ext4: Fix discard of inode prealloc space with delayed allocation.
[linux-2.6/mini2440.git] / drivers / misc / sgi-xp / xpc_sn2.c
blob2e975762c32b42224f80234ccf4f8caddb34cfb4
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
7 */
9 /*
10 * Cross Partition Communication (XPC) sn2-based functions.
12 * Architecture specific implementation of common functions.
16 #include <linux/delay.h>
17 #include <asm/uncached.h>
18 #include <asm/sn/mspec.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
23 * Define the number of u64s required to represent all the C-brick nasids
24 * as a bitmap. The cross-partition kernel modules deal only with
25 * C-brick nasids, thus the need for bitmaps which don't account for
26 * odd-numbered (non C-brick) nasids.
28 #define XPC_MAX_PHYSNODES_SN2 (MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
33 * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34 * pages are located in the lowest granule. The lowest granule uses 4k pages
35 * for cached references and an alternate TLB handler to never provide a
36 * cacheable mapping for the entire region. This will prevent speculative
37 * reading of cached copies of our lines from being issued which will cause
38 * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39 * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40 * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41 * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42 * partitions (i.e., XPCs) consider themselves currently engaged with the
43 * local XPC and 1 amo variable to request partition deactivation.
45 #define XPC_NOTIFY_IRQ_AMOS_SN2 0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2 (XPC_NOTIFY_IRQ_AMOS_SN2 + \
47 XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2 (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49 XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2 (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
53 * Buffer used to store a local copy of portions of a remote partition's
54 * reserved page (either its header and part_nasids mask, or its vars).
56 static void *xpc_remote_copy_buffer_base_sn2;
57 static char *xpc_remote_copy_buffer_sn2;
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
62 static int
63 xpc_setup_partitions_sn_sn2(void)
65 /* nothing needs to be done */
66 return 0;
69 /* SH_IPI_ACCESS shub register value on startup */
70 static u64 xpc_sh1_IPI_access_sn2;
71 static u64 xpc_sh2_IPI_access0_sn2;
72 static u64 xpc_sh2_IPI_access1_sn2;
73 static u64 xpc_sh2_IPI_access2_sn2;
74 static u64 xpc_sh2_IPI_access3_sn2;
77 * Change protections to allow IPI operations.
79 static void
80 xpc_allow_IPI_ops_sn2(void)
82 int node;
83 int nasid;
85 /* !!! The following should get moved into SAL. */
86 if (is_shub2()) {
87 xpc_sh2_IPI_access0_sn2 =
88 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
89 xpc_sh2_IPI_access1_sn2 =
90 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
91 xpc_sh2_IPI_access2_sn2 =
92 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
93 xpc_sh2_IPI_access3_sn2 =
94 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
96 for_each_online_node(node) {
97 nasid = cnodeid_to_nasid(node);
98 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
99 -1UL);
100 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
101 -1UL);
102 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
103 -1UL);
104 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
105 -1UL);
107 } else {
108 xpc_sh1_IPI_access_sn2 =
109 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
111 for_each_online_node(node) {
112 nasid = cnodeid_to_nasid(node);
113 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
114 -1UL);
120 * Restrict protections to disallow IPI operations.
122 static void
123 xpc_disallow_IPI_ops_sn2(void)
125 int node;
126 int nasid;
128 /* !!! The following should get moved into SAL. */
129 if (is_shub2()) {
130 for_each_online_node(node) {
131 nasid = cnodeid_to_nasid(node);
132 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
133 xpc_sh2_IPI_access0_sn2);
134 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
135 xpc_sh2_IPI_access1_sn2);
136 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
137 xpc_sh2_IPI_access2_sn2);
138 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
139 xpc_sh2_IPI_access3_sn2);
141 } else {
142 for_each_online_node(node) {
143 nasid = cnodeid_to_nasid(node);
144 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
145 xpc_sh1_IPI_access_sn2);
151 * The following set of functions are used for the sending and receiving of
152 * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
153 * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
154 * is associated with channel activity (SGI_XPC_NOTIFY).
157 static u64
158 xpc_receive_IRQ_amo_sn2(struct amo *amo)
160 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
163 static enum xp_retval
164 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
165 int vector)
167 int ret = 0;
168 unsigned long irq_flags;
170 local_irq_save(irq_flags);
172 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
173 sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
176 * We must always use the nofault function regardless of whether we
177 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
178 * didn't, we'd never know that the other partition is down and would
179 * keep sending IRQs and amos to it until the heartbeat times out.
181 ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
182 xp_nofault_PIOR_target));
184 local_irq_restore(irq_flags);
186 return (ret == 0) ? xpSuccess : xpPioReadError;
189 static struct amo *
190 xpc_init_IRQ_amo_sn2(int index)
192 struct amo *amo = xpc_vars_sn2->amos_page + index;
194 (void)xpc_receive_IRQ_amo_sn2(amo); /* clear amo variable */
195 return amo;
199 * Functions associated with SGI_XPC_ACTIVATE IRQ.
203 * Notify the heartbeat check thread that an activate IRQ has been received.
205 static irqreturn_t
206 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
208 unsigned long irq_flags;
210 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
211 xpc_activate_IRQ_rcvd++;
212 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
214 wake_up_interruptible(&xpc_activate_IRQ_wq);
215 return IRQ_HANDLED;
219 * Flag the appropriate amo variable and send an IRQ to the specified node.
221 static void
222 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
223 int to_nasid, int to_phys_cpuid)
225 struct amo *amos = (struct amo *)__va(amos_page_pa +
226 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
227 sizeof(struct amo)));
229 (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
230 BIT_MASK(from_nasid / 2), to_nasid,
231 to_phys_cpuid, SGI_XPC_ACTIVATE);
234 static void
235 xpc_send_local_activate_IRQ_sn2(int from_nasid)
237 unsigned long irq_flags;
238 struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
239 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
240 sizeof(struct amo)));
242 /* fake the sending and receipt of an activate IRQ from remote nasid */
243 FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
244 FETCHOP_OR, BIT_MASK(from_nasid / 2));
246 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
247 xpc_activate_IRQ_rcvd++;
248 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
250 wake_up_interruptible(&xpc_activate_IRQ_wq);
254 * Functions associated with SGI_XPC_NOTIFY IRQ.
258 * Check to see if any chctl flags were sent from the specified partition.
260 static void
261 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
263 union xpc_channel_ctl_flags chctl;
264 unsigned long irq_flags;
266 chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
267 local_chctl_amo_va);
268 if (chctl.all_flags == 0)
269 return;
271 spin_lock_irqsave(&part->chctl_lock, irq_flags);
272 part->chctl.all_flags |= chctl.all_flags;
273 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
275 dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
276 "0x%lx\n", XPC_PARTID(part), chctl.all_flags);
278 xpc_wakeup_channel_mgr(part);
282 * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
283 * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
284 * than one partition, we use an amo structure per partition to indicate
285 * whether a partition has sent an IRQ or not. If it has, then wake up the
286 * associated kthread to handle it.
288 * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
289 * running on other partitions.
291 * Noteworthy Arguments:
293 * irq - Interrupt ReQuest number. NOT USED.
295 * dev_id - partid of IRQ's potential sender.
297 static irqreturn_t
298 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
300 short partid = (short)(u64)dev_id;
301 struct xpc_partition *part = &xpc_partitions[partid];
303 DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
305 if (xpc_part_ref(part)) {
306 xpc_check_for_sent_chctl_flags_sn2(part);
308 xpc_part_deref(part);
310 return IRQ_HANDLED;
314 * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
315 * because the write to their associated amo variable completed after the IRQ
316 * was received.
318 static void
319 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
321 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
323 if (xpc_part_ref(part)) {
324 xpc_check_for_sent_chctl_flags_sn2(part);
326 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
327 XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
328 add_timer(&part_sn2->dropped_notify_IRQ_timer);
329 xpc_part_deref(part);
334 * Send a notify IRQ to the remote partition that is associated with the
335 * specified channel.
337 static void
338 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
339 char *chctl_flag_string, unsigned long *irq_flags)
341 struct xpc_partition *part = &xpc_partitions[ch->partid];
342 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
343 union xpc_channel_ctl_flags chctl = { 0 };
344 enum xp_retval ret;
346 if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
347 chctl.flags[ch->number] = chctl_flag;
348 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
349 chctl.all_flags,
350 part_sn2->notify_IRQ_nasid,
351 part_sn2->notify_IRQ_phys_cpuid,
352 SGI_XPC_NOTIFY);
353 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
354 chctl_flag_string, ch->partid, ch->number, ret);
355 if (unlikely(ret != xpSuccess)) {
356 if (irq_flags != NULL)
357 spin_unlock_irqrestore(&ch->lock, *irq_flags);
358 XPC_DEACTIVATE_PARTITION(part, ret);
359 if (irq_flags != NULL)
360 spin_lock_irqsave(&ch->lock, *irq_flags);
365 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
366 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
369 * Make it look like the remote partition, which is associated with the
370 * specified channel, sent us a notify IRQ. This faked IRQ will be handled
371 * by xpc_check_for_dropped_notify_IRQ_sn2().
373 static void
374 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
375 char *chctl_flag_string)
377 struct xpc_partition *part = &xpc_partitions[ch->partid];
378 union xpc_channel_ctl_flags chctl = { 0 };
380 chctl.flags[ch->number] = chctl_flag;
381 FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
382 variable), FETCHOP_OR, chctl.all_flags);
383 dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
384 chctl_flag_string, ch->partid, ch->number);
387 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
388 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
390 static void
391 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
392 unsigned long *irq_flags)
394 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
396 args->reason = ch->reason;
397 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
400 static void
401 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
403 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
406 static void
407 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
409 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
411 args->entry_size = ch->entry_size;
412 args->local_nentries = ch->local_nentries;
413 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
416 static void
417 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
419 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
421 args->remote_nentries = ch->remote_nentries;
422 args->local_nentries = ch->local_nentries;
423 args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
424 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
427 static void
428 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
430 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
433 static void
434 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
436 XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
439 static void
440 xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
441 unsigned long msgqueue_pa)
443 ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
447 * This next set of functions are used to keep track of when a partition is
448 * potentially engaged in accessing memory belonging to another partition.
451 static void
452 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
454 unsigned long irq_flags;
455 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
456 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
457 sizeof(struct amo)));
459 local_irq_save(irq_flags);
461 /* set bit corresponding to our partid in remote partition's amo */
462 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
463 BIT(sn_partition_id));
466 * We must always use the nofault function regardless of whether we
467 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
468 * didn't, we'd never know that the other partition is down and would
469 * keep sending IRQs and amos to it until the heartbeat times out.
471 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
472 variable),
473 xp_nofault_PIOR_target));
475 local_irq_restore(irq_flags);
478 static void
479 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
481 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
482 unsigned long irq_flags;
483 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
484 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
485 sizeof(struct amo)));
487 local_irq_save(irq_flags);
489 /* clear bit corresponding to our partid in remote partition's amo */
490 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
491 ~BIT(sn_partition_id));
494 * We must always use the nofault function regardless of whether we
495 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
496 * didn't, we'd never know that the other partition is down and would
497 * keep sending IRQs and amos to it until the heartbeat times out.
499 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
500 variable),
501 xp_nofault_PIOR_target));
503 local_irq_restore(irq_flags);
506 * Send activate IRQ to get other side to see that we've cleared our
507 * bit in their engaged partitions amo.
509 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
510 cnodeid_to_nasid(0),
511 part_sn2->activate_IRQ_nasid,
512 part_sn2->activate_IRQ_phys_cpuid);
515 static void
516 xpc_assume_partition_disengaged_sn2(short partid)
518 struct amo *amo = xpc_vars_sn2->amos_page +
519 XPC_ENGAGED_PARTITIONS_AMO_SN2;
521 /* clear bit(s) based on partid mask in our partition's amo */
522 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
523 ~BIT(partid));
526 static int
527 xpc_partition_engaged_sn2(short partid)
529 struct amo *amo = xpc_vars_sn2->amos_page +
530 XPC_ENGAGED_PARTITIONS_AMO_SN2;
532 /* our partition's amo variable ANDed with partid mask */
533 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
534 BIT(partid)) != 0;
537 static int
538 xpc_any_partition_engaged_sn2(void)
540 struct amo *amo = xpc_vars_sn2->amos_page +
541 XPC_ENGAGED_PARTITIONS_AMO_SN2;
543 /* our partition's amo variable */
544 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
547 /* original protection values for each node */
548 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
551 * Change protections to allow amo operations on non-Shub 1.1 systems.
553 static enum xp_retval
554 xpc_allow_amo_ops_sn2(struct amo *amos_page)
556 enum xp_retval ret = xpSuccess;
559 * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
560 * collides with memory operations. On those systems we call
561 * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
563 if (!enable_shub_wars_1_1())
564 ret = xp_expand_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE);
566 return ret;
570 * Change protections to allow amo operations on Shub 1.1 systems.
572 static void
573 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
575 int node;
576 int nasid;
578 if (!enable_shub_wars_1_1())
579 return;
581 for_each_online_node(node) {
582 nasid = cnodeid_to_nasid(node);
583 /* save current protection values */
584 xpc_prot_vec_sn2[node] =
585 (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
586 SH1_MD_DQLP_MMR_DIR_PRIVEC0));
587 /* open up everything */
588 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
589 SH1_MD_DQLP_MMR_DIR_PRIVEC0),
590 -1UL);
591 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
592 SH1_MD_DQRP_MMR_DIR_PRIVEC0),
593 -1UL);
597 static enum xp_retval
598 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
599 size_t *len)
601 s64 status;
602 enum xp_retval ret;
604 status = sn_partition_reserved_page_pa((u64)buf, cookie, rp_pa, len);
605 if (status == SALRET_OK)
606 ret = xpSuccess;
607 else if (status == SALRET_MORE_PASSES)
608 ret = xpNeedMoreInfo;
609 else
610 ret = xpSalError;
612 return ret;
616 static int
617 xpc_setup_rsvd_page_sn_sn2(struct xpc_rsvd_page *rp)
619 struct amo *amos_page;
620 int i;
621 int ret;
623 xpc_vars_sn2 = XPC_RP_VARS(rp);
625 rp->sn.vars_pa = xp_pa(xpc_vars_sn2);
627 /* vars_part array follows immediately after vars */
628 xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
629 XPC_RP_VARS_SIZE);
632 * Before clearing xpc_vars_sn2, see if a page of amos had been
633 * previously allocated. If not we'll need to allocate one and set
634 * permissions so that cross-partition amos are allowed.
636 * The allocated amo page needs MCA reporting to remain disabled after
637 * XPC has unloaded. To make this work, we keep a copy of the pointer
638 * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
639 * which is pointed to by the reserved page, and re-use that saved copy
640 * on subsequent loads of XPC. This amo page is never freed, and its
641 * memory protections are never restricted.
643 amos_page = xpc_vars_sn2->amos_page;
644 if (amos_page == NULL) {
645 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
646 if (amos_page == NULL) {
647 dev_err(xpc_part, "can't allocate page of amos\n");
648 return -ENOMEM;
652 * Open up amo-R/W to cpu. This is done on Shub 1.1 systems
653 * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
655 ret = xpc_allow_amo_ops_sn2(amos_page);
656 if (ret != xpSuccess) {
657 dev_err(xpc_part, "can't allow amo operations\n");
658 uncached_free_page(__IA64_UNCACHED_OFFSET |
659 TO_PHYS((u64)amos_page), 1);
660 return -EPERM;
664 /* clear xpc_vars_sn2 */
665 memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
667 xpc_vars_sn2->version = XPC_V_VERSION;
668 xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
669 xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
670 xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
671 xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
672 xpc_vars_sn2->amos_page = amos_page; /* save for next load of XPC */
674 /* clear xpc_vars_part_sn2 */
675 memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
676 XP_MAX_NPARTITIONS_SN2);
678 /* initialize the activate IRQ related amo variables */
679 for (i = 0; i < xpc_nasid_mask_nlongs; i++)
680 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
682 /* initialize the engaged remote partitions related amo variables */
683 (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
684 (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
686 return 0;
689 static void
690 xpc_increment_heartbeat_sn2(void)
692 xpc_vars_sn2->heartbeat++;
695 static void
696 xpc_offline_heartbeat_sn2(void)
698 xpc_increment_heartbeat_sn2();
699 xpc_vars_sn2->heartbeat_offline = 1;
702 static void
703 xpc_online_heartbeat_sn2(void)
705 xpc_increment_heartbeat_sn2();
706 xpc_vars_sn2->heartbeat_offline = 0;
709 static void
710 xpc_heartbeat_init_sn2(void)
712 DBUG_ON(xpc_vars_sn2 == NULL);
714 bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
715 xpc_heartbeating_to_mask = &xpc_vars_sn2->heartbeating_to_mask[0];
716 xpc_online_heartbeat_sn2();
719 static void
720 xpc_heartbeat_exit_sn2(void)
722 xpc_offline_heartbeat_sn2();
725 static enum xp_retval
726 xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
728 struct xpc_vars_sn2 *remote_vars;
729 enum xp_retval ret;
731 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
733 /* pull the remote vars structure that contains the heartbeat */
734 ret = xp_remote_memcpy(xp_pa(remote_vars),
735 part->sn.sn2.remote_vars_pa,
736 XPC_RP_VARS_SIZE);
737 if (ret != xpSuccess)
738 return ret;
740 dev_dbg(xpc_part, "partid=%d, heartbeat=%ld, last_heartbeat=%ld, "
741 "heartbeat_offline=%ld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
742 remote_vars->heartbeat, part->last_heartbeat,
743 remote_vars->heartbeat_offline,
744 remote_vars->heartbeating_to_mask[0]);
746 if ((remote_vars->heartbeat == part->last_heartbeat &&
747 remote_vars->heartbeat_offline == 0) ||
748 !xpc_hb_allowed(sn_partition_id,
749 &remote_vars->heartbeating_to_mask)) {
750 ret = xpNoHeartbeat;
751 } else {
752 part->last_heartbeat = remote_vars->heartbeat;
755 return ret;
759 * Get a copy of the remote partition's XPC variables from the reserved page.
761 * remote_vars points to a buffer that is cacheline aligned for BTE copies and
762 * assumed to be of size XPC_RP_VARS_SIZE.
764 static enum xp_retval
765 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
766 struct xpc_vars_sn2 *remote_vars)
768 enum xp_retval ret;
770 if (remote_vars_pa == 0)
771 return xpVarsNotSet;
773 /* pull over the cross partition variables */
774 ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
775 XPC_RP_VARS_SIZE);
776 if (ret != xpSuccess)
777 return ret;
779 if (XPC_VERSION_MAJOR(remote_vars->version) !=
780 XPC_VERSION_MAJOR(XPC_V_VERSION)) {
781 return xpBadVersion;
784 return xpSuccess;
787 static void
788 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
789 unsigned long remote_rp_pa, int nasid)
791 xpc_send_local_activate_IRQ_sn2(nasid);
794 static void
795 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
797 xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
800 static void
801 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
803 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
804 unsigned long irq_flags;
805 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
806 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
807 sizeof(struct amo)));
809 local_irq_save(irq_flags);
811 /* set bit corresponding to our partid in remote partition's amo */
812 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
813 BIT(sn_partition_id));
816 * We must always use the nofault function regardless of whether we
817 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
818 * didn't, we'd never know that the other partition is down and would
819 * keep sending IRQs and amos to it until the heartbeat times out.
821 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
822 variable),
823 xp_nofault_PIOR_target));
825 local_irq_restore(irq_flags);
828 * Send activate IRQ to get other side to see that we've set our
829 * bit in their deactivate request amo.
831 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
832 cnodeid_to_nasid(0),
833 part_sn2->activate_IRQ_nasid,
834 part_sn2->activate_IRQ_phys_cpuid);
837 static void
838 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
840 unsigned long irq_flags;
841 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
842 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
843 sizeof(struct amo)));
845 local_irq_save(irq_flags);
847 /* clear bit corresponding to our partid in remote partition's amo */
848 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
849 ~BIT(sn_partition_id));
852 * We must always use the nofault function regardless of whether we
853 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
854 * didn't, we'd never know that the other partition is down and would
855 * keep sending IRQs and amos to it until the heartbeat times out.
857 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
858 variable),
859 xp_nofault_PIOR_target));
861 local_irq_restore(irq_flags);
864 static int
865 xpc_partition_deactivation_requested_sn2(short partid)
867 struct amo *amo = xpc_vars_sn2->amos_page +
868 XPC_DEACTIVATE_REQUEST_AMO_SN2;
870 /* our partition's amo variable ANDed with partid mask */
871 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
872 BIT(partid)) != 0;
876 * Update the remote partition's info.
878 static void
879 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
880 unsigned long *remote_rp_ts_jiffies,
881 unsigned long remote_rp_pa,
882 unsigned long remote_vars_pa,
883 struct xpc_vars_sn2 *remote_vars)
885 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
887 part->remote_rp_version = remote_rp_version;
888 dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n",
889 part->remote_rp_version);
891 part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
892 dev_dbg(xpc_part, " remote_rp_ts_jiffies = 0x%016lx\n",
893 part->remote_rp_ts_jiffies);
895 part->remote_rp_pa = remote_rp_pa;
896 dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
898 part_sn2->remote_vars_pa = remote_vars_pa;
899 dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
900 part_sn2->remote_vars_pa);
902 part->last_heartbeat = remote_vars->heartbeat - 1;
903 dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n",
904 part->last_heartbeat);
906 part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
907 dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
908 part_sn2->remote_vars_part_pa);
910 part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
911 dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n",
912 part_sn2->activate_IRQ_nasid);
914 part_sn2->activate_IRQ_phys_cpuid =
915 remote_vars->activate_IRQ_phys_cpuid;
916 dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n",
917 part_sn2->activate_IRQ_phys_cpuid);
919 part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
920 dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
921 part_sn2->remote_amos_page_pa);
923 part_sn2->remote_vars_version = remote_vars->version;
924 dev_dbg(xpc_part, " remote_vars_version = 0x%x\n",
925 part_sn2->remote_vars_version);
929 * Prior code has determined the nasid which generated a activate IRQ.
930 * Inspect that nasid to determine if its partition needs to be activated
931 * or deactivated.
933 * A partition is considered "awaiting activation" if our partition
934 * flags indicate it is not active and it has a heartbeat. A
935 * partition is considered "awaiting deactivation" if our partition
936 * flags indicate it is active but it has no heartbeat or it is not
937 * sending its heartbeat to us.
939 * To determine the heartbeat, the remote nasid must have a properly
940 * initialized reserved page.
942 static void
943 xpc_identify_activate_IRQ_req_sn2(int nasid)
945 struct xpc_rsvd_page *remote_rp;
946 struct xpc_vars_sn2 *remote_vars;
947 unsigned long remote_rp_pa;
948 unsigned long remote_vars_pa;
949 int remote_rp_version;
950 int reactivate = 0;
951 unsigned long remote_rp_ts_jiffies = 0;
952 short partid;
953 struct xpc_partition *part;
954 struct xpc_partition_sn2 *part_sn2;
955 enum xp_retval ret;
957 /* pull over the reserved page structure */
959 remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
961 ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
962 if (ret != xpSuccess) {
963 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
964 "which sent interrupt, reason=%d\n", nasid, ret);
965 return;
968 remote_vars_pa = remote_rp->sn.vars_pa;
969 remote_rp_version = remote_rp->version;
970 remote_rp_ts_jiffies = remote_rp->ts_jiffies;
972 partid = remote_rp->SAL_partid;
973 part = &xpc_partitions[partid];
974 part_sn2 = &part->sn.sn2;
976 /* pull over the cross partition variables */
978 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
980 ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
981 if (ret != xpSuccess) {
982 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
983 "which sent interrupt, reason=%d\n", nasid, ret);
985 XPC_DEACTIVATE_PARTITION(part, ret);
986 return;
989 part->activate_IRQ_rcvd++;
991 dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
992 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
993 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
995 if (xpc_partition_disengaged(part) &&
996 part->act_state == XPC_P_AS_INACTIVE) {
998 xpc_update_partition_info_sn2(part, remote_rp_version,
999 &remote_rp_ts_jiffies,
1000 remote_rp_pa, remote_vars_pa,
1001 remote_vars);
1003 if (xpc_partition_deactivation_requested_sn2(partid)) {
1005 * Other side is waiting on us to deactivate even though
1006 * we already have.
1008 return;
1011 xpc_activate_partition(part);
1012 return;
1015 DBUG_ON(part->remote_rp_version == 0);
1016 DBUG_ON(part_sn2->remote_vars_version == 0);
1018 if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1020 /* the other side rebooted */
1022 DBUG_ON(xpc_partition_engaged_sn2(partid));
1023 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1025 xpc_update_partition_info_sn2(part, remote_rp_version,
1026 &remote_rp_ts_jiffies,
1027 remote_rp_pa, remote_vars_pa,
1028 remote_vars);
1029 reactivate = 1;
1032 if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1033 /* still waiting on other side to disengage from us */
1034 return;
1037 if (reactivate)
1038 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1039 else if (xpc_partition_deactivation_requested_sn2(partid))
1040 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1044 * Loop through the activation amo variables and process any bits
1045 * which are set. Each bit indicates a nasid sending a partition
1046 * activation or deactivation request.
1048 * Return #of IRQs detected.
1051 xpc_identify_activate_IRQ_sender_sn2(void)
1053 int l;
1054 int b;
1055 unsigned long nasid_mask_long;
1056 u64 nasid; /* remote nasid */
1057 int n_IRQs_detected = 0;
1058 struct amo *act_amos;
1060 act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1062 /* scan through activate amo variables looking for non-zero entries */
1063 for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1065 if (xpc_exiting)
1066 break;
1068 nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1070 b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1071 if (b >= BITS_PER_LONG) {
1072 /* no IRQs from nasids in this amo variable */
1073 continue;
1076 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1077 nasid_mask_long);
1080 * If this nasid has been added to the machine since
1081 * our partition was reset, this will retain the
1082 * remote nasid in our reserved pages machine mask.
1083 * This is used in the event of module reload.
1085 xpc_mach_nasids[l] |= nasid_mask_long;
1087 /* locate the nasid(s) which sent interrupts */
1089 do {
1090 n_IRQs_detected++;
1091 nasid = (l * BITS_PER_LONG + b) * 2;
1092 dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid);
1093 xpc_identify_activate_IRQ_req_sn2(nasid);
1095 b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1096 b + 1);
1097 } while (b < BITS_PER_LONG);
1099 return n_IRQs_detected;
1102 static void
1103 xpc_process_activate_IRQ_rcvd_sn2(void)
1105 unsigned long irq_flags;
1106 int n_IRQs_expected;
1107 int n_IRQs_detected;
1109 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1110 n_IRQs_expected = xpc_activate_IRQ_rcvd;
1111 xpc_activate_IRQ_rcvd = 0;
1112 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1114 n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1115 if (n_IRQs_detected < n_IRQs_expected) {
1116 /* retry once to help avoid missing amo */
1117 (void)xpc_identify_activate_IRQ_sender_sn2();
1122 * Setup the channel structures that are sn2 specific.
1124 static enum xp_retval
1125 xpc_setup_ch_structures_sn_sn2(struct xpc_partition *part)
1127 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1128 struct xpc_channel_sn2 *ch_sn2;
1129 enum xp_retval retval;
1130 int ret;
1131 int cpuid;
1132 int ch_number;
1133 struct timer_list *timer;
1134 short partid = XPC_PARTID(part);
1136 /* allocate all the required GET/PUT values */
1138 part_sn2->local_GPs =
1139 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1140 &part_sn2->local_GPs_base);
1141 if (part_sn2->local_GPs == NULL) {
1142 dev_err(xpc_chan, "can't get memory for local get/put "
1143 "values\n");
1144 return xpNoMemory;
1147 part_sn2->remote_GPs =
1148 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1149 &part_sn2->remote_GPs_base);
1150 if (part_sn2->remote_GPs == NULL) {
1151 dev_err(xpc_chan, "can't get memory for remote get/put "
1152 "values\n");
1153 retval = xpNoMemory;
1154 goto out_1;
1157 part_sn2->remote_GPs_pa = 0;
1159 /* allocate all the required open and close args */
1161 part_sn2->local_openclose_args =
1162 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1163 GFP_KERNEL, &part_sn2->
1164 local_openclose_args_base);
1165 if (part_sn2->local_openclose_args == NULL) {
1166 dev_err(xpc_chan, "can't get memory for local connect args\n");
1167 retval = xpNoMemory;
1168 goto out_2;
1171 part_sn2->remote_openclose_args_pa = 0;
1173 part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1175 part_sn2->notify_IRQ_nasid = 0;
1176 part_sn2->notify_IRQ_phys_cpuid = 0;
1177 part_sn2->remote_chctl_amo_va = NULL;
1179 sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1180 ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1181 IRQF_SHARED, part_sn2->notify_IRQ_owner,
1182 (void *)(u64)partid);
1183 if (ret != 0) {
1184 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1185 "errno=%d\n", -ret);
1186 retval = xpLackOfResources;
1187 goto out_3;
1190 /* Setup a timer to check for dropped notify IRQs */
1191 timer = &part_sn2->dropped_notify_IRQ_timer;
1192 init_timer(timer);
1193 timer->function =
1194 (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1195 timer->data = (unsigned long)part;
1196 timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1197 add_timer(timer);
1199 for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1200 ch_sn2 = &part->channels[ch_number].sn.sn2;
1202 ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1203 ch_sn2->local_openclose_args =
1204 &part_sn2->local_openclose_args[ch_number];
1206 mutex_init(&ch_sn2->msg_to_pull_mutex);
1210 * Setup the per partition specific variables required by the
1211 * remote partition to establish channel connections with us.
1213 * The setting of the magic # indicates that these per partition
1214 * specific variables are ready to be used.
1216 xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1217 xpc_vars_part_sn2[partid].openclose_args_pa =
1218 xp_pa(part_sn2->local_openclose_args);
1219 xpc_vars_part_sn2[partid].chctl_amo_pa =
1220 xp_pa(part_sn2->local_chctl_amo_va);
1221 cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1222 xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1223 xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1224 cpu_physical_id(cpuid);
1225 xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1226 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1228 return xpSuccess;
1230 /* setup of ch structures failed */
1231 out_3:
1232 kfree(part_sn2->local_openclose_args_base);
1233 part_sn2->local_openclose_args = NULL;
1234 out_2:
1235 kfree(part_sn2->remote_GPs_base);
1236 part_sn2->remote_GPs = NULL;
1237 out_1:
1238 kfree(part_sn2->local_GPs_base);
1239 part_sn2->local_GPs = NULL;
1240 return retval;
1244 * Teardown the channel structures that are sn2 specific.
1246 static void
1247 xpc_teardown_ch_structures_sn_sn2(struct xpc_partition *part)
1249 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1250 short partid = XPC_PARTID(part);
1253 * Indicate that the variables specific to the remote partition are no
1254 * longer available for its use.
1256 xpc_vars_part_sn2[partid].magic = 0;
1258 /* in case we've still got outstanding timers registered... */
1259 del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1260 free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1262 kfree(part_sn2->local_openclose_args_base);
1263 part_sn2->local_openclose_args = NULL;
1264 kfree(part_sn2->remote_GPs_base);
1265 part_sn2->remote_GPs = NULL;
1266 kfree(part_sn2->local_GPs_base);
1267 part_sn2->local_GPs = NULL;
1268 part_sn2->local_chctl_amo_va = NULL;
1272 * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1273 * (or multiple cachelines) from a remote partition.
1275 * src_pa must be a cacheline aligned physical address on the remote partition.
1276 * dst must be a cacheline aligned virtual address on this partition.
1277 * cnt must be cacheline sized
1279 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1280 static enum xp_retval
1281 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1282 const unsigned long src_pa, size_t cnt)
1284 enum xp_retval ret;
1286 DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1287 DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1288 DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1290 if (part->act_state == XPC_P_AS_DEACTIVATING)
1291 return part->reason;
1293 ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1294 if (ret != xpSuccess) {
1295 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1296 " ret=%d\n", XPC_PARTID(part), ret);
1298 return ret;
1302 * Pull the remote per partition specific variables from the specified
1303 * partition.
1305 static enum xp_retval
1306 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1308 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1309 u8 buffer[L1_CACHE_BYTES * 2];
1310 struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1311 (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1312 struct xpc_vars_part_sn2 *pulled_entry;
1313 unsigned long remote_entry_cacheline_pa;
1314 unsigned long remote_entry_pa;
1315 short partid = XPC_PARTID(part);
1316 enum xp_retval ret;
1318 /* pull the cacheline that contains the variables we're interested in */
1320 DBUG_ON(part_sn2->remote_vars_part_pa !=
1321 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1322 DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1324 remote_entry_pa = part_sn2->remote_vars_part_pa +
1325 sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1327 remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1329 pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1330 + (remote_entry_pa &
1331 (L1_CACHE_BYTES - 1)));
1333 ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1334 remote_entry_cacheline_pa,
1335 L1_CACHE_BYTES);
1336 if (ret != xpSuccess) {
1337 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1338 "partition %d, ret=%d\n", partid, ret);
1339 return ret;
1342 /* see if they've been set up yet */
1344 if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1345 pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1347 if (pulled_entry->magic != 0) {
1348 dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1349 "partition %d has bad magic value (=0x%lx)\n",
1350 partid, sn_partition_id, pulled_entry->magic);
1351 return xpBadMagic;
1354 /* they've not been initialized yet */
1355 return xpRetry;
1358 if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1360 /* validate the variables */
1362 if (pulled_entry->GPs_pa == 0 ||
1363 pulled_entry->openclose_args_pa == 0 ||
1364 pulled_entry->chctl_amo_pa == 0) {
1366 dev_err(xpc_chan, "partition %d's XPC vars_part for "
1367 "partition %d are not valid\n", partid,
1368 sn_partition_id);
1369 return xpInvalidAddress;
1372 /* the variables we imported look to be valid */
1374 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1375 part_sn2->remote_openclose_args_pa =
1376 pulled_entry->openclose_args_pa;
1377 part_sn2->remote_chctl_amo_va =
1378 (struct amo *)__va(pulled_entry->chctl_amo_pa);
1379 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1380 part_sn2->notify_IRQ_phys_cpuid =
1381 pulled_entry->notify_IRQ_phys_cpuid;
1383 if (part->nchannels > pulled_entry->nchannels)
1384 part->nchannels = pulled_entry->nchannels;
1386 /* let the other side know that we've pulled their variables */
1388 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1391 if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1392 return xpRetry;
1394 return xpSuccess;
1398 * Establish first contact with the remote partititon. This involves pulling
1399 * the XPC per partition variables from the remote partition and waiting for
1400 * the remote partition to pull ours.
1402 static enum xp_retval
1403 xpc_make_first_contact_sn2(struct xpc_partition *part)
1405 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1406 enum xp_retval ret;
1409 * Register the remote partition's amos with SAL so it can handle
1410 * and cleanup errors within that address range should the remote
1411 * partition go down. We don't unregister this range because it is
1412 * difficult to tell when outstanding writes to the remote partition
1413 * are finished and thus when it is safe to unregister. This should
1414 * not result in wasted space in the SAL xp_addr_region table because
1415 * we should get the same page for remote_amos_page_pa after module
1416 * reloads and system reboots.
1418 if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1419 PAGE_SIZE, 1) < 0) {
1420 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1421 "xp_addr region\n", XPC_PARTID(part));
1423 ret = xpPhysAddrRegFailed;
1424 XPC_DEACTIVATE_PARTITION(part, ret);
1425 return ret;
1429 * Send activate IRQ to get other side to activate if they've not
1430 * already begun to do so.
1432 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1433 cnodeid_to_nasid(0),
1434 part_sn2->activate_IRQ_nasid,
1435 part_sn2->activate_IRQ_phys_cpuid);
1437 while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1438 if (ret != xpRetry) {
1439 XPC_DEACTIVATE_PARTITION(part, ret);
1440 return ret;
1443 dev_dbg(xpc_part, "waiting to make first contact with "
1444 "partition %d\n", XPC_PARTID(part));
1446 /* wait a 1/4 of a second or so */
1447 (void)msleep_interruptible(250);
1449 if (part->act_state == XPC_P_AS_DEACTIVATING)
1450 return part->reason;
1453 return xpSuccess;
1457 * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1459 static u64
1460 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1462 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1463 unsigned long irq_flags;
1464 union xpc_channel_ctl_flags chctl;
1465 enum xp_retval ret;
1468 * See if there are any chctl flags to be handled.
1471 spin_lock_irqsave(&part->chctl_lock, irq_flags);
1472 chctl = part->chctl;
1473 if (chctl.all_flags != 0)
1474 part->chctl.all_flags = 0;
1476 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1478 if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1479 ret = xpc_pull_remote_cachelines_sn2(part, part->
1480 remote_openclose_args,
1481 part_sn2->
1482 remote_openclose_args_pa,
1483 XPC_OPENCLOSE_ARGS_SIZE);
1484 if (ret != xpSuccess) {
1485 XPC_DEACTIVATE_PARTITION(part, ret);
1487 dev_dbg(xpc_chan, "failed to pull openclose args from "
1488 "partition %d, ret=%d\n", XPC_PARTID(part),
1489 ret);
1491 /* don't bother processing chctl flags anymore */
1492 chctl.all_flags = 0;
1496 if (xpc_any_msg_chctl_flags_set(&chctl)) {
1497 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1498 part_sn2->remote_GPs_pa,
1499 XPC_GP_SIZE);
1500 if (ret != xpSuccess) {
1501 XPC_DEACTIVATE_PARTITION(part, ret);
1503 dev_dbg(xpc_chan, "failed to pull GPs from partition "
1504 "%d, ret=%d\n", XPC_PARTID(part), ret);
1506 /* don't bother processing chctl flags anymore */
1507 chctl.all_flags = 0;
1511 return chctl.all_flags;
1515 * Allocate the local message queue and the notify queue.
1517 static enum xp_retval
1518 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1520 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1521 unsigned long irq_flags;
1522 int nentries;
1523 size_t nbytes;
1525 for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1527 nbytes = nentries * ch->entry_size;
1528 ch_sn2->local_msgqueue =
1529 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1530 &ch_sn2->local_msgqueue_base);
1531 if (ch_sn2->local_msgqueue == NULL)
1532 continue;
1534 nbytes = nentries * sizeof(struct xpc_notify_sn2);
1535 ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1536 if (ch_sn2->notify_queue == NULL) {
1537 kfree(ch_sn2->local_msgqueue_base);
1538 ch_sn2->local_msgqueue = NULL;
1539 continue;
1542 spin_lock_irqsave(&ch->lock, irq_flags);
1543 if (nentries < ch->local_nentries) {
1544 dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1545 "partid=%d, channel=%d\n", nentries,
1546 ch->local_nentries, ch->partid, ch->number);
1548 ch->local_nentries = nentries;
1550 spin_unlock_irqrestore(&ch->lock, irq_flags);
1551 return xpSuccess;
1554 dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1555 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1556 return xpNoMemory;
1560 * Allocate the cached remote message queue.
1562 static enum xp_retval
1563 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1565 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1566 unsigned long irq_flags;
1567 int nentries;
1568 size_t nbytes;
1570 DBUG_ON(ch->remote_nentries <= 0);
1572 for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1574 nbytes = nentries * ch->entry_size;
1575 ch_sn2->remote_msgqueue =
1576 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1577 remote_msgqueue_base);
1578 if (ch_sn2->remote_msgqueue == NULL)
1579 continue;
1581 spin_lock_irqsave(&ch->lock, irq_flags);
1582 if (nentries < ch->remote_nentries) {
1583 dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1584 "partid=%d, channel=%d\n", nentries,
1585 ch->remote_nentries, ch->partid, ch->number);
1587 ch->remote_nentries = nentries;
1589 spin_unlock_irqrestore(&ch->lock, irq_flags);
1590 return xpSuccess;
1593 dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1594 "partid=%d, channel=%d\n", ch->partid, ch->number);
1595 return xpNoMemory;
1599 * Allocate message queues and other stuff associated with a channel.
1601 * Note: Assumes all of the channel sizes are filled in.
1603 static enum xp_retval
1604 xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1606 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1607 enum xp_retval ret;
1609 DBUG_ON(ch->flags & XPC_C_SETUP);
1611 ret = xpc_allocate_local_msgqueue_sn2(ch);
1612 if (ret == xpSuccess) {
1614 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1615 if (ret != xpSuccess) {
1616 kfree(ch_sn2->local_msgqueue_base);
1617 ch_sn2->local_msgqueue = NULL;
1618 kfree(ch_sn2->notify_queue);
1619 ch_sn2->notify_queue = NULL;
1622 return ret;
1626 * Free up message queues and other stuff that were allocated for the specified
1627 * channel.
1629 static void
1630 xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1632 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1634 DBUG_ON(!spin_is_locked(&ch->lock));
1636 ch_sn2->remote_msgqueue_pa = 0;
1638 ch_sn2->local_GP->get = 0;
1639 ch_sn2->local_GP->put = 0;
1640 ch_sn2->remote_GP.get = 0;
1641 ch_sn2->remote_GP.put = 0;
1642 ch_sn2->w_local_GP.get = 0;
1643 ch_sn2->w_local_GP.put = 0;
1644 ch_sn2->w_remote_GP.get = 0;
1645 ch_sn2->w_remote_GP.put = 0;
1646 ch_sn2->next_msg_to_pull = 0;
1648 if (ch->flags & XPC_C_SETUP) {
1649 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1650 ch->flags, ch->partid, ch->number);
1652 kfree(ch_sn2->local_msgqueue_base);
1653 ch_sn2->local_msgqueue = NULL;
1654 kfree(ch_sn2->remote_msgqueue_base);
1655 ch_sn2->remote_msgqueue = NULL;
1656 kfree(ch_sn2->notify_queue);
1657 ch_sn2->notify_queue = NULL;
1662 * Notify those who wanted to be notified upon delivery of their message.
1664 static void
1665 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1667 struct xpc_notify_sn2 *notify;
1668 u8 notify_type;
1669 s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1671 while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1673 notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1676 * See if the notify entry indicates it was associated with
1677 * a message who's sender wants to be notified. It is possible
1678 * that it is, but someone else is doing or has done the
1679 * notification.
1681 notify_type = notify->type;
1682 if (notify_type == 0 ||
1683 cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1684 continue;
1687 DBUG_ON(notify_type != XPC_N_CALL);
1689 atomic_dec(&ch->n_to_notify);
1691 if (notify->func != NULL) {
1692 dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1693 "msg_number=%ld partid=%d channel=%d\n",
1694 (void *)notify, get, ch->partid, ch->number);
1696 notify->func(reason, ch->partid, ch->number,
1697 notify->key);
1699 dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1700 " msg_number=%ld partid=%d channel=%d\n",
1701 (void *)notify, get, ch->partid, ch->number);
1706 static void
1707 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1709 xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1713 * Clear some of the msg flags in the local message queue.
1715 static inline void
1716 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1718 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1719 struct xpc_msg_sn2 *msg;
1720 s64 get;
1722 get = ch_sn2->w_remote_GP.get;
1723 do {
1724 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1725 (get % ch->local_nentries) *
1726 ch->entry_size);
1727 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1728 msg->flags = 0;
1729 } while (++get < ch_sn2->remote_GP.get);
1733 * Clear some of the msg flags in the remote message queue.
1735 static inline void
1736 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1738 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1739 struct xpc_msg_sn2 *msg;
1740 s64 put;
1742 /* flags are zeroed when the buffer is allocated */
1743 if (ch_sn2->remote_GP.put < ch->remote_nentries)
1744 return;
1746 put = max(ch_sn2->w_remote_GP.put, ch->remote_nentries);
1747 do {
1748 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1749 (put % ch->remote_nentries) *
1750 ch->entry_size);
1751 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1752 DBUG_ON(!(msg->flags & XPC_M_SN2_DONE));
1753 DBUG_ON(msg->number != put - ch->remote_nentries);
1754 msg->flags = 0;
1755 } while (++put < ch_sn2->remote_GP.put);
1758 static int
1759 xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1761 return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1764 static void
1765 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1767 struct xpc_channel *ch = &part->channels[ch_number];
1768 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1769 int npayloads_sent;
1771 ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1773 /* See what, if anything, has changed for each connected channel */
1775 xpc_msgqueue_ref(ch);
1777 if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1778 ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1779 /* nothing changed since GPs were last pulled */
1780 xpc_msgqueue_deref(ch);
1781 return;
1784 if (!(ch->flags & XPC_C_CONNECTED)) {
1785 xpc_msgqueue_deref(ch);
1786 return;
1790 * First check to see if messages recently sent by us have been
1791 * received by the other side. (The remote GET value will have
1792 * changed since we last looked at it.)
1795 if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1798 * We need to notify any senders that want to be notified
1799 * that their sent messages have been received by their
1800 * intended recipients. We need to do this before updating
1801 * w_remote_GP.get so that we don't allocate the same message
1802 * queue entries prematurely (see xpc_allocate_msg()).
1804 if (atomic_read(&ch->n_to_notify) > 0) {
1806 * Notify senders that messages sent have been
1807 * received and delivered by the other side.
1809 xpc_notify_senders_sn2(ch, xpMsgDelivered,
1810 ch_sn2->remote_GP.get);
1814 * Clear msg->flags in previously sent messages, so that
1815 * they're ready for xpc_allocate_msg().
1817 xpc_clear_local_msgqueue_flags_sn2(ch);
1819 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1821 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1822 "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1823 ch->number);
1826 * If anyone was waiting for message queue entries to become
1827 * available, wake them up.
1829 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1830 wake_up(&ch->msg_allocate_wq);
1834 * Now check for newly sent messages by the other side. (The remote
1835 * PUT value will have changed since we last looked at it.)
1838 if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1840 * Clear msg->flags in previously received messages, so that
1841 * they're ready for xpc_get_deliverable_payload_sn2().
1843 xpc_clear_remote_msgqueue_flags_sn2(ch);
1845 smp_wmb(); /* ensure flags have been cleared before bte_copy */
1846 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1848 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1849 "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1850 ch->number);
1852 npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1853 if (npayloads_sent > 0) {
1854 dev_dbg(xpc_chan, "msgs waiting to be copied and "
1855 "delivered=%d, partid=%d, channel=%d\n",
1856 npayloads_sent, ch->partid, ch->number);
1858 if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1859 xpc_activate_kthreads(ch, npayloads_sent);
1863 xpc_msgqueue_deref(ch);
1866 static struct xpc_msg_sn2 *
1867 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1869 struct xpc_partition *part = &xpc_partitions[ch->partid];
1870 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1871 unsigned long remote_msg_pa;
1872 struct xpc_msg_sn2 *msg;
1873 u32 msg_index;
1874 u32 nmsgs;
1875 u64 msg_offset;
1876 enum xp_retval ret;
1878 if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1879 /* we were interrupted by a signal */
1880 return NULL;
1883 while (get >= ch_sn2->next_msg_to_pull) {
1885 /* pull as many messages as are ready and able to be pulled */
1887 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1889 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1890 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1891 if (msg_index + nmsgs > ch->remote_nentries) {
1892 /* ignore the ones that wrap the msg queue for now */
1893 nmsgs = ch->remote_nentries - msg_index;
1896 msg_offset = msg_index * ch->entry_size;
1897 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1898 msg_offset);
1899 remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1901 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1902 nmsgs * ch->entry_size);
1903 if (ret != xpSuccess) {
1905 dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1906 " msg %ld from partition %d, channel=%d, "
1907 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1908 ch->partid, ch->number, ret);
1910 XPC_DEACTIVATE_PARTITION(part, ret);
1912 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1913 return NULL;
1916 ch_sn2->next_msg_to_pull += nmsgs;
1919 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1921 /* return the message we were looking for */
1922 msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1923 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1925 return msg;
1929 * Get the next deliverable message's payload.
1931 static void *
1932 xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1934 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1935 struct xpc_msg_sn2 *msg;
1936 void *payload = NULL;
1937 s64 get;
1939 do {
1940 if (ch->flags & XPC_C_DISCONNECTING)
1941 break;
1943 get = ch_sn2->w_local_GP.get;
1944 smp_rmb(); /* guarantee that .get loads before .put */
1945 if (get == ch_sn2->w_remote_GP.put)
1946 break;
1948 /* There are messages waiting to be pulled and delivered.
1949 * We need to try to secure one for ourselves. We'll do this
1950 * by trying to increment w_local_GP.get and hope that no one
1951 * else beats us to it. If they do, we'll we'll simply have
1952 * to try again for the next one.
1955 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1956 /* we got the entry referenced by get */
1958 dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
1959 "partid=%d, channel=%d\n", get + 1,
1960 ch->partid, ch->number);
1962 /* pull the message from the remote partition */
1964 msg = xpc_pull_remote_msg_sn2(ch, get);
1966 if (msg != NULL) {
1967 DBUG_ON(msg->number != get);
1968 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
1969 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1971 payload = &msg->payload;
1973 break;
1976 } while (1);
1978 return payload;
1982 * Now we actually send the messages that are ready to be sent by advancing
1983 * the local message queue's Put value and then send a chctl msgrequest to the
1984 * recipient partition.
1986 static void
1987 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
1989 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1990 struct xpc_msg_sn2 *msg;
1991 s64 put = initial_put + 1;
1992 int send_msgrequest = 0;
1994 while (1) {
1996 while (1) {
1997 if (put == ch_sn2->w_local_GP.put)
1998 break;
2000 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2001 local_msgqueue + (put %
2002 ch->local_nentries) *
2003 ch->entry_size);
2005 if (!(msg->flags & XPC_M_SN2_READY))
2006 break;
2008 put++;
2011 if (put == initial_put) {
2012 /* nothing's changed */
2013 break;
2016 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2017 initial_put) {
2018 /* someone else beat us to it */
2019 DBUG_ON(ch_sn2->local_GP->put < initial_put);
2020 break;
2023 /* we just set the new value of local_GP->put */
2025 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2026 "channel=%d\n", put, ch->partid, ch->number);
2028 send_msgrequest = 1;
2031 * We need to ensure that the message referenced by
2032 * local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2033 * equals w_local_GP.put, so we'll go have a look.
2035 initial_put = put;
2038 if (send_msgrequest)
2039 xpc_send_chctl_msgrequest_sn2(ch);
2043 * Allocate an entry for a message from the message queue associated with the
2044 * specified channel.
2046 static enum xp_retval
2047 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2048 struct xpc_msg_sn2 **address_of_msg)
2050 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2051 struct xpc_msg_sn2 *msg;
2052 enum xp_retval ret;
2053 s64 put;
2056 * Get the next available message entry from the local message queue.
2057 * If none are available, we'll make sure that we grab the latest
2058 * GP values.
2060 ret = xpTimeout;
2062 while (1) {
2064 put = ch_sn2->w_local_GP.put;
2065 smp_rmb(); /* guarantee that .put loads before .get */
2066 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2068 /* There are available message entries. We need to try
2069 * to secure one for ourselves. We'll do this by trying
2070 * to increment w_local_GP.put as long as someone else
2071 * doesn't beat us to it. If they do, we'll have to
2072 * try again.
2074 if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2075 put) {
2076 /* we got the entry referenced by put */
2077 break;
2079 continue; /* try again */
2083 * There aren't any available msg entries at this time.
2085 * In waiting for a message entry to become available,
2086 * we set a timeout in case the other side is not sending
2087 * completion interrupts. This lets us fake a notify IRQ
2088 * that will cause the notify IRQ handler to fetch the latest
2089 * GP values as if an interrupt was sent by the other side.
2091 if (ret == xpTimeout)
2092 xpc_send_chctl_local_msgrequest_sn2(ch);
2094 if (flags & XPC_NOWAIT)
2095 return xpNoWait;
2097 ret = xpc_allocate_msg_wait(ch);
2098 if (ret != xpInterrupted && ret != xpTimeout)
2099 return ret;
2102 /* get the message's address and initialize it */
2103 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2104 (put % ch->local_nentries) *
2105 ch->entry_size);
2107 DBUG_ON(msg->flags != 0);
2108 msg->number = put;
2110 dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2111 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2112 (void *)msg, msg->number, ch->partid, ch->number);
2114 *address_of_msg = msg;
2115 return xpSuccess;
2119 * Common code that does the actual sending of the message by advancing the
2120 * local message queue's Put value and sends a chctl msgrequest to the
2121 * partition the message is being sent to.
2123 static enum xp_retval
2124 xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2125 u16 payload_size, u8 notify_type, xpc_notify_func func,
2126 void *key)
2128 enum xp_retval ret = xpSuccess;
2129 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2130 struct xpc_msg_sn2 *msg = msg;
2131 struct xpc_notify_sn2 *notify = notify;
2132 s64 msg_number;
2133 s64 put;
2135 DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2137 if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2138 return xpPayloadTooBig;
2140 xpc_msgqueue_ref(ch);
2142 if (ch->flags & XPC_C_DISCONNECTING) {
2143 ret = ch->reason;
2144 goto out_1;
2146 if (!(ch->flags & XPC_C_CONNECTED)) {
2147 ret = xpNotConnected;
2148 goto out_1;
2151 ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2152 if (ret != xpSuccess)
2153 goto out_1;
2155 msg_number = msg->number;
2157 if (notify_type != 0) {
2159 * Tell the remote side to send an ACK interrupt when the
2160 * message has been delivered.
2162 msg->flags |= XPC_M_SN2_INTERRUPT;
2164 atomic_inc(&ch->n_to_notify);
2166 notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2167 notify->func = func;
2168 notify->key = key;
2169 notify->type = notify_type;
2171 /* ??? Is a mb() needed here? */
2173 if (ch->flags & XPC_C_DISCONNECTING) {
2175 * An error occurred between our last error check and
2176 * this one. We will try to clear the type field from
2177 * the notify entry. If we succeed then
2178 * xpc_disconnect_channel() didn't already process
2179 * the notify entry.
2181 if (cmpxchg(&notify->type, notify_type, 0) ==
2182 notify_type) {
2183 atomic_dec(&ch->n_to_notify);
2184 ret = ch->reason;
2186 goto out_1;
2190 memcpy(&msg->payload, payload, payload_size);
2192 msg->flags |= XPC_M_SN2_READY;
2195 * The preceding store of msg->flags must occur before the following
2196 * load of local_GP->put.
2198 smp_mb();
2200 /* see if the message is next in line to be sent, if so send it */
2202 put = ch_sn2->local_GP->put;
2203 if (put == msg_number)
2204 xpc_send_msgs_sn2(ch, put);
2206 out_1:
2207 xpc_msgqueue_deref(ch);
2208 return ret;
2212 * Now we actually acknowledge the messages that have been delivered and ack'd
2213 * by advancing the cached remote message queue's Get value and if requested
2214 * send a chctl msgrequest to the message sender's partition.
2216 * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2217 * that sent the message.
2219 static void
2220 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2222 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2223 struct xpc_msg_sn2 *msg;
2224 s64 get = initial_get + 1;
2225 int send_msgrequest = 0;
2227 while (1) {
2229 while (1) {
2230 if (get == ch_sn2->w_local_GP.get)
2231 break;
2233 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2234 remote_msgqueue + (get %
2235 ch->remote_nentries) *
2236 ch->entry_size);
2238 if (!(msg->flags & XPC_M_SN2_DONE))
2239 break;
2241 msg_flags |= msg->flags;
2242 get++;
2245 if (get == initial_get) {
2246 /* nothing's changed */
2247 break;
2250 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2251 initial_get) {
2252 /* someone else beat us to it */
2253 DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2254 break;
2257 /* we just set the new value of local_GP->get */
2259 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2260 "channel=%d\n", get, ch->partid, ch->number);
2262 send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2265 * We need to ensure that the message referenced by
2266 * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2267 * equals w_local_GP.get, so we'll go have a look.
2269 initial_get = get;
2272 if (send_msgrequest)
2273 xpc_send_chctl_msgrequest_sn2(ch);
2276 static void
2277 xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2279 struct xpc_msg_sn2 *msg;
2280 s64 msg_number;
2281 s64 get;
2283 msg = container_of(payload, struct xpc_msg_sn2, payload);
2284 msg_number = msg->number;
2286 dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2287 (void *)msg, msg_number, ch->partid, ch->number);
2289 DBUG_ON((((u64)msg - (u64)ch->sn.sn2.remote_msgqueue) / ch->entry_size) !=
2290 msg_number % ch->remote_nentries);
2291 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2292 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2294 msg->flags |= XPC_M_SN2_DONE;
2297 * The preceding store of msg->flags must occur before the following
2298 * load of local_GP->get.
2300 smp_mb();
2303 * See if this message is next in line to be acknowledged as having
2304 * been delivered.
2306 get = ch->sn.sn2.local_GP->get;
2307 if (get == msg_number)
2308 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2312 xpc_init_sn2(void)
2314 int ret;
2315 size_t buf_size;
2317 xpc_setup_partitions_sn = xpc_setup_partitions_sn_sn2;
2318 xpc_get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2;
2319 xpc_setup_rsvd_page_sn = xpc_setup_rsvd_page_sn_sn2;
2320 xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2321 xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2322 xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2323 xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2324 xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2325 xpc_get_remote_heartbeat = xpc_get_remote_heartbeat_sn2;
2327 xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2328 xpc_request_partition_reactivation =
2329 xpc_request_partition_reactivation_sn2;
2330 xpc_request_partition_deactivation =
2331 xpc_request_partition_deactivation_sn2;
2332 xpc_cancel_partition_deactivation_request =
2333 xpc_cancel_partition_deactivation_request_sn2;
2335 xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2336 xpc_setup_ch_structures_sn = xpc_setup_ch_structures_sn_sn2;
2337 xpc_teardown_ch_structures_sn = xpc_teardown_ch_structures_sn_sn2;
2338 xpc_make_first_contact = xpc_make_first_contact_sn2;
2340 xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2;
2341 xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2;
2342 xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2;
2343 xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2;
2344 xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2;
2346 xpc_save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2;
2348 xpc_setup_msg_structures = xpc_setup_msg_structures_sn2;
2349 xpc_teardown_msg_structures = xpc_teardown_msg_structures_sn2;
2351 xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2352 xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2;
2353 xpc_n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2;
2354 xpc_get_deliverable_payload = xpc_get_deliverable_payload_sn2;
2356 xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2357 xpc_indicate_partition_disengaged =
2358 xpc_indicate_partition_disengaged_sn2;
2359 xpc_partition_engaged = xpc_partition_engaged_sn2;
2360 xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2361 xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2363 xpc_send_payload = xpc_send_payload_sn2;
2364 xpc_received_payload = xpc_received_payload_sn2;
2366 if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2367 dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2368 "larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2369 return -E2BIG;
2372 buf_size = max(XPC_RP_VARS_SIZE,
2373 XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2374 xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2375 GFP_KERNEL,
2376 &xpc_remote_copy_buffer_base_sn2);
2377 if (xpc_remote_copy_buffer_sn2 == NULL) {
2378 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2379 return -ENOMEM;
2382 /* open up protections for IPI and [potentially] amo operations */
2383 xpc_allow_IPI_ops_sn2();
2384 xpc_allow_amo_ops_shub_wars_1_1_sn2();
2387 * This is safe to do before the xpc_hb_checker thread has started
2388 * because the handler releases a wait queue. If an interrupt is
2389 * received before the thread is waiting, it will not go to sleep,
2390 * but rather immediately process the interrupt.
2392 ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2393 "xpc hb", NULL);
2394 if (ret != 0) {
2395 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2396 "errno=%d\n", -ret);
2397 xpc_disallow_IPI_ops_sn2();
2398 kfree(xpc_remote_copy_buffer_base_sn2);
2400 return ret;
2403 void
2404 xpc_exit_sn2(void)
2406 free_irq(SGI_XPC_ACTIVATE, NULL);
2407 xpc_disallow_IPI_ops_sn2();
2408 kfree(xpc_remote_copy_buffer_base_sn2);