oom: add sysctl to enable task memory dump
[linux-2.6/mini2440.git] / mm / memcontrol.c
blob2fadd4896a1498a755901744f3c59e40dbebc4e7
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/page-flags.h>
25 #include <linux/backing-dev.h>
26 #include <linux/bit_spinlock.h>
27 #include <linux/rcupdate.h>
28 #include <linux/swap.h>
29 #include <linux/spinlock.h>
30 #include <linux/fs.h>
32 #include <asm/uaccess.h>
34 struct cgroup_subsys mem_cgroup_subsys;
35 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
48 struct mem_cgroup {
49 struct cgroup_subsys_state css;
51 * the counter to account for memory usage
53 struct res_counter res;
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
59 struct list_head active_list;
60 struct list_head inactive_list;
62 * spin_lock to protect the per cgroup LRU
64 spinlock_t lru_lock;
65 unsigned long control_type; /* control RSS or RSS+Pagecache */
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
73 #define PAGE_CGROUP_LOCK_BIT 0x0
74 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
80 struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
88 enum {
89 MEM_CGROUP_TYPE_UNSPEC = 0,
90 MEM_CGROUP_TYPE_MAPPED,
91 MEM_CGROUP_TYPE_CACHED,
92 MEM_CGROUP_TYPE_ALL,
93 MEM_CGROUP_TYPE_MAX,
96 static struct mem_cgroup init_mem_cgroup;
98 static inline
99 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
101 return container_of(cgroup_subsys_state(cont,
102 mem_cgroup_subsys_id), struct mem_cgroup,
103 css);
106 static inline
107 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
109 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
110 struct mem_cgroup, css);
113 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
115 struct mem_cgroup *mem;
117 mem = mem_cgroup_from_task(p);
118 css_get(&mem->css);
119 mm->mem_cgroup = mem;
122 void mm_free_cgroup(struct mm_struct *mm)
124 css_put(&mm->mem_cgroup->css);
127 static inline int page_cgroup_locked(struct page *page)
129 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
130 &page->page_cgroup);
133 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
135 int locked;
138 * While resetting the page_cgroup we might not hold the
139 * page_cgroup lock. free_hot_cold_page() is an example
140 * of such a scenario
142 if (pc)
143 VM_BUG_ON(!page_cgroup_locked(page));
144 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
145 page->page_cgroup = ((unsigned long)pc | locked);
148 struct page_cgroup *page_get_page_cgroup(struct page *page)
150 return (struct page_cgroup *)
151 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
154 static void __always_inline lock_page_cgroup(struct page *page)
156 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
157 VM_BUG_ON(!page_cgroup_locked(page));
160 static void __always_inline unlock_page_cgroup(struct page *page)
162 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
165 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
167 if (active)
168 list_move(&pc->lru, &pc->mem_cgroup->active_list);
169 else
170 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
173 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
175 int ret;
177 task_lock(task);
178 ret = task->mm && mm_cgroup(task->mm) == mem;
179 task_unlock(task);
180 return ret;
184 * This routine assumes that the appropriate zone's lru lock is already held
186 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
188 struct mem_cgroup *mem;
189 if (!pc)
190 return;
192 mem = pc->mem_cgroup;
194 spin_lock(&mem->lru_lock);
195 __mem_cgroup_move_lists(pc, active);
196 spin_unlock(&mem->lru_lock);
199 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
200 struct list_head *dst,
201 unsigned long *scanned, int order,
202 int mode, struct zone *z,
203 struct mem_cgroup *mem_cont,
204 int active)
206 unsigned long nr_taken = 0;
207 struct page *page;
208 unsigned long scan;
209 LIST_HEAD(pc_list);
210 struct list_head *src;
211 struct page_cgroup *pc;
213 if (active)
214 src = &mem_cont->active_list;
215 else
216 src = &mem_cont->inactive_list;
218 spin_lock(&mem_cont->lru_lock);
219 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
220 pc = list_entry(src->prev, struct page_cgroup, lru);
221 page = pc->page;
222 VM_BUG_ON(!pc);
224 if (PageActive(page) && !active) {
225 __mem_cgroup_move_lists(pc, true);
226 scan--;
227 continue;
229 if (!PageActive(page) && active) {
230 __mem_cgroup_move_lists(pc, false);
231 scan--;
232 continue;
236 * Reclaim, per zone
237 * TODO: make the active/inactive lists per zone
239 if (page_zone(page) != z)
240 continue;
243 * Check if the meta page went away from under us
245 if (!list_empty(&pc->lru))
246 list_move(&pc->lru, &pc_list);
247 else
248 continue;
250 if (__isolate_lru_page(page, mode) == 0) {
251 list_move(&page->lru, dst);
252 nr_taken++;
256 list_splice(&pc_list, src);
257 spin_unlock(&mem_cont->lru_lock);
259 *scanned = scan;
260 return nr_taken;
264 * Charge the memory controller for page usage.
265 * Return
266 * 0 if the charge was successful
267 * < 0 if the cgroup is over its limit
269 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
270 gfp_t gfp_mask)
272 struct mem_cgroup *mem;
273 struct page_cgroup *pc, *race_pc;
274 unsigned long flags;
275 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
278 * Should page_cgroup's go to their own slab?
279 * One could optimize the performance of the charging routine
280 * by saving a bit in the page_flags and using it as a lock
281 * to see if the cgroup page already has a page_cgroup associated
282 * with it
284 retry:
285 lock_page_cgroup(page);
286 pc = page_get_page_cgroup(page);
288 * The page_cgroup exists and the page has already been accounted
290 if (pc) {
291 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
292 /* this page is under being uncharged ? */
293 unlock_page_cgroup(page);
294 cpu_relax();
295 goto retry;
296 } else
297 goto done;
300 unlock_page_cgroup(page);
302 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
303 if (pc == NULL)
304 goto err;
306 rcu_read_lock();
308 * We always charge the cgroup the mm_struct belongs to
309 * the mm_struct's mem_cgroup changes on task migration if the
310 * thread group leader migrates. It's possible that mm is not
311 * set, if so charge the init_mm (happens for pagecache usage).
313 if (!mm)
314 mm = &init_mm;
316 mem = rcu_dereference(mm->mem_cgroup);
318 * For every charge from the cgroup, increment reference
319 * count
321 css_get(&mem->css);
322 rcu_read_unlock();
325 * If we created the page_cgroup, we should free it on exceeding
326 * the cgroup limit.
328 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
329 bool is_atomic = gfp_mask & GFP_ATOMIC;
331 * We cannot reclaim under GFP_ATOMIC, fail the charge
333 if (is_atomic)
334 goto noreclaim;
336 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
337 continue;
340 * try_to_free_mem_cgroup_pages() might not give us a full
341 * picture of reclaim. Some pages are reclaimed and might be
342 * moved to swap cache or just unmapped from the cgroup.
343 * Check the limit again to see if the reclaim reduced the
344 * current usage of the cgroup before giving up
346 if (res_counter_check_under_limit(&mem->res))
347 continue;
349 * Since we control both RSS and cache, we end up with a
350 * very interesting scenario where we end up reclaiming
351 * memory (essentially RSS), since the memory is pushed
352 * to swap cache, we eventually end up adding those
353 * pages back to our list. Hence we give ourselves a
354 * few chances before we fail
356 else if (nr_retries--) {
357 congestion_wait(WRITE, HZ/10);
358 continue;
360 noreclaim:
361 css_put(&mem->css);
362 if (!is_atomic)
363 mem_cgroup_out_of_memory(mem, GFP_KERNEL);
364 goto free_pc;
367 lock_page_cgroup(page);
369 * Check if somebody else beat us to allocating the page_cgroup
371 race_pc = page_get_page_cgroup(page);
372 if (race_pc) {
373 kfree(pc);
374 pc = race_pc;
375 atomic_inc(&pc->ref_cnt);
376 res_counter_uncharge(&mem->res, PAGE_SIZE);
377 css_put(&mem->css);
378 goto done;
381 atomic_set(&pc->ref_cnt, 1);
382 pc->mem_cgroup = mem;
383 pc->page = page;
384 page_assign_page_cgroup(page, pc);
386 spin_lock_irqsave(&mem->lru_lock, flags);
387 list_add(&pc->lru, &mem->active_list);
388 spin_unlock_irqrestore(&mem->lru_lock, flags);
390 done:
391 unlock_page_cgroup(page);
392 return 0;
393 free_pc:
394 kfree(pc);
395 err:
396 return -ENOMEM;
400 * See if the cached pages should be charged at all?
402 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
403 gfp_t gfp_mask)
405 struct mem_cgroup *mem;
406 if (!mm)
407 mm = &init_mm;
409 mem = rcu_dereference(mm->mem_cgroup);
410 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
411 return mem_cgroup_charge(page, mm, gfp_mask);
412 else
413 return 0;
417 * Uncharging is always a welcome operation, we never complain, simply
418 * uncharge.
420 void mem_cgroup_uncharge(struct page_cgroup *pc)
422 struct mem_cgroup *mem;
423 struct page *page;
424 unsigned long flags;
427 * This can handle cases when a page is not charged at all and we
428 * are switching between handling the control_type.
430 if (!pc)
431 return;
433 if (atomic_dec_and_test(&pc->ref_cnt)) {
434 page = pc->page;
435 lock_page_cgroup(page);
436 mem = pc->mem_cgroup;
437 css_put(&mem->css);
438 page_assign_page_cgroup(page, NULL);
439 unlock_page_cgroup(page);
440 res_counter_uncharge(&mem->res, PAGE_SIZE);
442 spin_lock_irqsave(&mem->lru_lock, flags);
443 list_del_init(&pc->lru);
444 spin_unlock_irqrestore(&mem->lru_lock, flags);
445 kfree(pc);
449 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
451 *tmp = memparse(buf, &buf);
452 if (*buf != '\0')
453 return -EINVAL;
456 * Round up the value to the closest page size
458 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
459 return 0;
462 static ssize_t mem_cgroup_read(struct cgroup *cont,
463 struct cftype *cft, struct file *file,
464 char __user *userbuf, size_t nbytes, loff_t *ppos)
466 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
467 cft->private, userbuf, nbytes, ppos,
468 NULL);
471 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
472 struct file *file, const char __user *userbuf,
473 size_t nbytes, loff_t *ppos)
475 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
476 cft->private, userbuf, nbytes, ppos,
477 mem_cgroup_write_strategy);
480 static ssize_t mem_control_type_write(struct cgroup *cont,
481 struct cftype *cft, struct file *file,
482 const char __user *userbuf,
483 size_t nbytes, loff_t *pos)
485 int ret;
486 char *buf, *end;
487 unsigned long tmp;
488 struct mem_cgroup *mem;
490 mem = mem_cgroup_from_cont(cont);
491 buf = kmalloc(nbytes + 1, GFP_KERNEL);
492 ret = -ENOMEM;
493 if (buf == NULL)
494 goto out;
496 buf[nbytes] = 0;
497 ret = -EFAULT;
498 if (copy_from_user(buf, userbuf, nbytes))
499 goto out_free;
501 ret = -EINVAL;
502 tmp = simple_strtoul(buf, &end, 10);
503 if (*end != '\0')
504 goto out_free;
506 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
507 goto out_free;
509 mem->control_type = tmp;
510 ret = nbytes;
511 out_free:
512 kfree(buf);
513 out:
514 return ret;
517 static ssize_t mem_control_type_read(struct cgroup *cont,
518 struct cftype *cft,
519 struct file *file, char __user *userbuf,
520 size_t nbytes, loff_t *ppos)
522 unsigned long val;
523 char buf[64], *s;
524 struct mem_cgroup *mem;
526 mem = mem_cgroup_from_cont(cont);
527 s = buf;
528 val = mem->control_type;
529 s += sprintf(s, "%lu\n", val);
530 return simple_read_from_buffer((void __user *)userbuf, nbytes,
531 ppos, buf, s - buf);
534 static struct cftype mem_cgroup_files[] = {
536 .name = "usage_in_bytes",
537 .private = RES_USAGE,
538 .read = mem_cgroup_read,
541 .name = "limit_in_bytes",
542 .private = RES_LIMIT,
543 .write = mem_cgroup_write,
544 .read = mem_cgroup_read,
547 .name = "failcnt",
548 .private = RES_FAILCNT,
549 .read = mem_cgroup_read,
552 .name = "control_type",
553 .write = mem_control_type_write,
554 .read = mem_control_type_read,
558 static struct mem_cgroup init_mem_cgroup;
560 static struct cgroup_subsys_state *
561 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
563 struct mem_cgroup *mem;
565 if (unlikely((cont->parent) == NULL)) {
566 mem = &init_mem_cgroup;
567 init_mm.mem_cgroup = mem;
568 } else
569 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
571 if (mem == NULL)
572 return NULL;
574 res_counter_init(&mem->res);
575 INIT_LIST_HEAD(&mem->active_list);
576 INIT_LIST_HEAD(&mem->inactive_list);
577 spin_lock_init(&mem->lru_lock);
578 mem->control_type = MEM_CGROUP_TYPE_ALL;
579 return &mem->css;
582 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
583 struct cgroup *cont)
585 kfree(mem_cgroup_from_cont(cont));
588 static int mem_cgroup_populate(struct cgroup_subsys *ss,
589 struct cgroup *cont)
591 return cgroup_add_files(cont, ss, mem_cgroup_files,
592 ARRAY_SIZE(mem_cgroup_files));
595 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
596 struct cgroup *cont,
597 struct cgroup *old_cont,
598 struct task_struct *p)
600 struct mm_struct *mm;
601 struct mem_cgroup *mem, *old_mem;
603 mm = get_task_mm(p);
604 if (mm == NULL)
605 return;
607 mem = mem_cgroup_from_cont(cont);
608 old_mem = mem_cgroup_from_cont(old_cont);
610 if (mem == old_mem)
611 goto out;
614 * Only thread group leaders are allowed to migrate, the mm_struct is
615 * in effect owned by the leader
617 if (p->tgid != p->pid)
618 goto out;
620 css_get(&mem->css);
621 rcu_assign_pointer(mm->mem_cgroup, mem);
622 css_put(&old_mem->css);
624 out:
625 mmput(mm);
626 return;
629 struct cgroup_subsys mem_cgroup_subsys = {
630 .name = "memory",
631 .subsys_id = mem_cgroup_subsys_id,
632 .create = mem_cgroup_create,
633 .destroy = mem_cgroup_destroy,
634 .populate = mem_cgroup_populate,
635 .attach = mem_cgroup_move_task,
636 .early_init = 1,