; i++) {
441 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
442 ext4_fsblk_t blocknr;
443 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
444 blocknr += first + i;
445 blocknr +=
446 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
447 ext4_grp_locked_error(sb, e4b->bd_group,
448 __func__, "double-free of inode"
449 " %lu's block %llu(bit %u in group %u)",
450 inode ? inode->i_ino : 0, blocknr,
451 first + i, e4b->bd_group);
453 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
457 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 int i;
461 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
462 return;
463 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
464 for (i = 0; i < count; i++) {
465 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
466 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
470 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
473 unsigned char *b1, *b2;
474 int i;
475 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
476 b2 = (unsigned char *) bitmap;
477 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
478 if (b1[i] != b2[i]) {
479 printk(KERN_ERR "corruption in group %u "
480 "at byte %u(%u): %x in copy != %x "
481 "on disk/prealloc\n",
482 e4b->bd_group, i, i * 8, b1[i], b2[i]);
483 BUG();
489 #else
490 static inline void mb_free_blocks_double(struct inode *inode,
491 struct ext4_buddy *e4b, int first, int count)
493 return;
495 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
496 int first, int count)
498 return;
500 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
502 return;
504 #endif
506 #ifdef AGGRESSIVE_CHECK
508 #define MB_CHECK_ASSERT(assert) \
509 do { \
510 if (!(assert)) { \
511 printk(KERN_EMERG \
512 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
513 function, file, line, # assert); \
514 BUG(); \
516 } while (0)
518 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
519 const char *function, int line)
521 struct super_block *sb = e4b->bd_sb;
522 int order = e4b->bd_blkbits + 1;
523 int max;
524 int max2;
525 int i;
526 int j;
527 int k;
528 int count;
529 struct ext4_group_info *grp;
530 int fragments = 0;
531 int fstart;
532 struct list_head *cur;
533 void *buddy;
534 void *buddy2;
537 static int mb_check_counter;
538 if (mb_check_counter++ % 100 != 0)
539 return 0;
542 while (order > 1) {
543 buddy = mb_find_buddy(e4b, order, &max);
544 MB_CHECK_ASSERT(buddy);
545 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
546 MB_CHECK_ASSERT(buddy2);
547 MB_CHECK_ASSERT(buddy != buddy2);
548 MB_CHECK_ASSERT(max * 2 == max2);
550 count = 0;
551 for (i = 0; i < max; i++) {
553 if (mb_test_bit(i, buddy)) {
554 /* only single bit in buddy2 may be 1 */
555 if (!mb_test_bit(i << 1, buddy2)) {
556 MB_CHECK_ASSERT(
557 mb_test_bit((i<<1)+1, buddy2));
558 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
559 MB_CHECK_ASSERT(
560 mb_test_bit(i << 1, buddy2));
562 continue;
565 /* both bits in buddy2 must be 0 */
566 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
567 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
569 for (j = 0; j < (1 << order); j++) {
570 k = (i * (1 << order)) + j;
571 MB_CHECK_ASSERT(
572 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
574 count++;
576 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
577 order--;
580 fstart = -1;
581 buddy = mb_find_buddy(e4b, 0, &max);
582 for (i = 0; i < max; i++) {
583 if (!mb_test_bit(i, buddy)) {
584 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
585 if (fstart == -1) {
586 fragments++;
587 fstart = i;
589 continue;
591 fstart = -1;
592 /* check used bits only */
593 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
594 buddy2 = mb_find_buddy(e4b, j, &max2);
595 k = i >> j;
596 MB_CHECK_ASSERT(k < max2);
597 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
600 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
601 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
603 grp = ext4_get_group_info(sb, e4b->bd_group);
604 buddy = mb_find_buddy(e4b, 0, &max);
605 list_for_each(cur, &grp->bb_prealloc_list) {
606 ext4_group_t groupnr;
607 struct ext4_prealloc_space *pa;
608 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
609 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
610 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
611 for (i = 0; i < pa->pa_len; i++)
612 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
614 return 0;
616 #undef MB_CHECK_ASSERT
617 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
618 __FILE__, __func__, __LINE__)
619 #else
620 #define mb_check_buddy(e4b)
621 #endif
623 /* FIXME!! need more doc */
624 static void ext4_mb_mark_free_simple(struct super_block *sb,
625 void *buddy, unsigned first, int len,
626 struct ext4_group_info *grp)
628 struct ext4_sb_info *sbi = EXT4_SB(sb);
629 unsigned short min;
630 unsigned short max;
631 unsigned short chunk;
632 unsigned short border;
634 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
636 border = 2 << sb->s_blocksize_bits;
638 while (len > 0) {
639 /* find how many blocks can be covered since this position */
640 max = ffs(first | border) - 1;
642 /* find how many blocks of power 2 we need to mark */
643 min = fls(len) - 1;
645 if (max < min)
646 min = max;
647 chunk = 1 << min;
649 /* mark multiblock chunks only */
650 grp->bb_counters[min]++;
651 if (min > 0)
652 mb_clear_bit(first >> min,
653 buddy + sbi->s_mb_offsets[min]);
655 len -= chunk;
656 first += chunk;
660 static noinline_for_stack
661 void ext4_mb_generate_buddy(struct super_block *sb,
662 void *buddy, void *bitmap, ext4_group_t group)
664 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
665 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
666 unsigned short i = 0;
667 unsigned short first;
668 unsigned short len;
669 unsigned free = 0;
670 unsigned fragments = 0;
671 unsigned long long period = get_cycles();
673 /* initialize buddy from bitmap which is aggregation
674 * of on-disk bitmap and preallocations */
675 i = mb_find_next_zero_bit(bitmap, max, 0);
676 grp->bb_first_free = i;
677 while (i < max) {
678 fragments++;
679 first = i;
680 i = mb_find_next_bit(bitmap, max, i);
681 len = i - first;
682 free += len;
683 if (len > 1)
684 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
685 else
686 grp->bb_counters[0]++;
687 if (i < max)
688 i = mb_find_next_zero_bit(bitmap, max, i);
690 grp->bb_fragments = fragments;
692 if (free != grp->bb_free) {
693 ext4_grp_locked_error(sb, group, __func__,
694 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
695 group, free, grp->bb_free);
697 * If we intent to continue, we consider group descritor
698 * corrupt and update bb_free using bitmap value
700 grp->bb_free = free;
703 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
705 period = get_cycles() - period;
706 spin_lock(&EXT4_SB(sb)->s_bal_lock);
707 EXT4_SB(sb)->s_mb_buddies_generated++;
708 EXT4_SB(sb)->s_mb_generation_time += period;
709 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
712 /* The buddy information is attached the buddy cache inode
713 * for convenience. The information regarding each group
714 * is loaded via ext4_mb_load_buddy. The information involve
715 * block bitmap and buddy information. The information are
716 * stored in the inode as
718 * { page }
719 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
722 * one block each for bitmap and buddy information.
723 * So for each group we take up 2 blocks. A page can
724 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
725 * So it can have information regarding groups_per_page which
726 * is blocks_per_page/2
729 static int ext4_mb_init_cache(struct page *page, char *incore)
731 ext4_group_t ngroups;
732 int blocksize;
733 int blocks_per_page;
734 int groups_per_page;
735 int err = 0;
736 int i;
737 ext4_group_t first_group;
738 int first_block;
739 struct super_block *sb;
740 struct buffer_head *bhs;
741 struct buffer_head **bh;
742 struct inode *inode;
743 char *data;
744 char *bitmap;
746 mb_debug("init page %lu\n", page->index);
748 inode = page->mapping->host;
749 sb = inode->i_sb;
750 ngroups = ext4_get_groups_count(sb);
751 blocksize = 1 << inode->i_blkbits;
752 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
754 groups_per_page = blocks_per_page >> 1;
755 if (groups_per_page == 0)
756 groups_per_page = 1;
758 /* allocate buffer_heads to read bitmaps */
759 if (groups_per_page > 1) {
760 err = -ENOMEM;
761 i = sizeof(struct buffer_head *) * groups_per_page;
762 bh = kzalloc(i, GFP_NOFS);
763 if (bh == NULL)
764 goto out;
765 } else
766 bh = &bhs;
768 first_group = page->index * blocks_per_page / 2;
770 /* read all groups the page covers into the cache */
771 for (i = 0; i < groups_per_page; i++) {
772 struct ext4_group_desc *desc;
774 if (first_group + i >= ngroups)
775 break;
777 err = -EIO;
778 desc = ext4_get_group_desc(sb, first_group + i, NULL);
779 if (desc == NULL)
780 goto out;
782 err = -ENOMEM;
783 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
784 if (bh[i] == NULL)
785 goto out;
787 if (bitmap_uptodate(bh[i]))
788 continue;
790 lock_buffer(bh[i]);
791 if (bitmap_uptodate(bh[i])) {
792 unlock_buffer(bh[i]);
793 continue;
795 ext4_lock_group(sb, first_group + i);
796 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
797 ext4_init_block_bitmap(sb, bh[i],
798 first_group + i, desc);
799 set_bitmap_uptodate(bh[i]);
800 set_buffer_uptodate(bh[i]);
801 ext4_unlock_group(sb, first_group + i);
802 unlock_buffer(bh[i]);
803 continue;
805 ext4_unlock_group(sb, first_group + i);
806 if (buffer_uptodate(bh[i])) {
808 * if not uninit if bh is uptodate,
809 * bitmap is also uptodate
811 set_bitmap_uptodate(bh[i]);
812 unlock_buffer(bh[i]);
813 continue;
815 get_bh(bh[i]);
817 * submit the buffer_head for read. We can
818 * safely mark the bitmap as uptodate now.
819 * We do it here so the bitmap uptodate bit
820 * get set with buffer lock held.
822 set_bitmap_uptodate(bh[i]);
823 bh[i]->b_end_io = end_buffer_read_sync;
824 submit_bh(READ, bh[i]);
825 mb_debug("read bitmap for group %u\n", first_group + i);
828 /* wait for I/O completion */
829 for (i = 0; i < groups_per_page && bh[i]; i++)
830 wait_on_buffer(bh[i]);
832 err = -EIO;
833 for (i = 0; i < groups_per_page && bh[i]; i++)
834 if (!buffer_uptodate(bh[i]))
835 goto out;
837 err = 0;
838 first_block = page->index * blocks_per_page;
839 /* init the page */
840 memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
841 for (i = 0; i < blocks_per_page; i++) {
842 int group;
843 struct ext4_group_info *grinfo;
845 group = (first_block + i) >> 1;
846 if (group >= ngroups)
847 break;
850 * data carry information regarding this
851 * particular group in the format specified
852 * above
855 data = page_address(page) + (i * blocksize);
856 bitmap = bh[group - first_group]->b_data;
859 * We place the buddy block and bitmap block
860 * close together
862 if ((first_block + i) & 1) {
863 /* this is block of buddy */
864 BUG_ON(incore == NULL);
865 mb_debug("put buddy for group %u in page %lu/%x\n",
866 group, page->index, i * blocksize);
867 grinfo = ext4_get_group_info(sb, group);
868 grinfo->bb_fragments = 0;
869 memset(grinfo->bb_counters, 0,
870 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
872 * incore got set to the group block bitmap below
874 ext4_lock_group(sb, group);
875 ext4_mb_generate_buddy(sb, data, incore, group);
876 ext4_unlock_group(sb, group);
877 incore = NULL;
878 } else {
879 /* this is block of bitmap */
880 BUG_ON(incore != NULL);
881 mb_debug("put bitmap for group %u in page %lu/%x\n",
882 group, page->index, i * blocksize);
884 /* see comments in ext4_mb_put_pa() */
885 ext4_lock_group(sb, group);
886 memcpy(data, bitmap, blocksize);
888 /* mark all preallocated blks used in in-core bitmap */
889 ext4_mb_generate_from_pa(sb, data, group);
890 ext4_mb_generate_from_freelist(sb, data, group);
891 ext4_unlock_group(sb, group);
893 /* set incore so that the buddy information can be
894 * generated using this
896 incore = data;
899 SetPageUptodate(page);
901 out:
902 if (bh) {
903 for (i = 0; i < groups_per_page && bh[i]; i++)
904 brelse(bh[i]);
905 if (bh != &bhs)
906 kfree(bh);
908 return err;
911 static noinline_for_stack
912 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
915 int ret = 0;
916 void *bitmap;
917 int blocks_per_page;
918 int block, pnum, poff;
919 int num_grp_locked = 0;
920 struct ext4_group_info *this_grp;
921 struct ext4_sb_info *sbi = EXT4_SB(sb);
922 struct inode *inode = sbi->s_buddy_cache;
923 struct page *page = NULL, *bitmap_page = NULL;
925 mb_debug("init group %lu\n", group);
926 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
927 this_grp = ext4_get_group_info(sb, group);
929 * This ensures we don't add group
930 * to this buddy cache via resize
932 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
933 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
935 * somebody initialized the group
936 * return without doing anything
938 ret = 0;
939 goto err;
942 * the buddy cache inode stores the block bitmap
943 * and buddy information in consecutive blocks.
944 * So for each group we need two blocks.
946 block = group * 2;
947 pnum = block / blocks_per_page;
948 poff = block % blocks_per_page;
949 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
950 if (page) {
951 BUG_ON(page->mapping != inode->i_mapping);
952 ret = ext4_mb_init_cache(page, NULL);
953 if (ret) {
954 unlock_page(page);
955 goto err;
957 unlock_page(page);
959 if (page == NULL || !PageUptodate(page)) {
960 ret = -EIO;
961 goto err;
963 mark_page_accessed(page);
964 bitmap_page = page;
965 bitmap = page_address(page) + (poff * sb->s_blocksize);
967 /* init buddy cache */
968 block++;
969 pnum = block / blocks_per_page;
970 poff = block % blocks_per_page;
971 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
972 if (page == bitmap_page) {
974 * If both the bitmap and buddy are in
975 * the same page we don't need to force
976 * init the buddy
978 unlock_page(page);
979 } else if (page) {
980 BUG_ON(page->mapping != inode->i_mapping);
981 ret = ext4_mb_init_cache(page, bitmap);
982 if (ret) {
983 unlock_page(page);
984 goto err;
986 unlock_page(page);
988 if (page == NULL || !PageUptodate(page)) {
989 ret = -EIO;
990 goto err;
992 mark_page_accessed(page);
993 err:
994 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
995 if (bitmap_page)
996 page_cache_release(bitmap_page);
997 if (page)
998 page_cache_release(page);
999 return ret;
1002 static noinline_for_stack int
1003 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1004 struct ext4_buddy *e4b)
1006 int blocks_per_page;
1007 int block;
1008 int pnum;
1009 int poff;
1010 struct page *page;
1011 int ret;
1012 struct ext4_group_info *grp;
1013 struct ext4_sb_info *sbi = EXT4_SB(sb);
1014 struct inode *inode = sbi->s_buddy_cache;
1016 mb_debug("load group %u\n", group);
1018 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1019 grp = ext4_get_group_info(sb, group);
1021 e4b->bd_blkbits = sb->s_blocksize_bits;
1022 e4b->bd_info = ext4_get_group_info(sb, group);
1023 e4b->bd_sb = sb;
1024 e4b->bd_group = group;
1025 e4b->bd_buddy_page = NULL;
1026 e4b->bd_bitmap_page = NULL;
1027 e4b->alloc_semp = &grp->alloc_sem;
1029 /* Take the read lock on the group alloc
1030 * sem. This would make sure a parallel
1031 * ext4_mb_init_group happening on other
1032 * groups mapped by the page is blocked
1033 * till we are done with allocation
1035 repeat_load_buddy:
1036 down_read(e4b->alloc_semp);
1038 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1039 /* we need to check for group need init flag
1040 * with alloc_semp held so that we can be sure
1041 * that new blocks didn't get added to the group
1042 * when we are loading the buddy cache
1044 up_read(e4b->alloc_semp);
1046 * we need full data about the group
1047 * to make a good selection
1049 ret = ext4_mb_init_group(sb, group);
1050 if (ret)
1051 return ret;
1052 goto repeat_load_buddy;
1056 * the buddy cache inode stores the block bitmap
1057 * and buddy information in consecutive blocks.
1058 * So for each group we need two blocks.
1060 block = group * 2;
1061 pnum = block / blocks_per_page;
1062 poff = block % blocks_per_page;
1064 /* we could use find_or_create_page(), but it locks page
1065 * what we'd like to avoid in fast path ... */
1066 page = find_get_page(inode->i_mapping, pnum);
1067 if (page == NULL || !PageUptodate(page)) {
1068 if (page)
1070 * drop the page reference and try
1071 * to get the page with lock. If we
1072 * are not uptodate that implies
1073 * somebody just created the page but
1074 * is yet to initialize the same. So
1075 * wait for it to initialize.
1077 page_cache_release(page);
1078 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1079 if (page) {
1080 BUG_ON(page->mapping != inode->i_mapping);
1081 if (!PageUptodate(page)) {
1082 ret = ext4_mb_init_cache(page, NULL);
1083 if (ret) {
1084 unlock_page(page);
1085 goto err;
1087 mb_cmp_bitmaps(e4b, page_address(page) +
1088 (poff * sb->s_blocksize));
1090 unlock_page(page);
1093 if (page == NULL || !PageUptodate(page)) {
1094 ret = -EIO;
1095 goto err;
1097 e4b->bd_bitmap_page = page;
1098 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1099 mark_page_accessed(page);
1101 block++;
1102 pnum = block / blocks_per_page;
1103 poff = block % blocks_per_page;
1105 page = find_get_page(inode->i_mapping, pnum);
1106 if (page == NULL || !PageUptodate(page)) {
1107 if (page)
1108 page_cache_release(page);
1109 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1110 if (page) {
1111 BUG_ON(page->mapping != inode->i_mapping);
1112 if (!PageUptodate(page)) {
1113 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1114 if (ret) {
1115 unlock_page(page);
1116 goto err;
1119 unlock_page(page);
1122 if (page == NULL || !PageUptodate(page)) {
1123 ret = -EIO;
1124 goto err;
1126 e4b->bd_buddy_page = page;
1127 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1128 mark_page_accessed(page);
1130 BUG_ON(e4b->bd_bitmap_page == NULL);
1131 BUG_ON(e4b->bd_buddy_page == NULL);
1133 return 0;
1135 err:
1136 if (e4b->bd_bitmap_page)
1137 page_cache_release(e4b->bd_bitmap_page);
1138 if (e4b->bd_buddy_page)
1139 page_cache_release(e4b->bd_buddy_page);
1140 e4b->bd_buddy = NULL;
1141 e4b->bd_bitmap = NULL;
1143 /* Done with the buddy cache */
1144 up_read(e4b->alloc_semp);
1145 return ret;
1148 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1150 if (e4b->bd_bitmap_page)
1151 page_cache_release(e4b->bd_bitmap_page);
1152 if (e4b->bd_buddy_page)
1153 page_cache_release(e4b->bd_buddy_page);
1154 /* Done with the buddy cache */
1155 if (e4b->alloc_semp)
1156 up_read(e4b->alloc_semp);
1160 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1162 int order = 1;
1163 void *bb;
1165 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1166 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1168 bb = EXT4_MB_BUDDY(e4b);
1169 while (order <= e4b->bd_blkbits + 1) {
1170 block = block >> 1;
1171 if (!mb_test_bit(block, bb)) {
1172 /* this block is part of buddy of order 'order' */
1173 return order;
1175 bb += 1 << (e4b->bd_blkbits - order);
1176 order++;
1178 return 0;
1181 static void mb_clear_bits(void *bm, int cur, int len)
1183 __u32 *addr;
1185 len = cur + len;
1186 while (cur < len) {
1187 if ((cur & 31) == 0 && (len - cur) >= 32) {
1188 /* fast path: clear whole word at once */
1189 addr = bm + (cur >> 3);
1190 *addr = 0;
1191 cur += 32;
1192 continue;
1194 mb_clear_bit(cur, bm);
1195 cur++;
1199 static void mb_set_bits(void *bm, int cur, int len)
1201 __u32 *addr;
1203 len = cur + len;
1204 while (cur < len) {
1205 if ((cur & 31) == 0 && (len - cur) >= 32) {
1206 /* fast path: set whole word at once */
1207 addr = bm + (cur >> 3);
1208 *addr = 0xffffffff;
1209 cur += 32;
1210 continue;
1212 mb_set_bit(cur, bm);
1213 cur++;
1217 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1218 int first, int count)
1220 int block = 0;
1221 int max = 0;
1222 int order;
1223 void *buddy;
1224 void *buddy2;
1225 struct super_block *sb = e4b->bd_sb;
1227 BUG_ON(first + count > (sb->s_blocksize << 3));
1228 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1229 mb_check_buddy(e4b);
1230 mb_free_blocks_double(inode, e4b, first, count);
1232 e4b->bd_info->bb_free += count;
1233 if (first < e4b->bd_info->bb_first_free)
1234 e4b->bd_info->bb_first_free = first;
1236 /* let's maintain fragments counter */
1237 if (first != 0)
1238 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1239 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1240 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1241 if (block && max)
1242 e4b->bd_info->bb_fragments--;
1243 else if (!block && !max)
1244 e4b->bd_info->bb_fragments++;
1246 /* let's maintain buddy itself */
1247 while (count-- > 0) {
1248 block = first++;
1249 order = 0;
1251 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1252 ext4_fsblk_t blocknr;
1253 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1254 blocknr += block;
1255 blocknr +=
1256 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1257 ext4_grp_locked_error(sb, e4b->bd_group,
1258 __func__, "double-free of inode"
1259 " %lu's block %llu(bit %u in group %u)",
1260 inode ? inode->i_ino : 0, blocknr, block,
1261 e4b->bd_group);
1263 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1264 e4b->bd_info->bb_counters[order]++;
1266 /* start of the buddy */
1267 buddy = mb_find_buddy(e4b, order, &max);
1269 do {
1270 block &= ~1UL;
1271 if (mb_test_bit(block, buddy) ||
1272 mb_test_bit(block + 1, buddy))
1273 break;
1275 /* both the buddies are free, try to coalesce them */
1276 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1278 if (!buddy2)
1279 break;
1281 if (order > 0) {
1282 /* for special purposes, we don't set
1283 * free bits in bitmap */
1284 mb_set_bit(block, buddy);
1285 mb_set_bit(block + 1, buddy);
1287 e4b->bd_info->bb_counters[order]--;
1288 e4b->bd_info->bb_counters[order]--;
1290 block = block >> 1;
1291 order++;
1292 e4b->bd_info->bb_counters[order]++;
1294 mb_clear_bit(block, buddy2);
1295 buddy = buddy2;
1296 } while (1);
1298 mb_check_buddy(e4b);
1301 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1302 int needed, struct ext4_free_extent *ex)
1304 int next = block;
1305 int max;
1306 int ord;
1307 void *buddy;
1309 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1310 BUG_ON(ex == NULL);
1312 buddy = mb_find_buddy(e4b, order, &max);
1313 BUG_ON(buddy == NULL);
1314 BUG_ON(block >= max);
1315 if (mb_test_bit(block, buddy)) {
1316 ex->fe_len = 0;
1317 ex->fe_start = 0;
1318 ex->fe_group = 0;
1319 return 0;
1322 /* FIXME dorp order completely ? */
1323 if (likely(order == 0)) {
1324 /* find actual order */
1325 order = mb_find_order_for_block(e4b, block);
1326 block = block >> order;
1329 ex->fe_len = 1 << order;
1330 ex->fe_start = block << order;
1331 ex->fe_group = e4b->bd_group;
1333 /* calc difference from given start */
1334 next = next - ex->fe_start;
1335 ex->fe_len -= next;
1336 ex->fe_start += next;
1338 while (needed > ex->fe_len &&
1339 (buddy = mb_find_buddy(e4b, order, &max))) {
1341 if (block + 1 >= max)
1342 break;
1344 next = (block + 1) * (1 << order);
1345 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1346 break;
1348 ord = mb_find_order_for_block(e4b, next);
1350 order = ord;
1351 block = next >> order;
1352 ex->fe_len += 1 << order;
1355 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1356 return ex->fe_len;
1359 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1361 int ord;
1362 int mlen = 0;
1363 int max = 0;
1364 int cur;
1365 int start = ex->fe_start;
1366 int len = ex->fe_len;
1367 unsigned ret = 0;
1368 int len0 = len;
1369 void *buddy;
1371 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1372 BUG_ON(e4b->bd_group != ex->fe_group);
1373 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1374 mb_check_buddy(e4b);
1375 mb_mark_used_double(e4b, start, len);
1377 e4b->bd_info->bb_free -= len;
1378 if (e4b->bd_info->bb_first_free == start)
1379 e4b->bd_info->bb_first_free += len;
1381 /* let's maintain fragments counter */
1382 if (start != 0)
1383 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1384 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1385 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1386 if (mlen && max)
1387 e4b->bd_info->bb_fragments++;
1388 else if (!mlen && !max)
1389 e4b->bd_info->bb_fragments--;
1391 /* let's maintain buddy itself */
1392 while (len) {
1393 ord = mb_find_order_for_block(e4b, start);
1395 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1396 /* the whole chunk may be allocated at once! */
1397 mlen = 1 << ord;
1398 buddy = mb_find_buddy(e4b, ord, &max);
1399 BUG_ON((start >> ord) >= max);
1400 mb_set_bit(start >> ord, buddy);
1401 e4b->bd_info->bb_counters[ord]--;
1402 start += mlen;
1403 len -= mlen;
1404 BUG_ON(len < 0);
1405 continue;
1408 /* store for history */
1409 if (ret == 0)
1410 ret = len | (ord << 16);
1412 /* we have to split large buddy */
1413 BUG_ON(ord <= 0);
1414 buddy = mb_find_buddy(e4b, ord, &max);
1415 mb_set_bit(start >> ord, buddy);
1416 e4b->bd_info->bb_counters[ord]--;
1418 ord--;
1419 cur = (start >> ord) & ~1U;
1420 buddy = mb_find_buddy(e4b, ord, &max);
1421 mb_clear_bit(cur, buddy);
1422 mb_clear_bit(cur + 1, buddy);
1423 e4b->bd_info->bb_counters[ord]++;
1424 e4b->bd_info->bb_counters[ord]++;
1427 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1428 mb_check_buddy(e4b);
1430 return ret;
1434 * Must be called under group lock!
1436 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1437 struct ext4_buddy *e4b)
1439 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1440 int ret;
1442 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1443 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1445 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1446 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1447 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1449 /* preallocation can change ac_b_ex, thus we store actually
1450 * allocated blocks for history */
1451 ac->ac_f_ex = ac->ac_b_ex;
1453 ac->ac_status = AC_STATUS_FOUND;
1454 ac->ac_tail = ret & 0xffff;
1455 ac->ac_buddy = ret >> 16;
1458 * take the page reference. We want the page to be pinned
1459 * so that we don't get a ext4_mb_init_cache_call for this
1460 * group until we update the bitmap. That would mean we
1461 * double allocate blocks. The reference is dropped
1462 * in ext4_mb_release_context
1464 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1465 get_page(ac->ac_bitmap_page);
1466 ac->ac_buddy_page = e4b->bd_buddy_page;
1467 get_page(ac->ac_buddy_page);
1468 /* on allocation we use ac to track the held semaphore */
1469 ac->alloc_semp = e4b->alloc_semp;
1470 e4b->alloc_semp = NULL;
1471 /* store last allocated for subsequent stream allocation */
1472 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1473 spin_lock(&sbi->s_md_lock);
1474 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1475 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1476 spin_unlock(&sbi->s_md_lock);
1481 * regular allocator, for general purposes allocation
1484 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1485 struct ext4_buddy *e4b,
1486 int finish_group)
1488 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1489 struct ext4_free_extent *bex = &ac->ac_b_ex;
1490 struct ext4_free_extent *gex = &ac->ac_g_ex;
1491 struct ext4_free_extent ex;
1492 int max;
1494 if (ac->ac_status == AC_STATUS_FOUND)
1495 return;
1497 * We don't want to scan for a whole year
1499 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1500 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1501 ac->ac_status = AC_STATUS_BREAK;
1502 return;
1506 * Haven't found good chunk so far, let's continue
1508 if (bex->fe_len < gex->fe_len)
1509 return;
1511 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1512 && bex->fe_group == e4b->bd_group) {
1513 /* recheck chunk's availability - we don't know
1514 * when it was found (within this lock-unlock
1515 * period or not) */
1516 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1517 if (max >= gex->fe_len) {
1518 ext4_mb_use_best_found(ac, e4b);
1519 return;
1525 * The routine checks whether found extent is good enough. If it is,
1526 * then the extent gets marked used and flag is set to the context
1527 * to stop scanning. Otherwise, the extent is compared with the
1528 * previous found extent and if new one is better, then it's stored
1529 * in the context. Later, the best found extent will be used, if
1530 * mballoc can't find good enough extent.
1532 * FIXME: real allocation policy is to be designed yet!
1534 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1535 struct ext4_free_extent *ex,
1536 struct ext4_buddy *e4b)
1538 struct ext4_free_extent *bex = &ac->ac_b_ex;
1539 struct ext4_free_extent *gex = &ac->ac_g_ex;
1541 BUG_ON(ex->fe_len <= 0);
1542 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1543 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1544 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1546 ac->ac_found++;
1549 * The special case - take what you catch first
1551 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1552 *bex = *ex;
1553 ext4_mb_use_best_found(ac, e4b);
1554 return;
1558 * Let's check whether the chuck is good enough
1560 if (ex->fe_len == gex->fe_len) {
1561 *bex = *ex;
1562 ext4_mb_use_best_found(ac, e4b);
1563 return;
1567 * If this is first found extent, just store it in the context
1569 if (bex->fe_len == 0) {
1570 *bex = *ex;
1571 return;
1575 * If new found extent is better, store it in the context
1577 if (bex->fe_len < gex->fe_len) {
1578 /* if the request isn't satisfied, any found extent
1579 * larger than previous best one is better */
1580 if (ex->fe_len > bex->fe_len)
1581 *bex = *ex;
1582 } else if (ex->fe_len > gex->fe_len) {
1583 /* if the request is satisfied, then we try to find
1584 * an extent that still satisfy the request, but is
1585 * smaller than previous one */
1586 if (ex->fe_len < bex->fe_len)
1587 *bex = *ex;
1590 ext4_mb_check_limits(ac, e4b, 0);
1593 static noinline_for_stack
1594 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1595 struct ext4_buddy *e4b)
1597 struct ext4_free_extent ex = ac->ac_b_ex;
1598 ext4_group_t group = ex.fe_group;
1599 int max;
1600 int err;
1602 BUG_ON(ex.fe_len <= 0);
1603 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1604 if (err)
1605 return err;
1607 ext4_lock_group(ac->ac_sb, group);
1608 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1610 if (max > 0) {
1611 ac->ac_b_ex = ex;
1612 ext4_mb_use_best_found(ac, e4b);
1615 ext4_unlock_group(ac->ac_sb, group);
1616 ext4_mb_release_desc(e4b);
1618 return 0;
1621 static noinline_for_stack
1622 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1623 struct ext4_buddy *e4b)
1625 ext4_group_t group = ac->ac_g_ex.fe_group;
1626 int max;
1627 int err;
1628 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1629 struct ext4_super_block *es = sbi->s_es;
1630 struct ext4_free_extent ex;
1632 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1633 return 0;
1635 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1636 if (err)
1637 return err;
1639 ext4_lock_group(ac->ac_sb, group);
1640 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1641 ac->ac_g_ex.fe_len, &ex);
1643 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1644 ext4_fsblk_t start;
1646 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1647 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1648 /* use do_div to get remainder (would be 64-bit modulo) */
1649 if (do_div(start, sbi->s_stripe) == 0) {
1650 ac->ac_found++;
1651 ac->ac_b_ex = ex;
1652 ext4_mb_use_best_found(ac, e4b);
1654 } else if (max >= ac->ac_g_ex.fe_len) {
1655 BUG_ON(ex.fe_len <= 0);
1656 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1657 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1658 ac->ac_found++;
1659 ac->ac_b_ex = ex;
1660 ext4_mb_use_best_found(ac, e4b);
1661 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1662 /* Sometimes, caller may want to merge even small
1663 * number of blocks to an existing extent */
1664 BUG_ON(ex.fe_len <= 0);
1665 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1666 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1667 ac->ac_found++;
1668 ac->ac_b_ex = ex;
1669 ext4_mb_use_best_found(ac, e4b);
1671 ext4_unlock_group(ac->ac_sb, group);
1672 ext4_mb_release_desc(e4b);
1674 return 0;
1678 * The routine scans buddy structures (not bitmap!) from given order
1679 * to max order and tries to find big enough chunk to satisfy the req
1681 static noinline_for_stack
1682 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1683 struct ext4_buddy *e4b)
1685 struct super_block *sb = ac->ac_sb;
1686 struct ext4_group_info *grp = e4b->bd_info;
1687 void *buddy;
1688 int i;
1689 int k;
1690 int max;
1692 BUG_ON(ac->ac_2order <= 0);
1693 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1694 if (grp->bb_counters[i] == 0)
1695 continue;
1697 buddy = mb_find_buddy(e4b, i, &max);
1698 BUG_ON(buddy == NULL);
1700 k = mb_find_next_zero_bit(buddy, max, 0);
1701 BUG_ON(k >= max);
1703 ac->ac_found++;
1705 ac->ac_b_ex.fe_len = 1 << i;
1706 ac->ac_b_ex.fe_start = k << i;
1707 ac->ac_b_ex.fe_group = e4b->bd_group;
1709 ext4_mb_use_best_found(ac, e4b);
1711 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1713 if (EXT4_SB(sb)->s_mb_stats)
1714 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1716 break;
1721 * The routine scans the group and measures all found extents.
1722 * In order to optimize scanning, caller must pass number of
1723 * free blocks in the group, so the routine can know upper limit.
1725 static noinline_for_stack
1726 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1727 struct ext4_buddy *e4b)
1729 struct super_block *sb = ac->ac_sb;
1730 void *bitmap = EXT4_MB_BITMAP(e4b);
1731 struct ext4_free_extent ex;
1732 int i;
1733 int free;
1735 free = e4b->bd_info->bb_free;
1736 BUG_ON(free <= 0);
1738 i = e4b->bd_info->bb_first_free;
1740 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1741 i = mb_find_next_zero_bit(bitmap,
1742 EXT4_BLOCKS_PER_GROUP(sb), i);
1743 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1745 * IF we have corrupt bitmap, we won't find any
1746 * free blocks even though group info says we
1747 * we have free blocks
1749 ext4_grp_locked_error(sb, e4b->bd_group,
1750 __func__, "%d free blocks as per "
1751 "group info. But bitmap says 0",
1752 free);
1753 break;
1756 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1757 BUG_ON(ex.fe_len <= 0);
1758 if (free < ex.fe_len) {
1759 ext4_grp_locked_error(sb, e4b->bd_group,
1760 __func__, "%d free blocks as per "
1761 "group info. But got %d blocks",
1762 free, ex.fe_len);
1764 * The number of free blocks differs. This mostly
1765 * indicate that the bitmap is corrupt. So exit
1766 * without claiming the space.
1768 break;
1771 ext4_mb_measure_extent(ac, &ex, e4b);
1773 i += ex.fe_len;
1774 free -= ex.fe_len;
1777 ext4_mb_check_limits(ac, e4b, 1);
1781 * This is a special case for storages like raid5
1782 * we try to find stripe-aligned chunks for stripe-size requests
1783 * XXX should do so at least for multiples of stripe size as well
1785 static noinline_for_stack
1786 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1787 struct ext4_buddy *e4b)
1789 struct super_block *sb = ac->ac_sb;
1790 struct ext4_sb_info *sbi = EXT4_SB(sb);
1791 void *bitmap = EXT4_MB_BITMAP(e4b);
1792 struct ext4_free_extent ex;
1793 ext4_fsblk_t first_group_block;
1794 ext4_fsblk_t a;
1795 ext4_grpblk_t i;
1796 int max;
1798 BUG_ON(sbi->s_stripe == 0);
1800 /* find first stripe-aligned block in group */
1801 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1802 + le32_to_cpu(sbi->s_es->s_first_data_block);
1803 a = first_group_block + sbi->s_stripe - 1;
1804 do_div(a, sbi->s_stripe);
1805 i = (a * sbi->s_stripe) - first_group_block;
1807 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1808 if (!mb_test_bit(i, bitmap)) {
1809 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1810 if (max >= sbi->s_stripe) {
1811 ac->ac_found++;
1812 ac->ac_b_ex = ex;
1813 ext4_mb_use_best_found(ac, e4b);
1814 break;
1817 i += sbi->s_stripe;
1821 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1822 ext4_group_t group, int cr)
1824 unsigned free, fragments;
1825 unsigned i, bits;
1826 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1827 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1829 BUG_ON(cr < 0 || cr >= 4);
1830 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1832 free = grp->bb_free;
1833 fragments = grp->bb_fragments;
1834 if (free == 0)
1835 return 0;
1836 if (fragments == 0)
1837 return 0;
1839 switch (cr) {
1840 case 0:
1841 BUG_ON(ac->ac_2order == 0);
1843 /* Avoid using the first bg of a flexgroup for data files */
1844 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1845 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1846 ((group % flex_size) == 0))
1847 return 0;
1849 bits = ac->ac_sb->s_blocksize_bits + 1;
1850 for (i = ac->ac_2order; i <= bits; i++)
1851 if (grp->bb_counters[i] > 0)
1852 return 1;
1853 break;
1854 case 1:
1855 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1856 return 1;
1857 break;
1858 case 2:
1859 if (free >= ac->ac_g_ex.fe_len)
1860 return 1;
1861 break;
1862 case 3:
1863 return 1;
1864 default:
1865 BUG();
1868 return 0;
1872 * lock the group_info alloc_sem of all the groups
1873 * belonging to the same buddy cache page. This
1874 * make sure other parallel operation on the buddy
1875 * cache doesn't happen whild holding the buddy cache
1876 * lock
1878 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1880 int i;
1881 int block, pnum;
1882 int blocks_per_page;
1883 int groups_per_page;
1884 ext4_group_t ngroups = ext4_get_groups_count(sb);
1885 ext4_group_t first_group;
1886 struct ext4_group_info *grp;
1888 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1890 * the buddy cache inode stores the block bitmap
1891 * and buddy information in consecutive blocks.
1892 * So for each group we need two blocks.
1894 block = group * 2;
1895 pnum = block / blocks_per_page;
1896 first_group = pnum * blocks_per_page / 2;
1898 groups_per_page = blocks_per_page >> 1;
1899 if (groups_per_page == 0)
1900 groups_per_page = 1;
1901 /* read all groups the page covers into the cache */
1902 for (i = 0; i < groups_per_page; i++) {
1904 if ((first_group + i) >= ngroups)
1905 break;
1906 grp = ext4_get_group_info(sb, first_group + i);
1907 /* take all groups write allocation
1908 * semaphore. This make sure there is
1909 * no block allocation going on in any
1910 * of that groups
1912 down_write_nested(&grp->alloc_sem, i);
1914 return i;
1917 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1918 ext4_group_t group, int locked_group)
1920 int i;
1921 int block, pnum;
1922 int blocks_per_page;
1923 ext4_group_t first_group;
1924 struct ext4_group_info *grp;
1926 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1928 * the buddy cache inode stores the block bitmap
1929 * and buddy information in consecutive blocks.
1930 * So for each group we need two blocks.
1932 block = group * 2;
1933 pnum = block / blocks_per_page;
1934 first_group = pnum * blocks_per_page / 2;
1935 /* release locks on all the groups */
1936 for (i = 0; i < locked_group; i++) {
1938 grp = ext4_get_group_info(sb, first_group + i);
1939 /* take all groups write allocation
1940 * semaphore. This make sure there is
1941 * no block allocation going on in any
1942 * of that groups
1944 up_write(&grp->alloc_sem);
1949 static noinline_for_stack int
1950 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1952 ext4_group_t ngroups, group, i;
1953 int cr;
1954 int err = 0;
1955 int bsbits;
1956 struct ext4_sb_info *sbi;
1957 struct super_block *sb;
1958 struct ext4_buddy e4b;
1960 sb = ac->ac_sb;
1961 sbi = EXT4_SB(sb);
1962 ngroups = ext4_get_groups_count(sb);
1963 /* non-extent files are limited to low blocks/groups */
1964 if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL))
1965 ngroups = sbi->s_blockfile_groups;
1967 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1969 /* first, try the goal */
1970 err = ext4_mb_find_by_goal(ac, &e4b);
1971 if (err || ac->ac_status == AC_STATUS_FOUND)
1972 goto out;
1974 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1975 goto out;
1978 * ac->ac2_order is set only if the fe_len is a power of 2
1979 * if ac2_order is set we also set criteria to 0 so that we
1980 * try exact allocation using buddy.
1982 i = fls(ac->ac_g_ex.fe_len);
1983 ac->ac_2order = 0;
1985 * We search using buddy data only if the order of the request
1986 * is greater than equal to the sbi_s_mb_order2_reqs
1987 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1989 if (i >= sbi->s_mb_order2_reqs) {
1991 * This should tell if fe_len is exactly power of 2
1993 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1994 ac->ac_2order = i - 1;
1997 bsbits = ac->ac_sb->s_blocksize_bits;
1999 /* if stream allocation is enabled, use global goal */
2000 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2001 /* TBD: may be hot point */
2002 spin_lock(&sbi->s_md_lock);
2003 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2004 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2005 spin_unlock(&sbi->s_md_lock);
2008 /* Let's just scan groups to find more-less suitable blocks */
2009 cr = ac->ac_2order ? 0 : 1;
2011 * cr == 0 try to get exact allocation,
2012 * cr == 3 try to get anything
2014 repeat:
2015 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2016 ac->ac_criteria = cr;
2018 * searching for the right group start
2019 * from the goal value specified
2021 group = ac->ac_g_ex.fe_group;
2023 for (i = 0; i < ngroups; group++, i++) {
2024 struct ext4_group_info *grp;
2025 struct ext4_group_desc *desc;
2027 if (group == ngroups)
2028 group = 0;
2030 /* quick check to skip empty groups */
2031 grp = ext4_get_group_info(sb, group);
2032 if (grp->bb_free == 0)
2033 continue;
2035 err = ext4_mb_load_buddy(sb, group, &e4b);
2036 if (err)
2037 goto out;
2039 ext4_lock_group(sb, group);
2040 if (!ext4_mb_good_group(ac, group, cr)) {
2041 /* someone did allocation from this group */
2042 ext4_unlock_group(sb, group);
2043 ext4_mb_release_desc(&e4b);
2044 continue;
2047 ac->ac_groups_scanned++;
2048 desc = ext4_get_group_desc(sb, group, NULL);
2049 if (cr == 0)
2050 ext4_mb_simple_scan_group(ac, &e4b);
2051 else if (cr == 1 &&
2052 ac->ac_g_ex.fe_len == sbi->s_stripe)
2053 ext4_mb_scan_aligned(ac, &e4b);
2054 else
2055 ext4_mb_complex_scan_group(ac, &e4b);
2057 ext4_unlock_group(sb, group);
2058 ext4_mb_release_desc(&e4b);
2060 if (ac->ac_status != AC_STATUS_CONTINUE)
2061 break;
2065 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2066 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2068 * We've been searching too long. Let's try to allocate
2069 * the best chunk we've found so far
2072 ext4_mb_try_best_found(ac, &e4b);
2073 if (ac->ac_status != AC_STATUS_FOUND) {
2075 * Someone more lucky has already allocated it.
2076 * The only thing we can do is just take first
2077 * found block(s)
2078 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2080 ac->ac_b_ex.fe_group = 0;
2081 ac->ac_b_ex.fe_start = 0;
2082 ac->ac_b_ex.fe_len = 0;
2083 ac->ac_status = AC_STATUS_CONTINUE;
2084 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2085 cr = 3;
2086 atomic_inc(&sbi->s_mb_lost_chunks);
2087 goto repeat;
2090 out:
2091 return err;
2094 #ifdef EXT4_MB_HISTORY
2095 struct ext4_mb_proc_session {
2096 struct ext4_mb_history *history;
2097 struct super_block *sb;
2098 int start;
2099 int max;
2102 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2103 struct ext4_mb_history *hs,
2104 int first)
2106 if (hs == s->history + s->max)
2107 hs = s->history;
2108 if (!first && hs == s->history + s->start)
2109 return NULL;
2110 while (hs->orig.fe_len == 0) {
2111 hs++;
2112 if (hs == s->history + s->max)
2113 hs = s->history;
2114 if (hs == s->history + s->start)
2115 return NULL;
2117 return hs;
2120 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2122 struct ext4_mb_proc_session *s = seq->private;
2123 struct ext4_mb_history *hs;
2124 int l = *pos;
2126 if (l == 0)
2127 return SEQ_START_TOKEN;
2128 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2129 if (!hs)
2130 return NULL;
2131 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2132 return hs;
2135 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2136 loff_t *pos)
2138 struct ext4_mb_proc_session *s = seq->private;
2139 struct ext4_mb_history *hs = v;
2141 ++*pos;
2142 if (v == SEQ_START_TOKEN)
2143 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2144 else
2145 return ext4_mb_history_skip_empty(s, ++hs, 0);
2148 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2150 char buf[25], buf2[25], buf3[25], *fmt;
2151 struct ext4_mb_history *hs = v;
2153 if (v == SEQ_START_TOKEN) {
2154 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2155 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2156 "pid", "inode", "original", "goal", "result", "found",
2157 "grps", "cr", "flags", "merge", "tail", "broken");
2158 return 0;
2161 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2162 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2163 "%-5u %-5s %-5u %-6u\n";
2164 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2165 hs->result.fe_start, hs->result.fe_len,
2166 hs->result.fe_logical);
2167 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2168 hs->orig.fe_start, hs->orig.fe_len,
2169 hs->orig.fe_logical);
2170 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2171 hs->goal.fe_start, hs->goal.fe_len,
2172 hs->goal.fe_logical);
2173 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2174 hs->found, hs->groups, hs->cr, hs->flags,
2175 hs->merged ? "M" : "", hs->tail,
2176 hs->buddy ? 1 << hs->buddy : 0);
2177 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2178 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2179 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2180 hs->result.fe_start, hs->result.fe_len,
2181 hs->result.fe_logical);
2182 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2183 hs->orig.fe_start, hs->orig.fe_len,
2184 hs->orig.fe_logical);
2185 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2186 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2187 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2188 hs->result.fe_start, hs->result.fe_len);
2189 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2190 hs->pid, hs->ino, buf2);
2191 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2192 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2193 hs->result.fe_start, hs->result.fe_len);
2194 seq_printf(seq, "%-5u %-8u %-23s free\n",
2195 hs->pid, hs->ino, buf2);
2197 return 0;
2200 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2204 static struct seq_operations ext4_mb_seq_history_ops = {
2205 .start = ext4_mb_seq_history_start,
2206 .next = ext4_mb_seq_history_next,
2207 .stop = ext4_mb_seq_history_stop,
2208 .show = ext4_mb_seq_history_show,
2211 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2213 struct super_block *sb = PDE(inode)->data;
2214 struct ext4_sb_info *sbi = EXT4_SB(sb);
2215 struct ext4_mb_proc_session *s;
2216 int rc;
2217 int size;
2219 if (unlikely(sbi->s_mb_history == NULL))
2220 return -ENOMEM;
2221 s = kmalloc(sizeof(*s), GFP_KERNEL);
2222 if (s == NULL)
2223 return -ENOMEM;
2224 s->sb = sb;
2225 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2226 s->history = kmalloc(size, GFP_KERNEL);
2227 if (s->history == NULL) {
2228 kfree(s);
2229 return -ENOMEM;
2232 spin_lock(&sbi->s_mb_history_lock);
2233 memcpy(s->history, sbi->s_mb_history, size);
2234 s->max = sbi->s_mb_history_max;
2235 s->start = sbi->s_mb_history_cur % s->max;
2236 spin_unlock(&sbi->s_mb_history_lock);
2238 rc = seq_open(file, &ext4_mb_seq_history_ops);
2239 if (rc == 0) {
2240 struct seq_file *m = (struct seq_file *)file->private_data;
2241 m->private = s;
2242 } else {
2243 kfree(s->history);
2244 kfree(s);
2246 return rc;
2250 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2252 struct seq_file *seq = (struct seq_file *)file->private_data;
2253 struct ext4_mb_proc_session *s = seq->private;
2254 kfree(s->history);
2255 kfree(s);
2256 return seq_release(inode, file);
2259 static ssize_t ext4_mb_seq_history_write(struct file *file,
2260 const char __user *buffer,
2261 size_t count, loff_t *ppos)
2263 struct seq_file *seq = (struct seq_file *)file->private_data;
2264 struct ext4_mb_proc_session *s = seq->private;
2265 struct super_block *sb = s->sb;
2266 char str[32];
2267 int value;
2269 if (count >= sizeof(str)) {
2270 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2271 "mb_history", (int)sizeof(str));
2272 return -EOVERFLOW;
2275 if (copy_from_user(str, buffer, count))
2276 return -EFAULT;
2278 value = simple_strtol(str, NULL, 0);
2279 if (value < 0)
2280 return -ERANGE;
2281 EXT4_SB(sb)->s_mb_history_filter = value;
2283 return count;
2286 static struct file_operations ext4_mb_seq_history_fops = {
2287 .owner = THIS_MODULE,
2288 .open = ext4_mb_seq_history_open,
2289 .read = seq_read,
2290 .write = ext4_mb_seq_history_write,
2291 .llseek = seq_lseek,
2292 .release = ext4_mb_seq_history_release,
2295 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2297 struct super_block *sb = seq->private;
2298 ext4_group_t group;
2300 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2301 return NULL;
2302 group = *pos + 1;
2303 return (void *) ((unsigned long) group);
2306 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2308 struct super_block *sb = seq->private;
2309 ext4_group_t group;
2311 ++*pos;
2312 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2313 return NULL;
2314 group = *pos + 1;
2315 return (void *) ((unsigned long) group);
2318 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2320 struct super_block *sb = seq->private;
2321 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2322 int i;
2323 int err;
2324 struct ext4_buddy e4b;
2325 struct sg {
2326 struct ext4_group_info info;
2327 unsigned short counters[16];
2328 } sg;
2330 group--;
2331 if (group == 0)
2332 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2333 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2334 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2335 "group", "free", "frags", "first",
2336 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2337 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2339 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2340 sizeof(struct ext4_group_info);
2341 err = ext4_mb_load_buddy(sb, group, &e4b);
2342 if (err) {
2343 seq_printf(seq, "#%-5u: I/O error\n", group);
2344 return 0;
2346 ext4_lock_group(sb, group);
2347 memcpy(&sg, ext4_get_group_info(sb, group), i);
2348 ext4_unlock_group(sb, group);
2349 ext4_mb_release_desc(&e4b);
2351 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2352 sg.info.bb_fragments, sg.info.bb_first_free);
2353 for (i = 0; i <= 13; i++)
2354 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2355 sg.info.bb_counters[i] : 0);
2356 seq_printf(seq, " ]\n");
2358 return 0;
2361 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2365 static struct seq_operations ext4_mb_seq_groups_ops = {
2366 .start = ext4_mb_seq_groups_start,
2367 .next = ext4_mb_seq_groups_next,
2368 .stop = ext4_mb_seq_groups_stop,
2369 .show = ext4_mb_seq_groups_show,
2372 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2374 struct super_block *sb = PDE(inode)->data;
2375 int rc;
2377 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2378 if (rc == 0) {
2379 struct seq_file *m = (struct seq_file *)file->private_data;
2380 m->private = sb;
2382 return rc;
2386 static struct file_operations ext4_mb_seq_groups_fops = {
2387 .owner = THIS_MODULE,
2388 .open = ext4_mb_seq_groups_open,
2389 .read = seq_read,
2390 .llseek = seq_lseek,
2391 .release = seq_release,
2394 static void ext4_mb_history_release(struct super_block *sb)
2396 struct ext4_sb_info *sbi = EXT4_SB(sb);
2398 if (sbi->s_proc != NULL) {
2399 remove_proc_entry("mb_groups", sbi->s_proc);
2400 if (sbi->s_mb_history_max)
2401 remove_proc_entry("mb_history", sbi->s_proc);
2403 kfree(sbi->s_mb_history);
2406 static void ext4_mb_history_init(struct super_block *sb)
2408 struct ext4_sb_info *sbi = EXT4_SB(sb);
2409 int i;
2411 if (sbi->s_proc != NULL) {
2412 if (sbi->s_mb_history_max)
2413 proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2414 &ext4_mb_seq_history_fops, sb);
2415 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2416 &ext4_mb_seq_groups_fops, sb);
2419 sbi->s_mb_history_cur = 0;
2420 spin_lock_init(&sbi->s_mb_history_lock);
2421 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2422 sbi->s_mb_history = i ? kzalloc(i, GFP_KERNEL) : NULL;
2423 /* if we can't allocate history, then we simple won't use it */
2426 static noinline_for_stack void
2427 ext4_mb_store_history(struct ext4_allocation_context *ac)
2429 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2430 struct ext4_mb_history h;
2432 if (sbi->s_mb_history == NULL)
2433 return;
2435 if (!(ac->ac_op & sbi->s_mb_history_filter))
2436 return;
2438 h.op = ac->ac_op;
2439 h.pid = current->pid;
2440 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2441 h.orig = ac->ac_o_ex;
2442 h.result = ac->ac_b_ex;
2443 h.flags = ac->ac_flags;
2444 h.found = ac->ac_found;
2445 h.groups = ac->ac_groups_scanned;
2446 h.cr = ac->ac_criteria;
2447 h.tail = ac->ac_tail;
2448 h.buddy = ac->ac_buddy;
2449 h.merged = 0;
2450 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2451 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2452 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2453 h.merged = 1;
2454 h.goal = ac->ac_g_ex;
2455 h.result = ac->ac_f_ex;
2458 spin_lock(&sbi->s_mb_history_lock);
2459 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2460 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2461 sbi->s_mb_history_cur = 0;
2462 spin_unlock(&sbi->s_mb_history_lock);
2465 #else
2466 #define ext4_mb_history_release(sb)
2467 #define ext4_mb_history_init(sb)
2468 #endif
2471 /* Create and initialize ext4_group_info data for the given group. */
2472 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2473 struct ext4_group_desc *desc)
2475 int i, len;
2476 int metalen = 0;
2477 struct ext4_sb_info *sbi = EXT4_SB(sb);
2478 struct ext4_group_info **meta_group_info;
2481 * First check if this group is the first of a reserved block.
2482 * If it's true, we have to allocate a new table of pointers
2483 * to ext4_group_info structures
2485 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2486 metalen = sizeof(*meta_group_info) <<
2487 EXT4_DESC_PER_BLOCK_BITS(sb);
2488 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2489 if (meta_group_info == NULL) {
2490 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2491 "buddy group\n");
2492 goto exit_meta_group_info;
2494 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2495 meta_group_info;
2499 * calculate needed size. if change bb_counters size,
2500 * don't forget about ext4_mb_generate_buddy()
2502 len = offsetof(typeof(**meta_group_info),
2503 bb_counters[sb->s_blocksize_bits + 2]);
2505 meta_group_info =
2506 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2507 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2509 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2510 if (meta_group_info[i] == NULL) {
2511 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2512 goto exit_group_info;
2514 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2515 &(meta_group_info[i]->bb_state));
2518 * initialize bb_free to be able to skip
2519 * empty groups without initialization
2521 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2522 meta_group_info[i]->bb_free =
2523 ext4_free_blocks_after_init(sb, group, desc);
2524 } else {
2525 meta_group_info[i]->bb_free =
2526 ext4_free_blks_count(sb, desc);
2529 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2530 init_rwsem(&meta_group_info[i]->alloc_sem);
2531 meta_group_info[i]->bb_free_root.rb_node = NULL;;
2533 #ifdef DOUBLE_CHECK
2535 struct buffer_head *bh;
2536 meta_group_info[i]->bb_bitmap =
2537 kmalloc(sb->s_blocksize, GFP_KERNEL);
2538 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2539 bh = ext4_read_block_bitmap(sb, group);
2540 BUG_ON(bh == NULL);
2541 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2542 sb->s_blocksize);
2543 put_bh(bh);
2545 #endif
2547 return 0;
2549 exit_group_info:
2550 /* If a meta_group_info table has been allocated, release it now */
2551 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2552 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2553 exit_meta_group_info:
2554 return -ENOMEM;
2555 } /* ext4_mb_add_groupinfo */
2558 * Update an existing group.
2559 * This function is used for online resize
2561 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2563 grp->bb_free += add;
2566 static int ext4_mb_init_backend(struct super_block *sb)
2568 ext4_group_t ngroups = ext4_get_groups_count(sb);
2569 ext4_group_t i;
2570 struct ext4_sb_info *sbi = EXT4_SB(sb);
2571 struct ext4_super_block *es = sbi->s_es;
2572 int num_meta_group_infos;
2573 int num_meta_group_infos_max;
2574 int array_size;
2575 struct ext4_group_desc *desc;
2577 /* This is the number of blocks used by GDT */
2578 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2579 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2582 * This is the total number of blocks used by GDT including
2583 * the number of reserved blocks for GDT.
2584 * The s_group_info array is allocated with this value
2585 * to allow a clean online resize without a complex
2586 * manipulation of pointer.
2587 * The drawback is the unused memory when no resize
2588 * occurs but it's very low in terms of pages
2589 * (see comments below)
2590 * Need to handle this properly when META_BG resizing is allowed
2592 num_meta_group_infos_max = num_meta_group_infos +
2593 le16_to_cpu(es->s_reserved_gdt_blocks);
2596 * array_size is the size of s_group_info array. We round it
2597 * to the next power of two because this approximation is done
2598 * internally by kmalloc so we can have some more memory
2599 * for free here (e.g. may be used for META_BG resize).
2601 array_size = 1;
2602 while (array_size < sizeof(*sbi->s_group_info) *
2603 num_meta_group_infos_max)
2604 array_size = array_size << 1;
2605 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2606 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2607 * So a two level scheme suffices for now. */
2608 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2609 if (sbi->s_group_info == NULL) {
2610 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2611 return -ENOMEM;
2613 sbi->s_buddy_cache = new_inode(sb);
2614 if (sbi->s_buddy_cache == NULL) {
2615 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2616 goto err_freesgi;
2618 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2619 for (i = 0; i < ngroups; i++) {
2620 desc = ext4_get_group_desc(sb, i, NULL);
2621 if (desc == NULL) {
2622 printk(KERN_ERR
2623 "EXT4-fs: can't read descriptor %u\n", i);
2624 goto err_freebuddy;
2626 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2627 goto err_freebuddy;
2630 return 0;
2632 err_freebuddy:
2633 while (i-- > 0)
2634 kfree(ext4_get_group_info(sb, i));
2635 i = num_meta_group_infos;
2636 while (i-- > 0)
2637 kfree(sbi->s_group_info[i]);
2638 iput(sbi->s_buddy_cache);
2639 err_freesgi:
2640 kfree(sbi->s_group_info);
2641 return -ENOMEM;
2644 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2646 struct ext4_sb_info *sbi = EXT4_SB(sb);
2647 unsigned i, j;
2648 unsigned offset;
2649 unsigned max;
2650 int ret;
2652 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2654 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2655 if (sbi->s_mb_offsets == NULL) {
2656 return -ENOMEM;
2659 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2660 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2661 if (sbi->s_mb_maxs == NULL) {
2662 kfree(sbi->s_mb_offsets);
2663 return -ENOMEM;
2666 /* order 0 is regular bitmap */
2667 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2668 sbi->s_mb_offsets[0] = 0;
2670 i = 1;
2671 offset = 0;
2672 max = sb->s_blocksize << 2;
2673 do {
2674 sbi->s_mb_offsets[i] = offset;
2675 sbi->s_mb_maxs[i] = max;
2676 offset += 1 << (sb->s_blocksize_bits - i);
2677 max = max >> 1;
2678 i++;
2679 } while (i <= sb->s_blocksize_bits + 1);
2681 /* init file for buddy data */
2682 ret = ext4_mb_init_backend(sb);
2683 if (ret != 0) {
2684 kfree(sbi->s_mb_offsets);
2685 kfree(sbi->s_mb_maxs);
2686 return ret;
2689 spin_lock_init(&sbi->s_md_lock);
2690 spin_lock_init(&sbi->s_bal_lock);
2692 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2693 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2694 sbi->s_mb_stats = MB_DEFAULT_STATS;
2695 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2696 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2697 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2698 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2700 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2701 if (sbi->s_locality_groups == NULL) {
2702 kfree(sbi->s_mb_offsets);
2703 kfree(sbi->s_mb_maxs);
2704 return -ENOMEM;
2706 for_each_possible_cpu(i) {
2707 struct ext4_locality_group *lg;
2708 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2709 mutex_init(&lg->lg_mutex);
2710 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2711 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2712 spin_lock_init(&lg->lg_prealloc_lock);
2715 ext4_mb_history_init(sb);
2717 if (sbi->s_journal)
2718 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2720 printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2721 return 0;
2724 /* need to called with the ext4 group lock held */
2725 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2727 struct ext4_prealloc_space *pa;
2728 struct list_head *cur, *tmp;
2729 int count = 0;
2731 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2732 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2733 list_del(&pa->pa_group_list);
2734 count++;
2735 kmem_cache_free(ext4_pspace_cachep, pa);
2737 if (count)
2738 mb_debug("mballoc: %u PAs left\n", count);
2742 int ext4_mb_release(struct super_block *sb)
2744 ext4_group_t ngroups = ext4_get_groups_count(sb);
2745 ext4_group_t i;
2746 int num_meta_group_infos;
2747 struct ext4_group_info *grinfo;
2748 struct ext4_sb_info *sbi = EXT4_SB(sb);
2750 if (sbi->s_group_info) {
2751 for (i = 0; i < ngroups; i++) {
2752 grinfo = ext4_get_group_info(sb, i);
2753 #ifdef DOUBLE_CHECK
2754 kfree(grinfo->bb_bitmap);
2755 #endif
2756 ext4_lock_group(sb, i);
2757 ext4_mb_cleanup_pa(grinfo);
2758 ext4_unlock_group(sb, i);
2759 kfree(grinfo);
2761 num_meta_group_infos = (ngroups +
2762 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2763 EXT4_DESC_PER_BLOCK_BITS(sb);
2764 for (i = 0; i < num_meta_group_infos; i++)
2765 kfree(sbi->s_group_info[i]);
2766 kfree(sbi->s_group_info);
2768 kfree(sbi->s_mb_offsets);
2769 kfree(sbi->s_mb_maxs);
2770 if (sbi->s_buddy_cache)
2771 iput(sbi->s_buddy_cache);
2772 if (sbi->s_mb_stats) {
2773 printk(KERN_INFO
2774 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2775 atomic_read(&sbi->s_bal_allocated),
2776 atomic_read(&sbi->s_bal_reqs),
2777 atomic_read(&sbi->s_bal_success));
2778 printk(KERN_INFO
2779 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2780 "%u 2^N hits, %u breaks, %u lost\n",
2781 atomic_read(&sbi->s_bal_ex_scanned),
2782 atomic_read(&sbi->s_bal_goals),
2783 atomic_read(&sbi->s_bal_2orders),
2784 atomic_read(&sbi->s_bal_breaks),
2785 atomic_read(&sbi->s_mb_lost_chunks));
2786 printk(KERN_INFO
2787 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2788 sbi->s_mb_buddies_generated++,
2789 sbi->s_mb_generation_time);
2790 printk(KERN_INFO
2791 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2792 atomic_read(&sbi->s_mb_preallocated),
2793 atomic_read(&sbi->s_mb_discarded));
2796 free_percpu(sbi->s_locality_groups);
2797 ext4_mb_history_release(sb);
2799 return 0;
2803 * This function is called by the jbd2 layer once the commit has finished,
2804 * so we know we can free the blocks that were released with that commit.
2806 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2808 struct super_block *sb = journal->j_private;
2809 struct ext4_buddy e4b;
2810 struct ext4_group_info *db;
2811 int err, count = 0, count2 = 0;
2812 struct ext4_free_data *entry;
2813 struct list_head *l, *ltmp;
2815 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2816 entry = list_entry(l, struct ext4_free_data, list);
2818 mb_debug("gonna free %u blocks in group %u (0x%p):",
2819 entry->count, entry->group, entry);
2821 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2822 /* we expect to find existing buddy because it's pinned */
2823 BUG_ON(err != 0);
2825 db = e4b.bd_info;
2826 /* there are blocks to put in buddy to make them really free */
2827 count += entry->count;
2828 count2++;
2829 ext4_lock_group(sb, entry->group);
2830 /* Take it out of per group rb tree */
2831 rb_erase(&entry->node, &(db->bb_free_root));
2832 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2834 if (!db->bb_free_root.rb_node) {
2835 /* No more items in the per group rb tree
2836 * balance refcounts from ext4_mb_free_metadata()
2838 page_cache_release(e4b.bd_buddy_page);
2839 page_cache_release(e4b.bd_bitmap_page);
2841 ext4_unlock_group(sb, entry->group);
2842 if (test_opt(sb, DISCARD)) {
2843 ext4_fsblk_t discard_block;
2844 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
2846 discard_block = (ext4_fsblk_t)entry->group *
2847 EXT4_BLOCKS_PER_GROUP(sb)
2848 + entry->start_blk
2849 + le32_to_cpu(es->s_first_data_block);
2850 trace_ext4_discard_blocks(sb,
2851 (unsigned long long)discard_block,
2852 entry->count);
2853 sb_issue_discard(sb, discard_block, entry->count);
2855 kmem_cache_free(ext4_free_ext_cachep, entry);
2856 ext4_mb_release_desc(&e4b);
2859 mb_debug("freed %u blocks in %u structures\n", count, count2);
2862 int __init init_ext4_mballoc(void)
2864 ext4_pspace_cachep =
2865 kmem_cache_create("ext4_prealloc_space",
2866 sizeof(struct ext4_prealloc_space),
2867 0, SLAB_RECLAIM_ACCOUNT, NULL);
2868 if (ext4_pspace_cachep == NULL)
2869 return -ENOMEM;
2871 ext4_ac_cachep =
2872 kmem_cache_create("ext4_alloc_context",
2873 sizeof(struct ext4_allocation_context),
2874 0, SLAB_RECLAIM_ACCOUNT, NULL);
2875 if (ext4_ac_cachep == NULL) {
2876 kmem_cache_destroy(ext4_pspace_cachep);
2877 return -ENOMEM;
2880 ext4_free_ext_cachep =
2881 kmem_cache_create("ext4_free_block_extents",
2882 sizeof(struct ext4_free_data),
2883 0, SLAB_RECLAIM_ACCOUNT, NULL);
2884 if (ext4_free_ext_cachep == NULL) {
2885 kmem_cache_destroy(ext4_pspace_cachep);
2886 kmem_cache_destroy(ext4_ac_cachep);
2887 return -ENOMEM;
2889 return 0;
2892 void exit_ext4_mballoc(void)
2895 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2896 * before destroying the slab cache.
2898 rcu_barrier();
2899 kmem_cache_destroy(ext4_pspace_cachep);
2900 kmem_cache_destroy(ext4_ac_cachep);
2901 kmem_cache_destroy(ext4_free_ext_cachep);
2906 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2907 * Returns 0 if success or error code
2909 static noinline_for_stack int
2910 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2911 handle_t *handle, unsigned int reserv_blks)
2913 struct buffer_head *bitmap_bh = NULL;
2914 struct ext4_super_block *es;
2915 struct ext4_group_desc *gdp;
2916 struct buffer_head *gdp_bh;
2917 struct ext4_sb_info *sbi;
2918 struct super_block *sb;
2919 ext4_fsblk_t block;
2920 int err, len;
2922 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2923 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2925 sb = ac->ac_sb;
2926 sbi = EXT4_SB(sb);
2927 es = sbi->s_es;
2930 err = -EIO;
2931 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2932 if (!bitmap_bh)
2933 goto out_err;
2935 err = ext4_journal_get_write_access(handle, bitmap_bh);
2936 if (err)
2937 goto out_err;
2939 err = -EIO;
2940 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2941 if (!gdp)
2942 goto out_err;
2944 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2945 ext4_free_blks_count(sb, gdp));
2947 err = ext4_journal_get_write_access(handle, gdp_bh);
2948 if (err)
2949 goto out_err;
2951 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2952 + ac->ac_b_ex.fe_start
2953 + le32_to_cpu(es->s_first_data_block);
2955 len = ac->ac_b_ex.fe_len;
2956 if (!ext4_data_block_valid(sbi, block, len)) {
2957 ext4_error(sb, __func__,
2958 "Allocating blocks %llu-%llu which overlap "
2959 "fs metadata\n", block, block+len);
2960 /* File system mounted not to panic on error
2961 * Fix the bitmap and repeat the block allocation
2962 * We leak some of the blocks here.
2964 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2965 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2966 ac->ac_b_ex.fe_len);
2967 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2968 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2969 if (!err)
2970 err = -EAGAIN;
2971 goto out_err;
2974 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2975 #ifdef AGGRESSIVE_CHECK
2977 int i;
2978 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2979 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2980 bitmap_bh->b_data));
2983 #endif
2984 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2985 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2986 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2987 ext4_free_blks_set(sb, gdp,
2988 ext4_free_blocks_after_init(sb,
2989 ac->ac_b_ex.fe_group, gdp));
2991 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2992 ext4_free_blks_set(sb, gdp, len);
2993 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2995 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2996 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2998 * Now reduce the dirty block count also. Should not go negative
3000 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3001 /* release all the reserved blocks if non delalloc */
3002 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3003 else {
3004 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3005 ac->ac_b_ex.fe_len);
3006 /* convert reserved quota blocks to real quota blocks */
3007 vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len);
3010 if (sbi->s_log_groups_per_flex) {
3011 ext4_group_t flex_group = ext4_flex_group(sbi,
3012 ac->ac_b_ex.fe_group);
3013 atomic_sub(ac->ac_b_ex.fe_len,
3014 &sbi->s_flex_groups[flex_group].free_blocks);
3017 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3018 if (err)
3019 goto out_err;
3020 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3022 out_err:
3023 sb->s_dirt = 1;
3024 brelse(bitmap_bh);
3025 return err;
3029 * here we normalize request for locality group
3030 * Group request are normalized to s_strip size if we set the same via mount
3031 * option. If not we set it to s_mb_group_prealloc which can be configured via
3032 * /sys/fs/ext4/<partition>/mb_group_prealloc
3034 * XXX: should we try to preallocate more than the group has now?
3036 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3038 struct super_block *sb = ac->ac_sb;
3039 struct ext4_locality_group *lg = ac->ac_lg;
3041 BUG_ON(lg == NULL);
3042 if (EXT4_SB(sb)->s_stripe)
3043 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3044 else
3045 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3046 mb_debug("#%u: goal %u blocks for locality group\n",
3047 current->pid, ac->ac_g_ex.fe_len);
3051 * Normalization means making request better in terms of
3052 * size and alignment
3054 static noinline_for_stack void
3055 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3056 struct ext4_allocation_request *ar)
3058 int bsbits, max;
3059 ext4_lblk_t end;
3060 loff_t size, orig_size, start_off;
3061 ext4_lblk_t start, orig_start;
3062 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3063 struct ext4_prealloc_space *pa;
3065 /* do normalize only data requests, metadata requests
3066 do not need preallocation */
3067 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3068 return;
3070 /* sometime caller may want exact blocks */
3071 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3072 return;
3074 /* caller may indicate that preallocation isn't
3075 * required (it's a tail, for example) */
3076 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3077 return;
3079 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3080 ext4_mb_normalize_group_request(ac);
3081 return ;
3084 bsbits = ac->ac_sb->s_blocksize_bits;
3086 /* first, let's learn actual file size
3087 * given current request is allocated */
3088 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3089 size = size << bsbits;
3090 if (size < i_size_read(ac->ac_inode))
3091 size = i_size_read(ac->ac_inode);
3093 /* max size of free chunks */
3094 max = 2 << bsbits;
3096 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3097 (req <= (size) || max <= (chunk_size))
3099 /* first, try to predict filesize */
3100 /* XXX: should this table be tunable? */
3101 start_off = 0;
3102 if (size <= 16 * 1024) {
3103 size = 16 * 1024;
3104 } else if (size <= 32 * 1024) {
3105 size = 32 * 1024;
3106 } else if (size <= 64 * 1024) {
3107 size = 64 * 1024;
3108 } else if (size <= 128 * 1024) {
3109 size = 128 * 1024;
3110 } else if (size <= 256 * 1024) {
3111 size = 256 * 1024;
3112 } else if (size <= 512 * 1024) {
3113 size = 512 * 1024;
3114 } else if (size <= 1024 * 1024) {
3115 size = 1024 * 1024;
3116 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3117 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3118 (21 - bsbits)) << 21;
3119 size = 2 * 1024 * 1024;
3120 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3121 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3122 (22 - bsbits)) << 22;
3123 size = 4 * 1024 * 1024;
3124 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3125 (8<<20)>>bsbits, max, 8 * 1024)) {
3126 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3127 (23 - bsbits)) << 23;
3128 size = 8 * 1024 * 1024;
3129 } else {
3130 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3131 size = ac->ac_o_ex.fe_len << bsbits;
3133 orig_size = size = size >> bsbits;
3134 orig_start = start = start_off >> bsbits;
3136 /* don't cover already allocated blocks in selected range */
3137 if (ar->pleft && start <= ar->lleft) {
3138 size -= ar->lleft + 1 - start;
3139 start = ar->lleft + 1;
3141 if (ar->pright && start + size - 1 >= ar->lright)
3142 size -= start + size - ar->lright;
3144 end = start + size;
3146 /* check we don't cross already preallocated blocks */
3147 rcu_read_lock();
3148 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3149 ext4_lblk_t pa_end;
3151 if (pa->pa_deleted)
3152 continue;
3153 spin_lock(&pa->pa_lock);
3154 if (pa->pa_deleted) {
3155 spin_unlock(&pa->pa_lock);
3156 continue;
3159 pa_end = pa->pa_lstart + pa->pa_len;
3161 /* PA must not overlap original request */
3162 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3163 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3165 /* skip PA normalized request doesn't overlap with */
3166 if (pa->pa_lstart >= end) {
3167 spin_unlock(&pa->pa_lock);
3168 continue;
3170 if (pa_end <= start) {
3171 spin_unlock(&pa->pa_lock);
3172 continue;
3174 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3176 if (pa_end <= ac->ac_o_ex.fe_logical) {
3177 BUG_ON(pa_end < start);
3178 start = pa_end;
3181 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3182 BUG_ON(pa->pa_lstart > end);
3183 end = pa->pa_lstart;
3185 spin_unlock(&pa->pa_lock);
3187 rcu_read_unlock();
3188 size = end - start;
3190 /* XXX: extra loop to check we really don't overlap preallocations */
3191 rcu_read_lock();
3192 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3193 ext4_lblk_t pa_end;
3194 spin_lock(&pa->pa_lock);
3195 if (pa->pa_deleted == 0) {
3196 pa_end = pa->pa_lstart + pa->pa_len;
3197 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3199 spin_unlock(&pa->pa_lock);
3201 rcu_read_unlock();
3203 if (start + size <= ac->ac_o_ex.fe_logical &&
3204 start > ac->ac_o_ex.fe_logical) {
3205 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3206 (unsigned long) start, (unsigned long) size,
3207 (unsigned long) ac->ac_o_ex.fe_logical);
3209 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3210 start > ac->ac_o_ex.fe_logical);
3211 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3213 /* now prepare goal request */
3215 /* XXX: is it better to align blocks WRT to logical
3216 * placement or satisfy big request as is */
3217 ac->ac_g_ex.fe_logical = start;
3218 ac->ac_g_ex.fe_len = size;
3220 /* define goal start in order to merge */
3221 if (ar->pright && (ar->lright == (start + size))) {
3222 /* merge to the right */
3223 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3224 &ac->ac_f_ex.fe_group,
3225 &ac->ac_f_ex.fe_start);
3226 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3228 if (ar->pleft && (ar->lleft + 1 == start)) {
3229 /* merge to the left */
3230 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3231 &ac->ac_f_ex.fe_group,
3232 &ac->ac_f_ex.fe_start);
3233 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3236 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3237 (unsigned) orig_size, (unsigned) start);
3240 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3242 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3244 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3245 atomic_inc(&sbi->s_bal_reqs);
3246 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3247 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3248 atomic_inc(&sbi->s_bal_success);
3249 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3250 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3251 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3252 atomic_inc(&sbi->s_bal_goals);
3253 if (ac->ac_found > sbi->s_mb_max_to_scan)
3254 atomic_inc(&sbi->s_bal_breaks);
3257 ext4_mb_store_history(ac);
3261 * Called on failure; free up any blocks from the inode PA for this
3262 * context. We don't need this for MB_GROUP_PA because we only change
3263 * pa_free in ext4_mb_release_context(), but on failure, we've already
3264 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3266 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3268 struct ext4_prealloc_space *pa = ac->ac_pa;
3269 int len;
3271 if (pa && pa->pa_type == MB_INODE_PA) {
3272 len = ac->ac_b_ex.fe_len;
3273 pa->pa_free += len;
3279 * use blocks preallocated to inode
3281 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3282 struct ext4_prealloc_space *pa)
3284 ext4_fsblk_t start;
3285 ext4_fsblk_t end;
3286 int len;
3288 /* found preallocated blocks, use them */
3289 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3290 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3291 len = end - start;
3292 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3293 &ac->ac_b_ex.fe_start);
3294 ac->ac_b_ex.fe_len = len;
3295 ac->ac_status = AC_STATUS_FOUND;
3296 ac->ac_pa = pa;
3298 BUG_ON(start < pa->pa_pstart);
3299 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3300 BUG_ON(pa->pa_free < len);
3301 pa->pa_free -= len;
3303 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3307 * use blocks preallocated to locality group
3309 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3310 struct ext4_prealloc_space *pa)
3312 unsigned int len = ac->ac_o_ex.fe_len;
3314 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3315 &ac->ac_b_ex.fe_group,
3316 &ac->ac_b_ex.fe_start);
3317 ac->ac_b_ex.fe_len = len;
3318 ac->ac_status = AC_STATUS_FOUND;
3319 ac->ac_pa = pa;
3321 /* we don't correct pa_pstart or pa_plen here to avoid
3322 * possible race when the group is being loaded concurrently
3323 * instead we correct pa later, after blocks are marked
3324 * in on-disk bitmap -- see ext4_mb_release_context()
3325 * Other CPUs are prevented from allocating from this pa by lg_mutex
3327 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3331 * Return the prealloc space that have minimal distance
3332 * from the goal block. @cpa is the prealloc
3333 * space that is having currently known minimal distance
3334 * from the goal block.
3336 static struct ext4_prealloc_space *
3337 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3338 struct ext4_prealloc_space *pa,
3339 struct ext4_prealloc_space *cpa)
3341 ext4_fsblk_t cur_distance, new_distance;
3343 if (cpa == NULL) {
3344 atomic_inc(&pa->pa_count);
3345 return pa;
3347 cur_distance = abs(goal_block - cpa->pa_pstart);
3348 new_distance = abs(goal_block - pa->pa_pstart);
3350 if (cur_distance < new_distance)
3351 return cpa;
3353 /* drop the previous reference */
3354 atomic_dec(&cpa->pa_count);
3355 atomic_inc(&pa->pa_count);
3356 return pa;
3360 * search goal blocks in preallocated space
3362 static noinline_for_stack int
3363 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3365 int order, i;
3366 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3367 struct ext4_locality_group *lg;
3368 struct ext4_prealloc_space *pa, *cpa = NULL;
3369 ext4_fsblk_t goal_block;
3371 /* only data can be preallocated */
3372 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3373 return 0;
3375 /* first, try per-file preallocation */
3376 rcu_read_lock();
3377 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3379 /* all fields in this condition don't change,
3380 * so we can skip locking for them */
3381 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3382 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3383 continue;
3385 /* non-extent files can't have physical blocks past 2^32 */
3386 if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL) &&
3387 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3388 continue;
3390 /* found preallocated blocks, use them */
3391 spin_lock(&pa->pa_lock);
3392 if (pa->pa_deleted == 0 && pa->pa_free) {
3393 atomic_inc(&pa->pa_count);
3394 ext4_mb_use_inode_pa(ac, pa);
3395 spin_unlock(&pa->pa_lock);
3396 ac->ac_criteria = 10;
3397 rcu_read_unlock();
3398 return 1;
3400 spin_unlock(&pa->pa_lock);
3402 rcu_read_unlock();
3404 /* can we use group allocation? */
3405 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3406 return 0;
3408 /* inode may have no locality group for some reason */
3409 lg = ac->ac_lg;
3410 if (lg == NULL)
3411 return 0;
3412 order = fls(ac->ac_o_ex.fe_len) - 1;
3413 if (order > PREALLOC_TB_SIZE - 1)
3414 /* The max size of hash table is PREALLOC_TB_SIZE */
3415 order = PREALLOC_TB_SIZE - 1;
3417 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3418 ac->ac_g_ex.fe_start +
3419 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3421 * search for the prealloc space that is having
3422 * minimal distance from the goal block.
3424 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3425 rcu_read_lock();
3426 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3427 pa_inode_list) {
3428 spin_lock(&pa->pa_lock);
3429 if (pa->pa_deleted == 0 &&
3430 pa->pa_free >= ac->ac_o_ex.fe_len) {
3432 cpa = ext4_mb_check_group_pa(goal_block,
3433 pa, cpa);
3435 spin_unlock(&pa->pa_lock);
3437 rcu_read_unlock();
3439 if (cpa) {
3440 ext4_mb_use_group_pa(ac, cpa);
3441 ac->ac_criteria = 20;
3442 return 1;
3444 return 0;
3448 * the function goes through all block freed in the group
3449 * but not yet committed and marks them used in in-core bitmap.
3450 * buddy must be generated from this bitmap
3451 * Need to be called with the ext4 group lock held
3453 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3454 ext4_group_t group)
3456 struct rb_node *n;
3457 struct ext4_group_info *grp;
3458 struct ext4_free_data *entry;
3460 grp = ext4_get_group_info(sb, group);
3461 n = rb_first(&(grp->bb_free_root));
3463 while (n) {
3464 entry = rb_entry(n, struct ext4_free_data, node);
3465 mb_set_bits(bitmap, entry->start_blk, entry->count);
3466 n = rb_next(n);
3468 return;
3472 * the function goes through all preallocation in this group and marks them
3473 * used in in-core bitmap. buddy must be generated from this bitmap
3474 * Need to be called with ext4 group lock held
3476 static noinline_for_stack
3477 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3478 ext4_group_t group)
3480 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3481 struct ext4_prealloc_space *pa;
3482 struct list_head *cur;
3483 ext4_group_t groupnr;
3484 ext4_grpblk_t start;
3485 int preallocated = 0;
3486 int count = 0;
3487 int len;
3489 /* all form of preallocation discards first load group,
3490 * so the only competing code is preallocation use.
3491 * we don't need any locking here
3492 * notice we do NOT ignore preallocations with pa_deleted
3493 * otherwise we could leave used blocks available for
3494 * allocation in buddy when concurrent ext4_mb_put_pa()
3495 * is dropping preallocation
3497 list_for_each(cur, &grp->bb_prealloc_list) {
3498 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3499 spin_lock(&pa->pa_lock);
3500 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3501 &groupnr, &start);
3502 len = pa->pa_len;
3503 spin_unlock(&pa->pa_lock);
3504 if (unlikely(len == 0))
3505 continue;
3506 BUG_ON(groupnr != group);
3507 mb_set_bits(bitmap, start, len);
3508 preallocated += len;
3509 count++;
3511 mb_debug("prellocated %u for group %u\n", preallocated, group);
3514 static void ext4_mb_pa_callback(struct rcu_head *head)
3516 struct ext4_prealloc_space *pa;
3517 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3518 kmem_cache_free(ext4_pspace_cachep, pa);
3522 * drops a reference to preallocated space descriptor
3523 * if this was the last reference and the space is consumed
3525 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3526 struct super_block *sb, struct ext4_prealloc_space *pa)
3528 ext4_group_t grp;
3529 ext4_fsblk_t grp_blk;
3531 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3532 return;
3534 /* in this short window concurrent discard can set pa_deleted */
3535 spin_lock(&pa->pa_lock);
3536 if (pa->pa_deleted == 1) {
3537 spin_unlock(&pa->pa_lock);
3538 return;
3541 pa->pa_deleted = 1;
3542 spin_unlock(&pa->pa_lock);
3544 grp_blk = pa->pa_pstart;
3546 * If doing group-based preallocation, pa_pstart may be in the
3547 * next group when pa is used up
3549 if (pa->pa_type == MB_GROUP_PA)
3550 grp_blk--;
3552 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3555 * possible race:
3557 * P1 (buddy init) P2 (regular allocation)
3558 * find block B in PA
3559 * copy on-disk bitmap to buddy
3560 * mark B in on-disk bitmap
3561 * drop PA from group
3562 * mark all PAs in buddy
3564 * thus, P1 initializes buddy with B available. to prevent this
3565 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3566 * against that pair
3568 ext4_lock_group(sb, grp);
3569 list_del(&pa->pa_group_list);
3570 ext4_unlock_group(sb, grp);
3572 spin_lock(pa->pa_obj_lock);
3573 list_del_rcu(&pa->pa_inode_list);
3574 spin_unlock(pa->pa_obj_lock);
3576 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3580 * creates new preallocated space for given inode
3582 static noinline_for_stack int
3583 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3585 struct super_block *sb = ac->ac_sb;
3586 struct ext4_prealloc_space *pa;
3587 struct ext4_group_info *grp;
3588 struct ext4_inode_info *ei;
3590 /* preallocate only when found space is larger then requested */
3591 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3592 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3593 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3595 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3596 if (pa == NULL)
3597 return -ENOMEM;
3599 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3600 int winl;
3601 int wins;
3602 int win;
3603 int offs;
3605 /* we can't allocate as much as normalizer wants.
3606 * so, found space must get proper lstart
3607 * to cover original request */
3608 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3609 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3611 /* we're limited by original request in that
3612 * logical block must be covered any way
3613 * winl is window we can move our chunk within */
3614 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3616 /* also, we should cover whole original request */
3617 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3619 /* the smallest one defines real window */
3620 win = min(winl, wins);
3622 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3623 if (offs && offs < win)
3624 win = offs;
3626 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3627 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3628 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3631 /* preallocation can change ac_b_ex, thus we store actually
3632 * allocated blocks for history */
3633 ac->ac_f_ex = ac->ac_b_ex;
3635 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3636 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3637 pa->pa_len = ac->ac_b_ex.fe_len;
3638 pa->pa_free = pa->pa_len;
3639 atomic_set(&pa->pa_count, 1);
3640 spin_lock_init(&pa->pa_lock);
3641 INIT_LIST_HEAD(&pa->pa_inode_list);
3642 INIT_LIST_HEAD(&pa->pa_group_list);
3643 pa->pa_deleted = 0;
3644 pa->pa_type = MB_INODE_PA;
3646 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3647 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3648 trace_ext4_mb_new_inode_pa(ac, pa);
3650 ext4_mb_use_inode_pa(ac, pa);
3651 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3653 ei = EXT4_I(ac->ac_inode);
3654 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3656 pa->pa_obj_lock = &ei->i_prealloc_lock;
3657 pa->pa_inode = ac->ac_inode;
3659 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3660 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3661 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3663 spin_lock(pa->pa_obj_lock);
3664 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3665 spin_unlock(pa->pa_obj_lock);
3667 return 0;
3671 * creates new preallocated space for locality group inodes belongs to
3673 static noinline_for_stack int
3674 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3676 struct super_block *sb = ac->ac_sb;
3677 struct ext4_locality_group *lg;
3678 struct ext4_prealloc_space *pa;
3679 struct ext4_group_info *grp;
3681 /* preallocate only when found space is larger then requested */
3682 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3683 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3684 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3686 BUG_ON(ext4_pspace_cachep == NULL);
3687 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3688 if (pa == NULL)
3689 return -ENOMEM;
3691 /* preallocation can change ac_b_ex, thus we store actually
3692 * allocated blocks for history */
3693 ac->ac_f_ex = ac->ac_b_ex;
3695 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3696 pa->pa_lstart = pa->pa_pstart;
3697 pa->pa_len = ac->ac_b_ex.fe_len;
3698 pa->pa_free = pa->pa_len;
3699 atomic_set(&pa->pa_count, 1);
3700 spin_lock_init(&pa->pa_lock);
3701 INIT_LIST_HEAD(&pa->pa_inode_list);
3702 INIT_LIST_HEAD(&pa->pa_group_list);
3703 pa->pa_deleted = 0;
3704 pa->pa_type = MB_GROUP_PA;
3706 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3707 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3708 trace_ext4_mb_new_group_pa(ac, pa);
3710 ext4_mb_use_group_pa(ac, pa);
3711 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3713 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3714 lg = ac->ac_lg;
3715 BUG_ON(lg == NULL);
3717 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3718 pa->pa_inode = NULL;
3720 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3721 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3722 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3725 * We will later add the new pa to the right bucket
3726 * after updating the pa_free in ext4_mb_release_context
3728 return 0;
3731 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3733 int err;
3735 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3736 err = ext4_mb_new_group_pa(ac);
3737 else
3738 err = ext4_mb_new_inode_pa(ac);
3739 return err;
3743 * finds all unused blocks in on-disk bitmap, frees them in
3744 * in-core bitmap and buddy.
3745 * @pa must be unlinked from inode and group lists, so that
3746 * nobody else can find/use it.
3747 * the caller MUST hold group/inode locks.
3748 * TODO: optimize the case when there are no in-core structures yet
3750 static noinline_for_stack int
3751 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3752 struct ext4_prealloc_space *pa,
3753 struct ext4_allocation_context *ac)
3755 struct super_block *sb = e4b->bd_sb;
3756 struct ext4_sb_info *sbi = EXT4_SB(sb);
3757 unsigned int end;
3758 unsigned int next;
3759 ext4_group_t group;
3760 ext4_grpblk_t bit;
3761 unsigned long long grp_blk_start;
3762 sector_t start;
3763 int err = 0;
3764 int free = 0;
3766 BUG_ON(pa->pa_deleted == 0);
3767 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3768 grp_blk_start = pa->pa_pstart - bit;
3769 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3770 end = bit + pa->pa_len;
3772 if (ac) {
3773 ac->ac_sb = sb;
3774 ac->ac_inode = pa->pa_inode;
3775 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3778 while (bit < end) {
3779 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3780 if (bit >= end)
3781 break;
3782 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3783 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3784 le32_to_cpu(sbi->s_es->s_first_data_block);
3785 mb_debug(" free preallocated %u/%u in group %u\n",
3786 (unsigned) start, (unsigned) next - bit,
3787 (unsigned) group);
3788 free += next - bit;
3790 if (ac) {
3791 ac->ac_b_ex.fe_group = group;
3792 ac->ac_b_ex.fe_start = bit;
3793 ac->ac_b_ex.fe_len = next - bit;
3794 ac->ac_b_ex.fe_logical = 0;
3795 ext4_mb_store_history(ac);
3798 trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3799 next - bit);
3800 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3801 bit = next + 1;
3803 if (free != pa->pa_free) {
3804 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3805 pa, (unsigned long) pa->pa_lstart,
3806 (unsigned long) pa->pa_pstart,
3807 (unsigned long) pa->pa_len);
3808 ext4_grp_locked_error(sb, group,
3809 __func__, "free %u, pa_free %u",
3810 free, pa->pa_free);
3812 * pa is already deleted so we use the value obtained
3813 * from the bitmap and continue.
3816 atomic_add(free, &sbi->s_mb_discarded);
3818 return err;
3821 static noinline_for_stack int
3822 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3823 struct ext4_prealloc_space *pa,
3824 struct ext4_allocation_context *ac)
3826 struct super_block *sb = e4b->bd_sb;
3827 ext4_group_t group;
3828 ext4_grpblk_t bit;
3830 if (ac)
3831 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3833 trace_ext4_mb_release_group_pa(ac, pa);
3834 BUG_ON(pa->pa_deleted == 0);
3835 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3836 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3837 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3838 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3840 if (ac) {
3841 ac->ac_sb = sb;
3842 ac->ac_inode = NULL;
3843 ac->ac_b_ex.fe_group = group;
3844 ac->ac_b_ex.fe_start = bit;
3845 ac->ac_b_ex.fe_len = pa->pa_len;
3846 ac->ac_b_ex.fe_logical = 0;
3847 ext4_mb_store_history(ac);
3850 return 0;
3854 * releases all preallocations in given group
3856 * first, we need to decide discard policy:
3857 * - when do we discard
3858 * 1) ENOSPC
3859 * - how many do we discard
3860 * 1) how many requested
3862 static noinline_for_stack int
3863 ext4_mb_discard_group_preallocations(struct super_block *sb,
3864 ext4_group_t group, int needed)
3866 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3867 struct buffer_head *bitmap_bh = NULL;
3868 struct ext4_prealloc_space *pa, *tmp;
3869 struct ext4_allocation_context *ac;
3870 struct list_head list;
3871 struct ext4_buddy e4b;
3872 int err;
3873 int busy = 0;
3874 int free = 0;
3876 mb_debug("discard preallocation for group %u\n", group);
3878 if (list_empty(&grp->bb_prealloc_list))
3879 return 0;
3881 bitmap_bh = ext4_read_block_bitmap(sb, group);
3882 if (bitmap_bh == NULL) {
3883 ext4_error(sb, __func__, "Error in reading block "
3884 "bitmap for %u", group);
3885 return 0;
3888 err = ext4_mb_load_buddy(sb, group, &e4b);
3889 if (err) {
3890 ext4_error(sb, __func__, "Error in loading buddy "
3891 "information for %u", group);
3892 put_bh(bitmap_bh);
3893 return 0;
3896 if (needed == 0)
3897 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3899 INIT_LIST_HEAD(&list);
3900 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3901 if (ac)
3902 ac->ac_sb = sb;
3903 repeat:
3904 ext4_lock_group(sb, group);
3905 list_for_each_entry_safe(pa, tmp,
3906 &grp->bb_prealloc_list, pa_group_list) {
3907 spin_lock(&pa->pa_lock);
3908 if (atomic_read(&pa->pa_count)) {
3909 spin_unlock(&pa->pa_lock);
3910 busy = 1;
3911 continue;
3913 if (pa->pa_deleted) {
3914 spin_unlock(&pa->pa_lock);
3915 continue;
3918 /* seems this one can be freed ... */
3919 pa->pa_deleted = 1;
3921 /* we can trust pa_free ... */
3922 free += pa->pa_free;
3924 spin_unlock(&pa->pa_lock);
3926 list_del(&pa->pa_group_list);
3927 list_add(&pa->u.pa_tmp_list, &list);
3930 /* if we still need more blocks and some PAs were used, try again */
3931 if (free < needed && busy) {
3932 busy = 0;
3933 ext4_unlock_group(sb, group);
3935 * Yield the CPU here so that we don't get soft lockup
3936 * in non preempt case.
3938 yield();
3939 goto repeat;
3942 /* found anything to free? */
3943 if (list_empty(&list)) {
3944 BUG_ON(free != 0);
3945 goto out;
3948 /* now free all selected PAs */
3949 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3951 /* remove from object (inode or locality group) */
3952 spin_lock(pa->pa_obj_lock);
3953 list_del_rcu(&pa->pa_inode_list);
3954 spin_unlock(pa->pa_obj_lock);
3956 if (pa->pa_type == MB_GROUP_PA)
3957 ext4_mb_release_group_pa(&e4b, pa, ac);
3958 else
3959 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3961 list_del(&pa->u.pa_tmp_list);
3962 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3965 out:
3966 ext4_unlock_group(sb, group);
3967 if (ac)
3968 kmem_cache_free(ext4_ac_cachep, ac);
3969 ext4_mb_release_desc(&e4b);
3970 put_bh(bitmap_bh);
3971 return free;
3975 * releases all non-used preallocated blocks for given inode
3977 * It's important to discard preallocations under i_data_sem
3978 * We don't want another block to be served from the prealloc
3979 * space when we are discarding the inode prealloc space.
3981 * FIXME!! Make sure it is valid at all the call sites
3983 void ext4_discard_preallocations(struct inode *inode)
3985 struct ext4_inode_info *ei = EXT4_I(inode);
3986 struct super_block *sb = inode->i_sb;
3987 struct buffer_head *bitmap_bh = NULL;
3988 struct ext4_prealloc_space *pa, *tmp;
3989 struct ext4_allocation_context *ac;
3990 ext4_group_t group = 0;
3991 struct list_head list;
3992 struct ext4_buddy e4b;
3993 int err;
3995 if (!S_ISREG(inode->i_mode)) {
3996 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3997 return;
4000 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
4001 trace_ext4_discard_preallocations(inode);
4003 INIT_LIST_HEAD(&list);
4005 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4006 if (ac) {
4007 ac->ac_sb = sb;
4008 ac->ac_inode = inode;
4010 repeat:
4011 /* first, collect all pa's in the inode */
4012 spin_lock(&ei->i_prealloc_lock);
4013 while (!list_empty(&ei->i_prealloc_list)) {
4014 pa = list_entry(ei->i_prealloc_list.next,
4015 struct ext4_prealloc_space, pa_inode_list);
4016 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4017 spin_lock(&pa->pa_lock);
4018 if (atomic_read(&pa->pa_count)) {
4019 /* this shouldn't happen often - nobody should
4020 * use preallocation while we're discarding it */
4021 spin_unlock(&pa->pa_lock);
4022 spin_unlock(&ei->i_prealloc_lock);
4023 printk(KERN_ERR "uh-oh! used pa while discarding\n");
4024 WARN_ON(1);
4025 schedule_timeout_uninterruptible(HZ);
4026 goto repeat;
4029 if (pa->pa_deleted == 0) {
4030 pa->pa_deleted = 1;
4031 spin_unlock(&pa->pa_lock);
4032 list_del_rcu(&pa->pa_inode_list);
4033 list_add(&pa->u.pa_tmp_list, &list);
4034 continue;
4037 /* someone is deleting pa right now */
4038 spin_unlock(&pa->pa_lock);
4039 spin_unlock(&ei->i_prealloc_lock);
4041 /* we have to wait here because pa_deleted
4042 * doesn't mean pa is already unlinked from
4043 * the list. as we might be called from
4044 * ->clear_inode() the inode will get freed
4045 * and concurrent thread which is unlinking
4046 * pa from inode's list may access already
4047 * freed memory, bad-bad-bad */
4049 /* XXX: if this happens too often, we can
4050 * add a flag to force wait only in case
4051 * of ->clear_inode(), but not in case of
4052 * regular truncate */
4053 schedule_timeout_uninterruptible(HZ);
4054 goto repeat;
4056 spin_unlock(&ei->i_prealloc_lock);
4058 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4059 BUG_ON(pa->pa_type != MB_INODE_PA);
4060 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4062 err = ext4_mb_load_buddy(sb, group, &e4b);
4063 if (err) {
4064 ext4_error(sb, __func__, "Error in loading buddy "
4065 "information for %u", group);
4066 continue;
4069 bitmap_bh = ext4_read_block_bitmap(sb, group);
4070 if (bitmap_bh == NULL) {
4071 ext4_error(sb, __func__, "Error in reading block "
4072 "bitmap for %u", group);
4073 ext4_mb_release_desc(&e4b);
4074 continue;
4077 ext4_lock_group(sb, group);
4078 list_del(&pa->pa_group_list);
4079 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4080 ext4_unlock_group(sb, group);
4082 ext4_mb_release_desc(&e4b);
4083 put_bh(bitmap_bh);
4085 list_del(&pa->u.pa_tmp_list);
4086 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4088 if (ac)
4089 kmem_cache_free(ext4_ac_cachep, ac);
4093 * finds all preallocated spaces and return blocks being freed to them
4094 * if preallocated space becomes full (no block is used from the space)
4095 * then the function frees space in buddy
4096 * XXX: at the moment, truncate (which is the only way to free blocks)
4097 * discards all preallocations
4099 static void ext4_mb_return_to_preallocation(struct inode *inode,
4100 struct ext4_buddy *e4b,
4101 sector_t block, int count)
4103 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4105 #ifdef MB_DEBUG
4106 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4108 struct super_block *sb = ac->ac_sb;
4109 ext4_group_t ngroups, i;
4111 printk(KERN_ERR "EXT4-fs: Can't allocate:"
4112 " Allocation context details:\n");
4113 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4114 ac->ac_status, ac->ac_flags);
4115 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4116 "best %lu/%lu/%lu@%lu cr %d\n",
4117 (unsigned long)ac->ac_o_ex.fe_group,
4118 (unsigned long)ac->ac_o_ex.fe_start,
4119 (unsigned long)ac->ac_o_ex.fe_len,
4120 (unsigned long)ac->ac_o_ex.fe_logical,
4121 (unsigned long)ac->ac_g_ex.fe_group,
4122 (unsigned long)ac->ac_g_ex.fe_start,
4123 (unsigned long)ac->ac_g_ex.fe_len,
4124 (unsigned long)ac->ac_g_ex.fe_logical,
4125 (unsigned long)ac->ac_b_ex.fe_group,
4126 (unsigned long)ac->ac_b_ex.fe_start,
4127 (unsigned long)ac->ac_b_ex.fe_len,
4128 (unsigned long)ac->ac_b_ex.fe_logical,
4129 (int)ac->ac_criteria);
4130 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4131 ac->ac_found);
4132 printk(KERN_ERR "EXT4-fs: groups: \n");
4133 ngroups = ext4_get_groups_count(sb);
4134 for (i = 0; i < ngroups; i++) {
4135 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4136 struct ext4_prealloc_space *pa;
4137 ext4_grpblk_t start;
4138 struct list_head *cur;
4139 ext4_lock_group(sb, i);
4140 list_for_each(cur, &grp->bb_prealloc_list) {
4141 pa = list_entry(cur, struct ext4_prealloc_space,
4142 pa_group_list);
4143 spin_lock(&pa->pa_lock);
4144 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4145 NULL, &start);
4146 spin_unlock(&pa->pa_lock);
4147 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4148 start, pa->pa_len);
4150 ext4_unlock_group(sb, i);
4152 if (grp->bb_free == 0)
4153 continue;
4154 printk(KERN_ERR "%lu: %d/%d \n",
4155 i, grp->bb_free, grp->bb_fragments);
4157 printk(KERN_ERR "\n");
4159 #else
4160 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4162 return;
4164 #endif
4167 * We use locality group preallocation for small size file. The size of the
4168 * file is determined by the current size or the resulting size after
4169 * allocation which ever is larger
4171 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4173 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4175 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4176 int bsbits = ac->ac_sb->s_blocksize_bits;
4177 loff_t size, isize;
4179 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4180 return;
4182 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4183 return;
4185 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4186 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4187 >> bsbits;
4189 if ((size == isize) &&
4190 !ext4_fs_is_busy(sbi) &&
4191 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4192 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4193 return;
4196 /* don't use group allocation for large files */
4197 size = max(size, isize);
4198 if (size >= sbi->s_mb_stream_request) {
4199 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4200 return;
4203 BUG_ON(ac->ac_lg != NULL);
4205 * locality group prealloc space are per cpu. The reason for having
4206 * per cpu locality group is to reduce the contention between block
4207 * request from multiple CPUs.
4209 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4211 /* we're going to use group allocation */
4212 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4214 /* serialize all allocations in the group */
4215 mutex_lock(&ac->ac_lg->lg_mutex);
4218 static noinline_for_stack int
4219 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4220 struct ext4_allocation_request *ar)
4222 struct super_block *sb = ar->inode->i_sb;
4223 struct ext4_sb_info *sbi = EXT4_SB(sb);
4224 struct ext4_super_block *es = sbi->s_es;
4225 ext4_group_t group;
4226 unsigned int len;
4227 ext4_fsblk_t goal;
4228 ext4_grpblk_t block;
4230 /* we can't allocate > group size */
4231 len = ar->len;
4233 /* just a dirty hack to filter too big requests */
4234 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4235 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4237 /* start searching from the goal */
4238 goal = ar->goal;
4239 if (goal < le32_to_cpu(es->s_first_data_block) ||
4240 goal >= ext4_blocks_count(es))
4241 goal = le32_to_cpu(es->s_first_data_block);
4242 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4244 /* set up allocation goals */
4245 memset(ac, 0, sizeof(struct ext4_allocation_context));
4246 ac->ac_b_ex.fe_logical = ar->logical;
4247 ac->ac_status = AC_STATUS_CONTINUE;
4248 ac->ac_sb = sb;
4249 ac->ac_inode = ar->inode;
4250 ac->ac_o_ex.fe_logical = ar->logical;
4251 ac->ac_o_ex.fe_group = group;
4252 ac->ac_o_ex.fe_start = block;
4253 ac->ac_o_ex.fe_len = len;
4254 ac->ac_g_ex.fe_logical = ar->logical;
4255 ac->ac_g_ex.fe_group = group;
4256 ac->ac_g_ex.fe_start = block;
4257 ac->ac_g_ex.fe_len = len;
4258 ac->ac_flags = ar->flags;
4260 /* we have to define context: we'll we work with a file or
4261 * locality group. this is a policy, actually */
4262 ext4_mb_group_or_file(ac);
4264 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4265 "left: %u/%u, right %u/%u to %swritable\n",
4266 (unsigned) ar->len, (unsigned) ar->logical,
4267 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4268 (unsigned) ar->lleft, (unsigned) ar->pleft,
4269 (unsigned) ar->lright, (unsigned) ar->pright,
4270 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4271 return 0;
4275 static noinline_for_stack void
4276 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4277 struct ext4_locality_group *lg,
4278 int order, int total_entries)
4280 ext4_group_t group = 0;
4281 struct ext4_buddy e4b;
4282 struct list_head discard_list;
4283 struct ext4_prealloc_space *pa, *tmp;
4284 struct ext4_allocation_context *ac;
4286 mb_debug("discard locality group preallocation\n");
4288 INIT_LIST_HEAD(&discard_list);
4289 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4290 if (ac)
4291 ac->ac_sb = sb;
4293 spin_lock(&lg->lg_prealloc_lock);
4294 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4295 pa_inode_list) {
4296 spin_lock(&pa->pa_lock);
4297 if (atomic_read(&pa->pa_count)) {
4299 * This is the pa that we just used
4300 * for block allocation. So don't
4301 * free that
4303 spin_unlock(&pa->pa_lock);
4304 continue;
4306 if (pa->pa_deleted) {
4307 spin_unlock(&pa->pa_lock);
4308 continue;
4310 /* only lg prealloc space */
4311 BUG_ON(pa->pa_type != MB_GROUP_PA);
4313 /* seems this one can be freed ... */
4314 pa->pa_deleted = 1;
4315 spin_unlock(&pa->pa_lock);
4317 list_del_rcu(&pa->pa_inode_list);
4318 list_add(&pa->u.pa_tmp_list, &discard_list);
4320 total_entries--;
4321 if (total_entries <= 5) {
4323 * we want to keep only 5 entries
4324 * allowing it to grow to 8. This
4325 * mak sure we don't call discard
4326 * soon for this list.
4328 break;
4331 spin_unlock(&lg->lg_prealloc_lock);
4333 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4335 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4336 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4337 ext4_error(sb, __func__, "Error in loading buddy "
4338 "information for %u", group);
4339 continue;
4341 ext4_lock_group(sb, group);
4342 list_del(&pa->pa_group_list);
4343 ext4_mb_release_group_pa(&e4b, pa, ac);
4344 ext4_unlock_group(sb, group);
4346 ext4_mb_release_desc(&e4b);
4347 list_del(&pa->u.pa_tmp_list);
4348 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4350 if (ac)
4351 kmem_cache_free(ext4_ac_cachep, ac);
4355 * We have incremented pa_count. So it cannot be freed at this
4356 * point. Also we hold lg_mutex. So no parallel allocation is
4357 * possible from this lg. That means pa_free cannot be updated.
4359 * A parallel ext4_mb_discard_group_preallocations is possible.
4360 * which can cause the lg_prealloc_list to be updated.
4363 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4365 int order, added = 0, lg_prealloc_count = 1;
4366 struct super_block *sb = ac->ac_sb;
4367 struct ext4_locality_group *lg = ac->ac_lg;
4368 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4370 order = fls(pa->pa_free) - 1;
4371 if (order > PREALLOC_TB_SIZE - 1)
4372 /* The max size of hash table is PREALLOC_TB_SIZE */
4373 order = PREALLOC_TB_SIZE - 1;
4374 /* Add the prealloc space to lg */
4375 rcu_read_lock();
4376 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4377 pa_inode_list) {
4378 spin_lock(&tmp_pa->pa_lock);
4379 if (tmp_pa->pa_deleted) {
4380 spin_unlock(&tmp_pa->pa_lock);
4381 continue;
4383 if (!added && pa->pa_free < tmp_pa->pa_free) {
4384 /* Add to the tail of the previous entry */
4385 list_add_tail_rcu(&pa->pa_inode_list,
4386 &tmp_pa->pa_inode_list);
4387 added = 1;
4389 * we want to count the total
4390 * number of entries in the list
4393 spin_unlock(&tmp_pa->pa_lock);
4394 lg_prealloc_count++;
4396 if (!added)
4397 list_add_tail_rcu(&pa->pa_inode_list,
4398 &lg->lg_prealloc_list[order]);
4399 rcu_read_unlock();
4401 /* Now trim the list to be not more than 8 elements */
4402 if (lg_prealloc_count > 8) {
4403 ext4_mb_discard_lg_preallocations(sb, lg,
4404 order, lg_prealloc_count);
4405 return;
4407 return ;
4411 * release all resource we used in allocation
4413 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4415 struct ext4_prealloc_space *pa = ac->ac_pa;
4416 if (pa) {
4417 if (pa->pa_type == MB_GROUP_PA) {
4418 /* see comment in ext4_mb_use_group_pa() */
4419 spin_lock(&pa->pa_lock);
4420 pa->pa_pstart += ac->ac_b_ex.fe_len;
4421 pa->pa_lstart += ac->ac_b_ex.fe_len;
4422 pa->pa_free -= ac->ac_b_ex.fe_len;
4423 pa->pa_len -= ac->ac_b_ex.fe_len;
4424 spin_unlock(&pa->pa_lock);
4427 if (ac->alloc_semp)
4428 up_read(ac->alloc_semp);
4429 if (pa) {
4431 * We want to add the pa to the right bucket.
4432 * Remove it from the list and while adding
4433 * make sure the list to which we are adding
4434 * doesn't grow big. We need to release
4435 * alloc_semp before calling ext4_mb_add_n_trim()
4437 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4438 spin_lock(pa->pa_obj_lock);
4439 list_del_rcu(&pa->pa_inode_list);
4440 spin_unlock(pa->pa_obj_lock);
4441 ext4_mb_add_n_trim(ac);
4443 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4445 if (ac->ac_bitmap_page)
4446 page_cache_release(ac->ac_bitmap_page);
4447 if (ac->ac_buddy_page)
4448 page_cache_release(ac->ac_buddy_page);
4449 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4450 mutex_unlock(&ac->ac_lg->lg_mutex);
4451 ext4_mb_collect_stats(ac);
4452 return 0;
4455 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4457 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4458 int ret;
4459 int freed = 0;
4461 trace_ext4_mb_discard_preallocations(sb, needed);
4462 for (i = 0; i < ngroups && needed > 0; i++) {
4463 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4464 freed += ret;
4465 needed -= ret;
4468 return freed;
4472 * Main entry point into mballoc to allocate blocks
4473 * it tries to use preallocation first, then falls back
4474 * to usual allocation
4476 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4477 struct ext4_allocation_request *ar, int *errp)
4479 int freed;
4480 struct ext4_allocation_context *ac = NULL;
4481 struct ext4_sb_info *sbi;
4482 struct super_block *sb;
4483 ext4_fsblk_t block = 0;
4484 unsigned int inquota = 0;
4485 unsigned int reserv_blks = 0;
4487 sb = ar->inode->i_sb;
4488 sbi = EXT4_SB(sb);
4490 trace_ext4_request_blocks(ar);
4493 * For delayed allocation, we could skip the ENOSPC and
4494 * EDQUOT check, as blocks and quotas have been already
4495 * reserved when data being copied into pagecache.
4497 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4498 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4499 else {
4500 /* Without delayed allocation we need to verify
4501 * there is enough free blocks to do block allocation
4502 * and verify allocation doesn't exceed the quota limits.
4504 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4505 /* let others to free the space */
4506 yield();
4507 ar->len = ar->len >> 1;
4509 if (!ar->len) {
4510 *errp = -ENOSPC;
4511 return 0;
4513 reserv_blks = ar->len;
4514 while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4515 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4516 ar->len--;
4518 inquota = ar->len;
4519 if (ar->len == 0) {
4520 *errp = -EDQUOT;
4521 goto out3;
4525 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4526 if (!ac) {
4527 ar->len = 0;
4528 *errp = -ENOMEM;
4529 goto out1;
4532 *errp = ext4_mb_initialize_context(ac, ar);
4533 if (*errp) {
4534 ar->len = 0;
4535 goto out2;
4538 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4539 if (!ext4_mb_use_preallocated(ac)) {
4540 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4541 ext4_mb_normalize_request(ac, ar);
4542 repeat:
4543 /* allocate space in core */
4544 ext4_mb_regular_allocator(ac);
4546 /* as we've just preallocated more space than
4547 * user requested orinally, we store allocated
4548 * space in a special descriptor */
4549 if (ac->ac_status == AC_STATUS_FOUND &&
4550 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4551 ext4_mb_new_preallocation(ac);
4553 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4554 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4555 if (*errp == -EAGAIN) {
4557 * drop the reference that we took
4558 * in ext4_mb_use_best_found
4560 ext4_mb_release_context(ac);
4561 ac->ac_b_ex.fe_group = 0;
4562 ac->ac_b_ex.fe_start = 0;
4563 ac->ac_b_ex.fe_len = 0;
4564 ac->ac_status = AC_STATUS_CONTINUE;
4565 goto repeat;
4566 } else if (*errp) {
4567 ext4_discard_allocated_blocks(ac);
4568 ac->ac_b_ex.fe_len = 0;
4569 ar->len = 0;
4570 ext4_mb_show_ac(ac);
4571 } else {
4572 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4573 ar->len = ac->ac_b_ex.fe_len;
4575 } else {
4576 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4577 if (freed)
4578 goto repeat;
4579 *errp = -ENOSPC;
4580 ac->ac_b_ex.fe_len = 0;
4581 ar->len = 0;
4582 ext4_mb_show_ac(ac);
4585 ext4_mb_release_context(ac);
4587 out2:
4588 kmem_cache_free(ext4_ac_cachep, ac);
4589 out1:
4590 if (inquota && ar->len < inquota)
4591 vfs_dq_free_block(ar->inode, inquota - ar->len);
4592 out3:
4593 if (!ar->len) {
4594 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4595 /* release all the reserved blocks if non delalloc */
4596 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4597 reserv_blks);
4600 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4602 return block;
4606 * We can merge two free data extents only if the physical blocks
4607 * are contiguous, AND the extents were freed by the same transaction,
4608 * AND the blocks are associated with the same group.
4610 static int can_merge(struct ext4_free_data *entry1,
4611 struct ext4_free_data *entry2)
4613 if ((entry1->t_tid == entry2->t_tid) &&
4614 (entry1->group == entry2->group) &&
4615 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4616 return 1;
4617 return 0;
4620 static noinline_for_stack int
4621 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4622 struct ext4_free_data *new_entry)
4624 ext4_grpblk_t block;
4625 struct ext4_free_data *entry;
4626 struct ext4_group_info *db = e4b->bd_info;
4627 struct super_block *sb = e4b->bd_sb;
4628 struct ext4_sb_info *sbi = EXT4_SB(sb);
4629 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4630 struct rb_node *parent = NULL, *new_node;
4632 BUG_ON(!ext4_handle_valid(handle));
4633 BUG_ON(e4b->bd_bitmap_page == NULL);
4634 BUG_ON(e4b->bd_buddy_page == NULL);
4636 new_node = &new_entry->node;
4637 block = new_entry->start_blk;
4639 if (!*n) {
4640 /* first free block exent. We need to
4641 protect buddy cache from being freed,
4642 * otherwise we'll refresh it from
4643 * on-disk bitmap and lose not-yet-available
4644 * blocks */
4645 page_cache_get(e4b->bd_buddy_page);
4646 page_cache_get(e4b->bd_bitmap_page);
4648 while (*n) {
4649 parent = *n;
4650 entry = rb_entry(parent, struct ext4_free_data, node);
4651 if (block < entry->start_blk)
4652 n = &(*n)->rb_left;
4653 else if (block >= (entry->start_blk + entry->count))
4654 n = &(*n)->rb_right;
4655 else {
4656 ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4657 "Double free of blocks %d (%d %d)",
4658 block, entry->start_blk, entry->count);
4659 return 0;
4663 rb_link_node(new_node, parent, n);
4664 rb_insert_color(new_node, &db->bb_free_root);
4666 /* Now try to see the extent can be merged to left and right */
4667 node = rb_prev(new_node);
4668 if (node) {
4669 entry = rb_entry(node, struct ext4_free_data, node);
4670 if (can_merge(entry, new_entry)) {
4671 new_entry->start_blk = entry->start_blk;
4672 new_entry->count += entry->count;
4673 rb_erase(node, &(db->bb_free_root));
4674 spin_lock(&sbi->s_md_lock);
4675 list_del(&entry->list);
4676 spin_unlock(&sbi->s_md_lock);
4677 kmem_cache_free(ext4_free_ext_cachep, entry);
4681 node = rb_next(new_node);
4682 if (node) {
4683 entry = rb_entry(node, struct ext4_free_data, node);
4684 if (can_merge(new_entry, entry)) {
4685 new_entry->count += entry->count;
4686 rb_erase(node, &(db->bb_free_root));
4687 spin_lock(&sbi->s_md_lock);
4688 list_del(&entry->list);
4689 spin_unlock(&sbi->s_md_lock);
4690 kmem_cache_free(ext4_free_ext_cachep, entry);
4693 /* Add the extent to transaction's private list */
4694 spin_lock(&sbi->s_md_lock);
4695 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4696 spin_unlock(&sbi->s_md_lock);
4697 return 0;
4701 * Main entry point into mballoc to free blocks
4703 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4704 ext4_fsblk_t block, unsigned long count,
4705 int metadata, unsigned long *freed)
4707 struct buffer_head *bitmap_bh = NULL;
4708 struct super_block *sb = inode->i_sb;
4709 struct ext4_allocation_context *ac = NULL;
4710 struct ext4_group_desc *gdp;
4711 struct ext4_super_block *es;
4712 unsigned int overflow;
4713 ext4_grpblk_t bit;
4714 struct buffer_head *gd_bh;
4715 ext4_group_t block_group;
4716 struct ext4_sb_info *sbi;
4717 struct ext4_buddy e4b;
4718 int err = 0;
4719 int ret;
4721 *freed = 0;
4723 sbi = EXT4_SB(sb);
4724 es = EXT4_SB(sb)->s_es;
4725 if (block < le32_to_cpu(es->s_first_data_block) ||
4726 block + count < block ||
4727 block + count > ext4_blocks_count(es)) {
4728 ext4_error(sb, __func__,
4729 "Freeing blocks not in datazone - "
4730 "block = %llu, count = %lu", block, count);
4731 goto error_return;
4734 ext4_debug("freeing block %llu\n", block);
4735 trace_ext4_free_blocks(inode, block, count, metadata);
4737 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4738 if (ac) {
4739 ac->ac_op = EXT4_MB_HISTORY_FREE;
4740 ac->ac_inode = inode;
4741 ac->ac_sb = sb;
4744 do_more:
4745 overflow = 0;
4746 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4749 * Check to see if we are freeing blocks across a group
4750 * boundary.
4752 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4753 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4754 count -= overflow;
4756 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4757 if (!bitmap_bh) {
4758 err = -EIO;
4759 goto error_return;
4761 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4762 if (!gdp) {
4763 err = -EIO;
4764 goto error_return;
4767 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4768 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4769 in_range(block, ext4_inode_table(sb, gdp),
4770 EXT4_SB(sb)->s_itb_per_group) ||
4771 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4772 EXT4_SB(sb)->s_itb_per_group)) {
4774 ext4_error(sb, __func__,
4775 "Freeing blocks in system zone - "
4776 "Block = %llu, count = %lu", block, count);
4777 /* err = 0. ext4_std_error should be a no op */
4778 goto error_return;
4781 BUFFER_TRACE(bitmap_bh, "getting write access");
4782 err = ext4_journal_get_write_access(handle, bitmap_bh);
4783 if (err)
4784 goto error_return;
4787 * We are about to modify some metadata. Call the journal APIs
4788 * to unshare ->b_data if a currently-committing transaction is
4789 * using it
4791 BUFFER_TRACE(gd_bh, "get_write_access");
4792 err = ext4_journal_get_write_access(handle, gd_bh);
4793 if (err)
4794 goto error_return;
4795 #ifdef AGGRESSIVE_CHECK
4797 int i;
4798 for (i = 0; i < count; i++)
4799 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4801 #endif
4802 if (ac) {
4803 ac->ac_b_ex.fe_group = block_group;
4804 ac->ac_b_ex.fe_start = bit;
4805 ac->ac_b_ex.fe_len = count;
4806 ext4_mb_store_history(ac);
4809 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4810 if (err)
4811 goto error_return;
4812 if (metadata && ext4_handle_valid(handle)) {
4813 struct ext4_free_data *new_entry;
4815 * blocks being freed are metadata. these blocks shouldn't
4816 * be used until this transaction is committed
4818 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4819 new_entry->start_blk = bit;
4820 new_entry->group = block_group;
4821 new_entry->count = count;
4822 new_entry->t_tid = handle->h_transaction->t_tid;
4824 ext4_lock_group(sb, block_group);
4825 mb_clear_bits(bitmap_bh->b_data, bit, count);
4826 ext4_mb_free_metadata(handle, &e4b, new_entry);
4827 } else {
4828 /* need to update group_info->bb_free and bitmap
4829 * with group lock held. generate_buddy look at
4830 * them with group lock_held
4832 ext4_lock_group(sb, block_group);
4833 mb_clear_bits(bitmap_bh->b_data, bit, count);
4834 mb_free_blocks(inode, &e4b, bit, count);
4835 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4838 ret = ext4_free_blks_count(sb, gdp) + count;
4839 ext4_free_blks_set(sb, gdp, ret);
4840 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4841 ext4_unlock_group(sb, block_group);
4842 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4844 if (sbi->s_log_groups_per_flex) {
4845 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4846 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4849 ext4_mb_release_desc(&e4b);
4851 *freed += count;
4853 /* We dirtied the bitmap block */
4854 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4855 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4857 /* And the group descriptor block */
4858 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4859 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4860 if (!err)
4861 err = ret;
4863 if (overflow && !err) {
4864 block += count;
4865 count = overflow;
4866 put_bh(bitmap_bh);
4867 goto do_more;
4869 sb->s_dirt = 1;
4870 error_return:
4871 brelse(bitmap_bh);
4872 ext4_std_error(sb, err);
4873 if (ac)
4874 kmem_cache_free(ext4_ac_cachep, ac);
4875 return;