2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 int __read_mostly futex_cmpxchg_enabled
;
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
68 * Priority Inheritance state:
70 struct futex_pi_state
{
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
75 struct list_head list
;
80 struct rt_mutex pi_mutex
;
82 struct task_struct
*owner
;
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiter, then make the second condition true.
98 struct plist_node list
;
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter
;
102 /* Which hash list lock to use: */
103 spinlock_t
*lock_ptr
;
105 /* Key which the futex is hashed on: */
108 /* Optional priority inheritance state: */
109 struct futex_pi_state
*pi_state
;
110 struct task_struct
*task
;
112 /* Bitset for the optional bitmasked wakeup */
117 * Hash buckets are shared by all the futex_keys that hash to the same
118 * location. Each key may have multiple futex_q structures, one for each task
119 * waiting on a futex.
121 struct futex_hash_bucket
{
123 struct plist_head chain
;
126 static struct futex_hash_bucket futex_queues
[1<<FUTEX_HASHBITS
];
129 * We hash on the keys returned from get_futex_key (see below).
131 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
133 u32 hash
= jhash2((u32
*)&key
->both
.word
,
134 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
136 return &futex_queues
[hash
& ((1 << FUTEX_HASHBITS
)-1)];
140 * Return 1 if two futex_keys are equal, 0 otherwise.
142 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
144 return (key1
->both
.word
== key2
->both
.word
145 && key1
->both
.ptr
== key2
->both
.ptr
146 && key1
->both
.offset
== key2
->both
.offset
);
150 * Take a reference to the resource addressed by a key.
151 * Can be called while holding spinlocks.
154 static void get_futex_key_refs(union futex_key
*key
)
159 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
161 atomic_inc(&key
->shared
.inode
->i_count
);
163 case FUT_OFF_MMSHARED
:
164 atomic_inc(&key
->private.mm
->mm_count
);
170 * Drop a reference to the resource addressed by a key.
171 * The hash bucket spinlock must not be held.
173 static void drop_futex_key_refs(union futex_key
*key
)
175 if (!key
->both
.ptr
) {
176 /* If we're here then we tried to put a key we failed to get */
181 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
183 iput(key
->shared
.inode
);
185 case FUT_OFF_MMSHARED
:
186 mmdrop(key
->private.mm
);
192 * get_futex_key - Get parameters which are the keys for a futex.
193 * @uaddr: virtual address of the futex
194 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
195 * @key: address where result is stored.
196 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
198 * Returns a negative error code or 0
199 * The key words are stored in *key on success.
201 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
202 * offset_within_page). For private mappings, it's (uaddr, current->mm).
203 * We can usually work out the index without swapping in the page.
205 * lock_page() might sleep, the caller should not hold a spinlock.
208 get_futex_key(u32 __user
*uaddr
, int fshared
, union futex_key
*key
, int rw
)
210 unsigned long address
= (unsigned long)uaddr
;
211 struct mm_struct
*mm
= current
->mm
;
216 * The futex address must be "naturally" aligned.
218 key
->both
.offset
= address
% PAGE_SIZE
;
219 if (unlikely((address
% sizeof(u32
)) != 0))
221 address
-= key
->both
.offset
;
224 * PROCESS_PRIVATE futexes are fast.
225 * As the mm cannot disappear under us and the 'key' only needs
226 * virtual address, we dont even have to find the underlying vma.
227 * Note : We do have to check 'uaddr' is a valid user address,
228 * but access_ok() should be faster than find_vma()
231 if (unlikely(!access_ok(rw
, uaddr
, sizeof(u32
))))
233 key
->private.mm
= mm
;
234 key
->private.address
= address
;
235 get_futex_key_refs(key
);
240 err
= get_user_pages_fast(address
, 1, rw
== VERIFY_WRITE
, &page
);
244 page
= compound_head(page
);
246 if (!page
->mapping
) {
253 * Private mappings are handled in a simple way.
255 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
256 * it's a read-only handle, it's expected that futexes attach to
257 * the object not the particular process.
259 if (PageAnon(page
)) {
260 key
->both
.offset
|= FUT_OFF_MMSHARED
; /* ref taken on mm */
261 key
->private.mm
= mm
;
262 key
->private.address
= address
;
264 key
->both
.offset
|= FUT_OFF_INODE
; /* inode-based key */
265 key
->shared
.inode
= page
->mapping
->host
;
266 key
->shared
.pgoff
= page
->index
;
269 get_futex_key_refs(key
);
277 void put_futex_key(int fshared
, union futex_key
*key
)
279 drop_futex_key_refs(key
);
283 * fault_in_user_writeable - fault in user address and verify RW access
284 * @uaddr: pointer to faulting user space address
286 * Slow path to fixup the fault we just took in the atomic write
289 * We have no generic implementation of a non destructive write to the
290 * user address. We know that we faulted in the atomic pagefault
291 * disabled section so we can as well avoid the #PF overhead by
292 * calling get_user_pages() right away.
294 static int fault_in_user_writeable(u32 __user
*uaddr
)
296 int ret
= get_user_pages(current
, current
->mm
, (unsigned long)uaddr
,
297 1, 1, 0, NULL
, NULL
);
298 return ret
< 0 ? ret
: 0;
301 static u32
cmpxchg_futex_value_locked(u32 __user
*uaddr
, u32 uval
, u32 newval
)
306 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, newval
);
312 static int get_futex_value_locked(u32
*dest
, u32 __user
*from
)
317 ret
= __copy_from_user_inatomic(dest
, from
, sizeof(u32
));
320 return ret
? -EFAULT
: 0;
327 static int refill_pi_state_cache(void)
329 struct futex_pi_state
*pi_state
;
331 if (likely(current
->pi_state_cache
))
334 pi_state
= kzalloc(sizeof(*pi_state
), GFP_KERNEL
);
339 INIT_LIST_HEAD(&pi_state
->list
);
340 /* pi_mutex gets initialized later */
341 pi_state
->owner
= NULL
;
342 atomic_set(&pi_state
->refcount
, 1);
343 pi_state
->key
= FUTEX_KEY_INIT
;
345 current
->pi_state_cache
= pi_state
;
350 static struct futex_pi_state
* alloc_pi_state(void)
352 struct futex_pi_state
*pi_state
= current
->pi_state_cache
;
355 current
->pi_state_cache
= NULL
;
360 static void free_pi_state(struct futex_pi_state
*pi_state
)
362 if (!atomic_dec_and_test(&pi_state
->refcount
))
366 * If pi_state->owner is NULL, the owner is most probably dying
367 * and has cleaned up the pi_state already
369 if (pi_state
->owner
) {
370 spin_lock_irq(&pi_state
->owner
->pi_lock
);
371 list_del_init(&pi_state
->list
);
372 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
374 rt_mutex_proxy_unlock(&pi_state
->pi_mutex
, pi_state
->owner
);
377 if (current
->pi_state_cache
)
381 * pi_state->list is already empty.
382 * clear pi_state->owner.
383 * refcount is at 0 - put it back to 1.
385 pi_state
->owner
= NULL
;
386 atomic_set(&pi_state
->refcount
, 1);
387 current
->pi_state_cache
= pi_state
;
392 * Look up the task based on what TID userspace gave us.
395 static struct task_struct
* futex_find_get_task(pid_t pid
)
397 struct task_struct
*p
;
398 const struct cred
*cred
= current_cred(), *pcred
;
401 p
= find_task_by_vpid(pid
);
405 pcred
= __task_cred(p
);
406 if (cred
->euid
!= pcred
->euid
&&
407 cred
->euid
!= pcred
->uid
)
419 * This task is holding PI mutexes at exit time => bad.
420 * Kernel cleans up PI-state, but userspace is likely hosed.
421 * (Robust-futex cleanup is separate and might save the day for userspace.)
423 void exit_pi_state_list(struct task_struct
*curr
)
425 struct list_head
*next
, *head
= &curr
->pi_state_list
;
426 struct futex_pi_state
*pi_state
;
427 struct futex_hash_bucket
*hb
;
428 union futex_key key
= FUTEX_KEY_INIT
;
430 if (!futex_cmpxchg_enabled
)
433 * We are a ZOMBIE and nobody can enqueue itself on
434 * pi_state_list anymore, but we have to be careful
435 * versus waiters unqueueing themselves:
437 spin_lock_irq(&curr
->pi_lock
);
438 while (!list_empty(head
)) {
441 pi_state
= list_entry(next
, struct futex_pi_state
, list
);
443 hb
= hash_futex(&key
);
444 spin_unlock_irq(&curr
->pi_lock
);
446 spin_lock(&hb
->lock
);
448 spin_lock_irq(&curr
->pi_lock
);
450 * We dropped the pi-lock, so re-check whether this
451 * task still owns the PI-state:
453 if (head
->next
!= next
) {
454 spin_unlock(&hb
->lock
);
458 WARN_ON(pi_state
->owner
!= curr
);
459 WARN_ON(list_empty(&pi_state
->list
));
460 list_del_init(&pi_state
->list
);
461 pi_state
->owner
= NULL
;
462 spin_unlock_irq(&curr
->pi_lock
);
464 rt_mutex_unlock(&pi_state
->pi_mutex
);
466 spin_unlock(&hb
->lock
);
468 spin_lock_irq(&curr
->pi_lock
);
470 spin_unlock_irq(&curr
->pi_lock
);
474 lookup_pi_state(u32 uval
, struct futex_hash_bucket
*hb
,
475 union futex_key
*key
, struct futex_pi_state
**ps
)
477 struct futex_pi_state
*pi_state
= NULL
;
478 struct futex_q
*this, *next
;
479 struct plist_head
*head
;
480 struct task_struct
*p
;
481 pid_t pid
= uval
& FUTEX_TID_MASK
;
485 plist_for_each_entry_safe(this, next
, head
, list
) {
486 if (match_futex(&this->key
, key
)) {
488 * Another waiter already exists - bump up
489 * the refcount and return its pi_state:
491 pi_state
= this->pi_state
;
493 * Userspace might have messed up non PI and PI futexes
495 if (unlikely(!pi_state
))
498 WARN_ON(!atomic_read(&pi_state
->refcount
));
499 WARN_ON(pid
&& pi_state
->owner
&&
500 pi_state
->owner
->pid
!= pid
);
502 atomic_inc(&pi_state
->refcount
);
510 * We are the first waiter - try to look up the real owner and attach
511 * the new pi_state to it, but bail out when TID = 0
515 p
= futex_find_get_task(pid
);
520 * We need to look at the task state flags to figure out,
521 * whether the task is exiting. To protect against the do_exit
522 * change of the task flags, we do this protected by
525 spin_lock_irq(&p
->pi_lock
);
526 if (unlikely(p
->flags
& PF_EXITING
)) {
528 * The task is on the way out. When PF_EXITPIDONE is
529 * set, we know that the task has finished the
532 int ret
= (p
->flags
& PF_EXITPIDONE
) ? -ESRCH
: -EAGAIN
;
534 spin_unlock_irq(&p
->pi_lock
);
539 pi_state
= alloc_pi_state();
542 * Initialize the pi_mutex in locked state and make 'p'
545 rt_mutex_init_proxy_locked(&pi_state
->pi_mutex
, p
);
547 /* Store the key for possible exit cleanups: */
548 pi_state
->key
= *key
;
550 WARN_ON(!list_empty(&pi_state
->list
));
551 list_add(&pi_state
->list
, &p
->pi_state_list
);
553 spin_unlock_irq(&p
->pi_lock
);
563 * The hash bucket lock must be held when this is called.
564 * Afterwards, the futex_q must not be accessed.
566 static void wake_futex(struct futex_q
*q
)
568 plist_del(&q
->list
, &q
->list
.plist
);
570 * The lock in wake_up_all() is a crucial memory barrier after the
571 * plist_del() and also before assigning to q->lock_ptr.
575 * The waiting task can free the futex_q as soon as this is written,
576 * without taking any locks. This must come last.
578 * A memory barrier is required here to prevent the following store to
579 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
580 * end of wake_up() does not prevent this store from moving.
586 static int wake_futex_pi(u32 __user
*uaddr
, u32 uval
, struct futex_q
*this)
588 struct task_struct
*new_owner
;
589 struct futex_pi_state
*pi_state
= this->pi_state
;
595 spin_lock(&pi_state
->pi_mutex
.wait_lock
);
596 new_owner
= rt_mutex_next_owner(&pi_state
->pi_mutex
);
599 * This happens when we have stolen the lock and the original
600 * pending owner did not enqueue itself back on the rt_mutex.
601 * Thats not a tragedy. We know that way, that a lock waiter
602 * is on the fly. We make the futex_q waiter the pending owner.
605 new_owner
= this->task
;
608 * We pass it to the next owner. (The WAITERS bit is always
609 * kept enabled while there is PI state around. We must also
610 * preserve the owner died bit.)
612 if (!(uval
& FUTEX_OWNER_DIED
)) {
615 newval
= FUTEX_WAITERS
| task_pid_vnr(new_owner
);
617 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
619 if (curval
== -EFAULT
)
621 else if (curval
!= uval
)
624 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
629 spin_lock_irq(&pi_state
->owner
->pi_lock
);
630 WARN_ON(list_empty(&pi_state
->list
));
631 list_del_init(&pi_state
->list
);
632 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
634 spin_lock_irq(&new_owner
->pi_lock
);
635 WARN_ON(!list_empty(&pi_state
->list
));
636 list_add(&pi_state
->list
, &new_owner
->pi_state_list
);
637 pi_state
->owner
= new_owner
;
638 spin_unlock_irq(&new_owner
->pi_lock
);
640 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
641 rt_mutex_unlock(&pi_state
->pi_mutex
);
646 static int unlock_futex_pi(u32 __user
*uaddr
, u32 uval
)
651 * There is no waiter, so we unlock the futex. The owner died
652 * bit has not to be preserved here. We are the owner:
654 oldval
= cmpxchg_futex_value_locked(uaddr
, uval
, 0);
656 if (oldval
== -EFAULT
)
665 * Express the locking dependencies for lockdep:
668 double_lock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
671 spin_lock(&hb1
->lock
);
673 spin_lock_nested(&hb2
->lock
, SINGLE_DEPTH_NESTING
);
674 } else { /* hb1 > hb2 */
675 spin_lock(&hb2
->lock
);
676 spin_lock_nested(&hb1
->lock
, SINGLE_DEPTH_NESTING
);
681 double_unlock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
683 spin_unlock(&hb1
->lock
);
685 spin_unlock(&hb2
->lock
);
689 * Wake up waiters matching bitset queued on this futex (uaddr).
691 static int futex_wake(u32 __user
*uaddr
, int fshared
, int nr_wake
, u32 bitset
)
693 struct futex_hash_bucket
*hb
;
694 struct futex_q
*this, *next
;
695 struct plist_head
*head
;
696 union futex_key key
= FUTEX_KEY_INIT
;
702 ret
= get_futex_key(uaddr
, fshared
, &key
, VERIFY_READ
);
703 if (unlikely(ret
!= 0))
706 hb
= hash_futex(&key
);
707 spin_lock(&hb
->lock
);
710 plist_for_each_entry_safe(this, next
, head
, list
) {
711 if (match_futex (&this->key
, &key
)) {
712 if (this->pi_state
) {
717 /* Check if one of the bits is set in both bitsets */
718 if (!(this->bitset
& bitset
))
722 if (++ret
>= nr_wake
)
727 spin_unlock(&hb
->lock
);
728 put_futex_key(fshared
, &key
);
734 * Wake up all waiters hashed on the physical page that is mapped
735 * to this virtual address:
738 futex_wake_op(u32 __user
*uaddr1
, int fshared
, u32 __user
*uaddr2
,
739 int nr_wake
, int nr_wake2
, int op
)
741 union futex_key key1
= FUTEX_KEY_INIT
, key2
= FUTEX_KEY_INIT
;
742 struct futex_hash_bucket
*hb1
, *hb2
;
743 struct plist_head
*head
;
744 struct futex_q
*this, *next
;
748 ret
= get_futex_key(uaddr1
, fshared
, &key1
, VERIFY_READ
);
749 if (unlikely(ret
!= 0))
751 ret
= get_futex_key(uaddr2
, fshared
, &key2
, VERIFY_WRITE
);
752 if (unlikely(ret
!= 0))
755 hb1
= hash_futex(&key1
);
756 hb2
= hash_futex(&key2
);
758 double_lock_hb(hb1
, hb2
);
760 op_ret
= futex_atomic_op_inuser(op
, uaddr2
);
761 if (unlikely(op_ret
< 0)) {
763 double_unlock_hb(hb1
, hb2
);
767 * we don't get EFAULT from MMU faults if we don't have an MMU,
768 * but we might get them from range checking
774 if (unlikely(op_ret
!= -EFAULT
)) {
779 ret
= fault_in_user_writeable(uaddr2
);
786 put_futex_key(fshared
, &key2
);
787 put_futex_key(fshared
, &key1
);
793 plist_for_each_entry_safe(this, next
, head
, list
) {
794 if (match_futex (&this->key
, &key1
)) {
796 if (++ret
>= nr_wake
)
805 plist_for_each_entry_safe(this, next
, head
, list
) {
806 if (match_futex (&this->key
, &key2
)) {
808 if (++op_ret
>= nr_wake2
)
815 double_unlock_hb(hb1
, hb2
);
817 put_futex_key(fshared
, &key2
);
819 put_futex_key(fshared
, &key1
);
825 * Requeue all waiters hashed on one physical page to another
828 static int futex_requeue(u32 __user
*uaddr1
, int fshared
, u32 __user
*uaddr2
,
829 int nr_wake
, int nr_requeue
, u32
*cmpval
)
831 union futex_key key1
= FUTEX_KEY_INIT
, key2
= FUTEX_KEY_INIT
;
832 struct futex_hash_bucket
*hb1
, *hb2
;
833 struct plist_head
*head1
;
834 struct futex_q
*this, *next
;
835 int ret
, drop_count
= 0;
838 ret
= get_futex_key(uaddr1
, fshared
, &key1
, VERIFY_READ
);
839 if (unlikely(ret
!= 0))
841 ret
= get_futex_key(uaddr2
, fshared
, &key2
, VERIFY_READ
);
842 if (unlikely(ret
!= 0))
845 hb1
= hash_futex(&key1
);
846 hb2
= hash_futex(&key2
);
849 double_lock_hb(hb1
, hb2
);
851 if (likely(cmpval
!= NULL
)) {
854 ret
= get_futex_value_locked(&curval
, uaddr1
);
857 double_unlock_hb(hb1
, hb2
);
859 ret
= get_user(curval
, uaddr1
);
866 put_futex_key(fshared
, &key2
);
867 put_futex_key(fshared
, &key1
);
870 if (curval
!= *cmpval
) {
877 plist_for_each_entry_safe(this, next
, head1
, list
) {
878 if (!match_futex (&this->key
, &key1
))
880 if (++ret
<= nr_wake
) {
884 * If key1 and key2 hash to the same bucket, no need to
887 if (likely(head1
!= &hb2
->chain
)) {
888 plist_del(&this->list
, &hb1
->chain
);
889 plist_add(&this->list
, &hb2
->chain
);
890 this->lock_ptr
= &hb2
->lock
;
891 #ifdef CONFIG_DEBUG_PI_LIST
892 this->list
.plist
.lock
= &hb2
->lock
;
896 get_futex_key_refs(&key2
);
899 if (ret
- nr_wake
>= nr_requeue
)
905 double_unlock_hb(hb1
, hb2
);
908 * drop_futex_key_refs() must be called outside the spinlocks. During
909 * the requeue we moved futex_q's from the hash bucket at key1 to the
910 * one at key2 and updated their key pointer. We no longer need to
911 * hold the references to key1.
913 while (--drop_count
>= 0)
914 drop_futex_key_refs(&key1
);
917 put_futex_key(fshared
, &key2
);
919 put_futex_key(fshared
, &key1
);
924 /* The key must be already stored in q->key. */
925 static inline struct futex_hash_bucket
*queue_lock(struct futex_q
*q
)
927 struct futex_hash_bucket
*hb
;
929 init_waitqueue_head(&q
->waiter
);
931 get_futex_key_refs(&q
->key
);
932 hb
= hash_futex(&q
->key
);
933 q
->lock_ptr
= &hb
->lock
;
935 spin_lock(&hb
->lock
);
939 static inline void queue_me(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
944 * The priority used to register this element is
945 * - either the real thread-priority for the real-time threads
946 * (i.e. threads with a priority lower than MAX_RT_PRIO)
947 * - or MAX_RT_PRIO for non-RT threads.
948 * Thus, all RT-threads are woken first in priority order, and
949 * the others are woken last, in FIFO order.
951 prio
= min(current
->normal_prio
, MAX_RT_PRIO
);
953 plist_node_init(&q
->list
, prio
);
954 #ifdef CONFIG_DEBUG_PI_LIST
955 q
->list
.plist
.lock
= &hb
->lock
;
957 plist_add(&q
->list
, &hb
->chain
);
959 spin_unlock(&hb
->lock
);
963 queue_unlock(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
965 spin_unlock(&hb
->lock
);
966 drop_futex_key_refs(&q
->key
);
970 * queue_me and unqueue_me must be called as a pair, each
971 * exactly once. They are called with the hashed spinlock held.
974 /* Return 1 if we were still queued (ie. 0 means we were woken) */
975 static int unqueue_me(struct futex_q
*q
)
977 spinlock_t
*lock_ptr
;
980 /* In the common case we don't take the spinlock, which is nice. */
982 lock_ptr
= q
->lock_ptr
;
984 if (lock_ptr
!= NULL
) {
987 * q->lock_ptr can change between reading it and
988 * spin_lock(), causing us to take the wrong lock. This
989 * corrects the race condition.
991 * Reasoning goes like this: if we have the wrong lock,
992 * q->lock_ptr must have changed (maybe several times)
993 * between reading it and the spin_lock(). It can
994 * change again after the spin_lock() but only if it was
995 * already changed before the spin_lock(). It cannot,
996 * however, change back to the original value. Therefore
997 * we can detect whether we acquired the correct lock.
999 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
1000 spin_unlock(lock_ptr
);
1003 WARN_ON(plist_node_empty(&q
->list
));
1004 plist_del(&q
->list
, &q
->list
.plist
);
1006 BUG_ON(q
->pi_state
);
1008 spin_unlock(lock_ptr
);
1012 drop_futex_key_refs(&q
->key
);
1017 * PI futexes can not be requeued and must remove themself from the
1018 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1021 static void unqueue_me_pi(struct futex_q
*q
)
1023 WARN_ON(plist_node_empty(&q
->list
));
1024 plist_del(&q
->list
, &q
->list
.plist
);
1026 BUG_ON(!q
->pi_state
);
1027 free_pi_state(q
->pi_state
);
1030 spin_unlock(q
->lock_ptr
);
1032 drop_futex_key_refs(&q
->key
);
1036 * Fixup the pi_state owner with the new owner.
1038 * Must be called with hash bucket lock held and mm->sem held for non
1041 static int fixup_pi_state_owner(u32 __user
*uaddr
, struct futex_q
*q
,
1042 struct task_struct
*newowner
, int fshared
)
1044 u32 newtid
= task_pid_vnr(newowner
) | FUTEX_WAITERS
;
1045 struct futex_pi_state
*pi_state
= q
->pi_state
;
1046 struct task_struct
*oldowner
= pi_state
->owner
;
1047 u32 uval
, curval
, newval
;
1051 if (!pi_state
->owner
)
1052 newtid
|= FUTEX_OWNER_DIED
;
1055 * We are here either because we stole the rtmutex from the
1056 * pending owner or we are the pending owner which failed to
1057 * get the rtmutex. We have to replace the pending owner TID
1058 * in the user space variable. This must be atomic as we have
1059 * to preserve the owner died bit here.
1061 * Note: We write the user space value _before_ changing the pi_state
1062 * because we can fault here. Imagine swapped out pages or a fork
1063 * that marked all the anonymous memory readonly for cow.
1065 * Modifying pi_state _before_ the user space value would
1066 * leave the pi_state in an inconsistent state when we fault
1067 * here, because we need to drop the hash bucket lock to
1068 * handle the fault. This might be observed in the PID check
1069 * in lookup_pi_state.
1072 if (get_futex_value_locked(&uval
, uaddr
))
1076 newval
= (uval
& FUTEX_OWNER_DIED
) | newtid
;
1078 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1080 if (curval
== -EFAULT
)
1088 * We fixed up user space. Now we need to fix the pi_state
1091 if (pi_state
->owner
!= NULL
) {
1092 spin_lock_irq(&pi_state
->owner
->pi_lock
);
1093 WARN_ON(list_empty(&pi_state
->list
));
1094 list_del_init(&pi_state
->list
);
1095 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
1098 pi_state
->owner
= newowner
;
1100 spin_lock_irq(&newowner
->pi_lock
);
1101 WARN_ON(!list_empty(&pi_state
->list
));
1102 list_add(&pi_state
->list
, &newowner
->pi_state_list
);
1103 spin_unlock_irq(&newowner
->pi_lock
);
1107 * To handle the page fault we need to drop the hash bucket
1108 * lock here. That gives the other task (either the pending
1109 * owner itself or the task which stole the rtmutex) the
1110 * chance to try the fixup of the pi_state. So once we are
1111 * back from handling the fault we need to check the pi_state
1112 * after reacquiring the hash bucket lock and before trying to
1113 * do another fixup. When the fixup has been done already we
1117 spin_unlock(q
->lock_ptr
);
1119 ret
= fault_in_user_writeable(uaddr
);
1121 spin_lock(q
->lock_ptr
);
1124 * Check if someone else fixed it for us:
1126 if (pi_state
->owner
!= oldowner
)
1136 * In case we must use restart_block to restart a futex_wait,
1137 * we encode in the 'flags' shared capability
1139 #define FLAGS_SHARED 0x01
1140 #define FLAGS_CLOCKRT 0x02
1142 static long futex_wait_restart(struct restart_block
*restart
);
1144 static int futex_wait(u32 __user
*uaddr
, int fshared
,
1145 u32 val
, ktime_t
*abs_time
, u32 bitset
, int clockrt
)
1147 struct task_struct
*curr
= current
;
1148 struct restart_block
*restart
;
1149 DECLARE_WAITQUEUE(wait
, curr
);
1150 struct futex_hash_bucket
*hb
;
1154 struct hrtimer_sleeper t
;
1163 q
.key
= FUTEX_KEY_INIT
;
1164 ret
= get_futex_key(uaddr
, fshared
, &q
.key
, VERIFY_READ
);
1165 if (unlikely(ret
!= 0))
1169 hb
= queue_lock(&q
);
1172 * Access the page AFTER the hash-bucket is locked.
1173 * Order is important:
1175 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1176 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1178 * The basic logical guarantee of a futex is that it blocks ONLY
1179 * if cond(var) is known to be true at the time of blocking, for
1180 * any cond. If we queued after testing *uaddr, that would open
1181 * a race condition where we could block indefinitely with
1182 * cond(var) false, which would violate the guarantee.
1184 * A consequence is that futex_wait() can return zero and absorb
1185 * a wakeup when *uaddr != val on entry to the syscall. This is
1188 * For shared futexes, we hold the mmap semaphore, so the mapping
1189 * cannot have changed since we looked it up in get_futex_key.
1191 ret
= get_futex_value_locked(&uval
, uaddr
);
1193 if (unlikely(ret
)) {
1194 queue_unlock(&q
, hb
);
1196 ret
= get_user(uval
, uaddr
);
1203 put_futex_key(fshared
, &q
.key
);
1207 if (unlikely(uval
!= val
)) {
1208 queue_unlock(&q
, hb
);
1212 /* Only actually queue if *uaddr contained val. */
1216 * There might have been scheduling since the queue_me(), as we
1217 * cannot hold a spinlock across the get_user() in case it
1218 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1219 * queueing ourselves into the futex hash. This code thus has to
1220 * rely on the futex_wake() code removing us from hash when it
1224 /* add_wait_queue is the barrier after __set_current_state. */
1225 __set_current_state(TASK_INTERRUPTIBLE
);
1226 add_wait_queue(&q
.waiter
, &wait
);
1228 * !plist_node_empty() is safe here without any lock.
1229 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1231 if (likely(!plist_node_empty(&q
.list
))) {
1235 hrtimer_init_on_stack(&t
.timer
,
1236 clockrt
? CLOCK_REALTIME
:
1239 hrtimer_init_sleeper(&t
, current
);
1240 hrtimer_set_expires_range_ns(&t
.timer
, *abs_time
,
1241 current
->timer_slack_ns
);
1243 hrtimer_start_expires(&t
.timer
, HRTIMER_MODE_ABS
);
1244 if (!hrtimer_active(&t
.timer
))
1248 * the timer could have already expired, in which
1249 * case current would be flagged for rescheduling.
1250 * Don't bother calling schedule.
1255 hrtimer_cancel(&t
.timer
);
1257 /* Flag if a timeout occured */
1258 rem
= (t
.task
== NULL
);
1260 destroy_hrtimer_on_stack(&t
.timer
);
1263 __set_current_state(TASK_RUNNING
);
1266 * NOTE: we don't remove ourselves from the waitqueue because
1267 * we are the only user of it.
1270 /* If we were woken (and unqueued), we succeeded, whatever. */
1272 if (!unqueue_me(&q
))
1279 * We expect signal_pending(current), but another thread may
1280 * have handled it for us already.
1286 restart
= ¤t_thread_info()->restart_block
;
1287 restart
->fn
= futex_wait_restart
;
1288 restart
->futex
.uaddr
= (u32
*)uaddr
;
1289 restart
->futex
.val
= val
;
1290 restart
->futex
.time
= abs_time
->tv64
;
1291 restart
->futex
.bitset
= bitset
;
1292 restart
->futex
.flags
= 0;
1295 restart
->futex
.flags
|= FLAGS_SHARED
;
1297 restart
->futex
.flags
|= FLAGS_CLOCKRT
;
1299 ret
= -ERESTART_RESTARTBLOCK
;
1302 put_futex_key(fshared
, &q
.key
);
1308 static long futex_wait_restart(struct restart_block
*restart
)
1310 u32 __user
*uaddr
= (u32 __user
*)restart
->futex
.uaddr
;
1314 t
.tv64
= restart
->futex
.time
;
1315 restart
->fn
= do_no_restart_syscall
;
1316 if (restart
->futex
.flags
& FLAGS_SHARED
)
1318 return (long)futex_wait(uaddr
, fshared
, restart
->futex
.val
, &t
,
1319 restart
->futex
.bitset
,
1320 restart
->futex
.flags
& FLAGS_CLOCKRT
);
1325 * Userspace tried a 0 -> TID atomic transition of the futex value
1326 * and failed. The kernel side here does the whole locking operation:
1327 * if there are waiters then it will block, it does PI, etc. (Due to
1328 * races the kernel might see a 0 value of the futex too.)
1330 static int futex_lock_pi(u32 __user
*uaddr
, int fshared
,
1331 int detect
, ktime_t
*time
, int trylock
)
1333 struct hrtimer_sleeper timeout
, *to
= NULL
;
1334 struct task_struct
*curr
= current
;
1335 struct futex_hash_bucket
*hb
;
1336 u32 uval
, newval
, curval
;
1338 int ret
, lock_taken
, ownerdied
= 0;
1340 if (refill_pi_state_cache())
1345 hrtimer_init_on_stack(&to
->timer
, CLOCK_REALTIME
,
1347 hrtimer_init_sleeper(to
, current
);
1348 hrtimer_set_expires(&to
->timer
, *time
);
1353 q
.key
= FUTEX_KEY_INIT
;
1354 ret
= get_futex_key(uaddr
, fshared
, &q
.key
, VERIFY_WRITE
);
1355 if (unlikely(ret
!= 0))
1359 hb
= queue_lock(&q
);
1362 ret
= lock_taken
= 0;
1365 * To avoid races, we attempt to take the lock here again
1366 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1367 * the locks. It will most likely not succeed.
1369 newval
= task_pid_vnr(current
);
1371 curval
= cmpxchg_futex_value_locked(uaddr
, 0, newval
);
1373 if (unlikely(curval
== -EFAULT
))
1377 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1378 * situation and we return success to user space.
1380 if (unlikely((curval
& FUTEX_TID_MASK
) == task_pid_vnr(current
))) {
1382 goto out_unlock_put_key
;
1386 * Surprise - we got the lock. Just return to userspace:
1388 if (unlikely(!curval
))
1389 goto out_unlock_put_key
;
1394 * Set the WAITERS flag, so the owner will know it has someone
1395 * to wake at next unlock
1397 newval
= curval
| FUTEX_WAITERS
;
1400 * There are two cases, where a futex might have no owner (the
1401 * owner TID is 0): OWNER_DIED. We take over the futex in this
1402 * case. We also do an unconditional take over, when the owner
1403 * of the futex died.
1405 * This is safe as we are protected by the hash bucket lock !
1407 if (unlikely(ownerdied
|| !(curval
& FUTEX_TID_MASK
))) {
1408 /* Keep the OWNER_DIED bit */
1409 newval
= (curval
& ~FUTEX_TID_MASK
) | task_pid_vnr(current
);
1414 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1416 if (unlikely(curval
== -EFAULT
))
1418 if (unlikely(curval
!= uval
))
1422 * We took the lock due to owner died take over.
1424 if (unlikely(lock_taken
))
1425 goto out_unlock_put_key
;
1428 * We dont have the lock. Look up the PI state (or create it if
1429 * we are the first waiter):
1431 ret
= lookup_pi_state(uval
, hb
, &q
.key
, &q
.pi_state
);
1433 if (unlikely(ret
)) {
1438 * Task is exiting and we just wait for the
1441 queue_unlock(&q
, hb
);
1442 put_futex_key(fshared
, &q
.key
);
1448 * No owner found for this futex. Check if the
1449 * OWNER_DIED bit is set to figure out whether
1450 * this is a robust futex or not.
1452 if (get_futex_value_locked(&curval
, uaddr
))
1456 * We simply start over in case of a robust
1457 * futex. The code above will take the futex
1460 if (curval
& FUTEX_OWNER_DIED
) {
1465 goto out_unlock_put_key
;
1470 * Only actually queue now that the atomic ops are done:
1474 WARN_ON(!q
.pi_state
);
1476 * Block on the PI mutex:
1479 ret
= rt_mutex_timed_lock(&q
.pi_state
->pi_mutex
, to
, 1);
1481 ret
= rt_mutex_trylock(&q
.pi_state
->pi_mutex
);
1482 /* Fixup the trylock return value: */
1483 ret
= ret
? 0 : -EWOULDBLOCK
;
1486 spin_lock(q
.lock_ptr
);
1490 * Got the lock. We might not be the anticipated owner
1491 * if we did a lock-steal - fix up the PI-state in
1494 if (q
.pi_state
->owner
!= curr
)
1495 ret
= fixup_pi_state_owner(uaddr
, &q
, curr
, fshared
);
1498 * Catch the rare case, where the lock was released
1499 * when we were on the way back before we locked the
1502 if (q
.pi_state
->owner
== curr
) {
1504 * Try to get the rt_mutex now. This might
1505 * fail as some other task acquired the
1506 * rt_mutex after we removed ourself from the
1507 * rt_mutex waiters list.
1509 if (rt_mutex_trylock(&q
.pi_state
->pi_mutex
))
1513 * pi_state is incorrect, some other
1514 * task did a lock steal and we
1515 * returned due to timeout or signal
1516 * without taking the rt_mutex. Too
1517 * late. We can access the
1518 * rt_mutex_owner without locking, as
1519 * the other task is now blocked on
1520 * the hash bucket lock. Fix the state
1523 struct task_struct
*owner
;
1526 owner
= rt_mutex_owner(&q
.pi_state
->pi_mutex
);
1527 res
= fixup_pi_state_owner(uaddr
, &q
, owner
,
1530 /* propagate -EFAULT, if the fixup failed */
1536 * Paranoia check. If we did not take the lock
1537 * in the trylock above, then we should not be
1538 * the owner of the rtmutex, neither the real
1539 * nor the pending one:
1541 if (rt_mutex_owner(&q
.pi_state
->pi_mutex
) == curr
)
1542 printk(KERN_ERR
"futex_lock_pi: ret = %d "
1543 "pi-mutex: %p pi-state %p\n", ret
,
1544 q
.pi_state
->pi_mutex
.owner
,
1550 * If fixup_pi_state_owner() faulted and was unable to handle the
1551 * fault, unlock it and return the fault to userspace.
1553 if (ret
&& (rt_mutex_owner(&q
.pi_state
->pi_mutex
) == current
))
1554 rt_mutex_unlock(&q
.pi_state
->pi_mutex
);
1556 /* Unqueue and drop the lock */
1560 destroy_hrtimer_on_stack(&to
->timer
);
1561 return ret
!= -EINTR
? ret
: -ERESTARTNOINTR
;
1564 queue_unlock(&q
, hb
);
1567 put_futex_key(fshared
, &q
.key
);
1570 destroy_hrtimer_on_stack(&to
->timer
);
1574 queue_unlock(&q
, hb
);
1576 ret
= fault_in_user_writeable(uaddr
);
1583 put_futex_key(fshared
, &q
.key
);
1589 * Userspace attempted a TID -> 0 atomic transition, and failed.
1590 * This is the in-kernel slowpath: we look up the PI state (if any),
1591 * and do the rt-mutex unlock.
1593 static int futex_unlock_pi(u32 __user
*uaddr
, int fshared
)
1595 struct futex_hash_bucket
*hb
;
1596 struct futex_q
*this, *next
;
1598 struct plist_head
*head
;
1599 union futex_key key
= FUTEX_KEY_INIT
;
1603 if (get_user(uval
, uaddr
))
1606 * We release only a lock we actually own:
1608 if ((uval
& FUTEX_TID_MASK
) != task_pid_vnr(current
))
1611 ret
= get_futex_key(uaddr
, fshared
, &key
, VERIFY_WRITE
);
1612 if (unlikely(ret
!= 0))
1615 hb
= hash_futex(&key
);
1616 spin_lock(&hb
->lock
);
1619 * To avoid races, try to do the TID -> 0 atomic transition
1620 * again. If it succeeds then we can return without waking
1623 if (!(uval
& FUTEX_OWNER_DIED
))
1624 uval
= cmpxchg_futex_value_locked(uaddr
, task_pid_vnr(current
), 0);
1627 if (unlikely(uval
== -EFAULT
))
1630 * Rare case: we managed to release the lock atomically,
1631 * no need to wake anyone else up:
1633 if (unlikely(uval
== task_pid_vnr(current
)))
1637 * Ok, other tasks may need to be woken up - check waiters
1638 * and do the wakeup if necessary:
1642 plist_for_each_entry_safe(this, next
, head
, list
) {
1643 if (!match_futex (&this->key
, &key
))
1645 ret
= wake_futex_pi(uaddr
, uval
, this);
1647 * The atomic access to the futex value
1648 * generated a pagefault, so retry the
1649 * user-access and the wakeup:
1656 * No waiters - kernel unlocks the futex:
1658 if (!(uval
& FUTEX_OWNER_DIED
)) {
1659 ret
= unlock_futex_pi(uaddr
, uval
);
1665 spin_unlock(&hb
->lock
);
1666 put_futex_key(fshared
, &key
);
1672 spin_unlock(&hb
->lock
);
1673 put_futex_key(fshared
, &key
);
1675 ret
= fault_in_user_writeable(uaddr
);
1683 * Support for robust futexes: the kernel cleans up held futexes at
1686 * Implementation: user-space maintains a per-thread list of locks it
1687 * is holding. Upon do_exit(), the kernel carefully walks this list,
1688 * and marks all locks that are owned by this thread with the
1689 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1690 * always manipulated with the lock held, so the list is private and
1691 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1692 * field, to allow the kernel to clean up if the thread dies after
1693 * acquiring the lock, but just before it could have added itself to
1694 * the list. There can only be one such pending lock.
1698 * sys_set_robust_list - set the robust-futex list head of a task
1699 * @head: pointer to the list-head
1700 * @len: length of the list-head, as userspace expects
1702 SYSCALL_DEFINE2(set_robust_list
, struct robust_list_head __user
*, head
,
1705 if (!futex_cmpxchg_enabled
)
1708 * The kernel knows only one size for now:
1710 if (unlikely(len
!= sizeof(*head
)))
1713 current
->robust_list
= head
;
1719 * sys_get_robust_list - get the robust-futex list head of a task
1720 * @pid: pid of the process [zero for current task]
1721 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1722 * @len_ptr: pointer to a length field, the kernel fills in the header size
1724 SYSCALL_DEFINE3(get_robust_list
, int, pid
,
1725 struct robust_list_head __user
* __user
*, head_ptr
,
1726 size_t __user
*, len_ptr
)
1728 struct robust_list_head __user
*head
;
1730 const struct cred
*cred
= current_cred(), *pcred
;
1732 if (!futex_cmpxchg_enabled
)
1736 head
= current
->robust_list
;
1738 struct task_struct
*p
;
1742 p
= find_task_by_vpid(pid
);
1746 pcred
= __task_cred(p
);
1747 if (cred
->euid
!= pcred
->euid
&&
1748 cred
->euid
!= pcred
->uid
&&
1749 !capable(CAP_SYS_PTRACE
))
1751 head
= p
->robust_list
;
1755 if (put_user(sizeof(*head
), len_ptr
))
1757 return put_user(head
, head_ptr
);
1766 * Process a futex-list entry, check whether it's owned by the
1767 * dying task, and do notification if so:
1769 int handle_futex_death(u32 __user
*uaddr
, struct task_struct
*curr
, int pi
)
1771 u32 uval
, nval
, mval
;
1774 if (get_user(uval
, uaddr
))
1777 if ((uval
& FUTEX_TID_MASK
) == task_pid_vnr(curr
)) {
1779 * Ok, this dying thread is truly holding a futex
1780 * of interest. Set the OWNER_DIED bit atomically
1781 * via cmpxchg, and if the value had FUTEX_WAITERS
1782 * set, wake up a waiter (if any). (We have to do a
1783 * futex_wake() even if OWNER_DIED is already set -
1784 * to handle the rare but possible case of recursive
1785 * thread-death.) The rest of the cleanup is done in
1788 mval
= (uval
& FUTEX_WAITERS
) | FUTEX_OWNER_DIED
;
1789 nval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, mval
);
1791 if (nval
== -EFAULT
)
1798 * Wake robust non-PI futexes here. The wakeup of
1799 * PI futexes happens in exit_pi_state():
1801 if (!pi
&& (uval
& FUTEX_WAITERS
))
1802 futex_wake(uaddr
, 1, 1, FUTEX_BITSET_MATCH_ANY
);
1808 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1810 static inline int fetch_robust_entry(struct robust_list __user
**entry
,
1811 struct robust_list __user
* __user
*head
,
1814 unsigned long uentry
;
1816 if (get_user(uentry
, (unsigned long __user
*)head
))
1819 *entry
= (void __user
*)(uentry
& ~1UL);
1826 * Walk curr->robust_list (very carefully, it's a userspace list!)
1827 * and mark any locks found there dead, and notify any waiters.
1829 * We silently return on any sign of list-walking problem.
1831 void exit_robust_list(struct task_struct
*curr
)
1833 struct robust_list_head __user
*head
= curr
->robust_list
;
1834 struct robust_list __user
*entry
, *next_entry
, *pending
;
1835 unsigned int limit
= ROBUST_LIST_LIMIT
, pi
, next_pi
, pip
;
1836 unsigned long futex_offset
;
1839 if (!futex_cmpxchg_enabled
)
1843 * Fetch the list head (which was registered earlier, via
1844 * sys_set_robust_list()):
1846 if (fetch_robust_entry(&entry
, &head
->list
.next
, &pi
))
1849 * Fetch the relative futex offset:
1851 if (get_user(futex_offset
, &head
->futex_offset
))
1854 * Fetch any possibly pending lock-add first, and handle it
1857 if (fetch_robust_entry(&pending
, &head
->list_op_pending
, &pip
))
1860 next_entry
= NULL
; /* avoid warning with gcc */
1861 while (entry
!= &head
->list
) {
1863 * Fetch the next entry in the list before calling
1864 * handle_futex_death:
1866 rc
= fetch_robust_entry(&next_entry
, &entry
->next
, &next_pi
);
1868 * A pending lock might already be on the list, so
1869 * don't process it twice:
1871 if (entry
!= pending
)
1872 if (handle_futex_death((void __user
*)entry
+ futex_offset
,
1880 * Avoid excessively long or circular lists:
1889 handle_futex_death((void __user
*)pending
+ futex_offset
,
1893 long do_futex(u32 __user
*uaddr
, int op
, u32 val
, ktime_t
*timeout
,
1894 u32 __user
*uaddr2
, u32 val2
, u32 val3
)
1896 int clockrt
, ret
= -ENOSYS
;
1897 int cmd
= op
& FUTEX_CMD_MASK
;
1900 if (!(op
& FUTEX_PRIVATE_FLAG
))
1903 clockrt
= op
& FUTEX_CLOCK_REALTIME
;
1904 if (clockrt
&& cmd
!= FUTEX_WAIT_BITSET
)
1909 val3
= FUTEX_BITSET_MATCH_ANY
;
1910 case FUTEX_WAIT_BITSET
:
1911 ret
= futex_wait(uaddr
, fshared
, val
, timeout
, val3
, clockrt
);
1914 val3
= FUTEX_BITSET_MATCH_ANY
;
1915 case FUTEX_WAKE_BITSET
:
1916 ret
= futex_wake(uaddr
, fshared
, val
, val3
);
1919 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, NULL
);
1921 case FUTEX_CMP_REQUEUE
:
1922 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, &val3
);
1925 ret
= futex_wake_op(uaddr
, fshared
, uaddr2
, val
, val2
, val3
);
1928 if (futex_cmpxchg_enabled
)
1929 ret
= futex_lock_pi(uaddr
, fshared
, val
, timeout
, 0);
1931 case FUTEX_UNLOCK_PI
:
1932 if (futex_cmpxchg_enabled
)
1933 ret
= futex_unlock_pi(uaddr
, fshared
);
1935 case FUTEX_TRYLOCK_PI
:
1936 if (futex_cmpxchg_enabled
)
1937 ret
= futex_lock_pi(uaddr
, fshared
, 0, timeout
, 1);
1946 SYSCALL_DEFINE6(futex
, u32 __user
*, uaddr
, int, op
, u32
, val
,
1947 struct timespec __user
*, utime
, u32 __user
*, uaddr2
,
1951 ktime_t t
, *tp
= NULL
;
1953 int cmd
= op
& FUTEX_CMD_MASK
;
1955 if (utime
&& (cmd
== FUTEX_WAIT
|| cmd
== FUTEX_LOCK_PI
||
1956 cmd
== FUTEX_WAIT_BITSET
)) {
1957 if (copy_from_user(&ts
, utime
, sizeof(ts
)) != 0)
1959 if (!timespec_valid(&ts
))
1962 t
= timespec_to_ktime(ts
);
1963 if (cmd
== FUTEX_WAIT
)
1964 t
= ktime_add_safe(ktime_get(), t
);
1968 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1969 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1971 if (cmd
== FUTEX_REQUEUE
|| cmd
== FUTEX_CMP_REQUEUE
||
1972 cmd
== FUTEX_WAKE_OP
)
1973 val2
= (u32
) (unsigned long) utime
;
1975 return do_futex(uaddr
, op
, val
, tp
, uaddr2
, val2
, val3
);
1978 static int __init
futex_init(void)
1984 * This will fail and we want it. Some arch implementations do
1985 * runtime detection of the futex_atomic_cmpxchg_inatomic()
1986 * functionality. We want to know that before we call in any
1987 * of the complex code paths. Also we want to prevent
1988 * registration of robust lists in that case. NULL is
1989 * guaranteed to fault and we get -EFAULT on functional
1990 * implementation, the non functional ones will return
1993 curval
= cmpxchg_futex_value_locked(NULL
, 0, 0);
1994 if (curval
== -EFAULT
)
1995 futex_cmpxchg_enabled
= 1;
1997 for (i
= 0; i
< ARRAY_SIZE(futex_queues
); i
++) {
1998 plist_head_init(&futex_queues
[i
].chain
, &futex_queues
[i
].lock
);
1999 spin_lock_init(&futex_queues
[i
].lock
);
2004 __initcall(futex_init
);