S3C: Backported openmoko's touchscreen filters
[linux-2.6/mini2440.git] / drivers / mtd / chips / cfi_cmdset_0002.c
blob94bb61e19047764ae06dcf91408946219869fa06
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
20 * This code is GPL
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/compatmac.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
44 #define MAX_WORD_RETRIES 3
46 #define MANUFACTURER_AMD 0x0001
47 #define MANUFACTURER_ATMEL 0x001F
48 #define MANUFACTURER_MACRONIX 0x00C2
49 #define MANUFACTURER_SST 0x00BF
50 #define SST49LF004B 0x0060
51 #define SST49LF040B 0x0050
52 #define SST49LF008A 0x005a
53 #define AT49BV6416 0x00d6
55 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
56 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
58 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
59 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
60 static void cfi_amdstd_sync (struct mtd_info *);
61 static int cfi_amdstd_suspend (struct mtd_info *);
62 static void cfi_amdstd_resume (struct mtd_info *);
63 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
65 static void cfi_amdstd_destroy(struct mtd_info *);
67 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
68 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
70 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
71 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
72 #include "fwh_lock.h"
74 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
75 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
77 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
78 .probe = NULL, /* Not usable directly */
79 .destroy = cfi_amdstd_destroy,
80 .name = "cfi_cmdset_0002",
81 .module = THIS_MODULE
85 /* #define DEBUG_CFI_FEATURES */
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
91 const char* erase_suspend[3] = {
92 "Not supported", "Read only", "Read/write"
94 const char* top_bottom[6] = {
95 "No WP", "8x8KiB sectors at top & bottom, no WP",
96 "Bottom boot", "Top boot",
97 "Uniform, Bottom WP", "Uniform, Top WP"
100 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
101 printk(" Address sensitive unlock: %s\n",
102 (extp->SiliconRevision & 1) ? "Not required" : "Required");
104 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
105 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
106 else
107 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
109 if (extp->BlkProt == 0)
110 printk(" Block protection: Not supported\n");
111 else
112 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
115 printk(" Temporary block unprotect: %s\n",
116 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
117 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
118 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
119 printk(" Burst mode: %s\n",
120 extp->BurstMode ? "Supported" : "Not supported");
121 if (extp->PageMode == 0)
122 printk(" Page mode: Not supported\n");
123 else
124 printk(" Page mode: %d word page\n", extp->PageMode << 2);
126 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 extp->VppMin >> 4, extp->VppMin & 0xf);
128 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 extp->VppMax >> 4, extp->VppMax & 0xf);
131 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
132 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
133 else
134 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
136 #endif
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
142 struct map_info *map = mtd->priv;
143 struct cfi_private *cfi = map->fldrv_priv;
144 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
145 __u8 major = extp->MajorVersion;
146 __u8 minor = extp->MinorVersion;
148 if (((major << 8) | minor) < 0x3131) {
149 /* CFI version 1.0 => don't trust bootloc */
151 DEBUG(MTD_DEBUG_LEVEL1,
152 "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
153 map->name, cfi->mfr, cfi->id);
155 /* AFAICS all 29LV400 with a bottom boot block have a device ID
156 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
157 * These were badly detected as they have the 0x80 bit set
158 * so treat them as a special case.
160 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
162 /* Macronix added CFI to their 2nd generation
163 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
164 * Fujitsu, Spansion, EON, ESI and older Macronix)
165 * has CFI.
167 * Therefore also check the manufacturer.
168 * This reduces the risk of false detection due to
169 * the 8-bit device ID.
171 (cfi->mfr == MANUFACTURER_MACRONIX)) {
172 DEBUG(MTD_DEBUG_LEVEL1,
173 "%s: Macronix MX29LV400C with bottom boot block"
174 " detected\n", map->name);
175 extp->TopBottom = 2; /* bottom boot */
176 } else
177 if (cfi->id & 0x80) {
178 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
179 extp->TopBottom = 3; /* top boot */
180 } else {
181 extp->TopBottom = 2; /* bottom boot */
184 DEBUG(MTD_DEBUG_LEVEL1,
185 "%s: AMD CFI PRI V%c.%c has no boot block field;"
186 " deduced %s from Device ID\n", map->name, major, minor,
187 extp->TopBottom == 2 ? "bottom" : "top");
190 #endif
192 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
194 struct map_info *map = mtd->priv;
195 struct cfi_private *cfi = map->fldrv_priv;
196 if (cfi->cfiq->BufWriteTimeoutTyp) {
197 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
198 mtd->write = cfi_amdstd_write_buffers;
202 /* Atmel chips don't use the same PRI format as AMD chips */
203 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
205 struct map_info *map = mtd->priv;
206 struct cfi_private *cfi = map->fldrv_priv;
207 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
208 struct cfi_pri_atmel atmel_pri;
210 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
211 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
213 if (atmel_pri.Features & 0x02)
214 extp->EraseSuspend = 2;
216 /* Some chips got it backwards... */
217 if (cfi->id == AT49BV6416) {
218 if (atmel_pri.BottomBoot)
219 extp->TopBottom = 3;
220 else
221 extp->TopBottom = 2;
222 } else {
223 if (atmel_pri.BottomBoot)
224 extp->TopBottom = 2;
225 else
226 extp->TopBottom = 3;
229 /* burst write mode not supported */
230 cfi->cfiq->BufWriteTimeoutTyp = 0;
231 cfi->cfiq->BufWriteTimeoutMax = 0;
234 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
236 /* Setup for chips with a secsi area */
237 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
238 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
241 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
243 struct map_info *map = mtd->priv;
244 struct cfi_private *cfi = map->fldrv_priv;
245 if ((cfi->cfiq->NumEraseRegions == 1) &&
246 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
247 mtd->erase = cfi_amdstd_erase_chip;
253 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
254 * locked by default.
256 static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
258 mtd->lock = cfi_atmel_lock;
259 mtd->unlock = cfi_atmel_unlock;
260 mtd->flags |= MTD_POWERUP_LOCK;
263 static void fixup_s29gl064n_sectors(struct mtd_info *mtd, void *param)
265 struct map_info *map = mtd->priv;
266 struct cfi_private *cfi = map->fldrv_priv;
268 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
269 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
270 pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
274 static void fixup_s29gl032n_sectors(struct mtd_info *mtd, void *param)
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
279 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
280 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
281 pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
285 static struct cfi_fixup cfi_fixup_table[] = {
286 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
287 #ifdef AMD_BOOTLOC_BUG
288 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
289 { MANUFACTURER_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock, NULL },
290 #endif
291 { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
292 { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
293 { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
294 { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
295 { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
296 { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
297 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors, NULL, },
298 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors, NULL, },
299 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors, NULL, },
300 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors, NULL, },
301 #if !FORCE_WORD_WRITE
302 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
303 #endif
304 { 0, 0, NULL, NULL }
306 static struct cfi_fixup jedec_fixup_table[] = {
307 { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
308 { MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
309 { MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
310 { 0, 0, NULL, NULL }
313 static struct cfi_fixup fixup_table[] = {
314 /* The CFI vendor ids and the JEDEC vendor IDs appear
315 * to be common. It is like the devices id's are as
316 * well. This table is to pick all cases where
317 * we know that is the case.
319 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
320 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
321 { 0, 0, NULL, NULL }
325 static void cfi_fixup_major_minor(struct cfi_private *cfi,
326 struct cfi_pri_amdstd *extp)
328 if (cfi->mfr == CFI_MFR_SAMSUNG && cfi->id == 0x257e &&
329 extp->MajorVersion == '0')
330 extp->MajorVersion = '1';
333 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
335 struct cfi_private *cfi = map->fldrv_priv;
336 struct mtd_info *mtd;
337 int i;
339 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
340 if (!mtd) {
341 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
342 return NULL;
344 mtd->priv = map;
345 mtd->type = MTD_NORFLASH;
347 /* Fill in the default mtd operations */
348 mtd->erase = cfi_amdstd_erase_varsize;
349 mtd->write = cfi_amdstd_write_words;
350 mtd->read = cfi_amdstd_read;
351 mtd->sync = cfi_amdstd_sync;
352 mtd->suspend = cfi_amdstd_suspend;
353 mtd->resume = cfi_amdstd_resume;
354 mtd->flags = MTD_CAP_NORFLASH;
355 mtd->name = map->name;
356 mtd->writesize = 1;
358 if (cfi->cfi_mode==CFI_MODE_CFI){
359 unsigned char bootloc;
361 * It's a real CFI chip, not one for which the probe
362 * routine faked a CFI structure. So we read the feature
363 * table from it.
365 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
366 struct cfi_pri_amdstd *extp;
368 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
369 if (!extp) {
370 kfree(mtd);
371 return NULL;
374 cfi_fixup_major_minor(cfi, extp);
376 if (extp->MajorVersion != '1' ||
377 (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
378 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
379 "version %c.%c.\n", extp->MajorVersion,
380 extp->MinorVersion);
381 kfree(extp);
382 kfree(mtd);
383 return NULL;
386 /* Install our own private info structure */
387 cfi->cmdset_priv = extp;
389 /* Apply cfi device specific fixups */
390 cfi_fixup(mtd, cfi_fixup_table);
392 #ifdef DEBUG_CFI_FEATURES
393 /* Tell the user about it in lots of lovely detail */
394 cfi_tell_features(extp);
395 #endif
397 bootloc = extp->TopBottom;
398 if ((bootloc != 2) && (bootloc != 3)) {
399 printk(KERN_WARNING "%s: CFI does not contain boot "
400 "bank location. Assuming top.\n", map->name);
401 bootloc = 2;
404 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
405 printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
407 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
408 int j = (cfi->cfiq->NumEraseRegions-1)-i;
409 __u32 swap;
411 swap = cfi->cfiq->EraseRegionInfo[i];
412 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
413 cfi->cfiq->EraseRegionInfo[j] = swap;
416 /* Set the default CFI lock/unlock addresses */
417 cfi->addr_unlock1 = 0x555;
418 cfi->addr_unlock2 = 0x2aa;
420 } /* CFI mode */
421 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
422 /* Apply jedec specific fixups */
423 cfi_fixup(mtd, jedec_fixup_table);
425 /* Apply generic fixups */
426 cfi_fixup(mtd, fixup_table);
428 for (i=0; i< cfi->numchips; i++) {
429 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
430 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
431 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
432 cfi->chips[i].ref_point_counter = 0;
433 init_waitqueue_head(&(cfi->chips[i].wq));
436 map->fldrv = &cfi_amdstd_chipdrv;
438 return cfi_amdstd_setup(mtd);
440 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
442 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
444 struct map_info *map = mtd->priv;
445 struct cfi_private *cfi = map->fldrv_priv;
446 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
447 unsigned long offset = 0;
448 int i,j;
450 printk(KERN_NOTICE "number of %s chips: %d\n",
451 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
452 /* Select the correct geometry setup */
453 mtd->size = devsize * cfi->numchips;
455 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
456 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
457 * mtd->numeraseregions, GFP_KERNEL);
458 if (!mtd->eraseregions) {
459 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
460 goto setup_err;
463 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
464 unsigned long ernum, ersize;
465 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
466 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
468 if (mtd->erasesize < ersize) {
469 mtd->erasesize = ersize;
471 for (j=0; j<cfi->numchips; j++) {
472 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
473 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
474 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
476 offset += (ersize * ernum);
478 if (offset != devsize) {
479 /* Argh */
480 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
481 goto setup_err;
483 #if 0
484 // debug
485 for (i=0; i<mtd->numeraseregions;i++){
486 printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
487 i,mtd->eraseregions[i].offset,
488 mtd->eraseregions[i].erasesize,
489 mtd->eraseregions[i].numblocks);
491 #endif
493 /* FIXME: erase-suspend-program is broken. See
494 http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
495 printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
497 __module_get(THIS_MODULE);
498 return mtd;
500 setup_err:
501 if(mtd) {
502 kfree(mtd->eraseregions);
503 kfree(mtd);
505 kfree(cfi->cmdset_priv);
506 kfree(cfi->cfiq);
507 return NULL;
511 * Return true if the chip is ready.
513 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
514 * non-suspended sector) and is indicated by no toggle bits toggling.
516 * Note that anything more complicated than checking if no bits are toggling
517 * (including checking DQ5 for an error status) is tricky to get working
518 * correctly and is therefore not done (particulary with interleaved chips
519 * as each chip must be checked independantly of the others).
521 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
523 map_word d, t;
525 d = map_read(map, addr);
526 t = map_read(map, addr);
528 return map_word_equal(map, d, t);
532 * Return true if the chip is ready and has the correct value.
534 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
535 * non-suspended sector) and it is indicated by no bits toggling.
537 * Error are indicated by toggling bits or bits held with the wrong value,
538 * or with bits toggling.
540 * Note that anything more complicated than checking if no bits are toggling
541 * (including checking DQ5 for an error status) is tricky to get working
542 * correctly and is therefore not done (particulary with interleaved chips
543 * as each chip must be checked independantly of the others).
546 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
548 map_word oldd, curd;
550 oldd = map_read(map, addr);
551 curd = map_read(map, addr);
553 return map_word_equal(map, oldd, curd) &&
554 map_word_equal(map, curd, expected);
557 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
559 DECLARE_WAITQUEUE(wait, current);
560 struct cfi_private *cfi = map->fldrv_priv;
561 unsigned long timeo;
562 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
564 resettime:
565 timeo = jiffies + HZ;
566 retry:
567 switch (chip->state) {
569 case FL_STATUS:
570 for (;;) {
571 if (chip_ready(map, adr))
572 break;
574 if (time_after(jiffies, timeo)) {
575 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
576 spin_unlock(chip->mutex);
577 return -EIO;
579 spin_unlock(chip->mutex);
580 cfi_udelay(1);
581 spin_lock(chip->mutex);
582 /* Someone else might have been playing with it. */
583 goto retry;
586 case FL_READY:
587 case FL_CFI_QUERY:
588 case FL_JEDEC_QUERY:
589 return 0;
591 case FL_ERASING:
592 if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
593 goto sleep;
595 if (!( mode == FL_READY
596 || mode == FL_POINT
597 || !cfip
598 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
599 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)
601 goto sleep;
603 /* We could check to see if we're trying to access the sector
604 * that is currently being erased. However, no user will try
605 * anything like that so we just wait for the timeout. */
607 /* Erase suspend */
608 /* It's harmless to issue the Erase-Suspend and Erase-Resume
609 * commands when the erase algorithm isn't in progress. */
610 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
611 chip->oldstate = FL_ERASING;
612 chip->state = FL_ERASE_SUSPENDING;
613 chip->erase_suspended = 1;
614 for (;;) {
615 if (chip_ready(map, adr))
616 break;
618 if (time_after(jiffies, timeo)) {
619 /* Should have suspended the erase by now.
620 * Send an Erase-Resume command as either
621 * there was an error (so leave the erase
622 * routine to recover from it) or we trying to
623 * use the erase-in-progress sector. */
624 map_write(map, CMD(0x30), chip->in_progress_block_addr);
625 chip->state = FL_ERASING;
626 chip->oldstate = FL_READY;
627 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
628 return -EIO;
631 spin_unlock(chip->mutex);
632 cfi_udelay(1);
633 spin_lock(chip->mutex);
634 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
635 So we can just loop here. */
637 chip->state = FL_READY;
638 return 0;
640 case FL_XIP_WHILE_ERASING:
641 if (mode != FL_READY && mode != FL_POINT &&
642 (!cfip || !(cfip->EraseSuspend&2)))
643 goto sleep;
644 chip->oldstate = chip->state;
645 chip->state = FL_READY;
646 return 0;
648 case FL_POINT:
649 /* Only if there's no operation suspended... */
650 if (mode == FL_READY && chip->oldstate == FL_READY)
651 return 0;
653 default:
654 sleep:
655 set_current_state(TASK_UNINTERRUPTIBLE);
656 add_wait_queue(&chip->wq, &wait);
657 spin_unlock(chip->mutex);
658 schedule();
659 remove_wait_queue(&chip->wq, &wait);
660 spin_lock(chip->mutex);
661 goto resettime;
666 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
668 struct cfi_private *cfi = map->fldrv_priv;
670 switch(chip->oldstate) {
671 case FL_ERASING:
672 chip->state = chip->oldstate;
673 map_write(map, CMD(0x30), chip->in_progress_block_addr);
674 chip->oldstate = FL_READY;
675 chip->state = FL_ERASING;
676 break;
678 case FL_XIP_WHILE_ERASING:
679 chip->state = chip->oldstate;
680 chip->oldstate = FL_READY;
681 break;
683 case FL_READY:
684 case FL_STATUS:
685 /* We should really make set_vpp() count, rather than doing this */
686 DISABLE_VPP(map);
687 break;
688 default:
689 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
691 wake_up(&chip->wq);
694 #ifdef CONFIG_MTD_XIP
697 * No interrupt what so ever can be serviced while the flash isn't in array
698 * mode. This is ensured by the xip_disable() and xip_enable() functions
699 * enclosing any code path where the flash is known not to be in array mode.
700 * And within a XIP disabled code path, only functions marked with __xipram
701 * may be called and nothing else (it's a good thing to inspect generated
702 * assembly to make sure inline functions were actually inlined and that gcc
703 * didn't emit calls to its own support functions). Also configuring MTD CFI
704 * support to a single buswidth and a single interleave is also recommended.
707 static void xip_disable(struct map_info *map, struct flchip *chip,
708 unsigned long adr)
710 /* TODO: chips with no XIP use should ignore and return */
711 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
712 local_irq_disable();
715 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
716 unsigned long adr)
718 struct cfi_private *cfi = map->fldrv_priv;
720 if (chip->state != FL_POINT && chip->state != FL_READY) {
721 map_write(map, CMD(0xf0), adr);
722 chip->state = FL_READY;
724 (void) map_read(map, adr);
725 xip_iprefetch();
726 local_irq_enable();
730 * When a delay is required for the flash operation to complete, the
731 * xip_udelay() function is polling for both the given timeout and pending
732 * (but still masked) hardware interrupts. Whenever there is an interrupt
733 * pending then the flash erase operation is suspended, array mode restored
734 * and interrupts unmasked. Task scheduling might also happen at that
735 * point. The CPU eventually returns from the interrupt or the call to
736 * schedule() and the suspended flash operation is resumed for the remaining
737 * of the delay period.
739 * Warning: this function _will_ fool interrupt latency tracing tools.
742 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
743 unsigned long adr, int usec)
745 struct cfi_private *cfi = map->fldrv_priv;
746 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
747 map_word status, OK = CMD(0x80);
748 unsigned long suspended, start = xip_currtime();
749 flstate_t oldstate;
751 do {
752 cpu_relax();
753 if (xip_irqpending() && extp &&
754 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
755 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
757 * Let's suspend the erase operation when supported.
758 * Note that we currently don't try to suspend
759 * interleaved chips if there is already another
760 * operation suspended (imagine what happens
761 * when one chip was already done with the current
762 * operation while another chip suspended it, then
763 * we resume the whole thing at once). Yes, it
764 * can happen!
766 map_write(map, CMD(0xb0), adr);
767 usec -= xip_elapsed_since(start);
768 suspended = xip_currtime();
769 do {
770 if (xip_elapsed_since(suspended) > 100000) {
772 * The chip doesn't want to suspend
773 * after waiting for 100 msecs.
774 * This is a critical error but there
775 * is not much we can do here.
777 return;
779 status = map_read(map, adr);
780 } while (!map_word_andequal(map, status, OK, OK));
782 /* Suspend succeeded */
783 oldstate = chip->state;
784 if (!map_word_bitsset(map, status, CMD(0x40)))
785 break;
786 chip->state = FL_XIP_WHILE_ERASING;
787 chip->erase_suspended = 1;
788 map_write(map, CMD(0xf0), adr);
789 (void) map_read(map, adr);
790 xip_iprefetch();
791 local_irq_enable();
792 spin_unlock(chip->mutex);
793 xip_iprefetch();
794 cond_resched();
797 * We're back. However someone else might have
798 * decided to go write to the chip if we are in
799 * a suspended erase state. If so let's wait
800 * until it's done.
802 spin_lock(chip->mutex);
803 while (chip->state != FL_XIP_WHILE_ERASING) {
804 DECLARE_WAITQUEUE(wait, current);
805 set_current_state(TASK_UNINTERRUPTIBLE);
806 add_wait_queue(&chip->wq, &wait);
807 spin_unlock(chip->mutex);
808 schedule();
809 remove_wait_queue(&chip->wq, &wait);
810 spin_lock(chip->mutex);
812 /* Disallow XIP again */
813 local_irq_disable();
815 /* Resume the write or erase operation */
816 map_write(map, CMD(0x30), adr);
817 chip->state = oldstate;
818 start = xip_currtime();
819 } else if (usec >= 1000000/HZ) {
821 * Try to save on CPU power when waiting delay
822 * is at least a system timer tick period.
823 * No need to be extremely accurate here.
825 xip_cpu_idle();
827 status = map_read(map, adr);
828 } while (!map_word_andequal(map, status, OK, OK)
829 && xip_elapsed_since(start) < usec);
832 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
835 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
836 * the flash is actively programming or erasing since we have to poll for
837 * the operation to complete anyway. We can't do that in a generic way with
838 * a XIP setup so do it before the actual flash operation in this case
839 * and stub it out from INVALIDATE_CACHE_UDELAY.
841 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
842 INVALIDATE_CACHED_RANGE(map, from, size)
844 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
845 UDELAY(map, chip, adr, usec)
848 * Extra notes:
850 * Activating this XIP support changes the way the code works a bit. For
851 * example the code to suspend the current process when concurrent access
852 * happens is never executed because xip_udelay() will always return with the
853 * same chip state as it was entered with. This is why there is no care for
854 * the presence of add_wait_queue() or schedule() calls from within a couple
855 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
856 * The queueing and scheduling are always happening within xip_udelay().
858 * Similarly, get_chip() and put_chip() just happen to always be executed
859 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
860 * is in array mode, therefore never executing many cases therein and not
861 * causing any problem with XIP.
864 #else
866 #define xip_disable(map, chip, adr)
867 #define xip_enable(map, chip, adr)
868 #define XIP_INVAL_CACHED_RANGE(x...)
870 #define UDELAY(map, chip, adr, usec) \
871 do { \
872 spin_unlock(chip->mutex); \
873 cfi_udelay(usec); \
874 spin_lock(chip->mutex); \
875 } while (0)
877 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
878 do { \
879 spin_unlock(chip->mutex); \
880 INVALIDATE_CACHED_RANGE(map, adr, len); \
881 cfi_udelay(usec); \
882 spin_lock(chip->mutex); \
883 } while (0)
885 #endif
887 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
889 unsigned long cmd_addr;
890 struct cfi_private *cfi = map->fldrv_priv;
891 int ret;
893 adr += chip->start;
895 /* Ensure cmd read/writes are aligned. */
896 cmd_addr = adr & ~(map_bankwidth(map)-1);
898 spin_lock(chip->mutex);
899 ret = get_chip(map, chip, cmd_addr, FL_READY);
900 if (ret) {
901 spin_unlock(chip->mutex);
902 return ret;
905 if (chip->state != FL_POINT && chip->state != FL_READY) {
906 map_write(map, CMD(0xf0), cmd_addr);
907 chip->state = FL_READY;
910 map_copy_from(map, buf, adr, len);
912 put_chip(map, chip, cmd_addr);
914 spin_unlock(chip->mutex);
915 return 0;
919 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
921 struct map_info *map = mtd->priv;
922 struct cfi_private *cfi = map->fldrv_priv;
923 unsigned long ofs;
924 int chipnum;
925 int ret = 0;
927 /* ofs: offset within the first chip that the first read should start */
929 chipnum = (from >> cfi->chipshift);
930 ofs = from - (chipnum << cfi->chipshift);
933 *retlen = 0;
935 while (len) {
936 unsigned long thislen;
938 if (chipnum >= cfi->numchips)
939 break;
941 if ((len + ofs -1) >> cfi->chipshift)
942 thislen = (1<<cfi->chipshift) - ofs;
943 else
944 thislen = len;
946 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
947 if (ret)
948 break;
950 *retlen += thislen;
951 len -= thislen;
952 buf += thislen;
954 ofs = 0;
955 chipnum++;
957 return ret;
961 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
963 DECLARE_WAITQUEUE(wait, current);
964 unsigned long timeo = jiffies + HZ;
965 struct cfi_private *cfi = map->fldrv_priv;
967 retry:
968 spin_lock(chip->mutex);
970 if (chip->state != FL_READY){
971 #if 0
972 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
973 #endif
974 set_current_state(TASK_UNINTERRUPTIBLE);
975 add_wait_queue(&chip->wq, &wait);
977 spin_unlock(chip->mutex);
979 schedule();
980 remove_wait_queue(&chip->wq, &wait);
981 #if 0
982 if(signal_pending(current))
983 return -EINTR;
984 #endif
985 timeo = jiffies + HZ;
987 goto retry;
990 adr += chip->start;
992 chip->state = FL_READY;
994 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
995 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
996 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
998 map_copy_from(map, buf, adr, len);
1000 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1001 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1002 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1003 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1005 wake_up(&chip->wq);
1006 spin_unlock(chip->mutex);
1008 return 0;
1011 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1013 struct map_info *map = mtd->priv;
1014 struct cfi_private *cfi = map->fldrv_priv;
1015 unsigned long ofs;
1016 int chipnum;
1017 int ret = 0;
1020 /* ofs: offset within the first chip that the first read should start */
1022 /* 8 secsi bytes per chip */
1023 chipnum=from>>3;
1024 ofs=from & 7;
1027 *retlen = 0;
1029 while (len) {
1030 unsigned long thislen;
1032 if (chipnum >= cfi->numchips)
1033 break;
1035 if ((len + ofs -1) >> 3)
1036 thislen = (1<<3) - ofs;
1037 else
1038 thislen = len;
1040 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1041 if (ret)
1042 break;
1044 *retlen += thislen;
1045 len -= thislen;
1046 buf += thislen;
1048 ofs = 0;
1049 chipnum++;
1051 return ret;
1055 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1057 struct cfi_private *cfi = map->fldrv_priv;
1058 unsigned long timeo = jiffies + HZ;
1060 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1061 * have a max write time of a few hundreds usec). However, we should
1062 * use the maximum timeout value given by the chip at probe time
1063 * instead. Unfortunately, struct flchip does have a field for
1064 * maximum timeout, only for typical which can be far too short
1065 * depending of the conditions. The ' + 1' is to avoid having a
1066 * timeout of 0 jiffies if HZ is smaller than 1000.
1068 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1069 int ret = 0;
1070 map_word oldd;
1071 int retry_cnt = 0;
1073 adr += chip->start;
1075 spin_lock(chip->mutex);
1076 ret = get_chip(map, chip, adr, FL_WRITING);
1077 if (ret) {
1078 spin_unlock(chip->mutex);
1079 return ret;
1082 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1083 __func__, adr, datum.x[0] );
1086 * Check for a NOP for the case when the datum to write is already
1087 * present - it saves time and works around buggy chips that corrupt
1088 * data at other locations when 0xff is written to a location that
1089 * already contains 0xff.
1091 oldd = map_read(map, adr);
1092 if (map_word_equal(map, oldd, datum)) {
1093 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1094 __func__);
1095 goto op_done;
1098 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1099 ENABLE_VPP(map);
1100 xip_disable(map, chip, adr);
1101 retry:
1102 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1103 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1104 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1105 map_write(map, datum, adr);
1106 chip->state = FL_WRITING;
1108 INVALIDATE_CACHE_UDELAY(map, chip,
1109 adr, map_bankwidth(map),
1110 chip->word_write_time);
1112 /* See comment above for timeout value. */
1113 timeo = jiffies + uWriteTimeout;
1114 for (;;) {
1115 if (chip->state != FL_WRITING) {
1116 /* Someone's suspended the write. Sleep */
1117 DECLARE_WAITQUEUE(wait, current);
1119 set_current_state(TASK_UNINTERRUPTIBLE);
1120 add_wait_queue(&chip->wq, &wait);
1121 spin_unlock(chip->mutex);
1122 schedule();
1123 remove_wait_queue(&chip->wq, &wait);
1124 timeo = jiffies + (HZ / 2); /* FIXME */
1125 spin_lock(chip->mutex);
1126 continue;
1129 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1130 xip_enable(map, chip, adr);
1131 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1132 xip_disable(map, chip, adr);
1133 break;
1136 if (chip_ready(map, adr))
1137 break;
1139 /* Latency issues. Drop the lock, wait a while and retry */
1140 UDELAY(map, chip, adr, 1);
1142 /* Did we succeed? */
1143 if (!chip_good(map, adr, datum)) {
1144 /* reset on all failures. */
1145 map_write( map, CMD(0xF0), chip->start );
1146 /* FIXME - should have reset delay before continuing */
1148 if (++retry_cnt <= MAX_WORD_RETRIES)
1149 goto retry;
1151 ret = -EIO;
1153 xip_enable(map, chip, adr);
1154 op_done:
1155 chip->state = FL_READY;
1156 put_chip(map, chip, adr);
1157 spin_unlock(chip->mutex);
1159 return ret;
1163 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1164 size_t *retlen, const u_char *buf)
1166 struct map_info *map = mtd->priv;
1167 struct cfi_private *cfi = map->fldrv_priv;
1168 int ret = 0;
1169 int chipnum;
1170 unsigned long ofs, chipstart;
1171 DECLARE_WAITQUEUE(wait, current);
1173 *retlen = 0;
1174 if (!len)
1175 return 0;
1177 chipnum = to >> cfi->chipshift;
1178 ofs = to - (chipnum << cfi->chipshift);
1179 chipstart = cfi->chips[chipnum].start;
1181 /* If it's not bus-aligned, do the first byte write */
1182 if (ofs & (map_bankwidth(map)-1)) {
1183 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1184 int i = ofs - bus_ofs;
1185 int n = 0;
1186 map_word tmp_buf;
1188 retry:
1189 spin_lock(cfi->chips[chipnum].mutex);
1191 if (cfi->chips[chipnum].state != FL_READY) {
1192 #if 0
1193 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1194 #endif
1195 set_current_state(TASK_UNINTERRUPTIBLE);
1196 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1198 spin_unlock(cfi->chips[chipnum].mutex);
1200 schedule();
1201 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1202 #if 0
1203 if(signal_pending(current))
1204 return -EINTR;
1205 #endif
1206 goto retry;
1209 /* Load 'tmp_buf' with old contents of flash */
1210 tmp_buf = map_read(map, bus_ofs+chipstart);
1212 spin_unlock(cfi->chips[chipnum].mutex);
1214 /* Number of bytes to copy from buffer */
1215 n = min_t(int, len, map_bankwidth(map)-i);
1217 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1219 ret = do_write_oneword(map, &cfi->chips[chipnum],
1220 bus_ofs, tmp_buf);
1221 if (ret)
1222 return ret;
1224 ofs += n;
1225 buf += n;
1226 (*retlen) += n;
1227 len -= n;
1229 if (ofs >> cfi->chipshift) {
1230 chipnum ++;
1231 ofs = 0;
1232 if (chipnum == cfi->numchips)
1233 return 0;
1237 /* We are now aligned, write as much as possible */
1238 while(len >= map_bankwidth(map)) {
1239 map_word datum;
1241 datum = map_word_load(map, buf);
1243 ret = do_write_oneword(map, &cfi->chips[chipnum],
1244 ofs, datum);
1245 if (ret)
1246 return ret;
1248 ofs += map_bankwidth(map);
1249 buf += map_bankwidth(map);
1250 (*retlen) += map_bankwidth(map);
1251 len -= map_bankwidth(map);
1253 if (ofs >> cfi->chipshift) {
1254 chipnum ++;
1255 ofs = 0;
1256 if (chipnum == cfi->numchips)
1257 return 0;
1258 chipstart = cfi->chips[chipnum].start;
1262 /* Write the trailing bytes if any */
1263 if (len & (map_bankwidth(map)-1)) {
1264 map_word tmp_buf;
1266 retry1:
1267 spin_lock(cfi->chips[chipnum].mutex);
1269 if (cfi->chips[chipnum].state != FL_READY) {
1270 #if 0
1271 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1272 #endif
1273 set_current_state(TASK_UNINTERRUPTIBLE);
1274 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1276 spin_unlock(cfi->chips[chipnum].mutex);
1278 schedule();
1279 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1280 #if 0
1281 if(signal_pending(current))
1282 return -EINTR;
1283 #endif
1284 goto retry1;
1287 tmp_buf = map_read(map, ofs + chipstart);
1289 spin_unlock(cfi->chips[chipnum].mutex);
1291 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1293 ret = do_write_oneword(map, &cfi->chips[chipnum],
1294 ofs, tmp_buf);
1295 if (ret)
1296 return ret;
1298 (*retlen) += len;
1301 return 0;
1306 * FIXME: interleaved mode not tested, and probably not supported!
1308 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1309 unsigned long adr, const u_char *buf,
1310 int len)
1312 struct cfi_private *cfi = map->fldrv_priv;
1313 unsigned long timeo = jiffies + HZ;
1314 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1315 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1316 int ret = -EIO;
1317 unsigned long cmd_adr;
1318 int z, words;
1319 map_word datum;
1321 adr += chip->start;
1322 cmd_adr = adr;
1324 spin_lock(chip->mutex);
1325 ret = get_chip(map, chip, adr, FL_WRITING);
1326 if (ret) {
1327 spin_unlock(chip->mutex);
1328 return ret;
1331 datum = map_word_load(map, buf);
1333 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1334 __func__, adr, datum.x[0] );
1336 XIP_INVAL_CACHED_RANGE(map, adr, len);
1337 ENABLE_VPP(map);
1338 xip_disable(map, chip, cmd_adr);
1340 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1341 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1342 //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1344 /* Write Buffer Load */
1345 map_write(map, CMD(0x25), cmd_adr);
1347 chip->state = FL_WRITING_TO_BUFFER;
1349 /* Write length of data to come */
1350 words = len / map_bankwidth(map);
1351 map_write(map, CMD(words - 1), cmd_adr);
1352 /* Write data */
1353 z = 0;
1354 while(z < words * map_bankwidth(map)) {
1355 datum = map_word_load(map, buf);
1356 map_write(map, datum, adr + z);
1358 z += map_bankwidth(map);
1359 buf += map_bankwidth(map);
1361 z -= map_bankwidth(map);
1363 adr += z;
1365 /* Write Buffer Program Confirm: GO GO GO */
1366 map_write(map, CMD(0x29), cmd_adr);
1367 chip->state = FL_WRITING;
1369 INVALIDATE_CACHE_UDELAY(map, chip,
1370 adr, map_bankwidth(map),
1371 chip->word_write_time);
1373 timeo = jiffies + uWriteTimeout;
1375 for (;;) {
1376 if (chip->state != FL_WRITING) {
1377 /* Someone's suspended the write. Sleep */
1378 DECLARE_WAITQUEUE(wait, current);
1380 set_current_state(TASK_UNINTERRUPTIBLE);
1381 add_wait_queue(&chip->wq, &wait);
1382 spin_unlock(chip->mutex);
1383 schedule();
1384 remove_wait_queue(&chip->wq, &wait);
1385 timeo = jiffies + (HZ / 2); /* FIXME */
1386 spin_lock(chip->mutex);
1387 continue;
1390 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1391 break;
1393 if (chip_ready(map, adr)) {
1394 xip_enable(map, chip, adr);
1395 goto op_done;
1398 /* Latency issues. Drop the lock, wait a while and retry */
1399 UDELAY(map, chip, adr, 1);
1402 /* reset on all failures. */
1403 map_write( map, CMD(0xF0), chip->start );
1404 xip_enable(map, chip, adr);
1405 /* FIXME - should have reset delay before continuing */
1407 printk(KERN_WARNING "MTD %s(): software timeout\n",
1408 __func__ );
1410 ret = -EIO;
1411 op_done:
1412 chip->state = FL_READY;
1413 put_chip(map, chip, adr);
1414 spin_unlock(chip->mutex);
1416 return ret;
1420 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1421 size_t *retlen, const u_char *buf)
1423 struct map_info *map = mtd->priv;
1424 struct cfi_private *cfi = map->fldrv_priv;
1425 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1426 int ret = 0;
1427 int chipnum;
1428 unsigned long ofs;
1430 *retlen = 0;
1431 if (!len)
1432 return 0;
1434 chipnum = to >> cfi->chipshift;
1435 ofs = to - (chipnum << cfi->chipshift);
1437 /* If it's not bus-aligned, do the first word write */
1438 if (ofs & (map_bankwidth(map)-1)) {
1439 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1440 if (local_len > len)
1441 local_len = len;
1442 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1443 local_len, retlen, buf);
1444 if (ret)
1445 return ret;
1446 ofs += local_len;
1447 buf += local_len;
1448 len -= local_len;
1450 if (ofs >> cfi->chipshift) {
1451 chipnum ++;
1452 ofs = 0;
1453 if (chipnum == cfi->numchips)
1454 return 0;
1458 /* Write buffer is worth it only if more than one word to write... */
1459 while (len >= map_bankwidth(map) * 2) {
1460 /* We must not cross write block boundaries */
1461 int size = wbufsize - (ofs & (wbufsize-1));
1463 if (size > len)
1464 size = len;
1465 if (size % map_bankwidth(map))
1466 size -= size % map_bankwidth(map);
1468 ret = do_write_buffer(map, &cfi->chips[chipnum],
1469 ofs, buf, size);
1470 if (ret)
1471 return ret;
1473 ofs += size;
1474 buf += size;
1475 (*retlen) += size;
1476 len -= size;
1478 if (ofs >> cfi->chipshift) {
1479 chipnum ++;
1480 ofs = 0;
1481 if (chipnum == cfi->numchips)
1482 return 0;
1486 if (len) {
1487 size_t retlen_dregs = 0;
1489 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1490 len, &retlen_dregs, buf);
1492 *retlen += retlen_dregs;
1493 return ret;
1496 return 0;
1501 * Handle devices with one erase region, that only implement
1502 * the chip erase command.
1504 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1506 struct cfi_private *cfi = map->fldrv_priv;
1507 unsigned long timeo = jiffies + HZ;
1508 unsigned long int adr;
1509 DECLARE_WAITQUEUE(wait, current);
1510 int ret = 0;
1512 adr = cfi->addr_unlock1;
1514 spin_lock(chip->mutex);
1515 ret = get_chip(map, chip, adr, FL_WRITING);
1516 if (ret) {
1517 spin_unlock(chip->mutex);
1518 return ret;
1521 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1522 __func__, chip->start );
1524 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1525 ENABLE_VPP(map);
1526 xip_disable(map, chip, adr);
1528 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1529 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1530 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1531 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1532 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1533 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1535 chip->state = FL_ERASING;
1536 chip->erase_suspended = 0;
1537 chip->in_progress_block_addr = adr;
1539 INVALIDATE_CACHE_UDELAY(map, chip,
1540 adr, map->size,
1541 chip->erase_time*500);
1543 timeo = jiffies + (HZ*20);
1545 for (;;) {
1546 if (chip->state != FL_ERASING) {
1547 /* Someone's suspended the erase. Sleep */
1548 set_current_state(TASK_UNINTERRUPTIBLE);
1549 add_wait_queue(&chip->wq, &wait);
1550 spin_unlock(chip->mutex);
1551 schedule();
1552 remove_wait_queue(&chip->wq, &wait);
1553 spin_lock(chip->mutex);
1554 continue;
1556 if (chip->erase_suspended) {
1557 /* This erase was suspended and resumed.
1558 Adjust the timeout */
1559 timeo = jiffies + (HZ*20); /* FIXME */
1560 chip->erase_suspended = 0;
1563 if (chip_ready(map, adr))
1564 break;
1566 if (time_after(jiffies, timeo)) {
1567 printk(KERN_WARNING "MTD %s(): software timeout\n",
1568 __func__ );
1569 break;
1572 /* Latency issues. Drop the lock, wait a while and retry */
1573 UDELAY(map, chip, adr, 1000000/HZ);
1575 /* Did we succeed? */
1576 if (!chip_good(map, adr, map_word_ff(map))) {
1577 /* reset on all failures. */
1578 map_write( map, CMD(0xF0), chip->start );
1579 /* FIXME - should have reset delay before continuing */
1581 ret = -EIO;
1584 chip->state = FL_READY;
1585 xip_enable(map, chip, adr);
1586 put_chip(map, chip, adr);
1587 spin_unlock(chip->mutex);
1589 return ret;
1593 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1595 struct cfi_private *cfi = map->fldrv_priv;
1596 unsigned long timeo = jiffies + HZ;
1597 DECLARE_WAITQUEUE(wait, current);
1598 int ret = 0;
1600 adr += chip->start;
1602 spin_lock(chip->mutex);
1603 ret = get_chip(map, chip, adr, FL_ERASING);
1604 if (ret) {
1605 spin_unlock(chip->mutex);
1606 return ret;
1609 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1610 __func__, adr );
1612 XIP_INVAL_CACHED_RANGE(map, adr, len);
1613 ENABLE_VPP(map);
1614 xip_disable(map, chip, adr);
1616 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1617 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1618 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1619 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1620 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1621 map_write(map, CMD(0x30), adr);
1623 chip->state = FL_ERASING;
1624 chip->erase_suspended = 0;
1625 chip->in_progress_block_addr = adr;
1627 INVALIDATE_CACHE_UDELAY(map, chip,
1628 adr, len,
1629 chip->erase_time*500);
1631 timeo = jiffies + (HZ*20);
1633 for (;;) {
1634 if (chip->state != FL_ERASING) {
1635 /* Someone's suspended the erase. Sleep */
1636 set_current_state(TASK_UNINTERRUPTIBLE);
1637 add_wait_queue(&chip->wq, &wait);
1638 spin_unlock(chip->mutex);
1639 schedule();
1640 remove_wait_queue(&chip->wq, &wait);
1641 spin_lock(chip->mutex);
1642 continue;
1644 if (chip->erase_suspended) {
1645 /* This erase was suspended and resumed.
1646 Adjust the timeout */
1647 timeo = jiffies + (HZ*20); /* FIXME */
1648 chip->erase_suspended = 0;
1651 if (chip_ready(map, adr)) {
1652 xip_enable(map, chip, adr);
1653 break;
1656 if (time_after(jiffies, timeo)) {
1657 xip_enable(map, chip, adr);
1658 printk(KERN_WARNING "MTD %s(): software timeout\n",
1659 __func__ );
1660 break;
1663 /* Latency issues. Drop the lock, wait a while and retry */
1664 UDELAY(map, chip, adr, 1000000/HZ);
1666 /* Did we succeed? */
1667 if (!chip_good(map, adr, map_word_ff(map))) {
1668 /* reset on all failures. */
1669 map_write( map, CMD(0xF0), chip->start );
1670 /* FIXME - should have reset delay before continuing */
1672 ret = -EIO;
1675 chip->state = FL_READY;
1676 put_chip(map, chip, adr);
1677 spin_unlock(chip->mutex);
1678 return ret;
1682 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1684 unsigned long ofs, len;
1685 int ret;
1687 ofs = instr->addr;
1688 len = instr->len;
1690 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1691 if (ret)
1692 return ret;
1694 instr->state = MTD_ERASE_DONE;
1695 mtd_erase_callback(instr);
1697 return 0;
1701 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1703 struct map_info *map = mtd->priv;
1704 struct cfi_private *cfi = map->fldrv_priv;
1705 int ret = 0;
1707 if (instr->addr != 0)
1708 return -EINVAL;
1710 if (instr->len != mtd->size)
1711 return -EINVAL;
1713 ret = do_erase_chip(map, &cfi->chips[0]);
1714 if (ret)
1715 return ret;
1717 instr->state = MTD_ERASE_DONE;
1718 mtd_erase_callback(instr);
1720 return 0;
1723 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1724 unsigned long adr, int len, void *thunk)
1726 struct cfi_private *cfi = map->fldrv_priv;
1727 int ret;
1729 spin_lock(chip->mutex);
1730 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1731 if (ret)
1732 goto out_unlock;
1733 chip->state = FL_LOCKING;
1735 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1736 __func__, adr, len);
1738 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1739 cfi->device_type, NULL);
1740 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1741 cfi->device_type, NULL);
1742 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1743 cfi->device_type, NULL);
1744 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1745 cfi->device_type, NULL);
1746 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1747 cfi->device_type, NULL);
1748 map_write(map, CMD(0x40), chip->start + adr);
1750 chip->state = FL_READY;
1751 put_chip(map, chip, adr + chip->start);
1752 ret = 0;
1754 out_unlock:
1755 spin_unlock(chip->mutex);
1756 return ret;
1759 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1760 unsigned long adr, int len, void *thunk)
1762 struct cfi_private *cfi = map->fldrv_priv;
1763 int ret;
1765 spin_lock(chip->mutex);
1766 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1767 if (ret)
1768 goto out_unlock;
1769 chip->state = FL_UNLOCKING;
1771 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1772 __func__, adr, len);
1774 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1775 cfi->device_type, NULL);
1776 map_write(map, CMD(0x70), adr);
1778 chip->state = FL_READY;
1779 put_chip(map, chip, adr + chip->start);
1780 ret = 0;
1782 out_unlock:
1783 spin_unlock(chip->mutex);
1784 return ret;
1787 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1789 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1792 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1794 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1798 static void cfi_amdstd_sync (struct mtd_info *mtd)
1800 struct map_info *map = mtd->priv;
1801 struct cfi_private *cfi = map->fldrv_priv;
1802 int i;
1803 struct flchip *chip;
1804 int ret = 0;
1805 DECLARE_WAITQUEUE(wait, current);
1807 for (i=0; !ret && i<cfi->numchips; i++) {
1808 chip = &cfi->chips[i];
1810 retry:
1811 spin_lock(chip->mutex);
1813 switch(chip->state) {
1814 case FL_READY:
1815 case FL_STATUS:
1816 case FL_CFI_QUERY:
1817 case FL_JEDEC_QUERY:
1818 chip->oldstate = chip->state;
1819 chip->state = FL_SYNCING;
1820 /* No need to wake_up() on this state change -
1821 * as the whole point is that nobody can do anything
1822 * with the chip now anyway.
1824 case FL_SYNCING:
1825 spin_unlock(chip->mutex);
1826 break;
1828 default:
1829 /* Not an idle state */
1830 set_current_state(TASK_UNINTERRUPTIBLE);
1831 add_wait_queue(&chip->wq, &wait);
1833 spin_unlock(chip->mutex);
1835 schedule();
1837 remove_wait_queue(&chip->wq, &wait);
1839 goto retry;
1843 /* Unlock the chips again */
1845 for (i--; i >=0; i--) {
1846 chip = &cfi->chips[i];
1848 spin_lock(chip->mutex);
1850 if (chip->state == FL_SYNCING) {
1851 chip->state = chip->oldstate;
1852 wake_up(&chip->wq);
1854 spin_unlock(chip->mutex);
1859 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1861 struct map_info *map = mtd->priv;
1862 struct cfi_private *cfi = map->fldrv_priv;
1863 int i;
1864 struct flchip *chip;
1865 int ret = 0;
1867 for (i=0; !ret && i<cfi->numchips; i++) {
1868 chip = &cfi->chips[i];
1870 spin_lock(chip->mutex);
1872 switch(chip->state) {
1873 case FL_READY:
1874 case FL_STATUS:
1875 case FL_CFI_QUERY:
1876 case FL_JEDEC_QUERY:
1877 chip->oldstate = chip->state;
1878 chip->state = FL_PM_SUSPENDED;
1879 /* No need to wake_up() on this state change -
1880 * as the whole point is that nobody can do anything
1881 * with the chip now anyway.
1883 case FL_PM_SUSPENDED:
1884 break;
1886 default:
1887 ret = -EAGAIN;
1888 break;
1890 spin_unlock(chip->mutex);
1893 /* Unlock the chips again */
1895 if (ret) {
1896 for (i--; i >=0; i--) {
1897 chip = &cfi->chips[i];
1899 spin_lock(chip->mutex);
1901 if (chip->state == FL_PM_SUSPENDED) {
1902 chip->state = chip->oldstate;
1903 wake_up(&chip->wq);
1905 spin_unlock(chip->mutex);
1909 return ret;
1913 static void cfi_amdstd_resume(struct mtd_info *mtd)
1915 struct map_info *map = mtd->priv;
1916 struct cfi_private *cfi = map->fldrv_priv;
1917 int i;
1918 struct flchip *chip;
1920 for (i=0; i<cfi->numchips; i++) {
1922 chip = &cfi->chips[i];
1924 spin_lock(chip->mutex);
1926 if (chip->state == FL_PM_SUSPENDED) {
1927 chip->state = FL_READY;
1928 map_write(map, CMD(0xF0), chip->start);
1929 wake_up(&chip->wq);
1931 else
1932 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1934 spin_unlock(chip->mutex);
1938 static void cfi_amdstd_destroy(struct mtd_info *mtd)
1940 struct map_info *map = mtd->priv;
1941 struct cfi_private *cfi = map->fldrv_priv;
1943 kfree(cfi->cmdset_priv);
1944 kfree(cfi->cfiq);
1945 kfree(cfi);
1946 kfree(mtd->eraseregions);
1949 MODULE_LICENSE("GPL");
1950 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1951 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");