ext4: Fix discard of inode prealloc space with delayed allocation.
[linux-2.6/mini2440.git] / drivers / scsi / scsi_lib.c
blobb82ffd90632e256ca0ce5c7d478dae715f3e8318
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
66 #undef SP
68 struct kmem_cache *scsi_sdb_cache;
70 static void scsi_run_queue(struct request_queue *q);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
82 * Returns: Nothing.
84 static void scsi_unprep_request(struct request *req)
86 struct scsi_cmnd *cmd = req->special;
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
91 scsi_put_command(cmd);
94 /**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason: The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
100 * This is a private queue insertion. The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion. This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
111 struct request_queue *q = device->request_queue;
112 unsigned long flags;
114 SCSI_LOG_MLQUEUE(1,
115 printk("Inserting command %p into mlqueue\n", cmd));
118 * Set the appropriate busy bit for the device/host.
120 * If the host/device isn't busy, assume that something actually
121 * completed, and that we should be able to queue a command now.
123 * Note that the prior mid-layer assumption that any host could
124 * always queue at least one command is now broken. The mid-layer
125 * will implement a user specifiable stall (see
126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 * if a command is requeued with no other commands outstanding
128 * either for the device or for the host.
130 switch (reason) {
131 case SCSI_MLQUEUE_HOST_BUSY:
132 host->host_blocked = host->max_host_blocked;
133 break;
134 case SCSI_MLQUEUE_DEVICE_BUSY:
135 device->device_blocked = device->max_device_blocked;
136 break;
137 case SCSI_MLQUEUE_TARGET_BUSY:
138 starget->target_blocked = starget->max_target_blocked;
139 break;
143 * Decrement the counters, since these commands are no longer
144 * active on the host/device.
146 if (unbusy)
147 scsi_device_unbusy(device);
150 * Requeue this command. It will go before all other commands
151 * that are already in the queue.
153 * NOTE: there is magic here about the way the queue is plugged if
154 * we have no outstanding commands.
156 * Although we *don't* plug the queue, we call the request
157 * function. The SCSI request function detects the blocked condition
158 * and plugs the queue appropriately.
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
164 scsi_run_queue(q);
166 return 0;
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
179 * Returns: Nothing.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
190 return __scsi_queue_insert(cmd, reason, 1);
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
220 buffer, bufflen, __GFP_WAIT))
221 goto out;
223 req->cmd_len = COMMAND_SIZE(cmd[0]);
224 memcpy(req->cmd, cmd, req->cmd_len);
225 req->sense = sense;
226 req->sense_len = 0;
227 req->retries = retries;
228 req->timeout = timeout;
229 req->cmd_type = REQ_TYPE_BLOCK_PC;
230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req->q, NULL, req, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
244 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
246 if (resid)
247 *resid = req->data_len;
248 ret = req->errors;
249 out:
250 blk_put_request(req);
252 return ret;
254 EXPORT_SYMBOL(scsi_execute);
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid)
262 char *sense = NULL;
263 int result;
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, 0, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 kfree(sense);
276 return result;
278 EXPORT_SYMBOL(scsi_execute_req);
280 struct scsi_io_context {
281 void *data;
282 void (*done)(void *data, char *sense, int result, int resid);
283 char sense[SCSI_SENSE_BUFFERSIZE];
286 static struct kmem_cache *scsi_io_context_cache;
288 static void scsi_end_async(struct request *req, int uptodate)
290 struct scsi_io_context *sioc = req->end_io_data;
292 if (sioc->done)
293 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
295 kmem_cache_free(scsi_io_context_cache, sioc);
296 __blk_put_request(req->q, req);
299 static int scsi_merge_bio(struct request *rq, struct bio *bio)
301 struct request_queue *q = rq->q;
303 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
304 if (rq_data_dir(rq) == WRITE)
305 bio->bi_rw |= (1 << BIO_RW);
306 blk_queue_bounce(q, &bio);
308 return blk_rq_append_bio(q, rq, bio);
311 static void scsi_bi_endio(struct bio *bio, int error)
313 bio_put(bio);
317 * scsi_req_map_sg - map a scatterlist into a request
318 * @rq: request to fill
319 * @sgl: scatterlist
320 * @nsegs: number of elements
321 * @bufflen: len of buffer
322 * @gfp: memory allocation flags
324 * scsi_req_map_sg maps a scatterlist into a request so that the
325 * request can be sent to the block layer. We do not trust the scatterlist
326 * sent to use, as some ULDs use that struct to only organize the pages.
328 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
329 int nsegs, unsigned bufflen, gfp_t gfp)
331 struct request_queue *q = rq->q;
332 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
333 unsigned int data_len = bufflen, len, bytes, off;
334 struct scatterlist *sg;
335 struct page *page;
336 struct bio *bio = NULL;
337 int i, err, nr_vecs = 0;
339 for_each_sg(sgl, sg, nsegs, i) {
340 page = sg_page(sg);
341 off = sg->offset;
342 len = sg->length;
344 while (len > 0 && data_len > 0) {
346 * sg sends a scatterlist that is larger than
347 * the data_len it wants transferred for certain
348 * IO sizes
350 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
351 bytes = min(bytes, data_len);
353 if (!bio) {
354 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
355 nr_pages -= nr_vecs;
357 bio = bio_alloc(gfp, nr_vecs);
358 if (!bio) {
359 err = -ENOMEM;
360 goto free_bios;
362 bio->bi_end_io = scsi_bi_endio;
365 if (bio_add_pc_page(q, bio, page, bytes, off) !=
366 bytes) {
367 bio_put(bio);
368 err = -EINVAL;
369 goto free_bios;
372 if (bio->bi_vcnt >= nr_vecs) {
373 err = scsi_merge_bio(rq, bio);
374 if (err) {
375 bio_endio(bio, 0);
376 goto free_bios;
378 bio = NULL;
381 page++;
382 len -= bytes;
383 data_len -=bytes;
384 off = 0;
388 rq->buffer = rq->data = NULL;
389 rq->data_len = bufflen;
390 return 0;
392 free_bios:
393 while ((bio = rq->bio) != NULL) {
394 rq->bio = bio->bi_next;
396 * call endio instead of bio_put incase it was bounced
398 bio_endio(bio, 0);
401 return err;
405 * scsi_execute_async - insert request
406 * @sdev: scsi device
407 * @cmd: scsi command
408 * @cmd_len: length of scsi cdb
409 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
410 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
411 * @bufflen: len of buffer
412 * @use_sg: if buffer is a scatterlist this is the number of elements
413 * @timeout: request timeout in seconds
414 * @retries: number of times to retry request
415 * @privdata: data passed to done()
416 * @done: callback function when done
417 * @gfp: memory allocation flags
419 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
420 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
421 int use_sg, int timeout, int retries, void *privdata,
422 void (*done)(void *, char *, int, int), gfp_t gfp)
424 struct request *req;
425 struct scsi_io_context *sioc;
426 int err = 0;
427 int write = (data_direction == DMA_TO_DEVICE);
429 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
430 if (!sioc)
431 return DRIVER_ERROR << 24;
433 req = blk_get_request(sdev->request_queue, write, gfp);
434 if (!req)
435 goto free_sense;
436 req->cmd_type = REQ_TYPE_BLOCK_PC;
437 req->cmd_flags |= REQ_QUIET;
439 if (use_sg)
440 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
441 else if (bufflen)
442 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
444 if (err)
445 goto free_req;
447 req->cmd_len = cmd_len;
448 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
449 memcpy(req->cmd, cmd, req->cmd_len);
450 req->sense = sioc->sense;
451 req->sense_len = 0;
452 req->timeout = timeout;
453 req->retries = retries;
454 req->end_io_data = sioc;
456 sioc->data = privdata;
457 sioc->done = done;
459 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
460 return 0;
462 free_req:
463 blk_put_request(req);
464 free_sense:
465 kmem_cache_free(scsi_io_context_cache, sioc);
466 return DRIVER_ERROR << 24;
468 EXPORT_SYMBOL_GPL(scsi_execute_async);
471 * Function: scsi_init_cmd_errh()
473 * Purpose: Initialize cmd fields related to error handling.
475 * Arguments: cmd - command that is ready to be queued.
477 * Notes: This function has the job of initializing a number of
478 * fields related to error handling. Typically this will
479 * be called once for each command, as required.
481 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
483 cmd->serial_number = 0;
484 scsi_set_resid(cmd, 0);
485 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
486 if (cmd->cmd_len == 0)
487 cmd->cmd_len = scsi_command_size(cmd->cmnd);
490 void scsi_device_unbusy(struct scsi_device *sdev)
492 struct Scsi_Host *shost = sdev->host;
493 struct scsi_target *starget = scsi_target(sdev);
494 unsigned long flags;
496 spin_lock_irqsave(shost->host_lock, flags);
497 shost->host_busy--;
498 starget->target_busy--;
499 if (unlikely(scsi_host_in_recovery(shost) &&
500 (shost->host_failed || shost->host_eh_scheduled)))
501 scsi_eh_wakeup(shost);
502 spin_unlock(shost->host_lock);
503 spin_lock(sdev->request_queue->queue_lock);
504 sdev->device_busy--;
505 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
509 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
510 * and call blk_run_queue for all the scsi_devices on the target -
511 * including current_sdev first.
513 * Called with *no* scsi locks held.
515 static void scsi_single_lun_run(struct scsi_device *current_sdev)
517 struct Scsi_Host *shost = current_sdev->host;
518 struct scsi_device *sdev, *tmp;
519 struct scsi_target *starget = scsi_target(current_sdev);
520 unsigned long flags;
522 spin_lock_irqsave(shost->host_lock, flags);
523 starget->starget_sdev_user = NULL;
524 spin_unlock_irqrestore(shost->host_lock, flags);
527 * Call blk_run_queue for all LUNs on the target, starting with
528 * current_sdev. We race with others (to set starget_sdev_user),
529 * but in most cases, we will be first. Ideally, each LU on the
530 * target would get some limited time or requests on the target.
532 blk_run_queue(current_sdev->request_queue);
534 spin_lock_irqsave(shost->host_lock, flags);
535 if (starget->starget_sdev_user)
536 goto out;
537 list_for_each_entry_safe(sdev, tmp, &starget->devices,
538 same_target_siblings) {
539 if (sdev == current_sdev)
540 continue;
541 if (scsi_device_get(sdev))
542 continue;
544 spin_unlock_irqrestore(shost->host_lock, flags);
545 blk_run_queue(sdev->request_queue);
546 spin_lock_irqsave(shost->host_lock, flags);
548 scsi_device_put(sdev);
550 out:
551 spin_unlock_irqrestore(shost->host_lock, flags);
554 static inline int scsi_device_is_busy(struct scsi_device *sdev)
556 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
557 return 1;
559 return 0;
562 static inline int scsi_target_is_busy(struct scsi_target *starget)
564 return ((starget->can_queue > 0 &&
565 starget->target_busy >= starget->can_queue) ||
566 starget->target_blocked);
569 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
571 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
572 shost->host_blocked || shost->host_self_blocked)
573 return 1;
575 return 0;
579 * Function: scsi_run_queue()
581 * Purpose: Select a proper request queue to serve next
583 * Arguments: q - last request's queue
585 * Returns: Nothing
587 * Notes: The previous command was completely finished, start
588 * a new one if possible.
590 static void scsi_run_queue(struct request_queue *q)
592 struct scsi_device *sdev = q->queuedata;
593 struct Scsi_Host *shost = sdev->host;
594 LIST_HEAD(starved_list);
595 unsigned long flags;
597 if (scsi_target(sdev)->single_lun)
598 scsi_single_lun_run(sdev);
600 spin_lock_irqsave(shost->host_lock, flags);
601 list_splice_init(&shost->starved_list, &starved_list);
603 while (!list_empty(&starved_list)) {
604 int flagset;
607 * As long as shost is accepting commands and we have
608 * starved queues, call blk_run_queue. scsi_request_fn
609 * drops the queue_lock and can add us back to the
610 * starved_list.
612 * host_lock protects the starved_list and starved_entry.
613 * scsi_request_fn must get the host_lock before checking
614 * or modifying starved_list or starved_entry.
616 if (scsi_host_is_busy(shost))
617 break;
619 sdev = list_entry(starved_list.next,
620 struct scsi_device, starved_entry);
621 list_del_init(&sdev->starved_entry);
622 if (scsi_target_is_busy(scsi_target(sdev))) {
623 list_move_tail(&sdev->starved_entry,
624 &shost->starved_list);
625 continue;
628 spin_unlock(shost->host_lock);
630 spin_lock(sdev->request_queue->queue_lock);
631 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
632 !test_bit(QUEUE_FLAG_REENTER,
633 &sdev->request_queue->queue_flags);
634 if (flagset)
635 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
636 __blk_run_queue(sdev->request_queue);
637 if (flagset)
638 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
639 spin_unlock(sdev->request_queue->queue_lock);
641 spin_lock(shost->host_lock);
643 /* put any unprocessed entries back */
644 list_splice(&starved_list, &shost->starved_list);
645 spin_unlock_irqrestore(shost->host_lock, flags);
647 blk_run_queue(q);
651 * Function: scsi_requeue_command()
653 * Purpose: Handle post-processing of completed commands.
655 * Arguments: q - queue to operate on
656 * cmd - command that may need to be requeued.
658 * Returns: Nothing
660 * Notes: After command completion, there may be blocks left
661 * over which weren't finished by the previous command
662 * this can be for a number of reasons - the main one is
663 * I/O errors in the middle of the request, in which case
664 * we need to request the blocks that come after the bad
665 * sector.
666 * Notes: Upon return, cmd is a stale pointer.
668 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
670 struct request *req = cmd->request;
671 unsigned long flags;
673 spin_lock_irqsave(q->queue_lock, flags);
674 scsi_unprep_request(req);
675 blk_requeue_request(q, req);
676 spin_unlock_irqrestore(q->queue_lock, flags);
678 scsi_run_queue(q);
681 void scsi_next_command(struct scsi_cmnd *cmd)
683 struct scsi_device *sdev = cmd->device;
684 struct request_queue *q = sdev->request_queue;
686 /* need to hold a reference on the device before we let go of the cmd */
687 get_device(&sdev->sdev_gendev);
689 scsi_put_command(cmd);
690 scsi_run_queue(q);
692 /* ok to remove device now */
693 put_device(&sdev->sdev_gendev);
696 void scsi_run_host_queues(struct Scsi_Host *shost)
698 struct scsi_device *sdev;
700 shost_for_each_device(sdev, shost)
701 scsi_run_queue(sdev->request_queue);
704 static void __scsi_release_buffers(struct scsi_cmnd *, int);
707 * Function: scsi_end_request()
709 * Purpose: Post-processing of completed commands (usually invoked at end
710 * of upper level post-processing and scsi_io_completion).
712 * Arguments: cmd - command that is complete.
713 * error - 0 if I/O indicates success, < 0 for I/O error.
714 * bytes - number of bytes of completed I/O
715 * requeue - indicates whether we should requeue leftovers.
717 * Lock status: Assumed that lock is not held upon entry.
719 * Returns: cmd if requeue required, NULL otherwise.
721 * Notes: This is called for block device requests in order to
722 * mark some number of sectors as complete.
724 * We are guaranteeing that the request queue will be goosed
725 * at some point during this call.
726 * Notes: If cmd was requeued, upon return it will be a stale pointer.
728 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
729 int bytes, int requeue)
731 struct request_queue *q = cmd->device->request_queue;
732 struct request *req = cmd->request;
735 * If there are blocks left over at the end, set up the command
736 * to queue the remainder of them.
738 if (blk_end_request(req, error, bytes)) {
739 int leftover = (req->hard_nr_sectors << 9);
741 if (blk_pc_request(req))
742 leftover = req->data_len;
744 /* kill remainder if no retrys */
745 if (error && scsi_noretry_cmd(cmd))
746 blk_end_request(req, error, leftover);
747 else {
748 if (requeue) {
750 * Bleah. Leftovers again. Stick the
751 * leftovers in the front of the
752 * queue, and goose the queue again.
754 scsi_release_buffers(cmd);
755 scsi_requeue_command(q, cmd);
756 cmd = NULL;
758 return cmd;
763 * This will goose the queue request function at the end, so we don't
764 * need to worry about launching another command.
766 __scsi_release_buffers(cmd, 0);
767 scsi_next_command(cmd);
768 return NULL;
771 static inline unsigned int scsi_sgtable_index(unsigned short nents)
773 unsigned int index;
775 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
777 if (nents <= 8)
778 index = 0;
779 else
780 index = get_count_order(nents) - 3;
782 return index;
785 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
787 struct scsi_host_sg_pool *sgp;
789 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
790 mempool_free(sgl, sgp->pool);
793 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
795 struct scsi_host_sg_pool *sgp;
797 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
798 return mempool_alloc(sgp->pool, gfp_mask);
801 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
802 gfp_t gfp_mask)
804 int ret;
806 BUG_ON(!nents);
808 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
809 gfp_mask, scsi_sg_alloc);
810 if (unlikely(ret))
811 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
812 scsi_sg_free);
814 return ret;
817 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
819 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
822 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
825 if (cmd->sdb.table.nents)
826 scsi_free_sgtable(&cmd->sdb);
828 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
830 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
831 struct scsi_data_buffer *bidi_sdb =
832 cmd->request->next_rq->special;
833 scsi_free_sgtable(bidi_sdb);
834 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
835 cmd->request->next_rq->special = NULL;
838 if (scsi_prot_sg_count(cmd))
839 scsi_free_sgtable(cmd->prot_sdb);
843 * Function: scsi_release_buffers()
845 * Purpose: Completion processing for block device I/O requests.
847 * Arguments: cmd - command that we are bailing.
849 * Lock status: Assumed that no lock is held upon entry.
851 * Returns: Nothing
853 * Notes: In the event that an upper level driver rejects a
854 * command, we must release resources allocated during
855 * the __init_io() function. Primarily this would involve
856 * the scatter-gather table, and potentially any bounce
857 * buffers.
859 void scsi_release_buffers(struct scsi_cmnd *cmd)
861 __scsi_release_buffers(cmd, 1);
863 EXPORT_SYMBOL(scsi_release_buffers);
866 * Bidi commands Must be complete as a whole, both sides at once.
867 * If part of the bytes were written and lld returned
868 * scsi_in()->resid and/or scsi_out()->resid this information will be left
869 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
870 * decide what to do with this information.
872 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
874 struct request *req = cmd->request;
875 unsigned int dlen = req->data_len;
876 unsigned int next_dlen = req->next_rq->data_len;
878 req->data_len = scsi_out(cmd)->resid;
879 req->next_rq->data_len = scsi_in(cmd)->resid;
881 /* The req and req->next_rq have not been completed */
882 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
884 scsi_release_buffers(cmd);
887 * This will goose the queue request function at the end, so we don't
888 * need to worry about launching another command.
890 scsi_next_command(cmd);
894 * Function: scsi_io_completion()
896 * Purpose: Completion processing for block device I/O requests.
898 * Arguments: cmd - command that is finished.
900 * Lock status: Assumed that no lock is held upon entry.
902 * Returns: Nothing
904 * Notes: This function is matched in terms of capabilities to
905 * the function that created the scatter-gather list.
906 * In other words, if there are no bounce buffers
907 * (the normal case for most drivers), we don't need
908 * the logic to deal with cleaning up afterwards.
910 * We must call scsi_end_request(). This will finish off
911 * the specified number of sectors. If we are done, the
912 * command block will be released and the queue function
913 * will be goosed. If we are not done then we have to
914 * figure out what to do next:
916 * a) We can call scsi_requeue_command(). The request
917 * will be unprepared and put back on the queue. Then
918 * a new command will be created for it. This should
919 * be used if we made forward progress, or if we want
920 * to switch from READ(10) to READ(6) for example.
922 * b) We can call scsi_queue_insert(). The request will
923 * be put back on the queue and retried using the same
924 * command as before, possibly after a delay.
926 * c) We can call blk_end_request() with -EIO to fail
927 * the remainder of the request.
929 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
931 int result = cmd->result;
932 int this_count;
933 struct request_queue *q = cmd->device->request_queue;
934 struct request *req = cmd->request;
935 int error = 0;
936 struct scsi_sense_hdr sshdr;
937 int sense_valid = 0;
938 int sense_deferred = 0;
939 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
940 ACTION_DELAYED_RETRY} action;
941 char *description = NULL;
943 if (result) {
944 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
945 if (sense_valid)
946 sense_deferred = scsi_sense_is_deferred(&sshdr);
949 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
950 req->errors = result;
951 if (result) {
952 if (sense_valid && req->sense) {
954 * SG_IO wants current and deferred errors
956 int len = 8 + cmd->sense_buffer[7];
958 if (len > SCSI_SENSE_BUFFERSIZE)
959 len = SCSI_SENSE_BUFFERSIZE;
960 memcpy(req->sense, cmd->sense_buffer, len);
961 req->sense_len = len;
963 if (!sense_deferred)
964 error = -EIO;
966 if (scsi_bidi_cmnd(cmd)) {
967 /* will also release_buffers */
968 scsi_end_bidi_request(cmd);
969 return;
971 req->data_len = scsi_get_resid(cmd);
974 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
977 * Next deal with any sectors which we were able to correctly
978 * handle.
980 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
981 "%d bytes done.\n",
982 req->nr_sectors, good_bytes));
984 /* A number of bytes were successfully read. If there
985 * are leftovers and there is some kind of error
986 * (result != 0), retry the rest.
988 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
989 return;
990 this_count = blk_rq_bytes(req);
992 error = -EIO;
994 if (host_byte(result) == DID_RESET) {
995 /* Third party bus reset or reset for error recovery
996 * reasons. Just retry the command and see what
997 * happens.
999 action = ACTION_RETRY;
1000 } else if (sense_valid && !sense_deferred) {
1001 switch (sshdr.sense_key) {
1002 case UNIT_ATTENTION:
1003 if (cmd->device->removable) {
1004 /* Detected disc change. Set a bit
1005 * and quietly refuse further access.
1007 cmd->device->changed = 1;
1008 description = "Media Changed";
1009 action = ACTION_FAIL;
1010 } else {
1011 /* Must have been a power glitch, or a
1012 * bus reset. Could not have been a
1013 * media change, so we just retry the
1014 * command and see what happens.
1016 action = ACTION_RETRY;
1018 break;
1019 case ILLEGAL_REQUEST:
1020 /* If we had an ILLEGAL REQUEST returned, then
1021 * we may have performed an unsupported
1022 * command. The only thing this should be
1023 * would be a ten byte read where only a six
1024 * byte read was supported. Also, on a system
1025 * where READ CAPACITY failed, we may have
1026 * read past the end of the disk.
1028 if ((cmd->device->use_10_for_rw &&
1029 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1030 (cmd->cmnd[0] == READ_10 ||
1031 cmd->cmnd[0] == WRITE_10)) {
1032 /* This will issue a new 6-byte command. */
1033 cmd->device->use_10_for_rw = 0;
1034 action = ACTION_REPREP;
1035 } else if (sshdr.asc == 0x10) /* DIX */ {
1036 description = "Host Data Integrity Failure";
1037 action = ACTION_FAIL;
1038 error = -EILSEQ;
1039 } else
1040 action = ACTION_FAIL;
1041 break;
1042 case ABORTED_COMMAND:
1043 action = ACTION_FAIL;
1044 if (sshdr.asc == 0x10) { /* DIF */
1045 description = "Target Data Integrity Failure";
1046 error = -EILSEQ;
1048 break;
1049 case NOT_READY:
1050 /* If the device is in the process of becoming
1051 * ready, or has a temporary blockage, retry.
1053 if (sshdr.asc == 0x04) {
1054 switch (sshdr.ascq) {
1055 case 0x01: /* becoming ready */
1056 case 0x04: /* format in progress */
1057 case 0x05: /* rebuild in progress */
1058 case 0x06: /* recalculation in progress */
1059 case 0x07: /* operation in progress */
1060 case 0x08: /* Long write in progress */
1061 case 0x09: /* self test in progress */
1062 action = ACTION_DELAYED_RETRY;
1063 break;
1064 default:
1065 description = "Device not ready";
1066 action = ACTION_FAIL;
1067 break;
1069 } else {
1070 description = "Device not ready";
1071 action = ACTION_FAIL;
1073 break;
1074 case VOLUME_OVERFLOW:
1075 /* See SSC3rXX or current. */
1076 action = ACTION_FAIL;
1077 break;
1078 default:
1079 description = "Unhandled sense code";
1080 action = ACTION_FAIL;
1081 break;
1083 } else {
1084 description = "Unhandled error code";
1085 action = ACTION_FAIL;
1088 switch (action) {
1089 case ACTION_FAIL:
1090 /* Give up and fail the remainder of the request */
1091 scsi_release_buffers(cmd);
1092 if (!(req->cmd_flags & REQ_QUIET)) {
1093 if (description)
1094 scmd_printk(KERN_INFO, cmd, "%s\n",
1095 description);
1096 scsi_print_result(cmd);
1097 if (driver_byte(result) & DRIVER_SENSE)
1098 scsi_print_sense("", cmd);
1100 blk_end_request(req, -EIO, blk_rq_bytes(req));
1101 scsi_next_command(cmd);
1102 break;
1103 case ACTION_REPREP:
1104 /* Unprep the request and put it back at the head of the queue.
1105 * A new command will be prepared and issued.
1107 scsi_release_buffers(cmd);
1108 scsi_requeue_command(q, cmd);
1109 break;
1110 case ACTION_RETRY:
1111 /* Retry the same command immediately */
1112 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1113 break;
1114 case ACTION_DELAYED_RETRY:
1115 /* Retry the same command after a delay */
1116 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1117 break;
1121 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1122 gfp_t gfp_mask)
1124 int count;
1127 * If sg table allocation fails, requeue request later.
1129 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1130 gfp_mask))) {
1131 return BLKPREP_DEFER;
1134 req->buffer = NULL;
1137 * Next, walk the list, and fill in the addresses and sizes of
1138 * each segment.
1140 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1141 BUG_ON(count > sdb->table.nents);
1142 sdb->table.nents = count;
1143 if (blk_pc_request(req))
1144 sdb->length = req->data_len;
1145 else
1146 sdb->length = req->nr_sectors << 9;
1147 return BLKPREP_OK;
1151 * Function: scsi_init_io()
1153 * Purpose: SCSI I/O initialize function.
1155 * Arguments: cmd - Command descriptor we wish to initialize
1157 * Returns: 0 on success
1158 * BLKPREP_DEFER if the failure is retryable
1159 * BLKPREP_KILL if the failure is fatal
1161 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1163 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1164 if (error)
1165 goto err_exit;
1167 if (blk_bidi_rq(cmd->request)) {
1168 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1169 scsi_sdb_cache, GFP_ATOMIC);
1170 if (!bidi_sdb) {
1171 error = BLKPREP_DEFER;
1172 goto err_exit;
1175 cmd->request->next_rq->special = bidi_sdb;
1176 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1177 GFP_ATOMIC);
1178 if (error)
1179 goto err_exit;
1182 if (blk_integrity_rq(cmd->request)) {
1183 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1184 int ivecs, count;
1186 BUG_ON(prot_sdb == NULL);
1187 ivecs = blk_rq_count_integrity_sg(cmd->request);
1189 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1190 error = BLKPREP_DEFER;
1191 goto err_exit;
1194 count = blk_rq_map_integrity_sg(cmd->request,
1195 prot_sdb->table.sgl);
1196 BUG_ON(unlikely(count > ivecs));
1198 cmd->prot_sdb = prot_sdb;
1199 cmd->prot_sdb->table.nents = count;
1202 return BLKPREP_OK ;
1204 err_exit:
1205 scsi_release_buffers(cmd);
1206 if (error == BLKPREP_KILL)
1207 scsi_put_command(cmd);
1208 else /* BLKPREP_DEFER */
1209 scsi_unprep_request(cmd->request);
1211 return error;
1213 EXPORT_SYMBOL(scsi_init_io);
1215 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1216 struct request *req)
1218 struct scsi_cmnd *cmd;
1220 if (!req->special) {
1221 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1222 if (unlikely(!cmd))
1223 return NULL;
1224 req->special = cmd;
1225 } else {
1226 cmd = req->special;
1229 /* pull a tag out of the request if we have one */
1230 cmd->tag = req->tag;
1231 cmd->request = req;
1233 cmd->cmnd = req->cmd;
1235 return cmd;
1238 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1240 struct scsi_cmnd *cmd;
1241 int ret = scsi_prep_state_check(sdev, req);
1243 if (ret != BLKPREP_OK)
1244 return ret;
1246 cmd = scsi_get_cmd_from_req(sdev, req);
1247 if (unlikely(!cmd))
1248 return BLKPREP_DEFER;
1251 * BLOCK_PC requests may transfer data, in which case they must
1252 * a bio attached to them. Or they might contain a SCSI command
1253 * that does not transfer data, in which case they may optionally
1254 * submit a request without an attached bio.
1256 if (req->bio) {
1257 int ret;
1259 BUG_ON(!req->nr_phys_segments);
1261 ret = scsi_init_io(cmd, GFP_ATOMIC);
1262 if (unlikely(ret))
1263 return ret;
1264 } else {
1265 BUG_ON(req->data_len);
1266 BUG_ON(req->data);
1268 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1269 req->buffer = NULL;
1272 cmd->cmd_len = req->cmd_len;
1273 if (!req->data_len)
1274 cmd->sc_data_direction = DMA_NONE;
1275 else if (rq_data_dir(req) == WRITE)
1276 cmd->sc_data_direction = DMA_TO_DEVICE;
1277 else
1278 cmd->sc_data_direction = DMA_FROM_DEVICE;
1280 cmd->transfersize = req->data_len;
1281 cmd->allowed = req->retries;
1282 return BLKPREP_OK;
1284 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1287 * Setup a REQ_TYPE_FS command. These are simple read/write request
1288 * from filesystems that still need to be translated to SCSI CDBs from
1289 * the ULD.
1291 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1293 struct scsi_cmnd *cmd;
1294 int ret = scsi_prep_state_check(sdev, req);
1296 if (ret != BLKPREP_OK)
1297 return ret;
1299 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1300 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1301 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1302 if (ret != BLKPREP_OK)
1303 return ret;
1307 * Filesystem requests must transfer data.
1309 BUG_ON(!req->nr_phys_segments);
1311 cmd = scsi_get_cmd_from_req(sdev, req);
1312 if (unlikely(!cmd))
1313 return BLKPREP_DEFER;
1315 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1316 return scsi_init_io(cmd, GFP_ATOMIC);
1318 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1320 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1322 int ret = BLKPREP_OK;
1325 * If the device is not in running state we will reject some
1326 * or all commands.
1328 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1329 switch (sdev->sdev_state) {
1330 case SDEV_OFFLINE:
1332 * If the device is offline we refuse to process any
1333 * commands. The device must be brought online
1334 * before trying any recovery commands.
1336 sdev_printk(KERN_ERR, sdev,
1337 "rejecting I/O to offline device\n");
1338 ret = BLKPREP_KILL;
1339 break;
1340 case SDEV_DEL:
1342 * If the device is fully deleted, we refuse to
1343 * process any commands as well.
1345 sdev_printk(KERN_ERR, sdev,
1346 "rejecting I/O to dead device\n");
1347 ret = BLKPREP_KILL;
1348 break;
1349 case SDEV_QUIESCE:
1350 case SDEV_BLOCK:
1351 case SDEV_CREATED_BLOCK:
1353 * If the devices is blocked we defer normal commands.
1355 if (!(req->cmd_flags & REQ_PREEMPT))
1356 ret = BLKPREP_DEFER;
1357 break;
1358 default:
1360 * For any other not fully online state we only allow
1361 * special commands. In particular any user initiated
1362 * command is not allowed.
1364 if (!(req->cmd_flags & REQ_PREEMPT))
1365 ret = BLKPREP_KILL;
1366 break;
1369 return ret;
1371 EXPORT_SYMBOL(scsi_prep_state_check);
1373 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1375 struct scsi_device *sdev = q->queuedata;
1377 switch (ret) {
1378 case BLKPREP_KILL:
1379 req->errors = DID_NO_CONNECT << 16;
1380 /* release the command and kill it */
1381 if (req->special) {
1382 struct scsi_cmnd *cmd = req->special;
1383 scsi_release_buffers(cmd);
1384 scsi_put_command(cmd);
1385 req->special = NULL;
1387 break;
1388 case BLKPREP_DEFER:
1390 * If we defer, the elv_next_request() returns NULL, but the
1391 * queue must be restarted, so we plug here if no returning
1392 * command will automatically do that.
1394 if (sdev->device_busy == 0)
1395 blk_plug_device(q);
1396 break;
1397 default:
1398 req->cmd_flags |= REQ_DONTPREP;
1401 return ret;
1403 EXPORT_SYMBOL(scsi_prep_return);
1405 int scsi_prep_fn(struct request_queue *q, struct request *req)
1407 struct scsi_device *sdev = q->queuedata;
1408 int ret = BLKPREP_KILL;
1410 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1411 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1412 return scsi_prep_return(q, req, ret);
1416 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1417 * return 0.
1419 * Called with the queue_lock held.
1421 static inline int scsi_dev_queue_ready(struct request_queue *q,
1422 struct scsi_device *sdev)
1424 if (sdev->device_busy == 0 && sdev->device_blocked) {
1426 * unblock after device_blocked iterates to zero
1428 if (--sdev->device_blocked == 0) {
1429 SCSI_LOG_MLQUEUE(3,
1430 sdev_printk(KERN_INFO, sdev,
1431 "unblocking device at zero depth\n"));
1432 } else {
1433 blk_plug_device(q);
1434 return 0;
1437 if (scsi_device_is_busy(sdev))
1438 return 0;
1440 return 1;
1445 * scsi_target_queue_ready: checks if there we can send commands to target
1446 * @sdev: scsi device on starget to check.
1448 * Called with the host lock held.
1450 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1451 struct scsi_device *sdev)
1453 struct scsi_target *starget = scsi_target(sdev);
1455 if (starget->single_lun) {
1456 if (starget->starget_sdev_user &&
1457 starget->starget_sdev_user != sdev)
1458 return 0;
1459 starget->starget_sdev_user = sdev;
1462 if (starget->target_busy == 0 && starget->target_blocked) {
1464 * unblock after target_blocked iterates to zero
1466 if (--starget->target_blocked == 0) {
1467 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1468 "unblocking target at zero depth\n"));
1469 } else {
1470 blk_plug_device(sdev->request_queue);
1471 return 0;
1475 if (scsi_target_is_busy(starget)) {
1476 if (list_empty(&sdev->starved_entry)) {
1477 list_add_tail(&sdev->starved_entry,
1478 &shost->starved_list);
1479 return 0;
1483 /* We're OK to process the command, so we can't be starved */
1484 if (!list_empty(&sdev->starved_entry))
1485 list_del_init(&sdev->starved_entry);
1486 return 1;
1490 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1491 * return 0. We must end up running the queue again whenever 0 is
1492 * returned, else IO can hang.
1494 * Called with host_lock held.
1496 static inline int scsi_host_queue_ready(struct request_queue *q,
1497 struct Scsi_Host *shost,
1498 struct scsi_device *sdev)
1500 if (scsi_host_in_recovery(shost))
1501 return 0;
1502 if (shost->host_busy == 0 && shost->host_blocked) {
1504 * unblock after host_blocked iterates to zero
1506 if (--shost->host_blocked == 0) {
1507 SCSI_LOG_MLQUEUE(3,
1508 printk("scsi%d unblocking host at zero depth\n",
1509 shost->host_no));
1510 } else {
1511 return 0;
1514 if (scsi_host_is_busy(shost)) {
1515 if (list_empty(&sdev->starved_entry))
1516 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1517 return 0;
1520 /* We're OK to process the command, so we can't be starved */
1521 if (!list_empty(&sdev->starved_entry))
1522 list_del_init(&sdev->starved_entry);
1524 return 1;
1528 * Busy state exporting function for request stacking drivers.
1530 * For efficiency, no lock is taken to check the busy state of
1531 * shost/starget/sdev, since the returned value is not guaranteed and
1532 * may be changed after request stacking drivers call the function,
1533 * regardless of taking lock or not.
1535 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1536 * (e.g. !sdev), scsi needs to return 'not busy'.
1537 * Otherwise, request stacking drivers may hold requests forever.
1539 static int scsi_lld_busy(struct request_queue *q)
1541 struct scsi_device *sdev = q->queuedata;
1542 struct Scsi_Host *shost;
1543 struct scsi_target *starget;
1545 if (!sdev)
1546 return 0;
1548 shost = sdev->host;
1549 starget = scsi_target(sdev);
1551 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1552 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1553 return 1;
1555 return 0;
1559 * Kill a request for a dead device
1561 static void scsi_kill_request(struct request *req, struct request_queue *q)
1563 struct scsi_cmnd *cmd = req->special;
1564 struct scsi_device *sdev = cmd->device;
1565 struct scsi_target *starget = scsi_target(sdev);
1566 struct Scsi_Host *shost = sdev->host;
1568 blkdev_dequeue_request(req);
1570 if (unlikely(cmd == NULL)) {
1571 printk(KERN_CRIT "impossible request in %s.\n",
1572 __func__);
1573 BUG();
1576 scsi_init_cmd_errh(cmd);
1577 cmd->result = DID_NO_CONNECT << 16;
1578 atomic_inc(&cmd->device->iorequest_cnt);
1581 * SCSI request completion path will do scsi_device_unbusy(),
1582 * bump busy counts. To bump the counters, we need to dance
1583 * with the locks as normal issue path does.
1585 sdev->device_busy++;
1586 spin_unlock(sdev->request_queue->queue_lock);
1587 spin_lock(shost->host_lock);
1588 shost->host_busy++;
1589 starget->target_busy++;
1590 spin_unlock(shost->host_lock);
1591 spin_lock(sdev->request_queue->queue_lock);
1593 blk_complete_request(req);
1596 static void scsi_softirq_done(struct request *rq)
1598 struct scsi_cmnd *cmd = rq->special;
1599 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1600 int disposition;
1602 INIT_LIST_HEAD(&cmd->eh_entry);
1605 * Set the serial numbers back to zero
1607 cmd->serial_number = 0;
1609 atomic_inc(&cmd->device->iodone_cnt);
1610 if (cmd->result)
1611 atomic_inc(&cmd->device->ioerr_cnt);
1613 disposition = scsi_decide_disposition(cmd);
1614 if (disposition != SUCCESS &&
1615 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1616 sdev_printk(KERN_ERR, cmd->device,
1617 "timing out command, waited %lus\n",
1618 wait_for/HZ);
1619 disposition = SUCCESS;
1622 scsi_log_completion(cmd, disposition);
1624 switch (disposition) {
1625 case SUCCESS:
1626 scsi_finish_command(cmd);
1627 break;
1628 case NEEDS_RETRY:
1629 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1630 break;
1631 case ADD_TO_MLQUEUE:
1632 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1633 break;
1634 default:
1635 if (!scsi_eh_scmd_add(cmd, 0))
1636 scsi_finish_command(cmd);
1641 * Function: scsi_request_fn()
1643 * Purpose: Main strategy routine for SCSI.
1645 * Arguments: q - Pointer to actual queue.
1647 * Returns: Nothing
1649 * Lock status: IO request lock assumed to be held when called.
1651 static void scsi_request_fn(struct request_queue *q)
1653 struct scsi_device *sdev = q->queuedata;
1654 struct Scsi_Host *shost;
1655 struct scsi_cmnd *cmd;
1656 struct request *req;
1658 if (!sdev) {
1659 printk("scsi: killing requests for dead queue\n");
1660 while ((req = elv_next_request(q)) != NULL)
1661 scsi_kill_request(req, q);
1662 return;
1665 if(!get_device(&sdev->sdev_gendev))
1666 /* We must be tearing the block queue down already */
1667 return;
1670 * To start with, we keep looping until the queue is empty, or until
1671 * the host is no longer able to accept any more requests.
1673 shost = sdev->host;
1674 while (!blk_queue_plugged(q)) {
1675 int rtn;
1677 * get next queueable request. We do this early to make sure
1678 * that the request is fully prepared even if we cannot
1679 * accept it.
1681 req = elv_next_request(q);
1682 if (!req || !scsi_dev_queue_ready(q, sdev))
1683 break;
1685 if (unlikely(!scsi_device_online(sdev))) {
1686 sdev_printk(KERN_ERR, sdev,
1687 "rejecting I/O to offline device\n");
1688 scsi_kill_request(req, q);
1689 continue;
1694 * Remove the request from the request list.
1696 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1697 blkdev_dequeue_request(req);
1698 sdev->device_busy++;
1700 spin_unlock(q->queue_lock);
1701 cmd = req->special;
1702 if (unlikely(cmd == NULL)) {
1703 printk(KERN_CRIT "impossible request in %s.\n"
1704 "please mail a stack trace to "
1705 "linux-scsi@vger.kernel.org\n",
1706 __func__);
1707 blk_dump_rq_flags(req, "foo");
1708 BUG();
1710 spin_lock(shost->host_lock);
1713 * We hit this when the driver is using a host wide
1714 * tag map. For device level tag maps the queue_depth check
1715 * in the device ready fn would prevent us from trying
1716 * to allocate a tag. Since the map is a shared host resource
1717 * we add the dev to the starved list so it eventually gets
1718 * a run when a tag is freed.
1720 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1721 if (list_empty(&sdev->starved_entry))
1722 list_add_tail(&sdev->starved_entry,
1723 &shost->starved_list);
1724 goto not_ready;
1727 if (!scsi_target_queue_ready(shost, sdev))
1728 goto not_ready;
1730 if (!scsi_host_queue_ready(q, shost, sdev))
1731 goto not_ready;
1733 scsi_target(sdev)->target_busy++;
1734 shost->host_busy++;
1737 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1738 * take the lock again.
1740 spin_unlock_irq(shost->host_lock);
1743 * Finally, initialize any error handling parameters, and set up
1744 * the timers for timeouts.
1746 scsi_init_cmd_errh(cmd);
1749 * Dispatch the command to the low-level driver.
1751 rtn = scsi_dispatch_cmd(cmd);
1752 spin_lock_irq(q->queue_lock);
1753 if(rtn) {
1754 /* we're refusing the command; because of
1755 * the way locks get dropped, we need to
1756 * check here if plugging is required */
1757 if(sdev->device_busy == 0)
1758 blk_plug_device(q);
1760 break;
1764 goto out;
1766 not_ready:
1767 spin_unlock_irq(shost->host_lock);
1770 * lock q, handle tag, requeue req, and decrement device_busy. We
1771 * must return with queue_lock held.
1773 * Decrementing device_busy without checking it is OK, as all such
1774 * cases (host limits or settings) should run the queue at some
1775 * later time.
1777 spin_lock_irq(q->queue_lock);
1778 blk_requeue_request(q, req);
1779 sdev->device_busy--;
1780 if(sdev->device_busy == 0)
1781 blk_plug_device(q);
1782 out:
1783 /* must be careful here...if we trigger the ->remove() function
1784 * we cannot be holding the q lock */
1785 spin_unlock_irq(q->queue_lock);
1786 put_device(&sdev->sdev_gendev);
1787 spin_lock_irq(q->queue_lock);
1790 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1792 struct device *host_dev;
1793 u64 bounce_limit = 0xffffffff;
1795 if (shost->unchecked_isa_dma)
1796 return BLK_BOUNCE_ISA;
1798 * Platforms with virtual-DMA translation
1799 * hardware have no practical limit.
1801 if (!PCI_DMA_BUS_IS_PHYS)
1802 return BLK_BOUNCE_ANY;
1804 host_dev = scsi_get_device(shost);
1805 if (host_dev && host_dev->dma_mask)
1806 bounce_limit = *host_dev->dma_mask;
1808 return bounce_limit;
1810 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1812 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1813 request_fn_proc *request_fn)
1815 struct request_queue *q;
1816 struct device *dev = shost->shost_gendev.parent;
1818 q = blk_init_queue(request_fn, NULL);
1819 if (!q)
1820 return NULL;
1823 * this limit is imposed by hardware restrictions
1825 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1826 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1828 blk_queue_max_sectors(q, shost->max_sectors);
1829 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1830 blk_queue_segment_boundary(q, shost->dma_boundary);
1831 dma_set_seg_boundary(dev, shost->dma_boundary);
1833 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1835 /* New queue, no concurrency on queue_flags */
1836 if (!shost->use_clustering)
1837 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1840 * set a reasonable default alignment on word boundaries: the
1841 * host and device may alter it using
1842 * blk_queue_update_dma_alignment() later.
1844 blk_queue_dma_alignment(q, 0x03);
1846 return q;
1848 EXPORT_SYMBOL(__scsi_alloc_queue);
1850 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1852 struct request_queue *q;
1854 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1855 if (!q)
1856 return NULL;
1858 blk_queue_prep_rq(q, scsi_prep_fn);
1859 blk_queue_softirq_done(q, scsi_softirq_done);
1860 blk_queue_rq_timed_out(q, scsi_times_out);
1861 blk_queue_lld_busy(q, scsi_lld_busy);
1862 return q;
1865 void scsi_free_queue(struct request_queue *q)
1867 blk_cleanup_queue(q);
1871 * Function: scsi_block_requests()
1873 * Purpose: Utility function used by low-level drivers to prevent further
1874 * commands from being queued to the device.
1876 * Arguments: shost - Host in question
1878 * Returns: Nothing
1880 * Lock status: No locks are assumed held.
1882 * Notes: There is no timer nor any other means by which the requests
1883 * get unblocked other than the low-level driver calling
1884 * scsi_unblock_requests().
1886 void scsi_block_requests(struct Scsi_Host *shost)
1888 shost->host_self_blocked = 1;
1890 EXPORT_SYMBOL(scsi_block_requests);
1893 * Function: scsi_unblock_requests()
1895 * Purpose: Utility function used by low-level drivers to allow further
1896 * commands from being queued to the device.
1898 * Arguments: shost - Host in question
1900 * Returns: Nothing
1902 * Lock status: No locks are assumed held.
1904 * Notes: There is no timer nor any other means by which the requests
1905 * get unblocked other than the low-level driver calling
1906 * scsi_unblock_requests().
1908 * This is done as an API function so that changes to the
1909 * internals of the scsi mid-layer won't require wholesale
1910 * changes to drivers that use this feature.
1912 void scsi_unblock_requests(struct Scsi_Host *shost)
1914 shost->host_self_blocked = 0;
1915 scsi_run_host_queues(shost);
1917 EXPORT_SYMBOL(scsi_unblock_requests);
1919 int __init scsi_init_queue(void)
1921 int i;
1923 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1924 sizeof(struct scsi_io_context),
1925 0, 0, NULL);
1926 if (!scsi_io_context_cache) {
1927 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1928 return -ENOMEM;
1931 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1932 sizeof(struct scsi_data_buffer),
1933 0, 0, NULL);
1934 if (!scsi_sdb_cache) {
1935 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1936 goto cleanup_io_context;
1939 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1940 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1941 int size = sgp->size * sizeof(struct scatterlist);
1943 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1944 SLAB_HWCACHE_ALIGN, NULL);
1945 if (!sgp->slab) {
1946 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1947 sgp->name);
1948 goto cleanup_sdb;
1951 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1952 sgp->slab);
1953 if (!sgp->pool) {
1954 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1955 sgp->name);
1956 goto cleanup_sdb;
1960 return 0;
1962 cleanup_sdb:
1963 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1964 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1965 if (sgp->pool)
1966 mempool_destroy(sgp->pool);
1967 if (sgp->slab)
1968 kmem_cache_destroy(sgp->slab);
1970 kmem_cache_destroy(scsi_sdb_cache);
1971 cleanup_io_context:
1972 kmem_cache_destroy(scsi_io_context_cache);
1974 return -ENOMEM;
1977 void scsi_exit_queue(void)
1979 int i;
1981 kmem_cache_destroy(scsi_io_context_cache);
1982 kmem_cache_destroy(scsi_sdb_cache);
1984 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1985 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1986 mempool_destroy(sgp->pool);
1987 kmem_cache_destroy(sgp->slab);
1992 * scsi_mode_select - issue a mode select
1993 * @sdev: SCSI device to be queried
1994 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1995 * @sp: Save page bit (0 == don't save, 1 == save)
1996 * @modepage: mode page being requested
1997 * @buffer: request buffer (may not be smaller than eight bytes)
1998 * @len: length of request buffer.
1999 * @timeout: command timeout
2000 * @retries: number of retries before failing
2001 * @data: returns a structure abstracting the mode header data
2002 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2003 * must be SCSI_SENSE_BUFFERSIZE big.
2005 * Returns zero if successful; negative error number or scsi
2006 * status on error
2010 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2011 unsigned char *buffer, int len, int timeout, int retries,
2012 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2014 unsigned char cmd[10];
2015 unsigned char *real_buffer;
2016 int ret;
2018 memset(cmd, 0, sizeof(cmd));
2019 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2021 if (sdev->use_10_for_ms) {
2022 if (len > 65535)
2023 return -EINVAL;
2024 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2025 if (!real_buffer)
2026 return -ENOMEM;
2027 memcpy(real_buffer + 8, buffer, len);
2028 len += 8;
2029 real_buffer[0] = 0;
2030 real_buffer[1] = 0;
2031 real_buffer[2] = data->medium_type;
2032 real_buffer[3] = data->device_specific;
2033 real_buffer[4] = data->longlba ? 0x01 : 0;
2034 real_buffer[5] = 0;
2035 real_buffer[6] = data->block_descriptor_length >> 8;
2036 real_buffer[7] = data->block_descriptor_length;
2038 cmd[0] = MODE_SELECT_10;
2039 cmd[7] = len >> 8;
2040 cmd[8] = len;
2041 } else {
2042 if (len > 255 || data->block_descriptor_length > 255 ||
2043 data->longlba)
2044 return -EINVAL;
2046 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2047 if (!real_buffer)
2048 return -ENOMEM;
2049 memcpy(real_buffer + 4, buffer, len);
2050 len += 4;
2051 real_buffer[0] = 0;
2052 real_buffer[1] = data->medium_type;
2053 real_buffer[2] = data->device_specific;
2054 real_buffer[3] = data->block_descriptor_length;
2057 cmd[0] = MODE_SELECT;
2058 cmd[4] = len;
2061 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2062 sshdr, timeout, retries, NULL);
2063 kfree(real_buffer);
2064 return ret;
2066 EXPORT_SYMBOL_GPL(scsi_mode_select);
2069 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2070 * @sdev: SCSI device to be queried
2071 * @dbd: set if mode sense will allow block descriptors to be returned
2072 * @modepage: mode page being requested
2073 * @buffer: request buffer (may not be smaller than eight bytes)
2074 * @len: length of request buffer.
2075 * @timeout: command timeout
2076 * @retries: number of retries before failing
2077 * @data: returns a structure abstracting the mode header data
2078 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2079 * must be SCSI_SENSE_BUFFERSIZE big.
2081 * Returns zero if unsuccessful, or the header offset (either 4
2082 * or 8 depending on whether a six or ten byte command was
2083 * issued) if successful.
2086 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2087 unsigned char *buffer, int len, int timeout, int retries,
2088 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2090 unsigned char cmd[12];
2091 int use_10_for_ms;
2092 int header_length;
2093 int result;
2094 struct scsi_sense_hdr my_sshdr;
2096 memset(data, 0, sizeof(*data));
2097 memset(&cmd[0], 0, 12);
2098 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2099 cmd[2] = modepage;
2101 /* caller might not be interested in sense, but we need it */
2102 if (!sshdr)
2103 sshdr = &my_sshdr;
2105 retry:
2106 use_10_for_ms = sdev->use_10_for_ms;
2108 if (use_10_for_ms) {
2109 if (len < 8)
2110 len = 8;
2112 cmd[0] = MODE_SENSE_10;
2113 cmd[8] = len;
2114 header_length = 8;
2115 } else {
2116 if (len < 4)
2117 len = 4;
2119 cmd[0] = MODE_SENSE;
2120 cmd[4] = len;
2121 header_length = 4;
2124 memset(buffer, 0, len);
2126 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2127 sshdr, timeout, retries, NULL);
2129 /* This code looks awful: what it's doing is making sure an
2130 * ILLEGAL REQUEST sense return identifies the actual command
2131 * byte as the problem. MODE_SENSE commands can return
2132 * ILLEGAL REQUEST if the code page isn't supported */
2134 if (use_10_for_ms && !scsi_status_is_good(result) &&
2135 (driver_byte(result) & DRIVER_SENSE)) {
2136 if (scsi_sense_valid(sshdr)) {
2137 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2138 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2140 * Invalid command operation code
2142 sdev->use_10_for_ms = 0;
2143 goto retry;
2148 if(scsi_status_is_good(result)) {
2149 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2150 (modepage == 6 || modepage == 8))) {
2151 /* Initio breakage? */
2152 header_length = 0;
2153 data->length = 13;
2154 data->medium_type = 0;
2155 data->device_specific = 0;
2156 data->longlba = 0;
2157 data->block_descriptor_length = 0;
2158 } else if(use_10_for_ms) {
2159 data->length = buffer[0]*256 + buffer[1] + 2;
2160 data->medium_type = buffer[2];
2161 data->device_specific = buffer[3];
2162 data->longlba = buffer[4] & 0x01;
2163 data->block_descriptor_length = buffer[6]*256
2164 + buffer[7];
2165 } else {
2166 data->length = buffer[0] + 1;
2167 data->medium_type = buffer[1];
2168 data->device_specific = buffer[2];
2169 data->block_descriptor_length = buffer[3];
2171 data->header_length = header_length;
2174 return result;
2176 EXPORT_SYMBOL(scsi_mode_sense);
2179 * scsi_test_unit_ready - test if unit is ready
2180 * @sdev: scsi device to change the state of.
2181 * @timeout: command timeout
2182 * @retries: number of retries before failing
2183 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2184 * returning sense. Make sure that this is cleared before passing
2185 * in.
2187 * Returns zero if unsuccessful or an error if TUR failed. For
2188 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2189 * translated to success, with the ->changed flag updated.
2192 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2193 struct scsi_sense_hdr *sshdr_external)
2195 char cmd[] = {
2196 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2198 struct scsi_sense_hdr *sshdr;
2199 int result;
2201 if (!sshdr_external)
2202 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2203 else
2204 sshdr = sshdr_external;
2206 /* try to eat the UNIT_ATTENTION if there are enough retries */
2207 do {
2208 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2209 timeout, retries, NULL);
2210 if (sdev->removable && scsi_sense_valid(sshdr) &&
2211 sshdr->sense_key == UNIT_ATTENTION)
2212 sdev->changed = 1;
2213 } while (scsi_sense_valid(sshdr) &&
2214 sshdr->sense_key == UNIT_ATTENTION && --retries);
2216 if (!sshdr)
2217 /* could not allocate sense buffer, so can't process it */
2218 return result;
2220 if (sdev->removable && scsi_sense_valid(sshdr) &&
2221 (sshdr->sense_key == UNIT_ATTENTION ||
2222 sshdr->sense_key == NOT_READY)) {
2223 sdev->changed = 1;
2224 result = 0;
2226 if (!sshdr_external)
2227 kfree(sshdr);
2228 return result;
2230 EXPORT_SYMBOL(scsi_test_unit_ready);
2233 * scsi_device_set_state - Take the given device through the device state model.
2234 * @sdev: scsi device to change the state of.
2235 * @state: state to change to.
2237 * Returns zero if unsuccessful or an error if the requested
2238 * transition is illegal.
2241 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2243 enum scsi_device_state oldstate = sdev->sdev_state;
2245 if (state == oldstate)
2246 return 0;
2248 switch (state) {
2249 case SDEV_CREATED:
2250 switch (oldstate) {
2251 case SDEV_CREATED_BLOCK:
2252 break;
2253 default:
2254 goto illegal;
2256 break;
2258 case SDEV_RUNNING:
2259 switch (oldstate) {
2260 case SDEV_CREATED:
2261 case SDEV_OFFLINE:
2262 case SDEV_QUIESCE:
2263 case SDEV_BLOCK:
2264 break;
2265 default:
2266 goto illegal;
2268 break;
2270 case SDEV_QUIESCE:
2271 switch (oldstate) {
2272 case SDEV_RUNNING:
2273 case SDEV_OFFLINE:
2274 break;
2275 default:
2276 goto illegal;
2278 break;
2280 case SDEV_OFFLINE:
2281 switch (oldstate) {
2282 case SDEV_CREATED:
2283 case SDEV_RUNNING:
2284 case SDEV_QUIESCE:
2285 case SDEV_BLOCK:
2286 break;
2287 default:
2288 goto illegal;
2290 break;
2292 case SDEV_BLOCK:
2293 switch (oldstate) {
2294 case SDEV_RUNNING:
2295 case SDEV_CREATED_BLOCK:
2296 break;
2297 default:
2298 goto illegal;
2300 break;
2302 case SDEV_CREATED_BLOCK:
2303 switch (oldstate) {
2304 case SDEV_CREATED:
2305 break;
2306 default:
2307 goto illegal;
2309 break;
2311 case SDEV_CANCEL:
2312 switch (oldstate) {
2313 case SDEV_CREATED:
2314 case SDEV_RUNNING:
2315 case SDEV_QUIESCE:
2316 case SDEV_OFFLINE:
2317 case SDEV_BLOCK:
2318 break;
2319 default:
2320 goto illegal;
2322 break;
2324 case SDEV_DEL:
2325 switch (oldstate) {
2326 case SDEV_CREATED:
2327 case SDEV_RUNNING:
2328 case SDEV_OFFLINE:
2329 case SDEV_CANCEL:
2330 break;
2331 default:
2332 goto illegal;
2334 break;
2337 sdev->sdev_state = state;
2338 return 0;
2340 illegal:
2341 SCSI_LOG_ERROR_RECOVERY(1,
2342 sdev_printk(KERN_ERR, sdev,
2343 "Illegal state transition %s->%s\n",
2344 scsi_device_state_name(oldstate),
2345 scsi_device_state_name(state))
2347 return -EINVAL;
2349 EXPORT_SYMBOL(scsi_device_set_state);
2352 * sdev_evt_emit - emit a single SCSI device uevent
2353 * @sdev: associated SCSI device
2354 * @evt: event to emit
2356 * Send a single uevent (scsi_event) to the associated scsi_device.
2358 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2360 int idx = 0;
2361 char *envp[3];
2363 switch (evt->evt_type) {
2364 case SDEV_EVT_MEDIA_CHANGE:
2365 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2366 break;
2368 default:
2369 /* do nothing */
2370 break;
2373 envp[idx++] = NULL;
2375 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2379 * sdev_evt_thread - send a uevent for each scsi event
2380 * @work: work struct for scsi_device
2382 * Dispatch queued events to their associated scsi_device kobjects
2383 * as uevents.
2385 void scsi_evt_thread(struct work_struct *work)
2387 struct scsi_device *sdev;
2388 LIST_HEAD(event_list);
2390 sdev = container_of(work, struct scsi_device, event_work);
2392 while (1) {
2393 struct scsi_event *evt;
2394 struct list_head *this, *tmp;
2395 unsigned long flags;
2397 spin_lock_irqsave(&sdev->list_lock, flags);
2398 list_splice_init(&sdev->event_list, &event_list);
2399 spin_unlock_irqrestore(&sdev->list_lock, flags);
2401 if (list_empty(&event_list))
2402 break;
2404 list_for_each_safe(this, tmp, &event_list) {
2405 evt = list_entry(this, struct scsi_event, node);
2406 list_del(&evt->node);
2407 scsi_evt_emit(sdev, evt);
2408 kfree(evt);
2414 * sdev_evt_send - send asserted event to uevent thread
2415 * @sdev: scsi_device event occurred on
2416 * @evt: event to send
2418 * Assert scsi device event asynchronously.
2420 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2422 unsigned long flags;
2424 #if 0
2425 /* FIXME: currently this check eliminates all media change events
2426 * for polled devices. Need to update to discriminate between AN
2427 * and polled events */
2428 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2429 kfree(evt);
2430 return;
2432 #endif
2434 spin_lock_irqsave(&sdev->list_lock, flags);
2435 list_add_tail(&evt->node, &sdev->event_list);
2436 schedule_work(&sdev->event_work);
2437 spin_unlock_irqrestore(&sdev->list_lock, flags);
2439 EXPORT_SYMBOL_GPL(sdev_evt_send);
2442 * sdev_evt_alloc - allocate a new scsi event
2443 * @evt_type: type of event to allocate
2444 * @gfpflags: GFP flags for allocation
2446 * Allocates and returns a new scsi_event.
2448 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2449 gfp_t gfpflags)
2451 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2452 if (!evt)
2453 return NULL;
2455 evt->evt_type = evt_type;
2456 INIT_LIST_HEAD(&evt->node);
2458 /* evt_type-specific initialization, if any */
2459 switch (evt_type) {
2460 case SDEV_EVT_MEDIA_CHANGE:
2461 default:
2462 /* do nothing */
2463 break;
2466 return evt;
2468 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2471 * sdev_evt_send_simple - send asserted event to uevent thread
2472 * @sdev: scsi_device event occurred on
2473 * @evt_type: type of event to send
2474 * @gfpflags: GFP flags for allocation
2476 * Assert scsi device event asynchronously, given an event type.
2478 void sdev_evt_send_simple(struct scsi_device *sdev,
2479 enum scsi_device_event evt_type, gfp_t gfpflags)
2481 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2482 if (!evt) {
2483 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2484 evt_type);
2485 return;
2488 sdev_evt_send(sdev, evt);
2490 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2493 * scsi_device_quiesce - Block user issued commands.
2494 * @sdev: scsi device to quiesce.
2496 * This works by trying to transition to the SDEV_QUIESCE state
2497 * (which must be a legal transition). When the device is in this
2498 * state, only special requests will be accepted, all others will
2499 * be deferred. Since special requests may also be requeued requests,
2500 * a successful return doesn't guarantee the device will be
2501 * totally quiescent.
2503 * Must be called with user context, may sleep.
2505 * Returns zero if unsuccessful or an error if not.
2508 scsi_device_quiesce(struct scsi_device *sdev)
2510 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2511 if (err)
2512 return err;
2514 scsi_run_queue(sdev->request_queue);
2515 while (sdev->device_busy) {
2516 msleep_interruptible(200);
2517 scsi_run_queue(sdev->request_queue);
2519 return 0;
2521 EXPORT_SYMBOL(scsi_device_quiesce);
2524 * scsi_device_resume - Restart user issued commands to a quiesced device.
2525 * @sdev: scsi device to resume.
2527 * Moves the device from quiesced back to running and restarts the
2528 * queues.
2530 * Must be called with user context, may sleep.
2532 void
2533 scsi_device_resume(struct scsi_device *sdev)
2535 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2536 return;
2537 scsi_run_queue(sdev->request_queue);
2539 EXPORT_SYMBOL(scsi_device_resume);
2541 static void
2542 device_quiesce_fn(struct scsi_device *sdev, void *data)
2544 scsi_device_quiesce(sdev);
2547 void
2548 scsi_target_quiesce(struct scsi_target *starget)
2550 starget_for_each_device(starget, NULL, device_quiesce_fn);
2552 EXPORT_SYMBOL(scsi_target_quiesce);
2554 static void
2555 device_resume_fn(struct scsi_device *sdev, void *data)
2557 scsi_device_resume(sdev);
2560 void
2561 scsi_target_resume(struct scsi_target *starget)
2563 starget_for_each_device(starget, NULL, device_resume_fn);
2565 EXPORT_SYMBOL(scsi_target_resume);
2568 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2569 * @sdev: device to block
2571 * Block request made by scsi lld's to temporarily stop all
2572 * scsi commands on the specified device. Called from interrupt
2573 * or normal process context.
2575 * Returns zero if successful or error if not
2577 * Notes:
2578 * This routine transitions the device to the SDEV_BLOCK state
2579 * (which must be a legal transition). When the device is in this
2580 * state, all commands are deferred until the scsi lld reenables
2581 * the device with scsi_device_unblock or device_block_tmo fires.
2582 * This routine assumes the host_lock is held on entry.
2585 scsi_internal_device_block(struct scsi_device *sdev)
2587 struct request_queue *q = sdev->request_queue;
2588 unsigned long flags;
2589 int err = 0;
2591 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2592 if (err) {
2593 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2595 if (err)
2596 return err;
2600 * The device has transitioned to SDEV_BLOCK. Stop the
2601 * block layer from calling the midlayer with this device's
2602 * request queue.
2604 spin_lock_irqsave(q->queue_lock, flags);
2605 blk_stop_queue(q);
2606 spin_unlock_irqrestore(q->queue_lock, flags);
2608 return 0;
2610 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2613 * scsi_internal_device_unblock - resume a device after a block request
2614 * @sdev: device to resume
2616 * Called by scsi lld's or the midlayer to restart the device queue
2617 * for the previously suspended scsi device. Called from interrupt or
2618 * normal process context.
2620 * Returns zero if successful or error if not.
2622 * Notes:
2623 * This routine transitions the device to the SDEV_RUNNING state
2624 * (which must be a legal transition) allowing the midlayer to
2625 * goose the queue for this device. This routine assumes the
2626 * host_lock is held upon entry.
2629 scsi_internal_device_unblock(struct scsi_device *sdev)
2631 struct request_queue *q = sdev->request_queue;
2632 int err;
2633 unsigned long flags;
2636 * Try to transition the scsi device to SDEV_RUNNING
2637 * and goose the device queue if successful.
2639 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2640 if (err) {
2641 err = scsi_device_set_state(sdev, SDEV_CREATED);
2643 if (err)
2644 return err;
2647 spin_lock_irqsave(q->queue_lock, flags);
2648 blk_start_queue(q);
2649 spin_unlock_irqrestore(q->queue_lock, flags);
2651 return 0;
2653 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2655 static void
2656 device_block(struct scsi_device *sdev, void *data)
2658 scsi_internal_device_block(sdev);
2661 static int
2662 target_block(struct device *dev, void *data)
2664 if (scsi_is_target_device(dev))
2665 starget_for_each_device(to_scsi_target(dev), NULL,
2666 device_block);
2667 return 0;
2670 void
2671 scsi_target_block(struct device *dev)
2673 if (scsi_is_target_device(dev))
2674 starget_for_each_device(to_scsi_target(dev), NULL,
2675 device_block);
2676 else
2677 device_for_each_child(dev, NULL, target_block);
2679 EXPORT_SYMBOL_GPL(scsi_target_block);
2681 static void
2682 device_unblock(struct scsi_device *sdev, void *data)
2684 scsi_internal_device_unblock(sdev);
2687 static int
2688 target_unblock(struct device *dev, void *data)
2690 if (scsi_is_target_device(dev))
2691 starget_for_each_device(to_scsi_target(dev), NULL,
2692 device_unblock);
2693 return 0;
2696 void
2697 scsi_target_unblock(struct device *dev)
2699 if (scsi_is_target_device(dev))
2700 starget_for_each_device(to_scsi_target(dev), NULL,
2701 device_unblock);
2702 else
2703 device_for_each_child(dev, NULL, target_unblock);
2705 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2708 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2709 * @sgl: scatter-gather list
2710 * @sg_count: number of segments in sg
2711 * @offset: offset in bytes into sg, on return offset into the mapped area
2712 * @len: bytes to map, on return number of bytes mapped
2714 * Returns virtual address of the start of the mapped page
2716 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2717 size_t *offset, size_t *len)
2719 int i;
2720 size_t sg_len = 0, len_complete = 0;
2721 struct scatterlist *sg;
2722 struct page *page;
2724 WARN_ON(!irqs_disabled());
2726 for_each_sg(sgl, sg, sg_count, i) {
2727 len_complete = sg_len; /* Complete sg-entries */
2728 sg_len += sg->length;
2729 if (sg_len > *offset)
2730 break;
2733 if (unlikely(i == sg_count)) {
2734 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2735 "elements %d\n",
2736 __func__, sg_len, *offset, sg_count);
2737 WARN_ON(1);
2738 return NULL;
2741 /* Offset starting from the beginning of first page in this sg-entry */
2742 *offset = *offset - len_complete + sg->offset;
2744 /* Assumption: contiguous pages can be accessed as "page + i" */
2745 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2746 *offset &= ~PAGE_MASK;
2748 /* Bytes in this sg-entry from *offset to the end of the page */
2749 sg_len = PAGE_SIZE - *offset;
2750 if (*len > sg_len)
2751 *len = sg_len;
2753 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2755 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2758 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2759 * @virt: virtual address to be unmapped
2761 void scsi_kunmap_atomic_sg(void *virt)
2763 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2765 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);