mm: create /sys/kernel/mm
[linux-2.6/mini2440.git] / mm / page_alloc.c
blobe43aae135b38e3972bd3c06691a9ce8777c56f47
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
55 * Array of node states.
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
68 EXPORT_SYMBOL(node_states);
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
79 static void __free_pages_ok(struct page *page, unsigned int order);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
101 #endif
105 EXPORT_SYMBOL(totalram_pages);
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
121 int min_free_kbytes = 1024;
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
170 int page_group_by_mobility_disabled __read_mostly;
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
193 return ret;
196 static int page_is_consistent(struct zone *zone, struct page *page)
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
203 return 1;
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone *zone, struct page *page)
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
215 return 0;
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
220 return 0;
222 #endif
224 static void bad_page(struct page *page)
226 void *pc = page_get_page_cgroup(page);
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page *page)
264 __free_pages_ok(page, compound_order(page));
267 static void prep_compound_page(struct page *page, unsigned long order)
269 int i;
270 int nr_pages = 1 << order;
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
274 __SetPageHead(page);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
278 __SetPageTail(p);
279 p->first_page = page;
283 static void destroy_compound_page(struct page *page, unsigned long order)
285 int i;
286 int nr_pages = 1 << order;
288 if (unlikely(compound_order(page) != order))
289 bad_page(page);
291 if (unlikely(!PageHead(page)))
292 bad_page(page);
293 __ClearPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
297 if (unlikely(!PageTail(p) |
298 (p->first_page != page)))
299 bad_page(page);
300 __ClearPageTail(p);
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
306 int i;
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
317 static inline void set_page_order(struct page *page, int order)
319 set_page_private(page, order);
320 __SetPageBuddy(page);
323 static inline void rmv_page_order(struct page *page)
325 __ClearPageBuddy(page);
326 set_page_private(page, 0);
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 * B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 * P = B & ~(1 << O)
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
349 unsigned long buddy_idx = page_idx ^ (1 << order);
351 return page + (buddy_idx - page_idx);
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
357 return (page_idx & ~(1 << order));
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371 * For recording page's order, we use page_private(page).
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 int order)
376 if (!pfn_valid_within(page_to_pfn(buddy)))
377 return 0;
379 if (page_zone_id(page) != page_zone_id(buddy))
380 return 0;
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
384 return 1;
386 return 0;
390 * Freeing function for a buddy system allocator.
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
410 * -- wli
413 static inline void __free_one_page(struct page *page,
414 struct zone *zone, unsigned int order)
416 unsigned long page_idx;
417 int order_size = 1 << order;
418 int migratetype = get_pageblock_migratetype(page);
420 if (unlikely(PageCompound(page)))
421 destroy_compound_page(page, order);
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
431 struct page *buddy;
433 buddy = __page_find_buddy(page, page_idx, order);
434 if (!page_is_buddy(page, buddy, order))
435 break;
437 /* Our buddy is free, merge with it and move up one order. */
438 list_del(&buddy->lru);
439 zone->free_area[order].nr_free--;
440 rmv_page_order(buddy);
441 combined_idx = __find_combined_index(page_idx, order);
442 page = page + (combined_idx - page_idx);
443 page_idx = combined_idx;
444 order++;
446 set_page_order(page, order);
447 list_add(&page->lru,
448 &zone->free_area[order].free_list[migratetype]);
449 zone->free_area[order].nr_free++;
452 static inline int free_pages_check(struct page *page)
454 if (unlikely(page_mapcount(page) |
455 (page->mapping != NULL) |
456 (page_get_page_cgroup(page) != NULL) |
457 (page_count(page) != 0) |
458 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
459 bad_page(page);
460 if (PageDirty(page))
461 __ClearPageDirty(page);
463 * For now, we report if PG_reserved was found set, but do not
464 * clear it, and do not free the page. But we shall soon need
465 * to do more, for when the ZERO_PAGE count wraps negative.
467 return PageReserved(page);
471 * Frees a list of pages.
472 * Assumes all pages on list are in same zone, and of same order.
473 * count is the number of pages to free.
475 * If the zone was previously in an "all pages pinned" state then look to
476 * see if this freeing clears that state.
478 * And clear the zone's pages_scanned counter, to hold off the "all pages are
479 * pinned" detection logic.
481 static void free_pages_bulk(struct zone *zone, int count,
482 struct list_head *list, int order)
484 spin_lock(&zone->lock);
485 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
486 zone->pages_scanned = 0;
487 while (count--) {
488 struct page *page;
490 VM_BUG_ON(list_empty(list));
491 page = list_entry(list->prev, struct page, lru);
492 /* have to delete it as __free_one_page list manipulates */
493 list_del(&page->lru);
494 __free_one_page(page, zone, order);
496 spin_unlock(&zone->lock);
499 static void free_one_page(struct zone *zone, struct page *page, int order)
501 spin_lock(&zone->lock);
502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 zone->pages_scanned = 0;
504 __free_one_page(page, zone, order);
505 spin_unlock(&zone->lock);
508 static void __free_pages_ok(struct page *page, unsigned int order)
510 unsigned long flags;
511 int i;
512 int reserved = 0;
514 for (i = 0 ; i < (1 << order) ; ++i)
515 reserved += free_pages_check(page + i);
516 if (reserved)
517 return;
519 if (!PageHighMem(page)) {
520 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
521 debug_check_no_obj_freed(page_address(page),
522 PAGE_SIZE << order);
524 arch_free_page(page, order);
525 kernel_map_pages(page, 1 << order, 0);
527 local_irq_save(flags);
528 __count_vm_events(PGFREE, 1 << order);
529 free_one_page(page_zone(page), page, order);
530 local_irq_restore(flags);
534 * permit the bootmem allocator to evade page validation on high-order frees
536 void __free_pages_bootmem(struct page *page, unsigned int order)
538 if (order == 0) {
539 __ClearPageReserved(page);
540 set_page_count(page, 0);
541 set_page_refcounted(page);
542 __free_page(page);
543 } else {
544 int loop;
546 prefetchw(page);
547 for (loop = 0; loop < BITS_PER_LONG; loop++) {
548 struct page *p = &page[loop];
550 if (loop + 1 < BITS_PER_LONG)
551 prefetchw(p + 1);
552 __ClearPageReserved(p);
553 set_page_count(p, 0);
556 set_page_refcounted(page);
557 __free_pages(page, order);
563 * The order of subdivision here is critical for the IO subsystem.
564 * Please do not alter this order without good reasons and regression
565 * testing. Specifically, as large blocks of memory are subdivided,
566 * the order in which smaller blocks are delivered depends on the order
567 * they're subdivided in this function. This is the primary factor
568 * influencing the order in which pages are delivered to the IO
569 * subsystem according to empirical testing, and this is also justified
570 * by considering the behavior of a buddy system containing a single
571 * large block of memory acted on by a series of small allocations.
572 * This behavior is a critical factor in sglist merging's success.
574 * -- wli
576 static inline void expand(struct zone *zone, struct page *page,
577 int low, int high, struct free_area *area,
578 int migratetype)
580 unsigned long size = 1 << high;
582 while (high > low) {
583 area--;
584 high--;
585 size >>= 1;
586 VM_BUG_ON(bad_range(zone, &page[size]));
587 list_add(&page[size].lru, &area->free_list[migratetype]);
588 area->nr_free++;
589 set_page_order(&page[size], high);
594 * This page is about to be returned from the page allocator
596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
598 if (unlikely(page_mapcount(page) |
599 (page->mapping != NULL) |
600 (page_get_page_cgroup(page) != NULL) |
601 (page_count(page) != 0) |
602 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
603 bad_page(page);
606 * For now, we report if PG_reserved was found set, but do not
607 * clear it, and do not allocate the page: as a safety net.
609 if (PageReserved(page))
610 return 1;
612 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
613 1 << PG_referenced | 1 << PG_arch_1 |
614 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
615 set_page_private(page, 0);
616 set_page_refcounted(page);
618 arch_alloc_page(page, order);
619 kernel_map_pages(page, 1 << order, 1);
621 if (gfp_flags & __GFP_ZERO)
622 prep_zero_page(page, order, gfp_flags);
624 if (order && (gfp_flags & __GFP_COMP))
625 prep_compound_page(page, order);
627 return 0;
631 * Go through the free lists for the given migratetype and remove
632 * the smallest available page from the freelists
634 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
635 int migratetype)
637 unsigned int current_order;
638 struct free_area * area;
639 struct page *page;
641 /* Find a page of the appropriate size in the preferred list */
642 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
643 area = &(zone->free_area[current_order]);
644 if (list_empty(&area->free_list[migratetype]))
645 continue;
647 page = list_entry(area->free_list[migratetype].next,
648 struct page, lru);
649 list_del(&page->lru);
650 rmv_page_order(page);
651 area->nr_free--;
652 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
653 expand(zone, page, order, current_order, area, migratetype);
654 return page;
657 return NULL;
662 * This array describes the order lists are fallen back to when
663 * the free lists for the desirable migrate type are depleted
665 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
666 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
667 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
668 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
669 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
673 * Move the free pages in a range to the free lists of the requested type.
674 * Note that start_page and end_pages are not aligned on a pageblock
675 * boundary. If alignment is required, use move_freepages_block()
677 int move_freepages(struct zone *zone,
678 struct page *start_page, struct page *end_page,
679 int migratetype)
681 struct page *page;
682 unsigned long order;
683 int pages_moved = 0;
685 #ifndef CONFIG_HOLES_IN_ZONE
687 * page_zone is not safe to call in this context when
688 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689 * anyway as we check zone boundaries in move_freepages_block().
690 * Remove at a later date when no bug reports exist related to
691 * grouping pages by mobility
693 BUG_ON(page_zone(start_page) != page_zone(end_page));
694 #endif
696 for (page = start_page; page <= end_page;) {
697 if (!pfn_valid_within(page_to_pfn(page))) {
698 page++;
699 continue;
702 if (!PageBuddy(page)) {
703 page++;
704 continue;
707 order = page_order(page);
708 list_del(&page->lru);
709 list_add(&page->lru,
710 &zone->free_area[order].free_list[migratetype]);
711 page += 1 << order;
712 pages_moved += 1 << order;
715 return pages_moved;
718 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
720 unsigned long start_pfn, end_pfn;
721 struct page *start_page, *end_page;
723 start_pfn = page_to_pfn(page);
724 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
725 start_page = pfn_to_page(start_pfn);
726 end_page = start_page + pageblock_nr_pages - 1;
727 end_pfn = start_pfn + pageblock_nr_pages - 1;
729 /* Do not cross zone boundaries */
730 if (start_pfn < zone->zone_start_pfn)
731 start_page = page;
732 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
733 return 0;
735 return move_freepages(zone, start_page, end_page, migratetype);
738 /* Remove an element from the buddy allocator from the fallback list */
739 static struct page *__rmqueue_fallback(struct zone *zone, int order,
740 int start_migratetype)
742 struct free_area * area;
743 int current_order;
744 struct page *page;
745 int migratetype, i;
747 /* Find the largest possible block of pages in the other list */
748 for (current_order = MAX_ORDER-1; current_order >= order;
749 --current_order) {
750 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
751 migratetype = fallbacks[start_migratetype][i];
753 /* MIGRATE_RESERVE handled later if necessary */
754 if (migratetype == MIGRATE_RESERVE)
755 continue;
757 area = &(zone->free_area[current_order]);
758 if (list_empty(&area->free_list[migratetype]))
759 continue;
761 page = list_entry(area->free_list[migratetype].next,
762 struct page, lru);
763 area->nr_free--;
766 * If breaking a large block of pages, move all free
767 * pages to the preferred allocation list. If falling
768 * back for a reclaimable kernel allocation, be more
769 * agressive about taking ownership of free pages
771 if (unlikely(current_order >= (pageblock_order >> 1)) ||
772 start_migratetype == MIGRATE_RECLAIMABLE) {
773 unsigned long pages;
774 pages = move_freepages_block(zone, page,
775 start_migratetype);
777 /* Claim the whole block if over half of it is free */
778 if (pages >= (1 << (pageblock_order-1)))
779 set_pageblock_migratetype(page,
780 start_migratetype);
782 migratetype = start_migratetype;
785 /* Remove the page from the freelists */
786 list_del(&page->lru);
787 rmv_page_order(page);
788 __mod_zone_page_state(zone, NR_FREE_PAGES,
789 -(1UL << order));
791 if (current_order == pageblock_order)
792 set_pageblock_migratetype(page,
793 start_migratetype);
795 expand(zone, page, order, current_order, area, migratetype);
796 return page;
800 /* Use MIGRATE_RESERVE rather than fail an allocation */
801 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
805 * Do the hard work of removing an element from the buddy allocator.
806 * Call me with the zone->lock already held.
808 static struct page *__rmqueue(struct zone *zone, unsigned int order,
809 int migratetype)
811 struct page *page;
813 page = __rmqueue_smallest(zone, order, migratetype);
815 if (unlikely(!page))
816 page = __rmqueue_fallback(zone, order, migratetype);
818 return page;
822 * Obtain a specified number of elements from the buddy allocator, all under
823 * a single hold of the lock, for efficiency. Add them to the supplied list.
824 * Returns the number of new pages which were placed at *list.
826 static int rmqueue_bulk(struct zone *zone, unsigned int order,
827 unsigned long count, struct list_head *list,
828 int migratetype)
830 int i;
832 spin_lock(&zone->lock);
833 for (i = 0; i < count; ++i) {
834 struct page *page = __rmqueue(zone, order, migratetype);
835 if (unlikely(page == NULL))
836 break;
839 * Split buddy pages returned by expand() are received here
840 * in physical page order. The page is added to the callers and
841 * list and the list head then moves forward. From the callers
842 * perspective, the linked list is ordered by page number in
843 * some conditions. This is useful for IO devices that can
844 * merge IO requests if the physical pages are ordered
845 * properly.
847 list_add(&page->lru, list);
848 set_page_private(page, migratetype);
849 list = &page->lru;
851 spin_unlock(&zone->lock);
852 return i;
855 #ifdef CONFIG_NUMA
857 * Called from the vmstat counter updater to drain pagesets of this
858 * currently executing processor on remote nodes after they have
859 * expired.
861 * Note that this function must be called with the thread pinned to
862 * a single processor.
864 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
866 unsigned long flags;
867 int to_drain;
869 local_irq_save(flags);
870 if (pcp->count >= pcp->batch)
871 to_drain = pcp->batch;
872 else
873 to_drain = pcp->count;
874 free_pages_bulk(zone, to_drain, &pcp->list, 0);
875 pcp->count -= to_drain;
876 local_irq_restore(flags);
878 #endif
881 * Drain pages of the indicated processor.
883 * The processor must either be the current processor and the
884 * thread pinned to the current processor or a processor that
885 * is not online.
887 static void drain_pages(unsigned int cpu)
889 unsigned long flags;
890 struct zone *zone;
892 for_each_zone(zone) {
893 struct per_cpu_pageset *pset;
894 struct per_cpu_pages *pcp;
896 if (!populated_zone(zone))
897 continue;
899 pset = zone_pcp(zone, cpu);
901 pcp = &pset->pcp;
902 local_irq_save(flags);
903 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
904 pcp->count = 0;
905 local_irq_restore(flags);
910 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
912 void drain_local_pages(void *arg)
914 drain_pages(smp_processor_id());
918 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
920 void drain_all_pages(void)
922 on_each_cpu(drain_local_pages, NULL, 1);
925 #ifdef CONFIG_HIBERNATION
927 void mark_free_pages(struct zone *zone)
929 unsigned long pfn, max_zone_pfn;
930 unsigned long flags;
931 int order, t;
932 struct list_head *curr;
934 if (!zone->spanned_pages)
935 return;
937 spin_lock_irqsave(&zone->lock, flags);
939 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
940 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
941 if (pfn_valid(pfn)) {
942 struct page *page = pfn_to_page(pfn);
944 if (!swsusp_page_is_forbidden(page))
945 swsusp_unset_page_free(page);
948 for_each_migratetype_order(order, t) {
949 list_for_each(curr, &zone->free_area[order].free_list[t]) {
950 unsigned long i;
952 pfn = page_to_pfn(list_entry(curr, struct page, lru));
953 for (i = 0; i < (1UL << order); i++)
954 swsusp_set_page_free(pfn_to_page(pfn + i));
957 spin_unlock_irqrestore(&zone->lock, flags);
959 #endif /* CONFIG_PM */
962 * Free a 0-order page
964 static void free_hot_cold_page(struct page *page, int cold)
966 struct zone *zone = page_zone(page);
967 struct per_cpu_pages *pcp;
968 unsigned long flags;
970 if (PageAnon(page))
971 page->mapping = NULL;
972 if (free_pages_check(page))
973 return;
975 if (!PageHighMem(page)) {
976 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
977 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
979 arch_free_page(page, 0);
980 kernel_map_pages(page, 1, 0);
982 pcp = &zone_pcp(zone, get_cpu())->pcp;
983 local_irq_save(flags);
984 __count_vm_event(PGFREE);
985 if (cold)
986 list_add_tail(&page->lru, &pcp->list);
987 else
988 list_add(&page->lru, &pcp->list);
989 set_page_private(page, get_pageblock_migratetype(page));
990 pcp->count++;
991 if (pcp->count >= pcp->high) {
992 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
993 pcp->count -= pcp->batch;
995 local_irq_restore(flags);
996 put_cpu();
999 void free_hot_page(struct page *page)
1001 free_hot_cold_page(page, 0);
1004 void free_cold_page(struct page *page)
1006 free_hot_cold_page(page, 1);
1010 * split_page takes a non-compound higher-order page, and splits it into
1011 * n (1<<order) sub-pages: page[0..n]
1012 * Each sub-page must be freed individually.
1014 * Note: this is probably too low level an operation for use in drivers.
1015 * Please consult with lkml before using this in your driver.
1017 void split_page(struct page *page, unsigned int order)
1019 int i;
1021 VM_BUG_ON(PageCompound(page));
1022 VM_BUG_ON(!page_count(page));
1023 for (i = 1; i < (1 << order); i++)
1024 set_page_refcounted(page + i);
1028 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1029 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1030 * or two.
1032 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1033 struct zone *zone, int order, gfp_t gfp_flags)
1035 unsigned long flags;
1036 struct page *page;
1037 int cold = !!(gfp_flags & __GFP_COLD);
1038 int cpu;
1039 int migratetype = allocflags_to_migratetype(gfp_flags);
1041 again:
1042 cpu = get_cpu();
1043 if (likely(order == 0)) {
1044 struct per_cpu_pages *pcp;
1046 pcp = &zone_pcp(zone, cpu)->pcp;
1047 local_irq_save(flags);
1048 if (!pcp->count) {
1049 pcp->count = rmqueue_bulk(zone, 0,
1050 pcp->batch, &pcp->list, migratetype);
1051 if (unlikely(!pcp->count))
1052 goto failed;
1055 /* Find a page of the appropriate migrate type */
1056 if (cold) {
1057 list_for_each_entry_reverse(page, &pcp->list, lru)
1058 if (page_private(page) == migratetype)
1059 break;
1060 } else {
1061 list_for_each_entry(page, &pcp->list, lru)
1062 if (page_private(page) == migratetype)
1063 break;
1066 /* Allocate more to the pcp list if necessary */
1067 if (unlikely(&page->lru == &pcp->list)) {
1068 pcp->count += rmqueue_bulk(zone, 0,
1069 pcp->batch, &pcp->list, migratetype);
1070 page = list_entry(pcp->list.next, struct page, lru);
1073 list_del(&page->lru);
1074 pcp->count--;
1075 } else {
1076 spin_lock_irqsave(&zone->lock, flags);
1077 page = __rmqueue(zone, order, migratetype);
1078 spin_unlock(&zone->lock);
1079 if (!page)
1080 goto failed;
1083 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1084 zone_statistics(preferred_zone, zone);
1085 local_irq_restore(flags);
1086 put_cpu();
1088 VM_BUG_ON(bad_range(zone, page));
1089 if (prep_new_page(page, order, gfp_flags))
1090 goto again;
1091 return page;
1093 failed:
1094 local_irq_restore(flags);
1095 put_cpu();
1096 return NULL;
1099 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1100 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1101 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1102 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1103 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1104 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1105 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1107 #ifdef CONFIG_FAIL_PAGE_ALLOC
1109 static struct fail_page_alloc_attr {
1110 struct fault_attr attr;
1112 u32 ignore_gfp_highmem;
1113 u32 ignore_gfp_wait;
1114 u32 min_order;
1116 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1118 struct dentry *ignore_gfp_highmem_file;
1119 struct dentry *ignore_gfp_wait_file;
1120 struct dentry *min_order_file;
1122 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1124 } fail_page_alloc = {
1125 .attr = FAULT_ATTR_INITIALIZER,
1126 .ignore_gfp_wait = 1,
1127 .ignore_gfp_highmem = 1,
1128 .min_order = 1,
1131 static int __init setup_fail_page_alloc(char *str)
1133 return setup_fault_attr(&fail_page_alloc.attr, str);
1135 __setup("fail_page_alloc=", setup_fail_page_alloc);
1137 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1139 if (order < fail_page_alloc.min_order)
1140 return 0;
1141 if (gfp_mask & __GFP_NOFAIL)
1142 return 0;
1143 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1144 return 0;
1145 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1146 return 0;
1148 return should_fail(&fail_page_alloc.attr, 1 << order);
1151 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1153 static int __init fail_page_alloc_debugfs(void)
1155 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1156 struct dentry *dir;
1157 int err;
1159 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1160 "fail_page_alloc");
1161 if (err)
1162 return err;
1163 dir = fail_page_alloc.attr.dentries.dir;
1165 fail_page_alloc.ignore_gfp_wait_file =
1166 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1167 &fail_page_alloc.ignore_gfp_wait);
1169 fail_page_alloc.ignore_gfp_highmem_file =
1170 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1171 &fail_page_alloc.ignore_gfp_highmem);
1172 fail_page_alloc.min_order_file =
1173 debugfs_create_u32("min-order", mode, dir,
1174 &fail_page_alloc.min_order);
1176 if (!fail_page_alloc.ignore_gfp_wait_file ||
1177 !fail_page_alloc.ignore_gfp_highmem_file ||
1178 !fail_page_alloc.min_order_file) {
1179 err = -ENOMEM;
1180 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1181 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1182 debugfs_remove(fail_page_alloc.min_order_file);
1183 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1186 return err;
1189 late_initcall(fail_page_alloc_debugfs);
1191 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1193 #else /* CONFIG_FAIL_PAGE_ALLOC */
1195 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1197 return 0;
1200 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1203 * Return 1 if free pages are above 'mark'. This takes into account the order
1204 * of the allocation.
1206 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1207 int classzone_idx, int alloc_flags)
1209 /* free_pages my go negative - that's OK */
1210 long min = mark;
1211 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1212 int o;
1214 if (alloc_flags & ALLOC_HIGH)
1215 min -= min / 2;
1216 if (alloc_flags & ALLOC_HARDER)
1217 min -= min / 4;
1219 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1220 return 0;
1221 for (o = 0; o < order; o++) {
1222 /* At the next order, this order's pages become unavailable */
1223 free_pages -= z->free_area[o].nr_free << o;
1225 /* Require fewer higher order pages to be free */
1226 min >>= 1;
1228 if (free_pages <= min)
1229 return 0;
1231 return 1;
1234 #ifdef CONFIG_NUMA
1236 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1237 * skip over zones that are not allowed by the cpuset, or that have
1238 * been recently (in last second) found to be nearly full. See further
1239 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1240 * that have to skip over a lot of full or unallowed zones.
1242 * If the zonelist cache is present in the passed in zonelist, then
1243 * returns a pointer to the allowed node mask (either the current
1244 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1246 * If the zonelist cache is not available for this zonelist, does
1247 * nothing and returns NULL.
1249 * If the fullzones BITMAP in the zonelist cache is stale (more than
1250 * a second since last zap'd) then we zap it out (clear its bits.)
1252 * We hold off even calling zlc_setup, until after we've checked the
1253 * first zone in the zonelist, on the theory that most allocations will
1254 * be satisfied from that first zone, so best to examine that zone as
1255 * quickly as we can.
1257 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1259 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1260 nodemask_t *allowednodes; /* zonelist_cache approximation */
1262 zlc = zonelist->zlcache_ptr;
1263 if (!zlc)
1264 return NULL;
1266 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1267 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1268 zlc->last_full_zap = jiffies;
1271 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1272 &cpuset_current_mems_allowed :
1273 &node_states[N_HIGH_MEMORY];
1274 return allowednodes;
1278 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1279 * if it is worth looking at further for free memory:
1280 * 1) Check that the zone isn't thought to be full (doesn't have its
1281 * bit set in the zonelist_cache fullzones BITMAP).
1282 * 2) Check that the zones node (obtained from the zonelist_cache
1283 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1284 * Return true (non-zero) if zone is worth looking at further, or
1285 * else return false (zero) if it is not.
1287 * This check -ignores- the distinction between various watermarks,
1288 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1289 * found to be full for any variation of these watermarks, it will
1290 * be considered full for up to one second by all requests, unless
1291 * we are so low on memory on all allowed nodes that we are forced
1292 * into the second scan of the zonelist.
1294 * In the second scan we ignore this zonelist cache and exactly
1295 * apply the watermarks to all zones, even it is slower to do so.
1296 * We are low on memory in the second scan, and should leave no stone
1297 * unturned looking for a free page.
1299 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1300 nodemask_t *allowednodes)
1302 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1303 int i; /* index of *z in zonelist zones */
1304 int n; /* node that zone *z is on */
1306 zlc = zonelist->zlcache_ptr;
1307 if (!zlc)
1308 return 1;
1310 i = z - zonelist->_zonerefs;
1311 n = zlc->z_to_n[i];
1313 /* This zone is worth trying if it is allowed but not full */
1314 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1318 * Given 'z' scanning a zonelist, set the corresponding bit in
1319 * zlc->fullzones, so that subsequent attempts to allocate a page
1320 * from that zone don't waste time re-examining it.
1322 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1324 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1325 int i; /* index of *z in zonelist zones */
1327 zlc = zonelist->zlcache_ptr;
1328 if (!zlc)
1329 return;
1331 i = z - zonelist->_zonerefs;
1333 set_bit(i, zlc->fullzones);
1336 #else /* CONFIG_NUMA */
1338 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1340 return NULL;
1343 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1344 nodemask_t *allowednodes)
1346 return 1;
1349 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1352 #endif /* CONFIG_NUMA */
1355 * get_page_from_freelist goes through the zonelist trying to allocate
1356 * a page.
1358 static struct page *
1359 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1360 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1362 struct zoneref *z;
1363 struct page *page = NULL;
1364 int classzone_idx;
1365 struct zone *zone, *preferred_zone;
1366 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1367 int zlc_active = 0; /* set if using zonelist_cache */
1368 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1370 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1371 &preferred_zone);
1372 if (!preferred_zone)
1373 return NULL;
1375 classzone_idx = zone_idx(preferred_zone);
1377 zonelist_scan:
1379 * Scan zonelist, looking for a zone with enough free.
1380 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1382 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1383 high_zoneidx, nodemask) {
1384 if (NUMA_BUILD && zlc_active &&
1385 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1386 continue;
1387 if ((alloc_flags & ALLOC_CPUSET) &&
1388 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1389 goto try_next_zone;
1391 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1392 unsigned long mark;
1393 if (alloc_flags & ALLOC_WMARK_MIN)
1394 mark = zone->pages_min;
1395 else if (alloc_flags & ALLOC_WMARK_LOW)
1396 mark = zone->pages_low;
1397 else
1398 mark = zone->pages_high;
1399 if (!zone_watermark_ok(zone, order, mark,
1400 classzone_idx, alloc_flags)) {
1401 if (!zone_reclaim_mode ||
1402 !zone_reclaim(zone, gfp_mask, order))
1403 goto this_zone_full;
1407 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1408 if (page)
1409 break;
1410 this_zone_full:
1411 if (NUMA_BUILD)
1412 zlc_mark_zone_full(zonelist, z);
1413 try_next_zone:
1414 if (NUMA_BUILD && !did_zlc_setup) {
1415 /* we do zlc_setup after the first zone is tried */
1416 allowednodes = zlc_setup(zonelist, alloc_flags);
1417 zlc_active = 1;
1418 did_zlc_setup = 1;
1422 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1423 /* Disable zlc cache for second zonelist scan */
1424 zlc_active = 0;
1425 goto zonelist_scan;
1427 return page;
1431 * This is the 'heart' of the zoned buddy allocator.
1433 struct page *
1434 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1435 struct zonelist *zonelist, nodemask_t *nodemask)
1437 const gfp_t wait = gfp_mask & __GFP_WAIT;
1438 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1439 struct zoneref *z;
1440 struct zone *zone;
1441 struct page *page;
1442 struct reclaim_state reclaim_state;
1443 struct task_struct *p = current;
1444 int do_retry;
1445 int alloc_flags;
1446 unsigned long did_some_progress;
1447 unsigned long pages_reclaimed = 0;
1449 might_sleep_if(wait);
1451 if (should_fail_alloc_page(gfp_mask, order))
1452 return NULL;
1454 restart:
1455 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1457 if (unlikely(!z->zone)) {
1459 * Happens if we have an empty zonelist as a result of
1460 * GFP_THISNODE being used on a memoryless node
1462 return NULL;
1465 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1466 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1467 if (page)
1468 goto got_pg;
1471 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1472 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1473 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1474 * using a larger set of nodes after it has established that the
1475 * allowed per node queues are empty and that nodes are
1476 * over allocated.
1478 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1479 goto nopage;
1481 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1482 wakeup_kswapd(zone, order);
1485 * OK, we're below the kswapd watermark and have kicked background
1486 * reclaim. Now things get more complex, so set up alloc_flags according
1487 * to how we want to proceed.
1489 * The caller may dip into page reserves a bit more if the caller
1490 * cannot run direct reclaim, or if the caller has realtime scheduling
1491 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1492 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1494 alloc_flags = ALLOC_WMARK_MIN;
1495 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1496 alloc_flags |= ALLOC_HARDER;
1497 if (gfp_mask & __GFP_HIGH)
1498 alloc_flags |= ALLOC_HIGH;
1499 if (wait)
1500 alloc_flags |= ALLOC_CPUSET;
1503 * Go through the zonelist again. Let __GFP_HIGH and allocations
1504 * coming from realtime tasks go deeper into reserves.
1506 * This is the last chance, in general, before the goto nopage.
1507 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1508 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1510 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1511 high_zoneidx, alloc_flags);
1512 if (page)
1513 goto got_pg;
1515 /* This allocation should allow future memory freeing. */
1517 rebalance:
1518 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1519 && !in_interrupt()) {
1520 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1521 nofail_alloc:
1522 /* go through the zonelist yet again, ignoring mins */
1523 page = get_page_from_freelist(gfp_mask, nodemask, order,
1524 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1525 if (page)
1526 goto got_pg;
1527 if (gfp_mask & __GFP_NOFAIL) {
1528 congestion_wait(WRITE, HZ/50);
1529 goto nofail_alloc;
1532 goto nopage;
1535 /* Atomic allocations - we can't balance anything */
1536 if (!wait)
1537 goto nopage;
1539 cond_resched();
1541 /* We now go into synchronous reclaim */
1542 cpuset_memory_pressure_bump();
1543 p->flags |= PF_MEMALLOC;
1544 reclaim_state.reclaimed_slab = 0;
1545 p->reclaim_state = &reclaim_state;
1547 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1549 p->reclaim_state = NULL;
1550 p->flags &= ~PF_MEMALLOC;
1552 cond_resched();
1554 if (order != 0)
1555 drain_all_pages();
1557 if (likely(did_some_progress)) {
1558 page = get_page_from_freelist(gfp_mask, nodemask, order,
1559 zonelist, high_zoneidx, alloc_flags);
1560 if (page)
1561 goto got_pg;
1562 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1563 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1564 schedule_timeout_uninterruptible(1);
1565 goto restart;
1569 * Go through the zonelist yet one more time, keep
1570 * very high watermark here, this is only to catch
1571 * a parallel oom killing, we must fail if we're still
1572 * under heavy pressure.
1574 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1575 order, zonelist, high_zoneidx,
1576 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1577 if (page) {
1578 clear_zonelist_oom(zonelist, gfp_mask);
1579 goto got_pg;
1582 /* The OOM killer will not help higher order allocs so fail */
1583 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1584 clear_zonelist_oom(zonelist, gfp_mask);
1585 goto nopage;
1588 out_of_memory(zonelist, gfp_mask, order);
1589 clear_zonelist_oom(zonelist, gfp_mask);
1590 goto restart;
1594 * Don't let big-order allocations loop unless the caller explicitly
1595 * requests that. Wait for some write requests to complete then retry.
1597 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1598 * means __GFP_NOFAIL, but that may not be true in other
1599 * implementations.
1601 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1602 * specified, then we retry until we no longer reclaim any pages
1603 * (above), or we've reclaimed an order of pages at least as
1604 * large as the allocation's order. In both cases, if the
1605 * allocation still fails, we stop retrying.
1607 pages_reclaimed += did_some_progress;
1608 do_retry = 0;
1609 if (!(gfp_mask & __GFP_NORETRY)) {
1610 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1611 do_retry = 1;
1612 } else {
1613 if (gfp_mask & __GFP_REPEAT &&
1614 pages_reclaimed < (1 << order))
1615 do_retry = 1;
1617 if (gfp_mask & __GFP_NOFAIL)
1618 do_retry = 1;
1620 if (do_retry) {
1621 congestion_wait(WRITE, HZ/50);
1622 goto rebalance;
1625 nopage:
1626 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1627 printk(KERN_WARNING "%s: page allocation failure."
1628 " order:%d, mode:0x%x\n",
1629 p->comm, order, gfp_mask);
1630 dump_stack();
1631 show_mem();
1633 got_pg:
1634 return page;
1636 EXPORT_SYMBOL(__alloc_pages_internal);
1639 * Common helper functions.
1641 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1643 struct page * page;
1644 page = alloc_pages(gfp_mask, order);
1645 if (!page)
1646 return 0;
1647 return (unsigned long) page_address(page);
1650 EXPORT_SYMBOL(__get_free_pages);
1652 unsigned long get_zeroed_page(gfp_t gfp_mask)
1654 struct page * page;
1657 * get_zeroed_page() returns a 32-bit address, which cannot represent
1658 * a highmem page
1660 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1662 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1663 if (page)
1664 return (unsigned long) page_address(page);
1665 return 0;
1668 EXPORT_SYMBOL(get_zeroed_page);
1670 void __pagevec_free(struct pagevec *pvec)
1672 int i = pagevec_count(pvec);
1674 while (--i >= 0)
1675 free_hot_cold_page(pvec->pages[i], pvec->cold);
1678 void __free_pages(struct page *page, unsigned int order)
1680 if (put_page_testzero(page)) {
1681 if (order == 0)
1682 free_hot_page(page);
1683 else
1684 __free_pages_ok(page, order);
1688 EXPORT_SYMBOL(__free_pages);
1690 void free_pages(unsigned long addr, unsigned int order)
1692 if (addr != 0) {
1693 VM_BUG_ON(!virt_addr_valid((void *)addr));
1694 __free_pages(virt_to_page((void *)addr), order);
1698 EXPORT_SYMBOL(free_pages);
1700 static unsigned int nr_free_zone_pages(int offset)
1702 struct zoneref *z;
1703 struct zone *zone;
1705 /* Just pick one node, since fallback list is circular */
1706 unsigned int sum = 0;
1708 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1710 for_each_zone_zonelist(zone, z, zonelist, offset) {
1711 unsigned long size = zone->present_pages;
1712 unsigned long high = zone->pages_high;
1713 if (size > high)
1714 sum += size - high;
1717 return sum;
1721 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1723 unsigned int nr_free_buffer_pages(void)
1725 return nr_free_zone_pages(gfp_zone(GFP_USER));
1727 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1730 * Amount of free RAM allocatable within all zones
1732 unsigned int nr_free_pagecache_pages(void)
1734 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1737 static inline void show_node(struct zone *zone)
1739 if (NUMA_BUILD)
1740 printk("Node %d ", zone_to_nid(zone));
1743 void si_meminfo(struct sysinfo *val)
1745 val->totalram = totalram_pages;
1746 val->sharedram = 0;
1747 val->freeram = global_page_state(NR_FREE_PAGES);
1748 val->bufferram = nr_blockdev_pages();
1749 val->totalhigh = totalhigh_pages;
1750 val->freehigh = nr_free_highpages();
1751 val->mem_unit = PAGE_SIZE;
1754 EXPORT_SYMBOL(si_meminfo);
1756 #ifdef CONFIG_NUMA
1757 void si_meminfo_node(struct sysinfo *val, int nid)
1759 pg_data_t *pgdat = NODE_DATA(nid);
1761 val->totalram = pgdat->node_present_pages;
1762 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1763 #ifdef CONFIG_HIGHMEM
1764 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1765 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1766 NR_FREE_PAGES);
1767 #else
1768 val->totalhigh = 0;
1769 val->freehigh = 0;
1770 #endif
1771 val->mem_unit = PAGE_SIZE;
1773 #endif
1775 #define K(x) ((x) << (PAGE_SHIFT-10))
1778 * Show free area list (used inside shift_scroll-lock stuff)
1779 * We also calculate the percentage fragmentation. We do this by counting the
1780 * memory on each free list with the exception of the first item on the list.
1782 void show_free_areas(void)
1784 int cpu;
1785 struct zone *zone;
1787 for_each_zone(zone) {
1788 if (!populated_zone(zone))
1789 continue;
1791 show_node(zone);
1792 printk("%s per-cpu:\n", zone->name);
1794 for_each_online_cpu(cpu) {
1795 struct per_cpu_pageset *pageset;
1797 pageset = zone_pcp(zone, cpu);
1799 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1800 cpu, pageset->pcp.high,
1801 pageset->pcp.batch, pageset->pcp.count);
1805 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1806 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1807 global_page_state(NR_ACTIVE),
1808 global_page_state(NR_INACTIVE),
1809 global_page_state(NR_FILE_DIRTY),
1810 global_page_state(NR_WRITEBACK),
1811 global_page_state(NR_UNSTABLE_NFS),
1812 global_page_state(NR_FREE_PAGES),
1813 global_page_state(NR_SLAB_RECLAIMABLE) +
1814 global_page_state(NR_SLAB_UNRECLAIMABLE),
1815 global_page_state(NR_FILE_MAPPED),
1816 global_page_state(NR_PAGETABLE),
1817 global_page_state(NR_BOUNCE));
1819 for_each_zone(zone) {
1820 int i;
1822 if (!populated_zone(zone))
1823 continue;
1825 show_node(zone);
1826 printk("%s"
1827 " free:%lukB"
1828 " min:%lukB"
1829 " low:%lukB"
1830 " high:%lukB"
1831 " active:%lukB"
1832 " inactive:%lukB"
1833 " present:%lukB"
1834 " pages_scanned:%lu"
1835 " all_unreclaimable? %s"
1836 "\n",
1837 zone->name,
1838 K(zone_page_state(zone, NR_FREE_PAGES)),
1839 K(zone->pages_min),
1840 K(zone->pages_low),
1841 K(zone->pages_high),
1842 K(zone_page_state(zone, NR_ACTIVE)),
1843 K(zone_page_state(zone, NR_INACTIVE)),
1844 K(zone->present_pages),
1845 zone->pages_scanned,
1846 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1848 printk("lowmem_reserve[]:");
1849 for (i = 0; i < MAX_NR_ZONES; i++)
1850 printk(" %lu", zone->lowmem_reserve[i]);
1851 printk("\n");
1854 for_each_zone(zone) {
1855 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1857 if (!populated_zone(zone))
1858 continue;
1860 show_node(zone);
1861 printk("%s: ", zone->name);
1863 spin_lock_irqsave(&zone->lock, flags);
1864 for (order = 0; order < MAX_ORDER; order++) {
1865 nr[order] = zone->free_area[order].nr_free;
1866 total += nr[order] << order;
1868 spin_unlock_irqrestore(&zone->lock, flags);
1869 for (order = 0; order < MAX_ORDER; order++)
1870 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1871 printk("= %lukB\n", K(total));
1874 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1876 show_swap_cache_info();
1879 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1881 zoneref->zone = zone;
1882 zoneref->zone_idx = zone_idx(zone);
1886 * Builds allocation fallback zone lists.
1888 * Add all populated zones of a node to the zonelist.
1890 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1891 int nr_zones, enum zone_type zone_type)
1893 struct zone *zone;
1895 BUG_ON(zone_type >= MAX_NR_ZONES);
1896 zone_type++;
1898 do {
1899 zone_type--;
1900 zone = pgdat->node_zones + zone_type;
1901 if (populated_zone(zone)) {
1902 zoneref_set_zone(zone,
1903 &zonelist->_zonerefs[nr_zones++]);
1904 check_highest_zone(zone_type);
1907 } while (zone_type);
1908 return nr_zones;
1913 * zonelist_order:
1914 * 0 = automatic detection of better ordering.
1915 * 1 = order by ([node] distance, -zonetype)
1916 * 2 = order by (-zonetype, [node] distance)
1918 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1919 * the same zonelist. So only NUMA can configure this param.
1921 #define ZONELIST_ORDER_DEFAULT 0
1922 #define ZONELIST_ORDER_NODE 1
1923 #define ZONELIST_ORDER_ZONE 2
1925 /* zonelist order in the kernel.
1926 * set_zonelist_order() will set this to NODE or ZONE.
1928 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1929 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1932 #ifdef CONFIG_NUMA
1933 /* The value user specified ....changed by config */
1934 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1935 /* string for sysctl */
1936 #define NUMA_ZONELIST_ORDER_LEN 16
1937 char numa_zonelist_order[16] = "default";
1940 * interface for configure zonelist ordering.
1941 * command line option "numa_zonelist_order"
1942 * = "[dD]efault - default, automatic configuration.
1943 * = "[nN]ode - order by node locality, then by zone within node
1944 * = "[zZ]one - order by zone, then by locality within zone
1947 static int __parse_numa_zonelist_order(char *s)
1949 if (*s == 'd' || *s == 'D') {
1950 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1951 } else if (*s == 'n' || *s == 'N') {
1952 user_zonelist_order = ZONELIST_ORDER_NODE;
1953 } else if (*s == 'z' || *s == 'Z') {
1954 user_zonelist_order = ZONELIST_ORDER_ZONE;
1955 } else {
1956 printk(KERN_WARNING
1957 "Ignoring invalid numa_zonelist_order value: "
1958 "%s\n", s);
1959 return -EINVAL;
1961 return 0;
1964 static __init int setup_numa_zonelist_order(char *s)
1966 if (s)
1967 return __parse_numa_zonelist_order(s);
1968 return 0;
1970 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1973 * sysctl handler for numa_zonelist_order
1975 int numa_zonelist_order_handler(ctl_table *table, int write,
1976 struct file *file, void __user *buffer, size_t *length,
1977 loff_t *ppos)
1979 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1980 int ret;
1982 if (write)
1983 strncpy(saved_string, (char*)table->data,
1984 NUMA_ZONELIST_ORDER_LEN);
1985 ret = proc_dostring(table, write, file, buffer, length, ppos);
1986 if (ret)
1987 return ret;
1988 if (write) {
1989 int oldval = user_zonelist_order;
1990 if (__parse_numa_zonelist_order((char*)table->data)) {
1992 * bogus value. restore saved string
1994 strncpy((char*)table->data, saved_string,
1995 NUMA_ZONELIST_ORDER_LEN);
1996 user_zonelist_order = oldval;
1997 } else if (oldval != user_zonelist_order)
1998 build_all_zonelists();
2000 return 0;
2004 #define MAX_NODE_LOAD (num_online_nodes())
2005 static int node_load[MAX_NUMNODES];
2008 * find_next_best_node - find the next node that should appear in a given node's fallback list
2009 * @node: node whose fallback list we're appending
2010 * @used_node_mask: nodemask_t of already used nodes
2012 * We use a number of factors to determine which is the next node that should
2013 * appear on a given node's fallback list. The node should not have appeared
2014 * already in @node's fallback list, and it should be the next closest node
2015 * according to the distance array (which contains arbitrary distance values
2016 * from each node to each node in the system), and should also prefer nodes
2017 * with no CPUs, since presumably they'll have very little allocation pressure
2018 * on them otherwise.
2019 * It returns -1 if no node is found.
2021 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2023 int n, val;
2024 int min_val = INT_MAX;
2025 int best_node = -1;
2026 node_to_cpumask_ptr(tmp, 0);
2028 /* Use the local node if we haven't already */
2029 if (!node_isset(node, *used_node_mask)) {
2030 node_set(node, *used_node_mask);
2031 return node;
2034 for_each_node_state(n, N_HIGH_MEMORY) {
2036 /* Don't want a node to appear more than once */
2037 if (node_isset(n, *used_node_mask))
2038 continue;
2040 /* Use the distance array to find the distance */
2041 val = node_distance(node, n);
2043 /* Penalize nodes under us ("prefer the next node") */
2044 val += (n < node);
2046 /* Give preference to headless and unused nodes */
2047 node_to_cpumask_ptr_next(tmp, n);
2048 if (!cpus_empty(*tmp))
2049 val += PENALTY_FOR_NODE_WITH_CPUS;
2051 /* Slight preference for less loaded node */
2052 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2053 val += node_load[n];
2055 if (val < min_val) {
2056 min_val = val;
2057 best_node = n;
2061 if (best_node >= 0)
2062 node_set(best_node, *used_node_mask);
2064 return best_node;
2069 * Build zonelists ordered by node and zones within node.
2070 * This results in maximum locality--normal zone overflows into local
2071 * DMA zone, if any--but risks exhausting DMA zone.
2073 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2075 int j;
2076 struct zonelist *zonelist;
2078 zonelist = &pgdat->node_zonelists[0];
2079 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2081 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2082 MAX_NR_ZONES - 1);
2083 zonelist->_zonerefs[j].zone = NULL;
2084 zonelist->_zonerefs[j].zone_idx = 0;
2088 * Build gfp_thisnode zonelists
2090 static void build_thisnode_zonelists(pg_data_t *pgdat)
2092 int j;
2093 struct zonelist *zonelist;
2095 zonelist = &pgdat->node_zonelists[1];
2096 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2097 zonelist->_zonerefs[j].zone = NULL;
2098 zonelist->_zonerefs[j].zone_idx = 0;
2102 * Build zonelists ordered by zone and nodes within zones.
2103 * This results in conserving DMA zone[s] until all Normal memory is
2104 * exhausted, but results in overflowing to remote node while memory
2105 * may still exist in local DMA zone.
2107 static int node_order[MAX_NUMNODES];
2109 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2111 int pos, j, node;
2112 int zone_type; /* needs to be signed */
2113 struct zone *z;
2114 struct zonelist *zonelist;
2116 zonelist = &pgdat->node_zonelists[0];
2117 pos = 0;
2118 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2119 for (j = 0; j < nr_nodes; j++) {
2120 node = node_order[j];
2121 z = &NODE_DATA(node)->node_zones[zone_type];
2122 if (populated_zone(z)) {
2123 zoneref_set_zone(z,
2124 &zonelist->_zonerefs[pos++]);
2125 check_highest_zone(zone_type);
2129 zonelist->_zonerefs[pos].zone = NULL;
2130 zonelist->_zonerefs[pos].zone_idx = 0;
2133 static int default_zonelist_order(void)
2135 int nid, zone_type;
2136 unsigned long low_kmem_size,total_size;
2137 struct zone *z;
2138 int average_size;
2140 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2141 * If they are really small and used heavily, the system can fall
2142 * into OOM very easily.
2143 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2145 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2146 low_kmem_size = 0;
2147 total_size = 0;
2148 for_each_online_node(nid) {
2149 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2150 z = &NODE_DATA(nid)->node_zones[zone_type];
2151 if (populated_zone(z)) {
2152 if (zone_type < ZONE_NORMAL)
2153 low_kmem_size += z->present_pages;
2154 total_size += z->present_pages;
2158 if (!low_kmem_size || /* there are no DMA area. */
2159 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2160 return ZONELIST_ORDER_NODE;
2162 * look into each node's config.
2163 * If there is a node whose DMA/DMA32 memory is very big area on
2164 * local memory, NODE_ORDER may be suitable.
2166 average_size = total_size /
2167 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2168 for_each_online_node(nid) {
2169 low_kmem_size = 0;
2170 total_size = 0;
2171 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2172 z = &NODE_DATA(nid)->node_zones[zone_type];
2173 if (populated_zone(z)) {
2174 if (zone_type < ZONE_NORMAL)
2175 low_kmem_size += z->present_pages;
2176 total_size += z->present_pages;
2179 if (low_kmem_size &&
2180 total_size > average_size && /* ignore small node */
2181 low_kmem_size > total_size * 70/100)
2182 return ZONELIST_ORDER_NODE;
2184 return ZONELIST_ORDER_ZONE;
2187 static void set_zonelist_order(void)
2189 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2190 current_zonelist_order = default_zonelist_order();
2191 else
2192 current_zonelist_order = user_zonelist_order;
2195 static void build_zonelists(pg_data_t *pgdat)
2197 int j, node, load;
2198 enum zone_type i;
2199 nodemask_t used_mask;
2200 int local_node, prev_node;
2201 struct zonelist *zonelist;
2202 int order = current_zonelist_order;
2204 /* initialize zonelists */
2205 for (i = 0; i < MAX_ZONELISTS; i++) {
2206 zonelist = pgdat->node_zonelists + i;
2207 zonelist->_zonerefs[0].zone = NULL;
2208 zonelist->_zonerefs[0].zone_idx = 0;
2211 /* NUMA-aware ordering of nodes */
2212 local_node = pgdat->node_id;
2213 load = num_online_nodes();
2214 prev_node = local_node;
2215 nodes_clear(used_mask);
2217 memset(node_load, 0, sizeof(node_load));
2218 memset(node_order, 0, sizeof(node_order));
2219 j = 0;
2221 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2222 int distance = node_distance(local_node, node);
2225 * If another node is sufficiently far away then it is better
2226 * to reclaim pages in a zone before going off node.
2228 if (distance > RECLAIM_DISTANCE)
2229 zone_reclaim_mode = 1;
2232 * We don't want to pressure a particular node.
2233 * So adding penalty to the first node in same
2234 * distance group to make it round-robin.
2236 if (distance != node_distance(local_node, prev_node))
2237 node_load[node] = load;
2239 prev_node = node;
2240 load--;
2241 if (order == ZONELIST_ORDER_NODE)
2242 build_zonelists_in_node_order(pgdat, node);
2243 else
2244 node_order[j++] = node; /* remember order */
2247 if (order == ZONELIST_ORDER_ZONE) {
2248 /* calculate node order -- i.e., DMA last! */
2249 build_zonelists_in_zone_order(pgdat, j);
2252 build_thisnode_zonelists(pgdat);
2255 /* Construct the zonelist performance cache - see further mmzone.h */
2256 static void build_zonelist_cache(pg_data_t *pgdat)
2258 struct zonelist *zonelist;
2259 struct zonelist_cache *zlc;
2260 struct zoneref *z;
2262 zonelist = &pgdat->node_zonelists[0];
2263 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2264 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2265 for (z = zonelist->_zonerefs; z->zone; z++)
2266 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2270 #else /* CONFIG_NUMA */
2272 static void set_zonelist_order(void)
2274 current_zonelist_order = ZONELIST_ORDER_ZONE;
2277 static void build_zonelists(pg_data_t *pgdat)
2279 int node, local_node;
2280 enum zone_type j;
2281 struct zonelist *zonelist;
2283 local_node = pgdat->node_id;
2285 zonelist = &pgdat->node_zonelists[0];
2286 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2289 * Now we build the zonelist so that it contains the zones
2290 * of all the other nodes.
2291 * We don't want to pressure a particular node, so when
2292 * building the zones for node N, we make sure that the
2293 * zones coming right after the local ones are those from
2294 * node N+1 (modulo N)
2296 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2297 if (!node_online(node))
2298 continue;
2299 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2300 MAX_NR_ZONES - 1);
2302 for (node = 0; node < local_node; node++) {
2303 if (!node_online(node))
2304 continue;
2305 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2306 MAX_NR_ZONES - 1);
2309 zonelist->_zonerefs[j].zone = NULL;
2310 zonelist->_zonerefs[j].zone_idx = 0;
2313 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2314 static void build_zonelist_cache(pg_data_t *pgdat)
2316 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2319 #endif /* CONFIG_NUMA */
2321 /* return values int ....just for stop_machine_run() */
2322 static int __build_all_zonelists(void *dummy)
2324 int nid;
2326 for_each_online_node(nid) {
2327 pg_data_t *pgdat = NODE_DATA(nid);
2329 build_zonelists(pgdat);
2330 build_zonelist_cache(pgdat);
2332 return 0;
2335 void build_all_zonelists(void)
2337 set_zonelist_order();
2339 if (system_state == SYSTEM_BOOTING) {
2340 __build_all_zonelists(NULL);
2341 mminit_verify_zonelist();
2342 cpuset_init_current_mems_allowed();
2343 } else {
2344 /* we have to stop all cpus to guarantee there is no user
2345 of zonelist */
2346 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2347 /* cpuset refresh routine should be here */
2349 vm_total_pages = nr_free_pagecache_pages();
2351 * Disable grouping by mobility if the number of pages in the
2352 * system is too low to allow the mechanism to work. It would be
2353 * more accurate, but expensive to check per-zone. This check is
2354 * made on memory-hotadd so a system can start with mobility
2355 * disabled and enable it later
2357 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2358 page_group_by_mobility_disabled = 1;
2359 else
2360 page_group_by_mobility_disabled = 0;
2362 printk("Built %i zonelists in %s order, mobility grouping %s. "
2363 "Total pages: %ld\n",
2364 num_online_nodes(),
2365 zonelist_order_name[current_zonelist_order],
2366 page_group_by_mobility_disabled ? "off" : "on",
2367 vm_total_pages);
2368 #ifdef CONFIG_NUMA
2369 printk("Policy zone: %s\n", zone_names[policy_zone]);
2370 #endif
2374 * Helper functions to size the waitqueue hash table.
2375 * Essentially these want to choose hash table sizes sufficiently
2376 * large so that collisions trying to wait on pages are rare.
2377 * But in fact, the number of active page waitqueues on typical
2378 * systems is ridiculously low, less than 200. So this is even
2379 * conservative, even though it seems large.
2381 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2382 * waitqueues, i.e. the size of the waitq table given the number of pages.
2384 #define PAGES_PER_WAITQUEUE 256
2386 #ifndef CONFIG_MEMORY_HOTPLUG
2387 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2389 unsigned long size = 1;
2391 pages /= PAGES_PER_WAITQUEUE;
2393 while (size < pages)
2394 size <<= 1;
2397 * Once we have dozens or even hundreds of threads sleeping
2398 * on IO we've got bigger problems than wait queue collision.
2399 * Limit the size of the wait table to a reasonable size.
2401 size = min(size, 4096UL);
2403 return max(size, 4UL);
2405 #else
2407 * A zone's size might be changed by hot-add, so it is not possible to determine
2408 * a suitable size for its wait_table. So we use the maximum size now.
2410 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2412 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2413 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2414 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2416 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2417 * or more by the traditional way. (See above). It equals:
2419 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2420 * ia64(16K page size) : = ( 8G + 4M)byte.
2421 * powerpc (64K page size) : = (32G +16M)byte.
2423 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2425 return 4096UL;
2427 #endif
2430 * This is an integer logarithm so that shifts can be used later
2431 * to extract the more random high bits from the multiplicative
2432 * hash function before the remainder is taken.
2434 static inline unsigned long wait_table_bits(unsigned long size)
2436 return ffz(~size);
2439 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2442 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2443 * of blocks reserved is based on zone->pages_min. The memory within the
2444 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2445 * higher will lead to a bigger reserve which will get freed as contiguous
2446 * blocks as reclaim kicks in
2448 static void setup_zone_migrate_reserve(struct zone *zone)
2450 unsigned long start_pfn, pfn, end_pfn;
2451 struct page *page;
2452 unsigned long reserve, block_migratetype;
2454 /* Get the start pfn, end pfn and the number of blocks to reserve */
2455 start_pfn = zone->zone_start_pfn;
2456 end_pfn = start_pfn + zone->spanned_pages;
2457 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2458 pageblock_order;
2460 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2461 if (!pfn_valid(pfn))
2462 continue;
2463 page = pfn_to_page(pfn);
2465 /* Blocks with reserved pages will never free, skip them. */
2466 if (PageReserved(page))
2467 continue;
2469 block_migratetype = get_pageblock_migratetype(page);
2471 /* If this block is reserved, account for it */
2472 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2473 reserve--;
2474 continue;
2477 /* Suitable for reserving if this block is movable */
2478 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2479 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2480 move_freepages_block(zone, page, MIGRATE_RESERVE);
2481 reserve--;
2482 continue;
2486 * If the reserve is met and this is a previous reserved block,
2487 * take it back
2489 if (block_migratetype == MIGRATE_RESERVE) {
2490 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2491 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2497 * Initially all pages are reserved - free ones are freed
2498 * up by free_all_bootmem() once the early boot process is
2499 * done. Non-atomic initialization, single-pass.
2501 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2502 unsigned long start_pfn, enum memmap_context context)
2504 struct page *page;
2505 unsigned long end_pfn = start_pfn + size;
2506 unsigned long pfn;
2507 struct zone *z;
2509 z = &NODE_DATA(nid)->node_zones[zone];
2510 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2512 * There can be holes in boot-time mem_map[]s
2513 * handed to this function. They do not
2514 * exist on hotplugged memory.
2516 if (context == MEMMAP_EARLY) {
2517 if (!early_pfn_valid(pfn))
2518 continue;
2519 if (!early_pfn_in_nid(pfn, nid))
2520 continue;
2522 page = pfn_to_page(pfn);
2523 set_page_links(page, zone, nid, pfn);
2524 mminit_verify_page_links(page, zone, nid, pfn);
2525 init_page_count(page);
2526 reset_page_mapcount(page);
2527 SetPageReserved(page);
2529 * Mark the block movable so that blocks are reserved for
2530 * movable at startup. This will force kernel allocations
2531 * to reserve their blocks rather than leaking throughout
2532 * the address space during boot when many long-lived
2533 * kernel allocations are made. Later some blocks near
2534 * the start are marked MIGRATE_RESERVE by
2535 * setup_zone_migrate_reserve()
2537 * bitmap is created for zone's valid pfn range. but memmap
2538 * can be created for invalid pages (for alignment)
2539 * check here not to call set_pageblock_migratetype() against
2540 * pfn out of zone.
2542 if ((z->zone_start_pfn <= pfn)
2543 && (pfn < z->zone_start_pfn + z->spanned_pages)
2544 && !(pfn & (pageblock_nr_pages - 1)))
2545 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2547 INIT_LIST_HEAD(&page->lru);
2548 #ifdef WANT_PAGE_VIRTUAL
2549 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2550 if (!is_highmem_idx(zone))
2551 set_page_address(page, __va(pfn << PAGE_SHIFT));
2552 #endif
2556 static void __meminit zone_init_free_lists(struct zone *zone)
2558 int order, t;
2559 for_each_migratetype_order(order, t) {
2560 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2561 zone->free_area[order].nr_free = 0;
2565 #ifndef __HAVE_ARCH_MEMMAP_INIT
2566 #define memmap_init(size, nid, zone, start_pfn) \
2567 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2568 #endif
2570 static int zone_batchsize(struct zone *zone)
2572 int batch;
2575 * The per-cpu-pages pools are set to around 1000th of the
2576 * size of the zone. But no more than 1/2 of a meg.
2578 * OK, so we don't know how big the cache is. So guess.
2580 batch = zone->present_pages / 1024;
2581 if (batch * PAGE_SIZE > 512 * 1024)
2582 batch = (512 * 1024) / PAGE_SIZE;
2583 batch /= 4; /* We effectively *= 4 below */
2584 if (batch < 1)
2585 batch = 1;
2588 * Clamp the batch to a 2^n - 1 value. Having a power
2589 * of 2 value was found to be more likely to have
2590 * suboptimal cache aliasing properties in some cases.
2592 * For example if 2 tasks are alternately allocating
2593 * batches of pages, one task can end up with a lot
2594 * of pages of one half of the possible page colors
2595 * and the other with pages of the other colors.
2597 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2599 return batch;
2602 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2604 struct per_cpu_pages *pcp;
2606 memset(p, 0, sizeof(*p));
2608 pcp = &p->pcp;
2609 pcp->count = 0;
2610 pcp->high = 6 * batch;
2611 pcp->batch = max(1UL, 1 * batch);
2612 INIT_LIST_HEAD(&pcp->list);
2616 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2617 * to the value high for the pageset p.
2620 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2621 unsigned long high)
2623 struct per_cpu_pages *pcp;
2625 pcp = &p->pcp;
2626 pcp->high = high;
2627 pcp->batch = max(1UL, high/4);
2628 if ((high/4) > (PAGE_SHIFT * 8))
2629 pcp->batch = PAGE_SHIFT * 8;
2633 #ifdef CONFIG_NUMA
2635 * Boot pageset table. One per cpu which is going to be used for all
2636 * zones and all nodes. The parameters will be set in such a way
2637 * that an item put on a list will immediately be handed over to
2638 * the buddy list. This is safe since pageset manipulation is done
2639 * with interrupts disabled.
2641 * Some NUMA counter updates may also be caught by the boot pagesets.
2643 * The boot_pagesets must be kept even after bootup is complete for
2644 * unused processors and/or zones. They do play a role for bootstrapping
2645 * hotplugged processors.
2647 * zoneinfo_show() and maybe other functions do
2648 * not check if the processor is online before following the pageset pointer.
2649 * Other parts of the kernel may not check if the zone is available.
2651 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2654 * Dynamically allocate memory for the
2655 * per cpu pageset array in struct zone.
2657 static int __cpuinit process_zones(int cpu)
2659 struct zone *zone, *dzone;
2660 int node = cpu_to_node(cpu);
2662 node_set_state(node, N_CPU); /* this node has a cpu */
2664 for_each_zone(zone) {
2666 if (!populated_zone(zone))
2667 continue;
2669 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2670 GFP_KERNEL, node);
2671 if (!zone_pcp(zone, cpu))
2672 goto bad;
2674 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2676 if (percpu_pagelist_fraction)
2677 setup_pagelist_highmark(zone_pcp(zone, cpu),
2678 (zone->present_pages / percpu_pagelist_fraction));
2681 return 0;
2682 bad:
2683 for_each_zone(dzone) {
2684 if (!populated_zone(dzone))
2685 continue;
2686 if (dzone == zone)
2687 break;
2688 kfree(zone_pcp(dzone, cpu));
2689 zone_pcp(dzone, cpu) = NULL;
2691 return -ENOMEM;
2694 static inline void free_zone_pagesets(int cpu)
2696 struct zone *zone;
2698 for_each_zone(zone) {
2699 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2701 /* Free per_cpu_pageset if it is slab allocated */
2702 if (pset != &boot_pageset[cpu])
2703 kfree(pset);
2704 zone_pcp(zone, cpu) = NULL;
2708 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2709 unsigned long action,
2710 void *hcpu)
2712 int cpu = (long)hcpu;
2713 int ret = NOTIFY_OK;
2715 switch (action) {
2716 case CPU_UP_PREPARE:
2717 case CPU_UP_PREPARE_FROZEN:
2718 if (process_zones(cpu))
2719 ret = NOTIFY_BAD;
2720 break;
2721 case CPU_UP_CANCELED:
2722 case CPU_UP_CANCELED_FROZEN:
2723 case CPU_DEAD:
2724 case CPU_DEAD_FROZEN:
2725 free_zone_pagesets(cpu);
2726 break;
2727 default:
2728 break;
2730 return ret;
2733 static struct notifier_block __cpuinitdata pageset_notifier =
2734 { &pageset_cpuup_callback, NULL, 0 };
2736 void __init setup_per_cpu_pageset(void)
2738 int err;
2740 /* Initialize per_cpu_pageset for cpu 0.
2741 * A cpuup callback will do this for every cpu
2742 * as it comes online
2744 err = process_zones(smp_processor_id());
2745 BUG_ON(err);
2746 register_cpu_notifier(&pageset_notifier);
2749 #endif
2751 static noinline __init_refok
2752 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2754 int i;
2755 struct pglist_data *pgdat = zone->zone_pgdat;
2756 size_t alloc_size;
2759 * The per-page waitqueue mechanism uses hashed waitqueues
2760 * per zone.
2762 zone->wait_table_hash_nr_entries =
2763 wait_table_hash_nr_entries(zone_size_pages);
2764 zone->wait_table_bits =
2765 wait_table_bits(zone->wait_table_hash_nr_entries);
2766 alloc_size = zone->wait_table_hash_nr_entries
2767 * sizeof(wait_queue_head_t);
2769 if (!slab_is_available()) {
2770 zone->wait_table = (wait_queue_head_t *)
2771 alloc_bootmem_node(pgdat, alloc_size);
2772 } else {
2774 * This case means that a zone whose size was 0 gets new memory
2775 * via memory hot-add.
2776 * But it may be the case that a new node was hot-added. In
2777 * this case vmalloc() will not be able to use this new node's
2778 * memory - this wait_table must be initialized to use this new
2779 * node itself as well.
2780 * To use this new node's memory, further consideration will be
2781 * necessary.
2783 zone->wait_table = vmalloc(alloc_size);
2785 if (!zone->wait_table)
2786 return -ENOMEM;
2788 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2789 init_waitqueue_head(zone->wait_table + i);
2791 return 0;
2794 static __meminit void zone_pcp_init(struct zone *zone)
2796 int cpu;
2797 unsigned long batch = zone_batchsize(zone);
2799 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2800 #ifdef CONFIG_NUMA
2801 /* Early boot. Slab allocator not functional yet */
2802 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2803 setup_pageset(&boot_pageset[cpu],0);
2804 #else
2805 setup_pageset(zone_pcp(zone,cpu), batch);
2806 #endif
2808 if (zone->present_pages)
2809 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2810 zone->name, zone->present_pages, batch);
2813 __meminit int init_currently_empty_zone(struct zone *zone,
2814 unsigned long zone_start_pfn,
2815 unsigned long size,
2816 enum memmap_context context)
2818 struct pglist_data *pgdat = zone->zone_pgdat;
2819 int ret;
2820 ret = zone_wait_table_init(zone, size);
2821 if (ret)
2822 return ret;
2823 pgdat->nr_zones = zone_idx(zone) + 1;
2825 zone->zone_start_pfn = zone_start_pfn;
2827 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2828 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2829 pgdat->node_id,
2830 (unsigned long)zone_idx(zone),
2831 zone_start_pfn, (zone_start_pfn + size));
2833 zone_init_free_lists(zone);
2835 return 0;
2838 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2840 * Basic iterator support. Return the first range of PFNs for a node
2841 * Note: nid == MAX_NUMNODES returns first region regardless of node
2843 static int __meminit first_active_region_index_in_nid(int nid)
2845 int i;
2847 for (i = 0; i < nr_nodemap_entries; i++)
2848 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2849 return i;
2851 return -1;
2855 * Basic iterator support. Return the next active range of PFNs for a node
2856 * Note: nid == MAX_NUMNODES returns next region regardless of node
2858 static int __meminit next_active_region_index_in_nid(int index, int nid)
2860 for (index = index + 1; index < nr_nodemap_entries; index++)
2861 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2862 return index;
2864 return -1;
2867 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2869 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2870 * Architectures may implement their own version but if add_active_range()
2871 * was used and there are no special requirements, this is a convenient
2872 * alternative
2874 int __meminit early_pfn_to_nid(unsigned long pfn)
2876 int i;
2878 for (i = 0; i < nr_nodemap_entries; i++) {
2879 unsigned long start_pfn = early_node_map[i].start_pfn;
2880 unsigned long end_pfn = early_node_map[i].end_pfn;
2882 if (start_pfn <= pfn && pfn < end_pfn)
2883 return early_node_map[i].nid;
2886 return 0;
2888 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2890 /* Basic iterator support to walk early_node_map[] */
2891 #define for_each_active_range_index_in_nid(i, nid) \
2892 for (i = first_active_region_index_in_nid(nid); i != -1; \
2893 i = next_active_region_index_in_nid(i, nid))
2896 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2897 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2898 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2900 * If an architecture guarantees that all ranges registered with
2901 * add_active_ranges() contain no holes and may be freed, this
2902 * this function may be used instead of calling free_bootmem() manually.
2904 void __init free_bootmem_with_active_regions(int nid,
2905 unsigned long max_low_pfn)
2907 int i;
2909 for_each_active_range_index_in_nid(i, nid) {
2910 unsigned long size_pages = 0;
2911 unsigned long end_pfn = early_node_map[i].end_pfn;
2913 if (early_node_map[i].start_pfn >= max_low_pfn)
2914 continue;
2916 if (end_pfn > max_low_pfn)
2917 end_pfn = max_low_pfn;
2919 size_pages = end_pfn - early_node_map[i].start_pfn;
2920 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2921 PFN_PHYS(early_node_map[i].start_pfn),
2922 size_pages << PAGE_SHIFT);
2926 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2928 int i;
2929 int ret;
2931 for_each_active_range_index_in_nid(i, nid) {
2932 ret = work_fn(early_node_map[i].start_pfn,
2933 early_node_map[i].end_pfn, data);
2934 if (ret)
2935 break;
2939 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2940 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2942 * If an architecture guarantees that all ranges registered with
2943 * add_active_ranges() contain no holes and may be freed, this
2944 * function may be used instead of calling memory_present() manually.
2946 void __init sparse_memory_present_with_active_regions(int nid)
2948 int i;
2950 for_each_active_range_index_in_nid(i, nid)
2951 memory_present(early_node_map[i].nid,
2952 early_node_map[i].start_pfn,
2953 early_node_map[i].end_pfn);
2957 * push_node_boundaries - Push node boundaries to at least the requested boundary
2958 * @nid: The nid of the node to push the boundary for
2959 * @start_pfn: The start pfn of the node
2960 * @end_pfn: The end pfn of the node
2962 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2963 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2964 * be hotplugged even though no physical memory exists. This function allows
2965 * an arch to push out the node boundaries so mem_map is allocated that can
2966 * be used later.
2968 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2969 void __init push_node_boundaries(unsigned int nid,
2970 unsigned long start_pfn, unsigned long end_pfn)
2972 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
2973 "Entering push_node_boundaries(%u, %lu, %lu)\n",
2974 nid, start_pfn, end_pfn);
2976 /* Initialise the boundary for this node if necessary */
2977 if (node_boundary_end_pfn[nid] == 0)
2978 node_boundary_start_pfn[nid] = -1UL;
2980 /* Update the boundaries */
2981 if (node_boundary_start_pfn[nid] > start_pfn)
2982 node_boundary_start_pfn[nid] = start_pfn;
2983 if (node_boundary_end_pfn[nid] < end_pfn)
2984 node_boundary_end_pfn[nid] = end_pfn;
2987 /* If necessary, push the node boundary out for reserve hotadd */
2988 static void __meminit account_node_boundary(unsigned int nid,
2989 unsigned long *start_pfn, unsigned long *end_pfn)
2991 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
2992 "Entering account_node_boundary(%u, %lu, %lu)\n",
2993 nid, *start_pfn, *end_pfn);
2995 /* Return if boundary information has not been provided */
2996 if (node_boundary_end_pfn[nid] == 0)
2997 return;
2999 /* Check the boundaries and update if necessary */
3000 if (node_boundary_start_pfn[nid] < *start_pfn)
3001 *start_pfn = node_boundary_start_pfn[nid];
3002 if (node_boundary_end_pfn[nid] > *end_pfn)
3003 *end_pfn = node_boundary_end_pfn[nid];
3005 #else
3006 void __init push_node_boundaries(unsigned int nid,
3007 unsigned long start_pfn, unsigned long end_pfn) {}
3009 static void __meminit account_node_boundary(unsigned int nid,
3010 unsigned long *start_pfn, unsigned long *end_pfn) {}
3011 #endif
3015 * get_pfn_range_for_nid - Return the start and end page frames for a node
3016 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3017 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3018 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3020 * It returns the start and end page frame of a node based on information
3021 * provided by an arch calling add_active_range(). If called for a node
3022 * with no available memory, a warning is printed and the start and end
3023 * PFNs will be 0.
3025 void __meminit get_pfn_range_for_nid(unsigned int nid,
3026 unsigned long *start_pfn, unsigned long *end_pfn)
3028 int i;
3029 *start_pfn = -1UL;
3030 *end_pfn = 0;
3032 for_each_active_range_index_in_nid(i, nid) {
3033 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3034 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3037 if (*start_pfn == -1UL)
3038 *start_pfn = 0;
3040 /* Push the node boundaries out if requested */
3041 account_node_boundary(nid, start_pfn, end_pfn);
3045 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3046 * assumption is made that zones within a node are ordered in monotonic
3047 * increasing memory addresses so that the "highest" populated zone is used
3049 void __init find_usable_zone_for_movable(void)
3051 int zone_index;
3052 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3053 if (zone_index == ZONE_MOVABLE)
3054 continue;
3056 if (arch_zone_highest_possible_pfn[zone_index] >
3057 arch_zone_lowest_possible_pfn[zone_index])
3058 break;
3061 VM_BUG_ON(zone_index == -1);
3062 movable_zone = zone_index;
3066 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3067 * because it is sized independant of architecture. Unlike the other zones,
3068 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3069 * in each node depending on the size of each node and how evenly kernelcore
3070 * is distributed. This helper function adjusts the zone ranges
3071 * provided by the architecture for a given node by using the end of the
3072 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3073 * zones within a node are in order of monotonic increases memory addresses
3075 void __meminit adjust_zone_range_for_zone_movable(int nid,
3076 unsigned long zone_type,
3077 unsigned long node_start_pfn,
3078 unsigned long node_end_pfn,
3079 unsigned long *zone_start_pfn,
3080 unsigned long *zone_end_pfn)
3082 /* Only adjust if ZONE_MOVABLE is on this node */
3083 if (zone_movable_pfn[nid]) {
3084 /* Size ZONE_MOVABLE */
3085 if (zone_type == ZONE_MOVABLE) {
3086 *zone_start_pfn = zone_movable_pfn[nid];
3087 *zone_end_pfn = min(node_end_pfn,
3088 arch_zone_highest_possible_pfn[movable_zone]);
3090 /* Adjust for ZONE_MOVABLE starting within this range */
3091 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3092 *zone_end_pfn > zone_movable_pfn[nid]) {
3093 *zone_end_pfn = zone_movable_pfn[nid];
3095 /* Check if this whole range is within ZONE_MOVABLE */
3096 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3097 *zone_start_pfn = *zone_end_pfn;
3102 * Return the number of pages a zone spans in a node, including holes
3103 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3105 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3106 unsigned long zone_type,
3107 unsigned long *ignored)
3109 unsigned long node_start_pfn, node_end_pfn;
3110 unsigned long zone_start_pfn, zone_end_pfn;
3112 /* Get the start and end of the node and zone */
3113 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3114 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3115 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3116 adjust_zone_range_for_zone_movable(nid, zone_type,
3117 node_start_pfn, node_end_pfn,
3118 &zone_start_pfn, &zone_end_pfn);
3120 /* Check that this node has pages within the zone's required range */
3121 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3122 return 0;
3124 /* Move the zone boundaries inside the node if necessary */
3125 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3126 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3128 /* Return the spanned pages */
3129 return zone_end_pfn - zone_start_pfn;
3133 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3134 * then all holes in the requested range will be accounted for.
3136 unsigned long __meminit __absent_pages_in_range(int nid,
3137 unsigned long range_start_pfn,
3138 unsigned long range_end_pfn)
3140 int i = 0;
3141 unsigned long prev_end_pfn = 0, hole_pages = 0;
3142 unsigned long start_pfn;
3144 /* Find the end_pfn of the first active range of pfns in the node */
3145 i = first_active_region_index_in_nid(nid);
3146 if (i == -1)
3147 return 0;
3149 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3151 /* Account for ranges before physical memory on this node */
3152 if (early_node_map[i].start_pfn > range_start_pfn)
3153 hole_pages = prev_end_pfn - range_start_pfn;
3155 /* Find all holes for the zone within the node */
3156 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3158 /* No need to continue if prev_end_pfn is outside the zone */
3159 if (prev_end_pfn >= range_end_pfn)
3160 break;
3162 /* Make sure the end of the zone is not within the hole */
3163 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3164 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3166 /* Update the hole size cound and move on */
3167 if (start_pfn > range_start_pfn) {
3168 BUG_ON(prev_end_pfn > start_pfn);
3169 hole_pages += start_pfn - prev_end_pfn;
3171 prev_end_pfn = early_node_map[i].end_pfn;
3174 /* Account for ranges past physical memory on this node */
3175 if (range_end_pfn > prev_end_pfn)
3176 hole_pages += range_end_pfn -
3177 max(range_start_pfn, prev_end_pfn);
3179 return hole_pages;
3183 * absent_pages_in_range - Return number of page frames in holes within a range
3184 * @start_pfn: The start PFN to start searching for holes
3185 * @end_pfn: The end PFN to stop searching for holes
3187 * It returns the number of pages frames in memory holes within a range.
3189 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3190 unsigned long end_pfn)
3192 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3195 /* Return the number of page frames in holes in a zone on a node */
3196 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3197 unsigned long zone_type,
3198 unsigned long *ignored)
3200 unsigned long node_start_pfn, node_end_pfn;
3201 unsigned long zone_start_pfn, zone_end_pfn;
3203 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3204 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3205 node_start_pfn);
3206 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3207 node_end_pfn);
3209 adjust_zone_range_for_zone_movable(nid, zone_type,
3210 node_start_pfn, node_end_pfn,
3211 &zone_start_pfn, &zone_end_pfn);
3212 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3215 #else
3216 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3217 unsigned long zone_type,
3218 unsigned long *zones_size)
3220 return zones_size[zone_type];
3223 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3224 unsigned long zone_type,
3225 unsigned long *zholes_size)
3227 if (!zholes_size)
3228 return 0;
3230 return zholes_size[zone_type];
3233 #endif
3235 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3236 unsigned long *zones_size, unsigned long *zholes_size)
3238 unsigned long realtotalpages, totalpages = 0;
3239 enum zone_type i;
3241 for (i = 0; i < MAX_NR_ZONES; i++)
3242 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3243 zones_size);
3244 pgdat->node_spanned_pages = totalpages;
3246 realtotalpages = totalpages;
3247 for (i = 0; i < MAX_NR_ZONES; i++)
3248 realtotalpages -=
3249 zone_absent_pages_in_node(pgdat->node_id, i,
3250 zholes_size);
3251 pgdat->node_present_pages = realtotalpages;
3252 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3253 realtotalpages);
3256 #ifndef CONFIG_SPARSEMEM
3258 * Calculate the size of the zone->blockflags rounded to an unsigned long
3259 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3260 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3261 * round what is now in bits to nearest long in bits, then return it in
3262 * bytes.
3264 static unsigned long __init usemap_size(unsigned long zonesize)
3266 unsigned long usemapsize;
3268 usemapsize = roundup(zonesize, pageblock_nr_pages);
3269 usemapsize = usemapsize >> pageblock_order;
3270 usemapsize *= NR_PAGEBLOCK_BITS;
3271 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3273 return usemapsize / 8;
3276 static void __init setup_usemap(struct pglist_data *pgdat,
3277 struct zone *zone, unsigned long zonesize)
3279 unsigned long usemapsize = usemap_size(zonesize);
3280 zone->pageblock_flags = NULL;
3281 if (usemapsize) {
3282 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3283 memset(zone->pageblock_flags, 0, usemapsize);
3286 #else
3287 static void inline setup_usemap(struct pglist_data *pgdat,
3288 struct zone *zone, unsigned long zonesize) {}
3289 #endif /* CONFIG_SPARSEMEM */
3291 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3293 /* Return a sensible default order for the pageblock size. */
3294 static inline int pageblock_default_order(void)
3296 if (HPAGE_SHIFT > PAGE_SHIFT)
3297 return HUGETLB_PAGE_ORDER;
3299 return MAX_ORDER-1;
3302 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3303 static inline void __init set_pageblock_order(unsigned int order)
3305 /* Check that pageblock_nr_pages has not already been setup */
3306 if (pageblock_order)
3307 return;
3310 * Assume the largest contiguous order of interest is a huge page.
3311 * This value may be variable depending on boot parameters on IA64
3313 pageblock_order = order;
3315 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3318 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3319 * and pageblock_default_order() are unused as pageblock_order is set
3320 * at compile-time. See include/linux/pageblock-flags.h for the values of
3321 * pageblock_order based on the kernel config
3323 static inline int pageblock_default_order(unsigned int order)
3325 return MAX_ORDER-1;
3327 #define set_pageblock_order(x) do {} while (0)
3329 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3332 * Set up the zone data structures:
3333 * - mark all pages reserved
3334 * - mark all memory queues empty
3335 * - clear the memory bitmaps
3337 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3338 unsigned long *zones_size, unsigned long *zholes_size)
3340 enum zone_type j;
3341 int nid = pgdat->node_id;
3342 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3343 int ret;
3345 pgdat_resize_init(pgdat);
3346 pgdat->nr_zones = 0;
3347 init_waitqueue_head(&pgdat->kswapd_wait);
3348 pgdat->kswapd_max_order = 0;
3350 for (j = 0; j < MAX_NR_ZONES; j++) {
3351 struct zone *zone = pgdat->node_zones + j;
3352 unsigned long size, realsize, memmap_pages;
3354 size = zone_spanned_pages_in_node(nid, j, zones_size);
3355 realsize = size - zone_absent_pages_in_node(nid, j,
3356 zholes_size);
3359 * Adjust realsize so that it accounts for how much memory
3360 * is used by this zone for memmap. This affects the watermark
3361 * and per-cpu initialisations
3363 memmap_pages =
3364 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3365 if (realsize >= memmap_pages) {
3366 realsize -= memmap_pages;
3367 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3368 "%s zone: %lu pages used for memmap\n",
3369 zone_names[j], memmap_pages);
3370 } else
3371 printk(KERN_WARNING
3372 " %s zone: %lu pages exceeds realsize %lu\n",
3373 zone_names[j], memmap_pages, realsize);
3375 /* Account for reserved pages */
3376 if (j == 0 && realsize > dma_reserve) {
3377 realsize -= dma_reserve;
3378 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3379 "%s zone: %lu pages reserved\n",
3380 zone_names[0], dma_reserve);
3383 if (!is_highmem_idx(j))
3384 nr_kernel_pages += realsize;
3385 nr_all_pages += realsize;
3387 zone->spanned_pages = size;
3388 zone->present_pages = realsize;
3389 #ifdef CONFIG_NUMA
3390 zone->node = nid;
3391 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3392 / 100;
3393 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3394 #endif
3395 zone->name = zone_names[j];
3396 spin_lock_init(&zone->lock);
3397 spin_lock_init(&zone->lru_lock);
3398 zone_seqlock_init(zone);
3399 zone->zone_pgdat = pgdat;
3401 zone->prev_priority = DEF_PRIORITY;
3403 zone_pcp_init(zone);
3404 INIT_LIST_HEAD(&zone->active_list);
3405 INIT_LIST_HEAD(&zone->inactive_list);
3406 zone->nr_scan_active = 0;
3407 zone->nr_scan_inactive = 0;
3408 zap_zone_vm_stats(zone);
3409 zone->flags = 0;
3410 if (!size)
3411 continue;
3413 set_pageblock_order(pageblock_default_order());
3414 setup_usemap(pgdat, zone, size);
3415 ret = init_currently_empty_zone(zone, zone_start_pfn,
3416 size, MEMMAP_EARLY);
3417 BUG_ON(ret);
3418 memmap_init(size, nid, j, zone_start_pfn);
3419 zone_start_pfn += size;
3423 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3425 /* Skip empty nodes */
3426 if (!pgdat->node_spanned_pages)
3427 return;
3429 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3430 /* ia64 gets its own node_mem_map, before this, without bootmem */
3431 if (!pgdat->node_mem_map) {
3432 unsigned long size, start, end;
3433 struct page *map;
3436 * The zone's endpoints aren't required to be MAX_ORDER
3437 * aligned but the node_mem_map endpoints must be in order
3438 * for the buddy allocator to function correctly.
3440 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3441 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3442 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3443 size = (end - start) * sizeof(struct page);
3444 map = alloc_remap(pgdat->node_id, size);
3445 if (!map)
3446 map = alloc_bootmem_node(pgdat, size);
3447 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3449 #ifndef CONFIG_NEED_MULTIPLE_NODES
3451 * With no DISCONTIG, the global mem_map is just set as node 0's
3453 if (pgdat == NODE_DATA(0)) {
3454 mem_map = NODE_DATA(0)->node_mem_map;
3455 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3456 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3457 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3458 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3460 #endif
3461 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3464 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3465 unsigned long node_start_pfn, unsigned long *zholes_size)
3467 pg_data_t *pgdat = NODE_DATA(nid);
3469 pgdat->node_id = nid;
3470 pgdat->node_start_pfn = node_start_pfn;
3471 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3473 alloc_node_mem_map(pgdat);
3474 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3475 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3476 nid, (unsigned long)pgdat,
3477 (unsigned long)pgdat->node_mem_map);
3478 #endif
3480 free_area_init_core(pgdat, zones_size, zholes_size);
3483 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3485 #if MAX_NUMNODES > 1
3487 * Figure out the number of possible node ids.
3489 static void __init setup_nr_node_ids(void)
3491 unsigned int node;
3492 unsigned int highest = 0;
3494 for_each_node_mask(node, node_possible_map)
3495 highest = node;
3496 nr_node_ids = highest + 1;
3498 #else
3499 static inline void setup_nr_node_ids(void)
3502 #endif
3505 * add_active_range - Register a range of PFNs backed by physical memory
3506 * @nid: The node ID the range resides on
3507 * @start_pfn: The start PFN of the available physical memory
3508 * @end_pfn: The end PFN of the available physical memory
3510 * These ranges are stored in an early_node_map[] and later used by
3511 * free_area_init_nodes() to calculate zone sizes and holes. If the
3512 * range spans a memory hole, it is up to the architecture to ensure
3513 * the memory is not freed by the bootmem allocator. If possible
3514 * the range being registered will be merged with existing ranges.
3516 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3517 unsigned long end_pfn)
3519 int i;
3521 mminit_dprintk(MMINIT_TRACE, "memory_register",
3522 "Entering add_active_range(%d, %#lx, %#lx) "
3523 "%d entries of %d used\n",
3524 nid, start_pfn, end_pfn,
3525 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3527 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3529 /* Merge with existing active regions if possible */
3530 for (i = 0; i < nr_nodemap_entries; i++) {
3531 if (early_node_map[i].nid != nid)
3532 continue;
3534 /* Skip if an existing region covers this new one */
3535 if (start_pfn >= early_node_map[i].start_pfn &&
3536 end_pfn <= early_node_map[i].end_pfn)
3537 return;
3539 /* Merge forward if suitable */
3540 if (start_pfn <= early_node_map[i].end_pfn &&
3541 end_pfn > early_node_map[i].end_pfn) {
3542 early_node_map[i].end_pfn = end_pfn;
3543 return;
3546 /* Merge backward if suitable */
3547 if (start_pfn < early_node_map[i].end_pfn &&
3548 end_pfn >= early_node_map[i].start_pfn) {
3549 early_node_map[i].start_pfn = start_pfn;
3550 return;
3554 /* Check that early_node_map is large enough */
3555 if (i >= MAX_ACTIVE_REGIONS) {
3556 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3557 MAX_ACTIVE_REGIONS);
3558 return;
3561 early_node_map[i].nid = nid;
3562 early_node_map[i].start_pfn = start_pfn;
3563 early_node_map[i].end_pfn = end_pfn;
3564 nr_nodemap_entries = i + 1;
3568 * remove_active_range - Shrink an existing registered range of PFNs
3569 * @nid: The node id the range is on that should be shrunk
3570 * @start_pfn: The new PFN of the range
3571 * @end_pfn: The new PFN of the range
3573 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3574 * The map is kept near the end physical page range that has already been
3575 * registered. This function allows an arch to shrink an existing registered
3576 * range.
3578 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3579 unsigned long end_pfn)
3581 int i, j;
3582 int removed = 0;
3584 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3585 nid, start_pfn, end_pfn);
3587 /* Find the old active region end and shrink */
3588 for_each_active_range_index_in_nid(i, nid) {
3589 if (early_node_map[i].start_pfn >= start_pfn &&
3590 early_node_map[i].end_pfn <= end_pfn) {
3591 /* clear it */
3592 early_node_map[i].start_pfn = 0;
3593 early_node_map[i].end_pfn = 0;
3594 removed = 1;
3595 continue;
3597 if (early_node_map[i].start_pfn < start_pfn &&
3598 early_node_map[i].end_pfn > start_pfn) {
3599 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3600 early_node_map[i].end_pfn = start_pfn;
3601 if (temp_end_pfn > end_pfn)
3602 add_active_range(nid, end_pfn, temp_end_pfn);
3603 continue;
3605 if (early_node_map[i].start_pfn >= start_pfn &&
3606 early_node_map[i].end_pfn > end_pfn &&
3607 early_node_map[i].start_pfn < end_pfn) {
3608 early_node_map[i].start_pfn = end_pfn;
3609 continue;
3613 if (!removed)
3614 return;
3616 /* remove the blank ones */
3617 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3618 if (early_node_map[i].nid != nid)
3619 continue;
3620 if (early_node_map[i].end_pfn)
3621 continue;
3622 /* we found it, get rid of it */
3623 for (j = i; j < nr_nodemap_entries - 1; j++)
3624 memcpy(&early_node_map[j], &early_node_map[j+1],
3625 sizeof(early_node_map[j]));
3626 j = nr_nodemap_entries - 1;
3627 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3628 nr_nodemap_entries--;
3633 * remove_all_active_ranges - Remove all currently registered regions
3635 * During discovery, it may be found that a table like SRAT is invalid
3636 * and an alternative discovery method must be used. This function removes
3637 * all currently registered regions.
3639 void __init remove_all_active_ranges(void)
3641 memset(early_node_map, 0, sizeof(early_node_map));
3642 nr_nodemap_entries = 0;
3643 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3644 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3645 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3646 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3649 /* Compare two active node_active_regions */
3650 static int __init cmp_node_active_region(const void *a, const void *b)
3652 struct node_active_region *arange = (struct node_active_region *)a;
3653 struct node_active_region *brange = (struct node_active_region *)b;
3655 /* Done this way to avoid overflows */
3656 if (arange->start_pfn > brange->start_pfn)
3657 return 1;
3658 if (arange->start_pfn < brange->start_pfn)
3659 return -1;
3661 return 0;
3664 /* sort the node_map by start_pfn */
3665 static void __init sort_node_map(void)
3667 sort(early_node_map, (size_t)nr_nodemap_entries,
3668 sizeof(struct node_active_region),
3669 cmp_node_active_region, NULL);
3672 /* Find the lowest pfn for a node */
3673 unsigned long __init find_min_pfn_for_node(int nid)
3675 int i;
3676 unsigned long min_pfn = ULONG_MAX;
3678 /* Assuming a sorted map, the first range found has the starting pfn */
3679 for_each_active_range_index_in_nid(i, nid)
3680 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3682 if (min_pfn == ULONG_MAX) {
3683 printk(KERN_WARNING
3684 "Could not find start_pfn for node %d\n", nid);
3685 return 0;
3688 return min_pfn;
3692 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3694 * It returns the minimum PFN based on information provided via
3695 * add_active_range().
3697 unsigned long __init find_min_pfn_with_active_regions(void)
3699 return find_min_pfn_for_node(MAX_NUMNODES);
3703 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3705 * It returns the maximum PFN based on information provided via
3706 * add_active_range().
3708 unsigned long __init find_max_pfn_with_active_regions(void)
3710 int i;
3711 unsigned long max_pfn = 0;
3713 for (i = 0; i < nr_nodemap_entries; i++)
3714 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3716 return max_pfn;
3720 * early_calculate_totalpages()
3721 * Sum pages in active regions for movable zone.
3722 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3724 static unsigned long __init early_calculate_totalpages(void)
3726 int i;
3727 unsigned long totalpages = 0;
3729 for (i = 0; i < nr_nodemap_entries; i++) {
3730 unsigned long pages = early_node_map[i].end_pfn -
3731 early_node_map[i].start_pfn;
3732 totalpages += pages;
3733 if (pages)
3734 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3736 return totalpages;
3740 * Find the PFN the Movable zone begins in each node. Kernel memory
3741 * is spread evenly between nodes as long as the nodes have enough
3742 * memory. When they don't, some nodes will have more kernelcore than
3743 * others
3745 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3747 int i, nid;
3748 unsigned long usable_startpfn;
3749 unsigned long kernelcore_node, kernelcore_remaining;
3750 unsigned long totalpages = early_calculate_totalpages();
3751 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3754 * If movablecore was specified, calculate what size of
3755 * kernelcore that corresponds so that memory usable for
3756 * any allocation type is evenly spread. If both kernelcore
3757 * and movablecore are specified, then the value of kernelcore
3758 * will be used for required_kernelcore if it's greater than
3759 * what movablecore would have allowed.
3761 if (required_movablecore) {
3762 unsigned long corepages;
3765 * Round-up so that ZONE_MOVABLE is at least as large as what
3766 * was requested by the user
3768 required_movablecore =
3769 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3770 corepages = totalpages - required_movablecore;
3772 required_kernelcore = max(required_kernelcore, corepages);
3775 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3776 if (!required_kernelcore)
3777 return;
3779 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3780 find_usable_zone_for_movable();
3781 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3783 restart:
3784 /* Spread kernelcore memory as evenly as possible throughout nodes */
3785 kernelcore_node = required_kernelcore / usable_nodes;
3786 for_each_node_state(nid, N_HIGH_MEMORY) {
3788 * Recalculate kernelcore_node if the division per node
3789 * now exceeds what is necessary to satisfy the requested
3790 * amount of memory for the kernel
3792 if (required_kernelcore < kernelcore_node)
3793 kernelcore_node = required_kernelcore / usable_nodes;
3796 * As the map is walked, we track how much memory is usable
3797 * by the kernel using kernelcore_remaining. When it is
3798 * 0, the rest of the node is usable by ZONE_MOVABLE
3800 kernelcore_remaining = kernelcore_node;
3802 /* Go through each range of PFNs within this node */
3803 for_each_active_range_index_in_nid(i, nid) {
3804 unsigned long start_pfn, end_pfn;
3805 unsigned long size_pages;
3807 start_pfn = max(early_node_map[i].start_pfn,
3808 zone_movable_pfn[nid]);
3809 end_pfn = early_node_map[i].end_pfn;
3810 if (start_pfn >= end_pfn)
3811 continue;
3813 /* Account for what is only usable for kernelcore */
3814 if (start_pfn < usable_startpfn) {
3815 unsigned long kernel_pages;
3816 kernel_pages = min(end_pfn, usable_startpfn)
3817 - start_pfn;
3819 kernelcore_remaining -= min(kernel_pages,
3820 kernelcore_remaining);
3821 required_kernelcore -= min(kernel_pages,
3822 required_kernelcore);
3824 /* Continue if range is now fully accounted */
3825 if (end_pfn <= usable_startpfn) {
3828 * Push zone_movable_pfn to the end so
3829 * that if we have to rebalance
3830 * kernelcore across nodes, we will
3831 * not double account here
3833 zone_movable_pfn[nid] = end_pfn;
3834 continue;
3836 start_pfn = usable_startpfn;
3840 * The usable PFN range for ZONE_MOVABLE is from
3841 * start_pfn->end_pfn. Calculate size_pages as the
3842 * number of pages used as kernelcore
3844 size_pages = end_pfn - start_pfn;
3845 if (size_pages > kernelcore_remaining)
3846 size_pages = kernelcore_remaining;
3847 zone_movable_pfn[nid] = start_pfn + size_pages;
3850 * Some kernelcore has been met, update counts and
3851 * break if the kernelcore for this node has been
3852 * satisified
3854 required_kernelcore -= min(required_kernelcore,
3855 size_pages);
3856 kernelcore_remaining -= size_pages;
3857 if (!kernelcore_remaining)
3858 break;
3863 * If there is still required_kernelcore, we do another pass with one
3864 * less node in the count. This will push zone_movable_pfn[nid] further
3865 * along on the nodes that still have memory until kernelcore is
3866 * satisified
3868 usable_nodes--;
3869 if (usable_nodes && required_kernelcore > usable_nodes)
3870 goto restart;
3872 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3873 for (nid = 0; nid < MAX_NUMNODES; nid++)
3874 zone_movable_pfn[nid] =
3875 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3878 /* Any regular memory on that node ? */
3879 static void check_for_regular_memory(pg_data_t *pgdat)
3881 #ifdef CONFIG_HIGHMEM
3882 enum zone_type zone_type;
3884 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3885 struct zone *zone = &pgdat->node_zones[zone_type];
3886 if (zone->present_pages)
3887 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3889 #endif
3893 * free_area_init_nodes - Initialise all pg_data_t and zone data
3894 * @max_zone_pfn: an array of max PFNs for each zone
3896 * This will call free_area_init_node() for each active node in the system.
3897 * Using the page ranges provided by add_active_range(), the size of each
3898 * zone in each node and their holes is calculated. If the maximum PFN
3899 * between two adjacent zones match, it is assumed that the zone is empty.
3900 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3901 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3902 * starts where the previous one ended. For example, ZONE_DMA32 starts
3903 * at arch_max_dma_pfn.
3905 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3907 unsigned long nid;
3908 enum zone_type i;
3910 /* Sort early_node_map as initialisation assumes it is sorted */
3911 sort_node_map();
3913 /* Record where the zone boundaries are */
3914 memset(arch_zone_lowest_possible_pfn, 0,
3915 sizeof(arch_zone_lowest_possible_pfn));
3916 memset(arch_zone_highest_possible_pfn, 0,
3917 sizeof(arch_zone_highest_possible_pfn));
3918 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3919 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3920 for (i = 1; i < MAX_NR_ZONES; i++) {
3921 if (i == ZONE_MOVABLE)
3922 continue;
3923 arch_zone_lowest_possible_pfn[i] =
3924 arch_zone_highest_possible_pfn[i-1];
3925 arch_zone_highest_possible_pfn[i] =
3926 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3928 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3929 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3931 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3932 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3933 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3935 /* Print out the zone ranges */
3936 printk("Zone PFN ranges:\n");
3937 for (i = 0; i < MAX_NR_ZONES; i++) {
3938 if (i == ZONE_MOVABLE)
3939 continue;
3940 printk(" %-8s %0#10lx -> %0#10lx\n",
3941 zone_names[i],
3942 arch_zone_lowest_possible_pfn[i],
3943 arch_zone_highest_possible_pfn[i]);
3946 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3947 printk("Movable zone start PFN for each node\n");
3948 for (i = 0; i < MAX_NUMNODES; i++) {
3949 if (zone_movable_pfn[i])
3950 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3953 /* Print out the early_node_map[] */
3954 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3955 for (i = 0; i < nr_nodemap_entries; i++)
3956 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
3957 early_node_map[i].start_pfn,
3958 early_node_map[i].end_pfn);
3960 /* Initialise every node */
3961 mminit_verify_pageflags_layout();
3962 setup_nr_node_ids();
3963 for_each_online_node(nid) {
3964 pg_data_t *pgdat = NODE_DATA(nid);
3965 free_area_init_node(nid, NULL,
3966 find_min_pfn_for_node(nid), NULL);
3968 /* Any memory on that node */
3969 if (pgdat->node_present_pages)
3970 node_set_state(nid, N_HIGH_MEMORY);
3971 check_for_regular_memory(pgdat);
3975 static int __init cmdline_parse_core(char *p, unsigned long *core)
3977 unsigned long long coremem;
3978 if (!p)
3979 return -EINVAL;
3981 coremem = memparse(p, &p);
3982 *core = coremem >> PAGE_SHIFT;
3984 /* Paranoid check that UL is enough for the coremem value */
3985 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3987 return 0;
3991 * kernelcore=size sets the amount of memory for use for allocations that
3992 * cannot be reclaimed or migrated.
3994 static int __init cmdline_parse_kernelcore(char *p)
3996 return cmdline_parse_core(p, &required_kernelcore);
4000 * movablecore=size sets the amount of memory for use for allocations that
4001 * can be reclaimed or migrated.
4003 static int __init cmdline_parse_movablecore(char *p)
4005 return cmdline_parse_core(p, &required_movablecore);
4008 early_param("kernelcore", cmdline_parse_kernelcore);
4009 early_param("movablecore", cmdline_parse_movablecore);
4011 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4014 * set_dma_reserve - set the specified number of pages reserved in the first zone
4015 * @new_dma_reserve: The number of pages to mark reserved
4017 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4018 * In the DMA zone, a significant percentage may be consumed by kernel image
4019 * and other unfreeable allocations which can skew the watermarks badly. This
4020 * function may optionally be used to account for unfreeable pages in the
4021 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4022 * smaller per-cpu batchsize.
4024 void __init set_dma_reserve(unsigned long new_dma_reserve)
4026 dma_reserve = new_dma_reserve;
4029 #ifndef CONFIG_NEED_MULTIPLE_NODES
4030 struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] };
4031 EXPORT_SYMBOL(contig_page_data);
4032 #endif
4034 void __init free_area_init(unsigned long *zones_size)
4036 free_area_init_node(0, zones_size,
4037 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4040 static int page_alloc_cpu_notify(struct notifier_block *self,
4041 unsigned long action, void *hcpu)
4043 int cpu = (unsigned long)hcpu;
4045 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4046 drain_pages(cpu);
4049 * Spill the event counters of the dead processor
4050 * into the current processors event counters.
4051 * This artificially elevates the count of the current
4052 * processor.
4054 vm_events_fold_cpu(cpu);
4057 * Zero the differential counters of the dead processor
4058 * so that the vm statistics are consistent.
4060 * This is only okay since the processor is dead and cannot
4061 * race with what we are doing.
4063 refresh_cpu_vm_stats(cpu);
4065 return NOTIFY_OK;
4068 void __init page_alloc_init(void)
4070 hotcpu_notifier(page_alloc_cpu_notify, 0);
4074 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4075 * or min_free_kbytes changes.
4077 static void calculate_totalreserve_pages(void)
4079 struct pglist_data *pgdat;
4080 unsigned long reserve_pages = 0;
4081 enum zone_type i, j;
4083 for_each_online_pgdat(pgdat) {
4084 for (i = 0; i < MAX_NR_ZONES; i++) {
4085 struct zone *zone = pgdat->node_zones + i;
4086 unsigned long max = 0;
4088 /* Find valid and maximum lowmem_reserve in the zone */
4089 for (j = i; j < MAX_NR_ZONES; j++) {
4090 if (zone->lowmem_reserve[j] > max)
4091 max = zone->lowmem_reserve[j];
4094 /* we treat pages_high as reserved pages. */
4095 max += zone->pages_high;
4097 if (max > zone->present_pages)
4098 max = zone->present_pages;
4099 reserve_pages += max;
4102 totalreserve_pages = reserve_pages;
4106 * setup_per_zone_lowmem_reserve - called whenever
4107 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4108 * has a correct pages reserved value, so an adequate number of
4109 * pages are left in the zone after a successful __alloc_pages().
4111 static void setup_per_zone_lowmem_reserve(void)
4113 struct pglist_data *pgdat;
4114 enum zone_type j, idx;
4116 for_each_online_pgdat(pgdat) {
4117 for (j = 0; j < MAX_NR_ZONES; j++) {
4118 struct zone *zone = pgdat->node_zones + j;
4119 unsigned long present_pages = zone->present_pages;
4121 zone->lowmem_reserve[j] = 0;
4123 idx = j;
4124 while (idx) {
4125 struct zone *lower_zone;
4127 idx--;
4129 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4130 sysctl_lowmem_reserve_ratio[idx] = 1;
4132 lower_zone = pgdat->node_zones + idx;
4133 lower_zone->lowmem_reserve[j] = present_pages /
4134 sysctl_lowmem_reserve_ratio[idx];
4135 present_pages += lower_zone->present_pages;
4140 /* update totalreserve_pages */
4141 calculate_totalreserve_pages();
4145 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4147 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4148 * with respect to min_free_kbytes.
4150 void setup_per_zone_pages_min(void)
4152 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4153 unsigned long lowmem_pages = 0;
4154 struct zone *zone;
4155 unsigned long flags;
4157 /* Calculate total number of !ZONE_HIGHMEM pages */
4158 for_each_zone(zone) {
4159 if (!is_highmem(zone))
4160 lowmem_pages += zone->present_pages;
4163 for_each_zone(zone) {
4164 u64 tmp;
4166 spin_lock_irqsave(&zone->lru_lock, flags);
4167 tmp = (u64)pages_min * zone->present_pages;
4168 do_div(tmp, lowmem_pages);
4169 if (is_highmem(zone)) {
4171 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4172 * need highmem pages, so cap pages_min to a small
4173 * value here.
4175 * The (pages_high-pages_low) and (pages_low-pages_min)
4176 * deltas controls asynch page reclaim, and so should
4177 * not be capped for highmem.
4179 int min_pages;
4181 min_pages = zone->present_pages / 1024;
4182 if (min_pages < SWAP_CLUSTER_MAX)
4183 min_pages = SWAP_CLUSTER_MAX;
4184 if (min_pages > 128)
4185 min_pages = 128;
4186 zone->pages_min = min_pages;
4187 } else {
4189 * If it's a lowmem zone, reserve a number of pages
4190 * proportionate to the zone's size.
4192 zone->pages_min = tmp;
4195 zone->pages_low = zone->pages_min + (tmp >> 2);
4196 zone->pages_high = zone->pages_min + (tmp >> 1);
4197 setup_zone_migrate_reserve(zone);
4198 spin_unlock_irqrestore(&zone->lru_lock, flags);
4201 /* update totalreserve_pages */
4202 calculate_totalreserve_pages();
4206 * Initialise min_free_kbytes.
4208 * For small machines we want it small (128k min). For large machines
4209 * we want it large (64MB max). But it is not linear, because network
4210 * bandwidth does not increase linearly with machine size. We use
4212 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4213 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4215 * which yields
4217 * 16MB: 512k
4218 * 32MB: 724k
4219 * 64MB: 1024k
4220 * 128MB: 1448k
4221 * 256MB: 2048k
4222 * 512MB: 2896k
4223 * 1024MB: 4096k
4224 * 2048MB: 5792k
4225 * 4096MB: 8192k
4226 * 8192MB: 11584k
4227 * 16384MB: 16384k
4229 static int __init init_per_zone_pages_min(void)
4231 unsigned long lowmem_kbytes;
4233 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4235 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4236 if (min_free_kbytes < 128)
4237 min_free_kbytes = 128;
4238 if (min_free_kbytes > 65536)
4239 min_free_kbytes = 65536;
4240 setup_per_zone_pages_min();
4241 setup_per_zone_lowmem_reserve();
4242 return 0;
4244 module_init(init_per_zone_pages_min)
4247 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4248 * that we can call two helper functions whenever min_free_kbytes
4249 * changes.
4251 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4252 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4254 proc_dointvec(table, write, file, buffer, length, ppos);
4255 if (write)
4256 setup_per_zone_pages_min();
4257 return 0;
4260 #ifdef CONFIG_NUMA
4261 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4262 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4264 struct zone *zone;
4265 int rc;
4267 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4268 if (rc)
4269 return rc;
4271 for_each_zone(zone)
4272 zone->min_unmapped_pages = (zone->present_pages *
4273 sysctl_min_unmapped_ratio) / 100;
4274 return 0;
4277 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4278 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4280 struct zone *zone;
4281 int rc;
4283 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4284 if (rc)
4285 return rc;
4287 for_each_zone(zone)
4288 zone->min_slab_pages = (zone->present_pages *
4289 sysctl_min_slab_ratio) / 100;
4290 return 0;
4292 #endif
4295 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4296 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4297 * whenever sysctl_lowmem_reserve_ratio changes.
4299 * The reserve ratio obviously has absolutely no relation with the
4300 * pages_min watermarks. The lowmem reserve ratio can only make sense
4301 * if in function of the boot time zone sizes.
4303 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4304 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4306 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4307 setup_per_zone_lowmem_reserve();
4308 return 0;
4312 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4313 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4314 * can have before it gets flushed back to buddy allocator.
4317 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4318 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4320 struct zone *zone;
4321 unsigned int cpu;
4322 int ret;
4324 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4325 if (!write || (ret == -EINVAL))
4326 return ret;
4327 for_each_zone(zone) {
4328 for_each_online_cpu(cpu) {
4329 unsigned long high;
4330 high = zone->present_pages / percpu_pagelist_fraction;
4331 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4334 return 0;
4337 int hashdist = HASHDIST_DEFAULT;
4339 #ifdef CONFIG_NUMA
4340 static int __init set_hashdist(char *str)
4342 if (!str)
4343 return 0;
4344 hashdist = simple_strtoul(str, &str, 0);
4345 return 1;
4347 __setup("hashdist=", set_hashdist);
4348 #endif
4351 * allocate a large system hash table from bootmem
4352 * - it is assumed that the hash table must contain an exact power-of-2
4353 * quantity of entries
4354 * - limit is the number of hash buckets, not the total allocation size
4356 void *__init alloc_large_system_hash(const char *tablename,
4357 unsigned long bucketsize,
4358 unsigned long numentries,
4359 int scale,
4360 int flags,
4361 unsigned int *_hash_shift,
4362 unsigned int *_hash_mask,
4363 unsigned long limit)
4365 unsigned long long max = limit;
4366 unsigned long log2qty, size;
4367 void *table = NULL;
4369 /* allow the kernel cmdline to have a say */
4370 if (!numentries) {
4371 /* round applicable memory size up to nearest megabyte */
4372 numentries = nr_kernel_pages;
4373 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4374 numentries >>= 20 - PAGE_SHIFT;
4375 numentries <<= 20 - PAGE_SHIFT;
4377 /* limit to 1 bucket per 2^scale bytes of low memory */
4378 if (scale > PAGE_SHIFT)
4379 numentries >>= (scale - PAGE_SHIFT);
4380 else
4381 numentries <<= (PAGE_SHIFT - scale);
4383 /* Make sure we've got at least a 0-order allocation.. */
4384 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4385 numentries = PAGE_SIZE / bucketsize;
4387 numentries = roundup_pow_of_two(numentries);
4389 /* limit allocation size to 1/16 total memory by default */
4390 if (max == 0) {
4391 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4392 do_div(max, bucketsize);
4395 if (numentries > max)
4396 numentries = max;
4398 log2qty = ilog2(numentries);
4400 do {
4401 size = bucketsize << log2qty;
4402 if (flags & HASH_EARLY)
4403 table = alloc_bootmem(size);
4404 else if (hashdist)
4405 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4406 else {
4407 unsigned long order = get_order(size);
4408 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4410 * If bucketsize is not a power-of-two, we may free
4411 * some pages at the end of hash table.
4413 if (table) {
4414 unsigned long alloc_end = (unsigned long)table +
4415 (PAGE_SIZE << order);
4416 unsigned long used = (unsigned long)table +
4417 PAGE_ALIGN(size);
4418 split_page(virt_to_page(table), order);
4419 while (used < alloc_end) {
4420 free_page(used);
4421 used += PAGE_SIZE;
4425 } while (!table && size > PAGE_SIZE && --log2qty);
4427 if (!table)
4428 panic("Failed to allocate %s hash table\n", tablename);
4430 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4431 tablename,
4432 (1U << log2qty),
4433 ilog2(size) - PAGE_SHIFT,
4434 size);
4436 if (_hash_shift)
4437 *_hash_shift = log2qty;
4438 if (_hash_mask)
4439 *_hash_mask = (1 << log2qty) - 1;
4441 return table;
4444 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4445 struct page *pfn_to_page(unsigned long pfn)
4447 return __pfn_to_page(pfn);
4449 unsigned long page_to_pfn(struct page *page)
4451 return __page_to_pfn(page);
4453 EXPORT_SYMBOL(pfn_to_page);
4454 EXPORT_SYMBOL(page_to_pfn);
4455 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4457 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4458 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4459 unsigned long pfn)
4461 #ifdef CONFIG_SPARSEMEM
4462 return __pfn_to_section(pfn)->pageblock_flags;
4463 #else
4464 return zone->pageblock_flags;
4465 #endif /* CONFIG_SPARSEMEM */
4468 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4470 #ifdef CONFIG_SPARSEMEM
4471 pfn &= (PAGES_PER_SECTION-1);
4472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4473 #else
4474 pfn = pfn - zone->zone_start_pfn;
4475 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4476 #endif /* CONFIG_SPARSEMEM */
4480 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4481 * @page: The page within the block of interest
4482 * @start_bitidx: The first bit of interest to retrieve
4483 * @end_bitidx: The last bit of interest
4484 * returns pageblock_bits flags
4486 unsigned long get_pageblock_flags_group(struct page *page,
4487 int start_bitidx, int end_bitidx)
4489 struct zone *zone;
4490 unsigned long *bitmap;
4491 unsigned long pfn, bitidx;
4492 unsigned long flags = 0;
4493 unsigned long value = 1;
4495 zone = page_zone(page);
4496 pfn = page_to_pfn(page);
4497 bitmap = get_pageblock_bitmap(zone, pfn);
4498 bitidx = pfn_to_bitidx(zone, pfn);
4500 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4501 if (test_bit(bitidx + start_bitidx, bitmap))
4502 flags |= value;
4504 return flags;
4508 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4509 * @page: The page within the block of interest
4510 * @start_bitidx: The first bit of interest
4511 * @end_bitidx: The last bit of interest
4512 * @flags: The flags to set
4514 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4515 int start_bitidx, int end_bitidx)
4517 struct zone *zone;
4518 unsigned long *bitmap;
4519 unsigned long pfn, bitidx;
4520 unsigned long value = 1;
4522 zone = page_zone(page);
4523 pfn = page_to_pfn(page);
4524 bitmap = get_pageblock_bitmap(zone, pfn);
4525 bitidx = pfn_to_bitidx(zone, pfn);
4526 VM_BUG_ON(pfn < zone->zone_start_pfn);
4527 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4529 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4530 if (flags & value)
4531 __set_bit(bitidx + start_bitidx, bitmap);
4532 else
4533 __clear_bit(bitidx + start_bitidx, bitmap);
4537 * This is designed as sub function...plz see page_isolation.c also.
4538 * set/clear page block's type to be ISOLATE.
4539 * page allocater never alloc memory from ISOLATE block.
4542 int set_migratetype_isolate(struct page *page)
4544 struct zone *zone;
4545 unsigned long flags;
4546 int ret = -EBUSY;
4548 zone = page_zone(page);
4549 spin_lock_irqsave(&zone->lock, flags);
4551 * In future, more migrate types will be able to be isolation target.
4553 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4554 goto out;
4555 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4556 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4557 ret = 0;
4558 out:
4559 spin_unlock_irqrestore(&zone->lock, flags);
4560 if (!ret)
4561 drain_all_pages();
4562 return ret;
4565 void unset_migratetype_isolate(struct page *page)
4567 struct zone *zone;
4568 unsigned long flags;
4569 zone = page_zone(page);
4570 spin_lock_irqsave(&zone->lock, flags);
4571 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4572 goto out;
4573 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4574 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4575 out:
4576 spin_unlock_irqrestore(&zone->lock, flags);
4579 #ifdef CONFIG_MEMORY_HOTREMOVE
4581 * All pages in the range must be isolated before calling this.
4583 void
4584 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4586 struct page *page;
4587 struct zone *zone;
4588 int order, i;
4589 unsigned long pfn;
4590 unsigned long flags;
4591 /* find the first valid pfn */
4592 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4593 if (pfn_valid(pfn))
4594 break;
4595 if (pfn == end_pfn)
4596 return;
4597 zone = page_zone(pfn_to_page(pfn));
4598 spin_lock_irqsave(&zone->lock, flags);
4599 pfn = start_pfn;
4600 while (pfn < end_pfn) {
4601 if (!pfn_valid(pfn)) {
4602 pfn++;
4603 continue;
4605 page = pfn_to_page(pfn);
4606 BUG_ON(page_count(page));
4607 BUG_ON(!PageBuddy(page));
4608 order = page_order(page);
4609 #ifdef CONFIG_DEBUG_VM
4610 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4611 pfn, 1 << order, end_pfn);
4612 #endif
4613 list_del(&page->lru);
4614 rmv_page_order(page);
4615 zone->free_area[order].nr_free--;
4616 __mod_zone_page_state(zone, NR_FREE_PAGES,
4617 - (1UL << order));
4618 for (i = 0; i < (1 << order); i++)
4619 SetPageReserved((page+i));
4620 pfn += (1 << order);
4622 spin_unlock_irqrestore(&zone->lock, flags);
4624 #endif