block: convert blkdev_issue_flush() to use empty barriers
[linux-2.6/mini2440.git] / block / ll_rw_blk.c
blob4df7d027eb06d934adc1493205d11d6c2f7ad203
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
35 * for max sense size
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(struct request_queue *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45 static void blk_recalc_rq_segments(struct request *rq);
46 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
47 struct bio *bio);
50 * For the allocated request tables
52 static struct kmem_cache *request_cachep;
55 * For queue allocation
57 static struct kmem_cache *requestq_cachep;
60 * For io context allocations
62 static struct kmem_cache *iocontext_cachep;
65 * Controlling structure to kblockd
67 static struct workqueue_struct *kblockd_workqueue;
69 unsigned long blk_max_low_pfn, blk_max_pfn;
71 EXPORT_SYMBOL(blk_max_low_pfn);
72 EXPORT_SYMBOL(blk_max_pfn);
74 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76 /* Amount of time in which a process may batch requests */
77 #define BLK_BATCH_TIME (HZ/50UL)
79 /* Number of requests a "batching" process may submit */
80 #define BLK_BATCH_REQ 32
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
87 static inline int queue_congestion_on_threshold(struct request_queue *q)
89 return q->nr_congestion_on;
93 * The threshold at which a queue is considered to be uncongested
95 static inline int queue_congestion_off_threshold(struct request_queue *q)
97 return q->nr_congestion_off;
100 static void blk_queue_congestion_threshold(struct request_queue *q)
102 int nr;
104 nr = q->nr_requests - (q->nr_requests / 8) + 1;
105 if (nr > q->nr_requests)
106 nr = q->nr_requests;
107 q->nr_congestion_on = nr;
109 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
110 if (nr < 1)
111 nr = 1;
112 q->nr_congestion_off = nr;
116 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
117 * @bdev: device
119 * Locates the passed device's request queue and returns the address of its
120 * backing_dev_info
122 * Will return NULL if the request queue cannot be located.
124 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126 struct backing_dev_info *ret = NULL;
127 struct request_queue *q = bdev_get_queue(bdev);
129 if (q)
130 ret = &q->backing_dev_info;
131 return ret;
133 EXPORT_SYMBOL(blk_get_backing_dev_info);
136 * blk_queue_prep_rq - set a prepare_request function for queue
137 * @q: queue
138 * @pfn: prepare_request function
140 * It's possible for a queue to register a prepare_request callback which
141 * is invoked before the request is handed to the request_fn. The goal of
142 * the function is to prepare a request for I/O, it can be used to build a
143 * cdb from the request data for instance.
146 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
148 q->prep_rq_fn = pfn;
151 EXPORT_SYMBOL(blk_queue_prep_rq);
154 * blk_queue_merge_bvec - set a merge_bvec function for queue
155 * @q: queue
156 * @mbfn: merge_bvec_fn
158 * Usually queues have static limitations on the max sectors or segments that
159 * we can put in a request. Stacking drivers may have some settings that
160 * are dynamic, and thus we have to query the queue whether it is ok to
161 * add a new bio_vec to a bio at a given offset or not. If the block device
162 * has such limitations, it needs to register a merge_bvec_fn to control
163 * the size of bio's sent to it. Note that a block device *must* allow a
164 * single page to be added to an empty bio. The block device driver may want
165 * to use the bio_split() function to deal with these bio's. By default
166 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
167 * honored.
169 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
171 q->merge_bvec_fn = mbfn;
174 EXPORT_SYMBOL(blk_queue_merge_bvec);
176 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
178 q->softirq_done_fn = fn;
181 EXPORT_SYMBOL(blk_queue_softirq_done);
184 * blk_queue_make_request - define an alternate make_request function for a device
185 * @q: the request queue for the device to be affected
186 * @mfn: the alternate make_request function
188 * Description:
189 * The normal way for &struct bios to be passed to a device
190 * driver is for them to be collected into requests on a request
191 * queue, and then to allow the device driver to select requests
192 * off that queue when it is ready. This works well for many block
193 * devices. However some block devices (typically virtual devices
194 * such as md or lvm) do not benefit from the processing on the
195 * request queue, and are served best by having the requests passed
196 * directly to them. This can be achieved by providing a function
197 * to blk_queue_make_request().
199 * Caveat:
200 * The driver that does this *must* be able to deal appropriately
201 * with buffers in "highmemory". This can be accomplished by either calling
202 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
203 * blk_queue_bounce() to create a buffer in normal memory.
205 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
208 * set defaults
210 q->nr_requests = BLKDEV_MAX_RQ;
211 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
212 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
213 q->make_request_fn = mfn;
214 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
215 q->backing_dev_info.state = 0;
216 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
217 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
218 blk_queue_hardsect_size(q, 512);
219 blk_queue_dma_alignment(q, 511);
220 blk_queue_congestion_threshold(q);
221 q->nr_batching = BLK_BATCH_REQ;
223 q->unplug_thresh = 4; /* hmm */
224 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
225 if (q->unplug_delay == 0)
226 q->unplug_delay = 1;
228 INIT_WORK(&q->unplug_work, blk_unplug_work);
230 q->unplug_timer.function = blk_unplug_timeout;
231 q->unplug_timer.data = (unsigned long)q;
234 * by default assume old behaviour and bounce for any highmem page
236 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
239 EXPORT_SYMBOL(blk_queue_make_request);
241 static void rq_init(struct request_queue *q, struct request *rq)
243 INIT_LIST_HEAD(&rq->queuelist);
244 INIT_LIST_HEAD(&rq->donelist);
246 rq->errors = 0;
247 rq->bio = rq->biotail = NULL;
248 INIT_HLIST_NODE(&rq->hash);
249 RB_CLEAR_NODE(&rq->rb_node);
250 rq->ioprio = 0;
251 rq->buffer = NULL;
252 rq->ref_count = 1;
253 rq->q = q;
254 rq->special = NULL;
255 rq->data_len = 0;
256 rq->data = NULL;
257 rq->nr_phys_segments = 0;
258 rq->sense = NULL;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
261 rq->completion_data = NULL;
262 rq->next_rq = NULL;
266 * blk_queue_ordered - does this queue support ordered writes
267 * @q: the request queue
268 * @ordered: one of QUEUE_ORDERED_*
269 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
271 * Description:
272 * For journalled file systems, doing ordered writes on a commit
273 * block instead of explicitly doing wait_on_buffer (which is bad
274 * for performance) can be a big win. Block drivers supporting this
275 * feature should call this function and indicate so.
278 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
279 prepare_flush_fn *prepare_flush_fn)
281 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
282 prepare_flush_fn == NULL) {
283 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
284 return -EINVAL;
287 if (ordered != QUEUE_ORDERED_NONE &&
288 ordered != QUEUE_ORDERED_DRAIN &&
289 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
290 ordered != QUEUE_ORDERED_DRAIN_FUA &&
291 ordered != QUEUE_ORDERED_TAG &&
292 ordered != QUEUE_ORDERED_TAG_FLUSH &&
293 ordered != QUEUE_ORDERED_TAG_FUA) {
294 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
295 return -EINVAL;
298 q->ordered = ordered;
299 q->next_ordered = ordered;
300 q->prepare_flush_fn = prepare_flush_fn;
302 return 0;
305 EXPORT_SYMBOL(blk_queue_ordered);
308 * Cache flushing for ordered writes handling
310 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
312 if (!q->ordseq)
313 return 0;
314 return 1 << ffz(q->ordseq);
317 unsigned blk_ordered_req_seq(struct request *rq)
319 struct request_queue *q = rq->q;
321 BUG_ON(q->ordseq == 0);
323 if (rq == &q->pre_flush_rq)
324 return QUEUE_ORDSEQ_PREFLUSH;
325 if (rq == &q->bar_rq)
326 return QUEUE_ORDSEQ_BAR;
327 if (rq == &q->post_flush_rq)
328 return QUEUE_ORDSEQ_POSTFLUSH;
331 * !fs requests don't need to follow barrier ordering. Always
332 * put them at the front. This fixes the following deadlock.
334 * http://thread.gmane.org/gmane.linux.kernel/537473
336 if (!blk_fs_request(rq))
337 return QUEUE_ORDSEQ_DRAIN;
339 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
340 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
341 return QUEUE_ORDSEQ_DRAIN;
342 else
343 return QUEUE_ORDSEQ_DONE;
346 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
348 struct request *rq;
349 int uptodate;
351 if (error && !q->orderr)
352 q->orderr = error;
354 BUG_ON(q->ordseq & seq);
355 q->ordseq |= seq;
357 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
358 return;
361 * Okay, sequence complete.
363 uptodate = 1;
364 if (q->orderr)
365 uptodate = q->orderr;
367 q->ordseq = 0;
368 rq = q->orig_bar_rq;
370 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
371 end_that_request_last(rq, uptodate);
374 static void pre_flush_end_io(struct request *rq, int error)
376 elv_completed_request(rq->q, rq);
377 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
380 static void bar_end_io(struct request *rq, int error)
382 elv_completed_request(rq->q, rq);
383 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
386 static void post_flush_end_io(struct request *rq, int error)
388 elv_completed_request(rq->q, rq);
389 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
392 static void queue_flush(struct request_queue *q, unsigned which)
394 struct request *rq;
395 rq_end_io_fn *end_io;
397 if (which == QUEUE_ORDERED_PREFLUSH) {
398 rq = &q->pre_flush_rq;
399 end_io = pre_flush_end_io;
400 } else {
401 rq = &q->post_flush_rq;
402 end_io = post_flush_end_io;
405 rq->cmd_flags = REQ_HARDBARRIER;
406 rq_init(q, rq);
407 rq->elevator_private = NULL;
408 rq->elevator_private2 = NULL;
409 rq->rq_disk = q->bar_rq.rq_disk;
410 rq->end_io = end_io;
411 q->prepare_flush_fn(q, rq);
413 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
416 static inline struct request *start_ordered(struct request_queue *q,
417 struct request *rq)
419 q->orderr = 0;
420 q->ordered = q->next_ordered;
421 q->ordseq |= QUEUE_ORDSEQ_STARTED;
424 * Prep proxy barrier request.
426 blkdev_dequeue_request(rq);
427 q->orig_bar_rq = rq;
428 rq = &q->bar_rq;
429 rq->cmd_flags = 0;
430 rq_init(q, rq);
431 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
432 rq->cmd_flags |= REQ_RW;
433 if (q->ordered & QUEUE_ORDERED_FUA)
434 rq->cmd_flags |= REQ_FUA;
435 rq->elevator_private = NULL;
436 rq->elevator_private2 = NULL;
437 init_request_from_bio(rq, q->orig_bar_rq->bio);
438 rq->end_io = bar_end_io;
441 * Queue ordered sequence. As we stack them at the head, we
442 * need to queue in reverse order. Note that we rely on that
443 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
444 * request gets inbetween ordered sequence. If this request is
445 * an empty barrier, we don't need to do a postflush ever since
446 * there will be no data written between the pre and post flush.
447 * Hence a single flush will suffice.
449 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
450 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
451 else
452 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
456 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
457 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
458 rq = &q->pre_flush_rq;
459 } else
460 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
462 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
463 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
464 else
465 rq = NULL;
467 return rq;
470 int blk_do_ordered(struct request_queue *q, struct request **rqp)
472 struct request *rq = *rqp;
473 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
475 if (!q->ordseq) {
476 if (!is_barrier)
477 return 1;
479 if (q->next_ordered != QUEUE_ORDERED_NONE) {
480 *rqp = start_ordered(q, rq);
481 return 1;
482 } else {
484 * This can happen when the queue switches to
485 * ORDERED_NONE while this request is on it.
487 blkdev_dequeue_request(rq);
488 end_that_request_first(rq, -EOPNOTSUPP,
489 rq->hard_nr_sectors);
490 end_that_request_last(rq, -EOPNOTSUPP);
491 *rqp = NULL;
492 return 0;
497 * Ordered sequence in progress
500 /* Special requests are not subject to ordering rules. */
501 if (!blk_fs_request(rq) &&
502 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
503 return 1;
505 if (q->ordered & QUEUE_ORDERED_TAG) {
506 /* Ordered by tag. Blocking the next barrier is enough. */
507 if (is_barrier && rq != &q->bar_rq)
508 *rqp = NULL;
509 } else {
510 /* Ordered by draining. Wait for turn. */
511 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
512 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
513 *rqp = NULL;
516 return 1;
519 static void req_bio_endio(struct request *rq, struct bio *bio,
520 unsigned int nbytes, int error)
522 struct request_queue *q = rq->q;
524 if (&q->bar_rq != rq) {
525 if (error)
526 clear_bit(BIO_UPTODATE, &bio->bi_flags);
527 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
528 error = -EIO;
530 if (unlikely(nbytes > bio->bi_size)) {
531 printk("%s: want %u bytes done, only %u left\n",
532 __FUNCTION__, nbytes, bio->bi_size);
533 nbytes = bio->bi_size;
536 bio->bi_size -= nbytes;
537 bio->bi_sector += (nbytes >> 9);
538 if (bio->bi_size == 0)
539 bio_endio(bio, error);
540 } else {
543 * Okay, this is the barrier request in progress, just
544 * record the error;
546 if (error && !q->orderr)
547 q->orderr = error;
552 * blk_queue_bounce_limit - set bounce buffer limit for queue
553 * @q: the request queue for the device
554 * @dma_addr: bus address limit
556 * Description:
557 * Different hardware can have different requirements as to what pages
558 * it can do I/O directly to. A low level driver can call
559 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
560 * buffers for doing I/O to pages residing above @page.
562 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
564 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
565 int dma = 0;
567 q->bounce_gfp = GFP_NOIO;
568 #if BITS_PER_LONG == 64
569 /* Assume anything <= 4GB can be handled by IOMMU.
570 Actually some IOMMUs can handle everything, but I don't
571 know of a way to test this here. */
572 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
573 dma = 1;
574 q->bounce_pfn = max_low_pfn;
575 #else
576 if (bounce_pfn < blk_max_low_pfn)
577 dma = 1;
578 q->bounce_pfn = bounce_pfn;
579 #endif
580 if (dma) {
581 init_emergency_isa_pool();
582 q->bounce_gfp = GFP_NOIO | GFP_DMA;
583 q->bounce_pfn = bounce_pfn;
587 EXPORT_SYMBOL(blk_queue_bounce_limit);
590 * blk_queue_max_sectors - set max sectors for a request for this queue
591 * @q: the request queue for the device
592 * @max_sectors: max sectors in the usual 512b unit
594 * Description:
595 * Enables a low level driver to set an upper limit on the size of
596 * received requests.
598 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
600 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
601 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
602 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
605 if (BLK_DEF_MAX_SECTORS > max_sectors)
606 q->max_hw_sectors = q->max_sectors = max_sectors;
607 else {
608 q->max_sectors = BLK_DEF_MAX_SECTORS;
609 q->max_hw_sectors = max_sectors;
613 EXPORT_SYMBOL(blk_queue_max_sectors);
616 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
617 * @q: the request queue for the device
618 * @max_segments: max number of segments
620 * Description:
621 * Enables a low level driver to set an upper limit on the number of
622 * physical data segments in a request. This would be the largest sized
623 * scatter list the driver could handle.
625 void blk_queue_max_phys_segments(struct request_queue *q,
626 unsigned short max_segments)
628 if (!max_segments) {
629 max_segments = 1;
630 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
633 q->max_phys_segments = max_segments;
636 EXPORT_SYMBOL(blk_queue_max_phys_segments);
639 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
640 * @q: the request queue for the device
641 * @max_segments: max number of segments
643 * Description:
644 * Enables a low level driver to set an upper limit on the number of
645 * hw data segments in a request. This would be the largest number of
646 * address/length pairs the host adapter can actually give as once
647 * to the device.
649 void blk_queue_max_hw_segments(struct request_queue *q,
650 unsigned short max_segments)
652 if (!max_segments) {
653 max_segments = 1;
654 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
657 q->max_hw_segments = max_segments;
660 EXPORT_SYMBOL(blk_queue_max_hw_segments);
663 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
664 * @q: the request queue for the device
665 * @max_size: max size of segment in bytes
667 * Description:
668 * Enables a low level driver to set an upper limit on the size of a
669 * coalesced segment
671 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
673 if (max_size < PAGE_CACHE_SIZE) {
674 max_size = PAGE_CACHE_SIZE;
675 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
678 q->max_segment_size = max_size;
681 EXPORT_SYMBOL(blk_queue_max_segment_size);
684 * blk_queue_hardsect_size - set hardware sector size for the queue
685 * @q: the request queue for the device
686 * @size: the hardware sector size, in bytes
688 * Description:
689 * This should typically be set to the lowest possible sector size
690 * that the hardware can operate on (possible without reverting to
691 * even internal read-modify-write operations). Usually the default
692 * of 512 covers most hardware.
694 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
696 q->hardsect_size = size;
699 EXPORT_SYMBOL(blk_queue_hardsect_size);
702 * Returns the minimum that is _not_ zero, unless both are zero.
704 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
707 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
708 * @t: the stacking driver (top)
709 * @b: the underlying device (bottom)
711 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
713 /* zero is "infinity" */
714 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
715 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
717 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
718 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
719 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
720 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
721 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
722 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
725 EXPORT_SYMBOL(blk_queue_stack_limits);
728 * blk_queue_segment_boundary - set boundary rules for segment merging
729 * @q: the request queue for the device
730 * @mask: the memory boundary mask
732 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
734 if (mask < PAGE_CACHE_SIZE - 1) {
735 mask = PAGE_CACHE_SIZE - 1;
736 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
739 q->seg_boundary_mask = mask;
742 EXPORT_SYMBOL(blk_queue_segment_boundary);
745 * blk_queue_dma_alignment - set dma length and memory alignment
746 * @q: the request queue for the device
747 * @mask: alignment mask
749 * description:
750 * set required memory and length aligment for direct dma transactions.
751 * this is used when buiding direct io requests for the queue.
754 void blk_queue_dma_alignment(struct request_queue *q, int mask)
756 q->dma_alignment = mask;
759 EXPORT_SYMBOL(blk_queue_dma_alignment);
762 * blk_queue_find_tag - find a request by its tag and queue
763 * @q: The request queue for the device
764 * @tag: The tag of the request
766 * Notes:
767 * Should be used when a device returns a tag and you want to match
768 * it with a request.
770 * no locks need be held.
772 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
774 return blk_map_queue_find_tag(q->queue_tags, tag);
777 EXPORT_SYMBOL(blk_queue_find_tag);
780 * __blk_free_tags - release a given set of tag maintenance info
781 * @bqt: the tag map to free
783 * Tries to free the specified @bqt@. Returns true if it was
784 * actually freed and false if there are still references using it
786 static int __blk_free_tags(struct blk_queue_tag *bqt)
788 int retval;
790 retval = atomic_dec_and_test(&bqt->refcnt);
791 if (retval) {
792 BUG_ON(bqt->busy);
793 BUG_ON(!list_empty(&bqt->busy_list));
795 kfree(bqt->tag_index);
796 bqt->tag_index = NULL;
798 kfree(bqt->tag_map);
799 bqt->tag_map = NULL;
801 kfree(bqt);
805 return retval;
809 * __blk_queue_free_tags - release tag maintenance info
810 * @q: the request queue for the device
812 * Notes:
813 * blk_cleanup_queue() will take care of calling this function, if tagging
814 * has been used. So there's no need to call this directly.
816 static void __blk_queue_free_tags(struct request_queue *q)
818 struct blk_queue_tag *bqt = q->queue_tags;
820 if (!bqt)
821 return;
823 __blk_free_tags(bqt);
825 q->queue_tags = NULL;
826 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
831 * blk_free_tags - release a given set of tag maintenance info
832 * @bqt: the tag map to free
834 * For externally managed @bqt@ frees the map. Callers of this
835 * function must guarantee to have released all the queues that
836 * might have been using this tag map.
838 void blk_free_tags(struct blk_queue_tag *bqt)
840 if (unlikely(!__blk_free_tags(bqt)))
841 BUG();
843 EXPORT_SYMBOL(blk_free_tags);
846 * blk_queue_free_tags - release tag maintenance info
847 * @q: the request queue for the device
849 * Notes:
850 * This is used to disabled tagged queuing to a device, yet leave
851 * queue in function.
853 void blk_queue_free_tags(struct request_queue *q)
855 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
858 EXPORT_SYMBOL(blk_queue_free_tags);
860 static int
861 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
863 struct request **tag_index;
864 unsigned long *tag_map;
865 int nr_ulongs;
867 if (q && depth > q->nr_requests * 2) {
868 depth = q->nr_requests * 2;
869 printk(KERN_ERR "%s: adjusted depth to %d\n",
870 __FUNCTION__, depth);
873 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
874 if (!tag_index)
875 goto fail;
877 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
878 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
879 if (!tag_map)
880 goto fail;
882 tags->real_max_depth = depth;
883 tags->max_depth = depth;
884 tags->tag_index = tag_index;
885 tags->tag_map = tag_map;
887 return 0;
888 fail:
889 kfree(tag_index);
890 return -ENOMEM;
893 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
894 int depth)
896 struct blk_queue_tag *tags;
898 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
899 if (!tags)
900 goto fail;
902 if (init_tag_map(q, tags, depth))
903 goto fail;
905 INIT_LIST_HEAD(&tags->busy_list);
906 tags->busy = 0;
907 atomic_set(&tags->refcnt, 1);
908 return tags;
909 fail:
910 kfree(tags);
911 return NULL;
915 * blk_init_tags - initialize the tag info for an external tag map
916 * @depth: the maximum queue depth supported
917 * @tags: the tag to use
919 struct blk_queue_tag *blk_init_tags(int depth)
921 return __blk_queue_init_tags(NULL, depth);
923 EXPORT_SYMBOL(blk_init_tags);
926 * blk_queue_init_tags - initialize the queue tag info
927 * @q: the request queue for the device
928 * @depth: the maximum queue depth supported
929 * @tags: the tag to use
931 int blk_queue_init_tags(struct request_queue *q, int depth,
932 struct blk_queue_tag *tags)
934 int rc;
936 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
938 if (!tags && !q->queue_tags) {
939 tags = __blk_queue_init_tags(q, depth);
941 if (!tags)
942 goto fail;
943 } else if (q->queue_tags) {
944 if ((rc = blk_queue_resize_tags(q, depth)))
945 return rc;
946 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
947 return 0;
948 } else
949 atomic_inc(&tags->refcnt);
952 * assign it, all done
954 q->queue_tags = tags;
955 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
956 return 0;
957 fail:
958 kfree(tags);
959 return -ENOMEM;
962 EXPORT_SYMBOL(blk_queue_init_tags);
965 * blk_queue_resize_tags - change the queueing depth
966 * @q: the request queue for the device
967 * @new_depth: the new max command queueing depth
969 * Notes:
970 * Must be called with the queue lock held.
972 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
974 struct blk_queue_tag *bqt = q->queue_tags;
975 struct request **tag_index;
976 unsigned long *tag_map;
977 int max_depth, nr_ulongs;
979 if (!bqt)
980 return -ENXIO;
983 * if we already have large enough real_max_depth. just
984 * adjust max_depth. *NOTE* as requests with tag value
985 * between new_depth and real_max_depth can be in-flight, tag
986 * map can not be shrunk blindly here.
988 if (new_depth <= bqt->real_max_depth) {
989 bqt->max_depth = new_depth;
990 return 0;
994 * Currently cannot replace a shared tag map with a new
995 * one, so error out if this is the case
997 if (atomic_read(&bqt->refcnt) != 1)
998 return -EBUSY;
1001 * save the old state info, so we can copy it back
1003 tag_index = bqt->tag_index;
1004 tag_map = bqt->tag_map;
1005 max_depth = bqt->real_max_depth;
1007 if (init_tag_map(q, bqt, new_depth))
1008 return -ENOMEM;
1010 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1011 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1012 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1014 kfree(tag_index);
1015 kfree(tag_map);
1016 return 0;
1019 EXPORT_SYMBOL(blk_queue_resize_tags);
1022 * blk_queue_end_tag - end tag operations for a request
1023 * @q: the request queue for the device
1024 * @rq: the request that has completed
1026 * Description:
1027 * Typically called when end_that_request_first() returns 0, meaning
1028 * all transfers have been done for a request. It's important to call
1029 * this function before end_that_request_last(), as that will put the
1030 * request back on the free list thus corrupting the internal tag list.
1032 * Notes:
1033 * queue lock must be held.
1035 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1037 struct blk_queue_tag *bqt = q->queue_tags;
1038 int tag = rq->tag;
1040 BUG_ON(tag == -1);
1042 if (unlikely(tag >= bqt->real_max_depth))
1044 * This can happen after tag depth has been reduced.
1045 * FIXME: how about a warning or info message here?
1047 return;
1049 list_del_init(&rq->queuelist);
1050 rq->cmd_flags &= ~REQ_QUEUED;
1051 rq->tag = -1;
1053 if (unlikely(bqt->tag_index[tag] == NULL))
1054 printk(KERN_ERR "%s: tag %d is missing\n",
1055 __FUNCTION__, tag);
1057 bqt->tag_index[tag] = NULL;
1060 * We use test_and_clear_bit's memory ordering properties here.
1061 * The tag_map bit acts as a lock for tag_index[bit], so we need
1062 * a barrer before clearing the bit (precisely: release semantics).
1063 * Could use clear_bit_unlock when it is merged.
1065 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1066 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1067 __FUNCTION__, tag);
1068 return;
1071 bqt->busy--;
1074 EXPORT_SYMBOL(blk_queue_end_tag);
1077 * blk_queue_start_tag - find a free tag and assign it
1078 * @q: the request queue for the device
1079 * @rq: the block request that needs tagging
1081 * Description:
1082 * This can either be used as a stand-alone helper, or possibly be
1083 * assigned as the queue &prep_rq_fn (in which case &struct request
1084 * automagically gets a tag assigned). Note that this function
1085 * assumes that any type of request can be queued! if this is not
1086 * true for your device, you must check the request type before
1087 * calling this function. The request will also be removed from
1088 * the request queue, so it's the drivers responsibility to readd
1089 * it if it should need to be restarted for some reason.
1091 * Notes:
1092 * queue lock must be held.
1094 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1096 struct blk_queue_tag *bqt = q->queue_tags;
1097 int tag;
1099 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1100 printk(KERN_ERR
1101 "%s: request %p for device [%s] already tagged %d",
1102 __FUNCTION__, rq,
1103 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1104 BUG();
1108 * Protect against shared tag maps, as we may not have exclusive
1109 * access to the tag map.
1111 do {
1112 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1113 if (tag >= bqt->max_depth)
1114 return 1;
1116 } while (test_and_set_bit(tag, bqt->tag_map));
1118 * We rely on test_and_set_bit providing lock memory ordering semantics
1119 * (could use test_and_set_bit_lock when it is merged).
1122 rq->cmd_flags |= REQ_QUEUED;
1123 rq->tag = tag;
1124 bqt->tag_index[tag] = rq;
1125 blkdev_dequeue_request(rq);
1126 list_add(&rq->queuelist, &bqt->busy_list);
1127 bqt->busy++;
1128 return 0;
1131 EXPORT_SYMBOL(blk_queue_start_tag);
1134 * blk_queue_invalidate_tags - invalidate all pending tags
1135 * @q: the request queue for the device
1137 * Description:
1138 * Hardware conditions may dictate a need to stop all pending requests.
1139 * In this case, we will safely clear the block side of the tag queue and
1140 * readd all requests to the request queue in the right order.
1142 * Notes:
1143 * queue lock must be held.
1145 void blk_queue_invalidate_tags(struct request_queue *q)
1147 struct blk_queue_tag *bqt = q->queue_tags;
1148 struct list_head *tmp, *n;
1149 struct request *rq;
1151 list_for_each_safe(tmp, n, &bqt->busy_list) {
1152 rq = list_entry_rq(tmp);
1154 if (rq->tag == -1) {
1155 printk(KERN_ERR
1156 "%s: bad tag found on list\n", __FUNCTION__);
1157 list_del_init(&rq->queuelist);
1158 rq->cmd_flags &= ~REQ_QUEUED;
1159 } else
1160 blk_queue_end_tag(q, rq);
1162 rq->cmd_flags &= ~REQ_STARTED;
1163 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1167 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1169 void blk_dump_rq_flags(struct request *rq, char *msg)
1171 int bit;
1173 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1174 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1175 rq->cmd_flags);
1177 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1178 rq->nr_sectors,
1179 rq->current_nr_sectors);
1180 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1182 if (blk_pc_request(rq)) {
1183 printk("cdb: ");
1184 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1185 printk("%02x ", rq->cmd[bit]);
1186 printk("\n");
1190 EXPORT_SYMBOL(blk_dump_rq_flags);
1192 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1194 struct request rq;
1195 struct bio *nxt = bio->bi_next;
1196 rq.q = q;
1197 rq.bio = rq.biotail = bio;
1198 bio->bi_next = NULL;
1199 blk_recalc_rq_segments(&rq);
1200 bio->bi_next = nxt;
1201 bio->bi_phys_segments = rq.nr_phys_segments;
1202 bio->bi_hw_segments = rq.nr_hw_segments;
1203 bio->bi_flags |= (1 << BIO_SEG_VALID);
1205 EXPORT_SYMBOL(blk_recount_segments);
1207 static void blk_recalc_rq_segments(struct request *rq)
1209 int nr_phys_segs;
1210 int nr_hw_segs;
1211 unsigned int phys_size;
1212 unsigned int hw_size;
1213 struct bio_vec *bv, *bvprv = NULL;
1214 int seg_size;
1215 int hw_seg_size;
1216 int cluster;
1217 struct req_iterator iter;
1218 int high, highprv = 1;
1219 struct request_queue *q = rq->q;
1221 if (!rq->bio)
1222 return;
1224 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1225 hw_seg_size = seg_size = 0;
1226 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1227 rq_for_each_segment(bv, rq, iter) {
1229 * the trick here is making sure that a high page is never
1230 * considered part of another segment, since that might
1231 * change with the bounce page.
1233 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1234 if (high || highprv)
1235 goto new_hw_segment;
1236 if (cluster) {
1237 if (seg_size + bv->bv_len > q->max_segment_size)
1238 goto new_segment;
1239 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1240 goto new_segment;
1241 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1242 goto new_segment;
1243 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1244 goto new_hw_segment;
1246 seg_size += bv->bv_len;
1247 hw_seg_size += bv->bv_len;
1248 bvprv = bv;
1249 continue;
1251 new_segment:
1252 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1253 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1254 hw_seg_size += bv->bv_len;
1255 else {
1256 new_hw_segment:
1257 if (nr_hw_segs == 1 &&
1258 hw_seg_size > rq->bio->bi_hw_front_size)
1259 rq->bio->bi_hw_front_size = hw_seg_size;
1260 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1261 nr_hw_segs++;
1264 nr_phys_segs++;
1265 bvprv = bv;
1266 seg_size = bv->bv_len;
1267 highprv = high;
1270 if (nr_hw_segs == 1 &&
1271 hw_seg_size > rq->bio->bi_hw_front_size)
1272 rq->bio->bi_hw_front_size = hw_seg_size;
1273 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1274 rq->biotail->bi_hw_back_size = hw_seg_size;
1275 rq->nr_phys_segments = nr_phys_segs;
1276 rq->nr_hw_segments = nr_hw_segs;
1279 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1280 struct bio *nxt)
1282 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1283 return 0;
1285 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1286 return 0;
1287 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1288 return 0;
1291 * bio and nxt are contigous in memory, check if the queue allows
1292 * these two to be merged into one
1294 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1295 return 1;
1297 return 0;
1300 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1301 struct bio *nxt)
1303 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1304 blk_recount_segments(q, bio);
1305 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1306 blk_recount_segments(q, nxt);
1307 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1308 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1309 return 0;
1310 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1311 return 0;
1313 return 1;
1317 * map a request to scatterlist, return number of sg entries setup. Caller
1318 * must make sure sg can hold rq->nr_phys_segments entries
1320 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1321 struct scatterlist *sg)
1323 struct bio_vec *bvec, *bvprv;
1324 struct req_iterator iter;
1325 int nsegs, cluster;
1327 nsegs = 0;
1328 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1331 * for each bio in rq
1333 bvprv = NULL;
1334 rq_for_each_segment(bvec, rq, iter) {
1335 int nbytes = bvec->bv_len;
1337 if (bvprv && cluster) {
1338 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1339 goto new_segment;
1341 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1342 goto new_segment;
1343 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1344 goto new_segment;
1346 sg[nsegs - 1].length += nbytes;
1347 } else {
1348 new_segment:
1349 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1350 sg[nsegs].page = bvec->bv_page;
1351 sg[nsegs].length = nbytes;
1352 sg[nsegs].offset = bvec->bv_offset;
1354 nsegs++;
1356 bvprv = bvec;
1357 } /* segments in rq */
1359 return nsegs;
1362 EXPORT_SYMBOL(blk_rq_map_sg);
1365 * the standard queue merge functions, can be overridden with device
1366 * specific ones if so desired
1369 static inline int ll_new_mergeable(struct request_queue *q,
1370 struct request *req,
1371 struct bio *bio)
1373 int nr_phys_segs = bio_phys_segments(q, bio);
1375 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1376 req->cmd_flags |= REQ_NOMERGE;
1377 if (req == q->last_merge)
1378 q->last_merge = NULL;
1379 return 0;
1383 * A hw segment is just getting larger, bump just the phys
1384 * counter.
1386 req->nr_phys_segments += nr_phys_segs;
1387 return 1;
1390 static inline int ll_new_hw_segment(struct request_queue *q,
1391 struct request *req,
1392 struct bio *bio)
1394 int nr_hw_segs = bio_hw_segments(q, bio);
1395 int nr_phys_segs = bio_phys_segments(q, bio);
1397 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1398 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1399 req->cmd_flags |= REQ_NOMERGE;
1400 if (req == q->last_merge)
1401 q->last_merge = NULL;
1402 return 0;
1406 * This will form the start of a new hw segment. Bump both
1407 * counters.
1409 req->nr_hw_segments += nr_hw_segs;
1410 req->nr_phys_segments += nr_phys_segs;
1411 return 1;
1414 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1415 struct bio *bio)
1417 unsigned short max_sectors;
1418 int len;
1420 if (unlikely(blk_pc_request(req)))
1421 max_sectors = q->max_hw_sectors;
1422 else
1423 max_sectors = q->max_sectors;
1425 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1426 req->cmd_flags |= REQ_NOMERGE;
1427 if (req == q->last_merge)
1428 q->last_merge = NULL;
1429 return 0;
1431 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1432 blk_recount_segments(q, req->biotail);
1433 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1434 blk_recount_segments(q, bio);
1435 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1436 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1437 !BIOVEC_VIRT_OVERSIZE(len)) {
1438 int mergeable = ll_new_mergeable(q, req, bio);
1440 if (mergeable) {
1441 if (req->nr_hw_segments == 1)
1442 req->bio->bi_hw_front_size = len;
1443 if (bio->bi_hw_segments == 1)
1444 bio->bi_hw_back_size = len;
1446 return mergeable;
1449 return ll_new_hw_segment(q, req, bio);
1452 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1453 struct bio *bio)
1455 unsigned short max_sectors;
1456 int len;
1458 if (unlikely(blk_pc_request(req)))
1459 max_sectors = q->max_hw_sectors;
1460 else
1461 max_sectors = q->max_sectors;
1464 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1465 req->cmd_flags |= REQ_NOMERGE;
1466 if (req == q->last_merge)
1467 q->last_merge = NULL;
1468 return 0;
1470 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1471 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1472 blk_recount_segments(q, bio);
1473 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1474 blk_recount_segments(q, req->bio);
1475 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1476 !BIOVEC_VIRT_OVERSIZE(len)) {
1477 int mergeable = ll_new_mergeable(q, req, bio);
1479 if (mergeable) {
1480 if (bio->bi_hw_segments == 1)
1481 bio->bi_hw_front_size = len;
1482 if (req->nr_hw_segments == 1)
1483 req->biotail->bi_hw_back_size = len;
1485 return mergeable;
1488 return ll_new_hw_segment(q, req, bio);
1491 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1492 struct request *next)
1494 int total_phys_segments;
1495 int total_hw_segments;
1498 * First check if the either of the requests are re-queued
1499 * requests. Can't merge them if they are.
1501 if (req->special || next->special)
1502 return 0;
1505 * Will it become too large?
1507 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1508 return 0;
1510 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1511 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1512 total_phys_segments--;
1514 if (total_phys_segments > q->max_phys_segments)
1515 return 0;
1517 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1518 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1519 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1521 * propagate the combined length to the end of the requests
1523 if (req->nr_hw_segments == 1)
1524 req->bio->bi_hw_front_size = len;
1525 if (next->nr_hw_segments == 1)
1526 next->biotail->bi_hw_back_size = len;
1527 total_hw_segments--;
1530 if (total_hw_segments > q->max_hw_segments)
1531 return 0;
1533 /* Merge is OK... */
1534 req->nr_phys_segments = total_phys_segments;
1535 req->nr_hw_segments = total_hw_segments;
1536 return 1;
1540 * "plug" the device if there are no outstanding requests: this will
1541 * force the transfer to start only after we have put all the requests
1542 * on the list.
1544 * This is called with interrupts off and no requests on the queue and
1545 * with the queue lock held.
1547 void blk_plug_device(struct request_queue *q)
1549 WARN_ON(!irqs_disabled());
1552 * don't plug a stopped queue, it must be paired with blk_start_queue()
1553 * which will restart the queueing
1555 if (blk_queue_stopped(q))
1556 return;
1558 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1559 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1560 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1564 EXPORT_SYMBOL(blk_plug_device);
1567 * remove the queue from the plugged list, if present. called with
1568 * queue lock held and interrupts disabled.
1570 int blk_remove_plug(struct request_queue *q)
1572 WARN_ON(!irqs_disabled());
1574 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1575 return 0;
1577 del_timer(&q->unplug_timer);
1578 return 1;
1581 EXPORT_SYMBOL(blk_remove_plug);
1584 * remove the plug and let it rip..
1586 void __generic_unplug_device(struct request_queue *q)
1588 if (unlikely(blk_queue_stopped(q)))
1589 return;
1591 if (!blk_remove_plug(q))
1592 return;
1594 q->request_fn(q);
1596 EXPORT_SYMBOL(__generic_unplug_device);
1599 * generic_unplug_device - fire a request queue
1600 * @q: The &struct request_queue in question
1602 * Description:
1603 * Linux uses plugging to build bigger requests queues before letting
1604 * the device have at them. If a queue is plugged, the I/O scheduler
1605 * is still adding and merging requests on the queue. Once the queue
1606 * gets unplugged, the request_fn defined for the queue is invoked and
1607 * transfers started.
1609 void generic_unplug_device(struct request_queue *q)
1611 spin_lock_irq(q->queue_lock);
1612 __generic_unplug_device(q);
1613 spin_unlock_irq(q->queue_lock);
1615 EXPORT_SYMBOL(generic_unplug_device);
1617 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1618 struct page *page)
1620 struct request_queue *q = bdi->unplug_io_data;
1623 * devices don't necessarily have an ->unplug_fn defined
1625 if (q->unplug_fn) {
1626 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1627 q->rq.count[READ] + q->rq.count[WRITE]);
1629 q->unplug_fn(q);
1633 static void blk_unplug_work(struct work_struct *work)
1635 struct request_queue *q =
1636 container_of(work, struct request_queue, unplug_work);
1638 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1639 q->rq.count[READ] + q->rq.count[WRITE]);
1641 q->unplug_fn(q);
1644 static void blk_unplug_timeout(unsigned long data)
1646 struct request_queue *q = (struct request_queue *)data;
1648 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1649 q->rq.count[READ] + q->rq.count[WRITE]);
1651 kblockd_schedule_work(&q->unplug_work);
1655 * blk_start_queue - restart a previously stopped queue
1656 * @q: The &struct request_queue in question
1658 * Description:
1659 * blk_start_queue() will clear the stop flag on the queue, and call
1660 * the request_fn for the queue if it was in a stopped state when
1661 * entered. Also see blk_stop_queue(). Queue lock must be held.
1663 void blk_start_queue(struct request_queue *q)
1665 WARN_ON(!irqs_disabled());
1667 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1670 * one level of recursion is ok and is much faster than kicking
1671 * the unplug handling
1673 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1674 q->request_fn(q);
1675 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1676 } else {
1677 blk_plug_device(q);
1678 kblockd_schedule_work(&q->unplug_work);
1682 EXPORT_SYMBOL(blk_start_queue);
1685 * blk_stop_queue - stop a queue
1686 * @q: The &struct request_queue in question
1688 * Description:
1689 * The Linux block layer assumes that a block driver will consume all
1690 * entries on the request queue when the request_fn strategy is called.
1691 * Often this will not happen, because of hardware limitations (queue
1692 * depth settings). If a device driver gets a 'queue full' response,
1693 * or if it simply chooses not to queue more I/O at one point, it can
1694 * call this function to prevent the request_fn from being called until
1695 * the driver has signalled it's ready to go again. This happens by calling
1696 * blk_start_queue() to restart queue operations. Queue lock must be held.
1698 void blk_stop_queue(struct request_queue *q)
1700 blk_remove_plug(q);
1701 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1703 EXPORT_SYMBOL(blk_stop_queue);
1706 * blk_sync_queue - cancel any pending callbacks on a queue
1707 * @q: the queue
1709 * Description:
1710 * The block layer may perform asynchronous callback activity
1711 * on a queue, such as calling the unplug function after a timeout.
1712 * A block device may call blk_sync_queue to ensure that any
1713 * such activity is cancelled, thus allowing it to release resources
1714 * that the callbacks might use. The caller must already have made sure
1715 * that its ->make_request_fn will not re-add plugging prior to calling
1716 * this function.
1719 void blk_sync_queue(struct request_queue *q)
1721 del_timer_sync(&q->unplug_timer);
1723 EXPORT_SYMBOL(blk_sync_queue);
1726 * blk_run_queue - run a single device queue
1727 * @q: The queue to run
1729 void blk_run_queue(struct request_queue *q)
1731 unsigned long flags;
1733 spin_lock_irqsave(q->queue_lock, flags);
1734 blk_remove_plug(q);
1737 * Only recurse once to avoid overrunning the stack, let the unplug
1738 * handling reinvoke the handler shortly if we already got there.
1740 if (!elv_queue_empty(q)) {
1741 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1742 q->request_fn(q);
1743 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1744 } else {
1745 blk_plug_device(q);
1746 kblockd_schedule_work(&q->unplug_work);
1750 spin_unlock_irqrestore(q->queue_lock, flags);
1752 EXPORT_SYMBOL(blk_run_queue);
1755 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1756 * @kobj: the kobj belonging of the request queue to be released
1758 * Description:
1759 * blk_cleanup_queue is the pair to blk_init_queue() or
1760 * blk_queue_make_request(). It should be called when a request queue is
1761 * being released; typically when a block device is being de-registered.
1762 * Currently, its primary task it to free all the &struct request
1763 * structures that were allocated to the queue and the queue itself.
1765 * Caveat:
1766 * Hopefully the low level driver will have finished any
1767 * outstanding requests first...
1769 static void blk_release_queue(struct kobject *kobj)
1771 struct request_queue *q =
1772 container_of(kobj, struct request_queue, kobj);
1773 struct request_list *rl = &q->rq;
1775 blk_sync_queue(q);
1777 if (rl->rq_pool)
1778 mempool_destroy(rl->rq_pool);
1780 if (q->queue_tags)
1781 __blk_queue_free_tags(q);
1783 blk_trace_shutdown(q);
1785 kmem_cache_free(requestq_cachep, q);
1788 void blk_put_queue(struct request_queue *q)
1790 kobject_put(&q->kobj);
1792 EXPORT_SYMBOL(blk_put_queue);
1794 void blk_cleanup_queue(struct request_queue * q)
1796 mutex_lock(&q->sysfs_lock);
1797 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1798 mutex_unlock(&q->sysfs_lock);
1800 if (q->elevator)
1801 elevator_exit(q->elevator);
1803 blk_put_queue(q);
1806 EXPORT_SYMBOL(blk_cleanup_queue);
1808 static int blk_init_free_list(struct request_queue *q)
1810 struct request_list *rl = &q->rq;
1812 rl->count[READ] = rl->count[WRITE] = 0;
1813 rl->starved[READ] = rl->starved[WRITE] = 0;
1814 rl->elvpriv = 0;
1815 init_waitqueue_head(&rl->wait[READ]);
1816 init_waitqueue_head(&rl->wait[WRITE]);
1818 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1819 mempool_free_slab, request_cachep, q->node);
1821 if (!rl->rq_pool)
1822 return -ENOMEM;
1824 return 0;
1827 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1829 return blk_alloc_queue_node(gfp_mask, -1);
1831 EXPORT_SYMBOL(blk_alloc_queue);
1833 static struct kobj_type queue_ktype;
1835 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1837 struct request_queue *q;
1839 q = kmem_cache_alloc_node(requestq_cachep,
1840 gfp_mask | __GFP_ZERO, node_id);
1841 if (!q)
1842 return NULL;
1844 init_timer(&q->unplug_timer);
1846 kobject_set_name(&q->kobj, "%s", "queue");
1847 q->kobj.ktype = &queue_ktype;
1848 kobject_init(&q->kobj);
1850 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1851 q->backing_dev_info.unplug_io_data = q;
1853 mutex_init(&q->sysfs_lock);
1855 return q;
1857 EXPORT_SYMBOL(blk_alloc_queue_node);
1860 * blk_init_queue - prepare a request queue for use with a block device
1861 * @rfn: The function to be called to process requests that have been
1862 * placed on the queue.
1863 * @lock: Request queue spin lock
1865 * Description:
1866 * If a block device wishes to use the standard request handling procedures,
1867 * which sorts requests and coalesces adjacent requests, then it must
1868 * call blk_init_queue(). The function @rfn will be called when there
1869 * are requests on the queue that need to be processed. If the device
1870 * supports plugging, then @rfn may not be called immediately when requests
1871 * are available on the queue, but may be called at some time later instead.
1872 * Plugged queues are generally unplugged when a buffer belonging to one
1873 * of the requests on the queue is needed, or due to memory pressure.
1875 * @rfn is not required, or even expected, to remove all requests off the
1876 * queue, but only as many as it can handle at a time. If it does leave
1877 * requests on the queue, it is responsible for arranging that the requests
1878 * get dealt with eventually.
1880 * The queue spin lock must be held while manipulating the requests on the
1881 * request queue; this lock will be taken also from interrupt context, so irq
1882 * disabling is needed for it.
1884 * Function returns a pointer to the initialized request queue, or NULL if
1885 * it didn't succeed.
1887 * Note:
1888 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1889 * when the block device is deactivated (such as at module unload).
1892 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1894 return blk_init_queue_node(rfn, lock, -1);
1896 EXPORT_SYMBOL(blk_init_queue);
1898 struct request_queue *
1899 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1901 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1903 if (!q)
1904 return NULL;
1906 q->node = node_id;
1907 if (blk_init_free_list(q)) {
1908 kmem_cache_free(requestq_cachep, q);
1909 return NULL;
1913 * if caller didn't supply a lock, they get per-queue locking with
1914 * our embedded lock
1916 if (!lock) {
1917 spin_lock_init(&q->__queue_lock);
1918 lock = &q->__queue_lock;
1921 q->request_fn = rfn;
1922 q->prep_rq_fn = NULL;
1923 q->unplug_fn = generic_unplug_device;
1924 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1925 q->queue_lock = lock;
1927 blk_queue_segment_boundary(q, 0xffffffff);
1929 blk_queue_make_request(q, __make_request);
1930 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1932 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1933 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1935 q->sg_reserved_size = INT_MAX;
1938 * all done
1940 if (!elevator_init(q, NULL)) {
1941 blk_queue_congestion_threshold(q);
1942 return q;
1945 blk_put_queue(q);
1946 return NULL;
1948 EXPORT_SYMBOL(blk_init_queue_node);
1950 int blk_get_queue(struct request_queue *q)
1952 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1953 kobject_get(&q->kobj);
1954 return 0;
1957 return 1;
1960 EXPORT_SYMBOL(blk_get_queue);
1962 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1964 if (rq->cmd_flags & REQ_ELVPRIV)
1965 elv_put_request(q, rq);
1966 mempool_free(rq, q->rq.rq_pool);
1969 static struct request *
1970 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1972 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1974 if (!rq)
1975 return NULL;
1978 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1979 * see bio.h and blkdev.h
1981 rq->cmd_flags = rw | REQ_ALLOCED;
1983 if (priv) {
1984 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1985 mempool_free(rq, q->rq.rq_pool);
1986 return NULL;
1988 rq->cmd_flags |= REQ_ELVPRIV;
1991 return rq;
1995 * ioc_batching returns true if the ioc is a valid batching request and
1996 * should be given priority access to a request.
1998 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2000 if (!ioc)
2001 return 0;
2004 * Make sure the process is able to allocate at least 1 request
2005 * even if the batch times out, otherwise we could theoretically
2006 * lose wakeups.
2008 return ioc->nr_batch_requests == q->nr_batching ||
2009 (ioc->nr_batch_requests > 0
2010 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2014 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2015 * will cause the process to be a "batcher" on all queues in the system. This
2016 * is the behaviour we want though - once it gets a wakeup it should be given
2017 * a nice run.
2019 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2021 if (!ioc || ioc_batching(q, ioc))
2022 return;
2024 ioc->nr_batch_requests = q->nr_batching;
2025 ioc->last_waited = jiffies;
2028 static void __freed_request(struct request_queue *q, int rw)
2030 struct request_list *rl = &q->rq;
2032 if (rl->count[rw] < queue_congestion_off_threshold(q))
2033 blk_clear_queue_congested(q, rw);
2035 if (rl->count[rw] + 1 <= q->nr_requests) {
2036 if (waitqueue_active(&rl->wait[rw]))
2037 wake_up(&rl->wait[rw]);
2039 blk_clear_queue_full(q, rw);
2044 * A request has just been released. Account for it, update the full and
2045 * congestion status, wake up any waiters. Called under q->queue_lock.
2047 static void freed_request(struct request_queue *q, int rw, int priv)
2049 struct request_list *rl = &q->rq;
2051 rl->count[rw]--;
2052 if (priv)
2053 rl->elvpriv--;
2055 __freed_request(q, rw);
2057 if (unlikely(rl->starved[rw ^ 1]))
2058 __freed_request(q, rw ^ 1);
2061 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2063 * Get a free request, queue_lock must be held.
2064 * Returns NULL on failure, with queue_lock held.
2065 * Returns !NULL on success, with queue_lock *not held*.
2067 static struct request *get_request(struct request_queue *q, int rw_flags,
2068 struct bio *bio, gfp_t gfp_mask)
2070 struct request *rq = NULL;
2071 struct request_list *rl = &q->rq;
2072 struct io_context *ioc = NULL;
2073 const int rw = rw_flags & 0x01;
2074 int may_queue, priv;
2076 may_queue = elv_may_queue(q, rw_flags);
2077 if (may_queue == ELV_MQUEUE_NO)
2078 goto rq_starved;
2080 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2081 if (rl->count[rw]+1 >= q->nr_requests) {
2082 ioc = current_io_context(GFP_ATOMIC, q->node);
2084 * The queue will fill after this allocation, so set
2085 * it as full, and mark this process as "batching".
2086 * This process will be allowed to complete a batch of
2087 * requests, others will be blocked.
2089 if (!blk_queue_full(q, rw)) {
2090 ioc_set_batching(q, ioc);
2091 blk_set_queue_full(q, rw);
2092 } else {
2093 if (may_queue != ELV_MQUEUE_MUST
2094 && !ioc_batching(q, ioc)) {
2096 * The queue is full and the allocating
2097 * process is not a "batcher", and not
2098 * exempted by the IO scheduler
2100 goto out;
2104 blk_set_queue_congested(q, rw);
2108 * Only allow batching queuers to allocate up to 50% over the defined
2109 * limit of requests, otherwise we could have thousands of requests
2110 * allocated with any setting of ->nr_requests
2112 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2113 goto out;
2115 rl->count[rw]++;
2116 rl->starved[rw] = 0;
2118 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2119 if (priv)
2120 rl->elvpriv++;
2122 spin_unlock_irq(q->queue_lock);
2124 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2125 if (unlikely(!rq)) {
2127 * Allocation failed presumably due to memory. Undo anything
2128 * we might have messed up.
2130 * Allocating task should really be put onto the front of the
2131 * wait queue, but this is pretty rare.
2133 spin_lock_irq(q->queue_lock);
2134 freed_request(q, rw, priv);
2137 * in the very unlikely event that allocation failed and no
2138 * requests for this direction was pending, mark us starved
2139 * so that freeing of a request in the other direction will
2140 * notice us. another possible fix would be to split the
2141 * rq mempool into READ and WRITE
2143 rq_starved:
2144 if (unlikely(rl->count[rw] == 0))
2145 rl->starved[rw] = 1;
2147 goto out;
2151 * ioc may be NULL here, and ioc_batching will be false. That's
2152 * OK, if the queue is under the request limit then requests need
2153 * not count toward the nr_batch_requests limit. There will always
2154 * be some limit enforced by BLK_BATCH_TIME.
2156 if (ioc_batching(q, ioc))
2157 ioc->nr_batch_requests--;
2159 rq_init(q, rq);
2161 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2162 out:
2163 return rq;
2167 * No available requests for this queue, unplug the device and wait for some
2168 * requests to become available.
2170 * Called with q->queue_lock held, and returns with it unlocked.
2172 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2173 struct bio *bio)
2175 const int rw = rw_flags & 0x01;
2176 struct request *rq;
2178 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2179 while (!rq) {
2180 DEFINE_WAIT(wait);
2181 struct request_list *rl = &q->rq;
2183 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2184 TASK_UNINTERRUPTIBLE);
2186 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2188 if (!rq) {
2189 struct io_context *ioc;
2191 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2193 __generic_unplug_device(q);
2194 spin_unlock_irq(q->queue_lock);
2195 io_schedule();
2198 * After sleeping, we become a "batching" process and
2199 * will be able to allocate at least one request, and
2200 * up to a big batch of them for a small period time.
2201 * See ioc_batching, ioc_set_batching
2203 ioc = current_io_context(GFP_NOIO, q->node);
2204 ioc_set_batching(q, ioc);
2206 spin_lock_irq(q->queue_lock);
2208 finish_wait(&rl->wait[rw], &wait);
2211 return rq;
2214 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2216 struct request *rq;
2218 BUG_ON(rw != READ && rw != WRITE);
2220 spin_lock_irq(q->queue_lock);
2221 if (gfp_mask & __GFP_WAIT) {
2222 rq = get_request_wait(q, rw, NULL);
2223 } else {
2224 rq = get_request(q, rw, NULL, gfp_mask);
2225 if (!rq)
2226 spin_unlock_irq(q->queue_lock);
2228 /* q->queue_lock is unlocked at this point */
2230 return rq;
2232 EXPORT_SYMBOL(blk_get_request);
2235 * blk_start_queueing - initiate dispatch of requests to device
2236 * @q: request queue to kick into gear
2238 * This is basically a helper to remove the need to know whether a queue
2239 * is plugged or not if someone just wants to initiate dispatch of requests
2240 * for this queue.
2242 * The queue lock must be held with interrupts disabled.
2244 void blk_start_queueing(struct request_queue *q)
2246 if (!blk_queue_plugged(q))
2247 q->request_fn(q);
2248 else
2249 __generic_unplug_device(q);
2251 EXPORT_SYMBOL(blk_start_queueing);
2254 * blk_requeue_request - put a request back on queue
2255 * @q: request queue where request should be inserted
2256 * @rq: request to be inserted
2258 * Description:
2259 * Drivers often keep queueing requests until the hardware cannot accept
2260 * more, when that condition happens we need to put the request back
2261 * on the queue. Must be called with queue lock held.
2263 void blk_requeue_request(struct request_queue *q, struct request *rq)
2265 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2267 if (blk_rq_tagged(rq))
2268 blk_queue_end_tag(q, rq);
2270 elv_requeue_request(q, rq);
2273 EXPORT_SYMBOL(blk_requeue_request);
2276 * blk_insert_request - insert a special request in to a request queue
2277 * @q: request queue where request should be inserted
2278 * @rq: request to be inserted
2279 * @at_head: insert request at head or tail of queue
2280 * @data: private data
2282 * Description:
2283 * Many block devices need to execute commands asynchronously, so they don't
2284 * block the whole kernel from preemption during request execution. This is
2285 * accomplished normally by inserting aritficial requests tagged as
2286 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2287 * scheduled for actual execution by the request queue.
2289 * We have the option of inserting the head or the tail of the queue.
2290 * Typically we use the tail for new ioctls and so forth. We use the head
2291 * of the queue for things like a QUEUE_FULL message from a device, or a
2292 * host that is unable to accept a particular command.
2294 void blk_insert_request(struct request_queue *q, struct request *rq,
2295 int at_head, void *data)
2297 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2298 unsigned long flags;
2301 * tell I/O scheduler that this isn't a regular read/write (ie it
2302 * must not attempt merges on this) and that it acts as a soft
2303 * barrier
2305 rq->cmd_type = REQ_TYPE_SPECIAL;
2306 rq->cmd_flags |= REQ_SOFTBARRIER;
2308 rq->special = data;
2310 spin_lock_irqsave(q->queue_lock, flags);
2313 * If command is tagged, release the tag
2315 if (blk_rq_tagged(rq))
2316 blk_queue_end_tag(q, rq);
2318 drive_stat_acct(rq, rq->nr_sectors, 1);
2319 __elv_add_request(q, rq, where, 0);
2320 blk_start_queueing(q);
2321 spin_unlock_irqrestore(q->queue_lock, flags);
2324 EXPORT_SYMBOL(blk_insert_request);
2326 static int __blk_rq_unmap_user(struct bio *bio)
2328 int ret = 0;
2330 if (bio) {
2331 if (bio_flagged(bio, BIO_USER_MAPPED))
2332 bio_unmap_user(bio);
2333 else
2334 ret = bio_uncopy_user(bio);
2337 return ret;
2340 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2341 struct bio *bio)
2343 if (!rq->bio)
2344 blk_rq_bio_prep(q, rq, bio);
2345 else if (!ll_back_merge_fn(q, rq, bio))
2346 return -EINVAL;
2347 else {
2348 rq->biotail->bi_next = bio;
2349 rq->biotail = bio;
2351 rq->data_len += bio->bi_size;
2353 return 0;
2355 EXPORT_SYMBOL(blk_rq_append_bio);
2357 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2358 void __user *ubuf, unsigned int len)
2360 unsigned long uaddr;
2361 struct bio *bio, *orig_bio;
2362 int reading, ret;
2364 reading = rq_data_dir(rq) == READ;
2367 * if alignment requirement is satisfied, map in user pages for
2368 * direct dma. else, set up kernel bounce buffers
2370 uaddr = (unsigned long) ubuf;
2371 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2372 bio = bio_map_user(q, NULL, uaddr, len, reading);
2373 else
2374 bio = bio_copy_user(q, uaddr, len, reading);
2376 if (IS_ERR(bio))
2377 return PTR_ERR(bio);
2379 orig_bio = bio;
2380 blk_queue_bounce(q, &bio);
2383 * We link the bounce buffer in and could have to traverse it
2384 * later so we have to get a ref to prevent it from being freed
2386 bio_get(bio);
2388 ret = blk_rq_append_bio(q, rq, bio);
2389 if (!ret)
2390 return bio->bi_size;
2392 /* if it was boucned we must call the end io function */
2393 bio_endio(bio, 0);
2394 __blk_rq_unmap_user(orig_bio);
2395 bio_put(bio);
2396 return ret;
2400 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2401 * @q: request queue where request should be inserted
2402 * @rq: request structure to fill
2403 * @ubuf: the user buffer
2404 * @len: length of user data
2406 * Description:
2407 * Data will be mapped directly for zero copy io, if possible. Otherwise
2408 * a kernel bounce buffer is used.
2410 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2411 * still in process context.
2413 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2414 * before being submitted to the device, as pages mapped may be out of
2415 * reach. It's the callers responsibility to make sure this happens. The
2416 * original bio must be passed back in to blk_rq_unmap_user() for proper
2417 * unmapping.
2419 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2420 void __user *ubuf, unsigned long len)
2422 unsigned long bytes_read = 0;
2423 struct bio *bio = NULL;
2424 int ret;
2426 if (len > (q->max_hw_sectors << 9))
2427 return -EINVAL;
2428 if (!len || !ubuf)
2429 return -EINVAL;
2431 while (bytes_read != len) {
2432 unsigned long map_len, end, start;
2434 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2435 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2436 >> PAGE_SHIFT;
2437 start = (unsigned long)ubuf >> PAGE_SHIFT;
2440 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2441 * pages. If this happens we just lower the requested
2442 * mapping len by a page so that we can fit
2444 if (end - start > BIO_MAX_PAGES)
2445 map_len -= PAGE_SIZE;
2447 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2448 if (ret < 0)
2449 goto unmap_rq;
2450 if (!bio)
2451 bio = rq->bio;
2452 bytes_read += ret;
2453 ubuf += ret;
2456 rq->buffer = rq->data = NULL;
2457 return 0;
2458 unmap_rq:
2459 blk_rq_unmap_user(bio);
2460 return ret;
2463 EXPORT_SYMBOL(blk_rq_map_user);
2466 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2467 * @q: request queue where request should be inserted
2468 * @rq: request to map data to
2469 * @iov: pointer to the iovec
2470 * @iov_count: number of elements in the iovec
2471 * @len: I/O byte count
2473 * Description:
2474 * Data will be mapped directly for zero copy io, if possible. Otherwise
2475 * a kernel bounce buffer is used.
2477 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2478 * still in process context.
2480 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2481 * before being submitted to the device, as pages mapped may be out of
2482 * reach. It's the callers responsibility to make sure this happens. The
2483 * original bio must be passed back in to blk_rq_unmap_user() for proper
2484 * unmapping.
2486 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2487 struct sg_iovec *iov, int iov_count, unsigned int len)
2489 struct bio *bio;
2491 if (!iov || iov_count <= 0)
2492 return -EINVAL;
2494 /* we don't allow misaligned data like bio_map_user() does. If the
2495 * user is using sg, they're expected to know the alignment constraints
2496 * and respect them accordingly */
2497 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2498 if (IS_ERR(bio))
2499 return PTR_ERR(bio);
2501 if (bio->bi_size != len) {
2502 bio_endio(bio, 0);
2503 bio_unmap_user(bio);
2504 return -EINVAL;
2507 bio_get(bio);
2508 blk_rq_bio_prep(q, rq, bio);
2509 rq->buffer = rq->data = NULL;
2510 return 0;
2513 EXPORT_SYMBOL(blk_rq_map_user_iov);
2516 * blk_rq_unmap_user - unmap a request with user data
2517 * @bio: start of bio list
2519 * Description:
2520 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2521 * supply the original rq->bio from the blk_rq_map_user() return, since
2522 * the io completion may have changed rq->bio.
2524 int blk_rq_unmap_user(struct bio *bio)
2526 struct bio *mapped_bio;
2527 int ret = 0, ret2;
2529 while (bio) {
2530 mapped_bio = bio;
2531 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2532 mapped_bio = bio->bi_private;
2534 ret2 = __blk_rq_unmap_user(mapped_bio);
2535 if (ret2 && !ret)
2536 ret = ret2;
2538 mapped_bio = bio;
2539 bio = bio->bi_next;
2540 bio_put(mapped_bio);
2543 return ret;
2546 EXPORT_SYMBOL(blk_rq_unmap_user);
2549 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2550 * @q: request queue where request should be inserted
2551 * @rq: request to fill
2552 * @kbuf: the kernel buffer
2553 * @len: length of user data
2554 * @gfp_mask: memory allocation flags
2556 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2557 unsigned int len, gfp_t gfp_mask)
2559 struct bio *bio;
2561 if (len > (q->max_hw_sectors << 9))
2562 return -EINVAL;
2563 if (!len || !kbuf)
2564 return -EINVAL;
2566 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2567 if (IS_ERR(bio))
2568 return PTR_ERR(bio);
2570 if (rq_data_dir(rq) == WRITE)
2571 bio->bi_rw |= (1 << BIO_RW);
2573 blk_rq_bio_prep(q, rq, bio);
2574 blk_queue_bounce(q, &rq->bio);
2575 rq->buffer = rq->data = NULL;
2576 return 0;
2579 EXPORT_SYMBOL(blk_rq_map_kern);
2582 * blk_execute_rq_nowait - insert a request into queue for execution
2583 * @q: queue to insert the request in
2584 * @bd_disk: matching gendisk
2585 * @rq: request to insert
2586 * @at_head: insert request at head or tail of queue
2587 * @done: I/O completion handler
2589 * Description:
2590 * Insert a fully prepared request at the back of the io scheduler queue
2591 * for execution. Don't wait for completion.
2593 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2594 struct request *rq, int at_head,
2595 rq_end_io_fn *done)
2597 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2599 rq->rq_disk = bd_disk;
2600 rq->cmd_flags |= REQ_NOMERGE;
2601 rq->end_io = done;
2602 WARN_ON(irqs_disabled());
2603 spin_lock_irq(q->queue_lock);
2604 __elv_add_request(q, rq, where, 1);
2605 __generic_unplug_device(q);
2606 spin_unlock_irq(q->queue_lock);
2608 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2611 * blk_execute_rq - insert a request into queue for execution
2612 * @q: queue to insert the request in
2613 * @bd_disk: matching gendisk
2614 * @rq: request to insert
2615 * @at_head: insert request at head or tail of queue
2617 * Description:
2618 * Insert a fully prepared request at the back of the io scheduler queue
2619 * for execution and wait for completion.
2621 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2622 struct request *rq, int at_head)
2624 DECLARE_COMPLETION_ONSTACK(wait);
2625 char sense[SCSI_SENSE_BUFFERSIZE];
2626 int err = 0;
2629 * we need an extra reference to the request, so we can look at
2630 * it after io completion
2632 rq->ref_count++;
2634 if (!rq->sense) {
2635 memset(sense, 0, sizeof(sense));
2636 rq->sense = sense;
2637 rq->sense_len = 0;
2640 rq->end_io_data = &wait;
2641 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2642 wait_for_completion(&wait);
2644 if (rq->errors)
2645 err = -EIO;
2647 return err;
2650 EXPORT_SYMBOL(blk_execute_rq);
2652 static void bio_end_empty_barrier(struct bio *bio, int err)
2654 if (err)
2655 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2657 complete(bio->bi_private);
2661 * blkdev_issue_flush - queue a flush
2662 * @bdev: blockdev to issue flush for
2663 * @error_sector: error sector
2665 * Description:
2666 * Issue a flush for the block device in question. Caller can supply
2667 * room for storing the error offset in case of a flush error, if they
2668 * wish to. Caller must run wait_for_completion() on its own.
2670 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2672 DECLARE_COMPLETION_ONSTACK(wait);
2673 struct request_queue *q;
2674 struct bio *bio;
2675 int ret;
2677 if (bdev->bd_disk == NULL)
2678 return -ENXIO;
2680 q = bdev_get_queue(bdev);
2681 if (!q)
2682 return -ENXIO;
2684 bio = bio_alloc(GFP_KERNEL, 0);
2685 if (!bio)
2686 return -ENOMEM;
2688 bio->bi_end_io = bio_end_empty_barrier;
2689 bio->bi_private = &wait;
2690 bio->bi_bdev = bdev;
2691 submit_bio(1 << BIO_RW_BARRIER, bio);
2693 wait_for_completion(&wait);
2696 * The driver must store the error location in ->bi_sector, if
2697 * it supports it. For non-stacked drivers, this should be copied
2698 * from rq->sector.
2700 if (error_sector)
2701 *error_sector = bio->bi_sector;
2703 ret = 0;
2704 if (!bio_flagged(bio, BIO_UPTODATE))
2705 ret = -EIO;
2707 bio_put(bio);
2708 return ret;
2711 EXPORT_SYMBOL(blkdev_issue_flush);
2713 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2715 int rw = rq_data_dir(rq);
2717 if (!blk_fs_request(rq) || !rq->rq_disk)
2718 return;
2720 if (!new_io) {
2721 __disk_stat_inc(rq->rq_disk, merges[rw]);
2722 } else {
2723 disk_round_stats(rq->rq_disk);
2724 rq->rq_disk->in_flight++;
2729 * add-request adds a request to the linked list.
2730 * queue lock is held and interrupts disabled, as we muck with the
2731 * request queue list.
2733 static inline void add_request(struct request_queue * q, struct request * req)
2735 drive_stat_acct(req, req->nr_sectors, 1);
2738 * elevator indicated where it wants this request to be
2739 * inserted at elevator_merge time
2741 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2745 * disk_round_stats() - Round off the performance stats on a struct
2746 * disk_stats.
2748 * The average IO queue length and utilisation statistics are maintained
2749 * by observing the current state of the queue length and the amount of
2750 * time it has been in this state for.
2752 * Normally, that accounting is done on IO completion, but that can result
2753 * in more than a second's worth of IO being accounted for within any one
2754 * second, leading to >100% utilisation. To deal with that, we call this
2755 * function to do a round-off before returning the results when reading
2756 * /proc/diskstats. This accounts immediately for all queue usage up to
2757 * the current jiffies and restarts the counters again.
2759 void disk_round_stats(struct gendisk *disk)
2761 unsigned long now = jiffies;
2763 if (now == disk->stamp)
2764 return;
2766 if (disk->in_flight) {
2767 __disk_stat_add(disk, time_in_queue,
2768 disk->in_flight * (now - disk->stamp));
2769 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2771 disk->stamp = now;
2774 EXPORT_SYMBOL_GPL(disk_round_stats);
2777 * queue lock must be held
2779 void __blk_put_request(struct request_queue *q, struct request *req)
2781 if (unlikely(!q))
2782 return;
2783 if (unlikely(--req->ref_count))
2784 return;
2786 elv_completed_request(q, req);
2789 * Request may not have originated from ll_rw_blk. if not,
2790 * it didn't come out of our reserved rq pools
2792 if (req->cmd_flags & REQ_ALLOCED) {
2793 int rw = rq_data_dir(req);
2794 int priv = req->cmd_flags & REQ_ELVPRIV;
2796 BUG_ON(!list_empty(&req->queuelist));
2797 BUG_ON(!hlist_unhashed(&req->hash));
2799 blk_free_request(q, req);
2800 freed_request(q, rw, priv);
2804 EXPORT_SYMBOL_GPL(__blk_put_request);
2806 void blk_put_request(struct request *req)
2808 unsigned long flags;
2809 struct request_queue *q = req->q;
2812 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2813 * following if (q) test.
2815 if (q) {
2816 spin_lock_irqsave(q->queue_lock, flags);
2817 __blk_put_request(q, req);
2818 spin_unlock_irqrestore(q->queue_lock, flags);
2822 EXPORT_SYMBOL(blk_put_request);
2825 * blk_end_sync_rq - executes a completion event on a request
2826 * @rq: request to complete
2827 * @error: end io status of the request
2829 void blk_end_sync_rq(struct request *rq, int error)
2831 struct completion *waiting = rq->end_io_data;
2833 rq->end_io_data = NULL;
2834 __blk_put_request(rq->q, rq);
2837 * complete last, if this is a stack request the process (and thus
2838 * the rq pointer) could be invalid right after this complete()
2840 complete(waiting);
2842 EXPORT_SYMBOL(blk_end_sync_rq);
2845 * Has to be called with the request spinlock acquired
2847 static int attempt_merge(struct request_queue *q, struct request *req,
2848 struct request *next)
2850 if (!rq_mergeable(req) || !rq_mergeable(next))
2851 return 0;
2854 * not contiguous
2856 if (req->sector + req->nr_sectors != next->sector)
2857 return 0;
2859 if (rq_data_dir(req) != rq_data_dir(next)
2860 || req->rq_disk != next->rq_disk
2861 || next->special)
2862 return 0;
2865 * If we are allowed to merge, then append bio list
2866 * from next to rq and release next. merge_requests_fn
2867 * will have updated segment counts, update sector
2868 * counts here.
2870 if (!ll_merge_requests_fn(q, req, next))
2871 return 0;
2874 * At this point we have either done a back merge
2875 * or front merge. We need the smaller start_time of
2876 * the merged requests to be the current request
2877 * for accounting purposes.
2879 if (time_after(req->start_time, next->start_time))
2880 req->start_time = next->start_time;
2882 req->biotail->bi_next = next->bio;
2883 req->biotail = next->biotail;
2885 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2887 elv_merge_requests(q, req, next);
2889 if (req->rq_disk) {
2890 disk_round_stats(req->rq_disk);
2891 req->rq_disk->in_flight--;
2894 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2896 __blk_put_request(q, next);
2897 return 1;
2900 static inline int attempt_back_merge(struct request_queue *q,
2901 struct request *rq)
2903 struct request *next = elv_latter_request(q, rq);
2905 if (next)
2906 return attempt_merge(q, rq, next);
2908 return 0;
2911 static inline int attempt_front_merge(struct request_queue *q,
2912 struct request *rq)
2914 struct request *prev = elv_former_request(q, rq);
2916 if (prev)
2917 return attempt_merge(q, prev, rq);
2919 return 0;
2922 static void init_request_from_bio(struct request *req, struct bio *bio)
2924 req->cmd_type = REQ_TYPE_FS;
2927 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2929 if (bio_rw_ahead(bio) || bio_failfast(bio))
2930 req->cmd_flags |= REQ_FAILFAST;
2933 * REQ_BARRIER implies no merging, but lets make it explicit
2935 if (unlikely(bio_barrier(bio)))
2936 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2938 if (bio_sync(bio))
2939 req->cmd_flags |= REQ_RW_SYNC;
2940 if (bio_rw_meta(bio))
2941 req->cmd_flags |= REQ_RW_META;
2943 req->errors = 0;
2944 req->hard_sector = req->sector = bio->bi_sector;
2945 req->ioprio = bio_prio(bio);
2946 req->start_time = jiffies;
2947 blk_rq_bio_prep(req->q, req, bio);
2950 static int __make_request(struct request_queue *q, struct bio *bio)
2952 struct request *req;
2953 int el_ret, nr_sectors, barrier, err;
2954 const unsigned short prio = bio_prio(bio);
2955 const int sync = bio_sync(bio);
2956 int rw_flags;
2958 nr_sectors = bio_sectors(bio);
2961 * low level driver can indicate that it wants pages above a
2962 * certain limit bounced to low memory (ie for highmem, or even
2963 * ISA dma in theory)
2965 blk_queue_bounce(q, &bio);
2967 barrier = bio_barrier(bio);
2968 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2969 err = -EOPNOTSUPP;
2970 goto end_io;
2973 spin_lock_irq(q->queue_lock);
2975 if (unlikely(barrier) || elv_queue_empty(q))
2976 goto get_rq;
2978 el_ret = elv_merge(q, &req, bio);
2979 switch (el_ret) {
2980 case ELEVATOR_BACK_MERGE:
2981 BUG_ON(!rq_mergeable(req));
2983 if (!ll_back_merge_fn(q, req, bio))
2984 break;
2986 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2988 req->biotail->bi_next = bio;
2989 req->biotail = bio;
2990 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2991 req->ioprio = ioprio_best(req->ioprio, prio);
2992 drive_stat_acct(req, nr_sectors, 0);
2993 if (!attempt_back_merge(q, req))
2994 elv_merged_request(q, req, el_ret);
2995 goto out;
2997 case ELEVATOR_FRONT_MERGE:
2998 BUG_ON(!rq_mergeable(req));
3000 if (!ll_front_merge_fn(q, req, bio))
3001 break;
3003 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3005 bio->bi_next = req->bio;
3006 req->bio = bio;
3009 * may not be valid. if the low level driver said
3010 * it didn't need a bounce buffer then it better
3011 * not touch req->buffer either...
3013 req->buffer = bio_data(bio);
3014 req->current_nr_sectors = bio_cur_sectors(bio);
3015 req->hard_cur_sectors = req->current_nr_sectors;
3016 req->sector = req->hard_sector = bio->bi_sector;
3017 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3018 req->ioprio = ioprio_best(req->ioprio, prio);
3019 drive_stat_acct(req, nr_sectors, 0);
3020 if (!attempt_front_merge(q, req))
3021 elv_merged_request(q, req, el_ret);
3022 goto out;
3024 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3025 default:
3029 get_rq:
3031 * This sync check and mask will be re-done in init_request_from_bio(),
3032 * but we need to set it earlier to expose the sync flag to the
3033 * rq allocator and io schedulers.
3035 rw_flags = bio_data_dir(bio);
3036 if (sync)
3037 rw_flags |= REQ_RW_SYNC;
3040 * Grab a free request. This is might sleep but can not fail.
3041 * Returns with the queue unlocked.
3043 req = get_request_wait(q, rw_flags, bio);
3046 * After dropping the lock and possibly sleeping here, our request
3047 * may now be mergeable after it had proven unmergeable (above).
3048 * We don't worry about that case for efficiency. It won't happen
3049 * often, and the elevators are able to handle it.
3051 init_request_from_bio(req, bio);
3053 spin_lock_irq(q->queue_lock);
3054 if (elv_queue_empty(q))
3055 blk_plug_device(q);
3056 add_request(q, req);
3057 out:
3058 if (sync)
3059 __generic_unplug_device(q);
3061 spin_unlock_irq(q->queue_lock);
3062 return 0;
3064 end_io:
3065 bio_endio(bio, err);
3066 return 0;
3070 * If bio->bi_dev is a partition, remap the location
3072 static inline void blk_partition_remap(struct bio *bio)
3074 struct block_device *bdev = bio->bi_bdev;
3076 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
3077 struct hd_struct *p = bdev->bd_part;
3078 const int rw = bio_data_dir(bio);
3080 p->sectors[rw] += bio_sectors(bio);
3081 p->ios[rw]++;
3083 bio->bi_sector += p->start_sect;
3084 bio->bi_bdev = bdev->bd_contains;
3086 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3087 bdev->bd_dev, bio->bi_sector,
3088 bio->bi_sector - p->start_sect);
3092 static void handle_bad_sector(struct bio *bio)
3094 char b[BDEVNAME_SIZE];
3096 printk(KERN_INFO "attempt to access beyond end of device\n");
3097 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3098 bdevname(bio->bi_bdev, b),
3099 bio->bi_rw,
3100 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3101 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3103 set_bit(BIO_EOF, &bio->bi_flags);
3106 #ifdef CONFIG_FAIL_MAKE_REQUEST
3108 static DECLARE_FAULT_ATTR(fail_make_request);
3110 static int __init setup_fail_make_request(char *str)
3112 return setup_fault_attr(&fail_make_request, str);
3114 __setup("fail_make_request=", setup_fail_make_request);
3116 static int should_fail_request(struct bio *bio)
3118 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3119 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3120 return should_fail(&fail_make_request, bio->bi_size);
3122 return 0;
3125 static int __init fail_make_request_debugfs(void)
3127 return init_fault_attr_dentries(&fail_make_request,
3128 "fail_make_request");
3131 late_initcall(fail_make_request_debugfs);
3133 #else /* CONFIG_FAIL_MAKE_REQUEST */
3135 static inline int should_fail_request(struct bio *bio)
3137 return 0;
3140 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3143 * Check whether this bio extends beyond the end of the device.
3145 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3147 sector_t maxsector;
3149 if (!nr_sectors)
3150 return 0;
3152 /* Test device or partition size, when known. */
3153 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3154 if (maxsector) {
3155 sector_t sector = bio->bi_sector;
3157 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3159 * This may well happen - the kernel calls bread()
3160 * without checking the size of the device, e.g., when
3161 * mounting a device.
3163 handle_bad_sector(bio);
3164 return 1;
3168 return 0;
3172 * generic_make_request: hand a buffer to its device driver for I/O
3173 * @bio: The bio describing the location in memory and on the device.
3175 * generic_make_request() is used to make I/O requests of block
3176 * devices. It is passed a &struct bio, which describes the I/O that needs
3177 * to be done.
3179 * generic_make_request() does not return any status. The
3180 * success/failure status of the request, along with notification of
3181 * completion, is delivered asynchronously through the bio->bi_end_io
3182 * function described (one day) else where.
3184 * The caller of generic_make_request must make sure that bi_io_vec
3185 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3186 * set to describe the device address, and the
3187 * bi_end_io and optionally bi_private are set to describe how
3188 * completion notification should be signaled.
3190 * generic_make_request and the drivers it calls may use bi_next if this
3191 * bio happens to be merged with someone else, and may change bi_dev and
3192 * bi_sector for remaps as it sees fit. So the values of these fields
3193 * should NOT be depended on after the call to generic_make_request.
3195 static inline void __generic_make_request(struct bio *bio)
3197 struct request_queue *q;
3198 sector_t old_sector;
3199 int ret, nr_sectors = bio_sectors(bio);
3200 dev_t old_dev;
3202 might_sleep();
3204 if (bio_check_eod(bio, nr_sectors))
3205 goto end_io;
3208 * Resolve the mapping until finished. (drivers are
3209 * still free to implement/resolve their own stacking
3210 * by explicitly returning 0)
3212 * NOTE: we don't repeat the blk_size check for each new device.
3213 * Stacking drivers are expected to know what they are doing.
3215 old_sector = -1;
3216 old_dev = 0;
3217 do {
3218 char b[BDEVNAME_SIZE];
3220 q = bdev_get_queue(bio->bi_bdev);
3221 if (!q) {
3222 printk(KERN_ERR
3223 "generic_make_request: Trying to access "
3224 "nonexistent block-device %s (%Lu)\n",
3225 bdevname(bio->bi_bdev, b),
3226 (long long) bio->bi_sector);
3227 end_io:
3228 bio_endio(bio, -EIO);
3229 break;
3232 if (unlikely(nr_sectors > q->max_hw_sectors)) {
3233 printk("bio too big device %s (%u > %u)\n",
3234 bdevname(bio->bi_bdev, b),
3235 bio_sectors(bio),
3236 q->max_hw_sectors);
3237 goto end_io;
3240 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3241 goto end_io;
3243 if (should_fail_request(bio))
3244 goto end_io;
3247 * If this device has partitions, remap block n
3248 * of partition p to block n+start(p) of the disk.
3250 blk_partition_remap(bio);
3252 if (old_sector != -1)
3253 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3254 old_sector);
3256 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3258 old_sector = bio->bi_sector;
3259 old_dev = bio->bi_bdev->bd_dev;
3261 if (bio_check_eod(bio, nr_sectors))
3262 goto end_io;
3264 ret = q->make_request_fn(q, bio);
3265 } while (ret);
3269 * We only want one ->make_request_fn to be active at a time,
3270 * else stack usage with stacked devices could be a problem.
3271 * So use current->bio_{list,tail} to keep a list of requests
3272 * submited by a make_request_fn function.
3273 * current->bio_tail is also used as a flag to say if
3274 * generic_make_request is currently active in this task or not.
3275 * If it is NULL, then no make_request is active. If it is non-NULL,
3276 * then a make_request is active, and new requests should be added
3277 * at the tail
3279 void generic_make_request(struct bio *bio)
3281 if (current->bio_tail) {
3282 /* make_request is active */
3283 *(current->bio_tail) = bio;
3284 bio->bi_next = NULL;
3285 current->bio_tail = &bio->bi_next;
3286 return;
3288 /* following loop may be a bit non-obvious, and so deserves some
3289 * explanation.
3290 * Before entering the loop, bio->bi_next is NULL (as all callers
3291 * ensure that) so we have a list with a single bio.
3292 * We pretend that we have just taken it off a longer list, so
3293 * we assign bio_list to the next (which is NULL) and bio_tail
3294 * to &bio_list, thus initialising the bio_list of new bios to be
3295 * added. __generic_make_request may indeed add some more bios
3296 * through a recursive call to generic_make_request. If it
3297 * did, we find a non-NULL value in bio_list and re-enter the loop
3298 * from the top. In this case we really did just take the bio
3299 * of the top of the list (no pretending) and so fixup bio_list and
3300 * bio_tail or bi_next, and call into __generic_make_request again.
3302 * The loop was structured like this to make only one call to
3303 * __generic_make_request (which is important as it is large and
3304 * inlined) and to keep the structure simple.
3306 BUG_ON(bio->bi_next);
3307 do {
3308 current->bio_list = bio->bi_next;
3309 if (bio->bi_next == NULL)
3310 current->bio_tail = &current->bio_list;
3311 else
3312 bio->bi_next = NULL;
3313 __generic_make_request(bio);
3314 bio = current->bio_list;
3315 } while (bio);
3316 current->bio_tail = NULL; /* deactivate */
3319 EXPORT_SYMBOL(generic_make_request);
3322 * submit_bio: submit a bio to the block device layer for I/O
3323 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3324 * @bio: The &struct bio which describes the I/O
3326 * submit_bio() is very similar in purpose to generic_make_request(), and
3327 * uses that function to do most of the work. Both are fairly rough
3328 * interfaces, @bio must be presetup and ready for I/O.
3331 void submit_bio(int rw, struct bio *bio)
3333 int count = bio_sectors(bio);
3335 bio->bi_rw |= rw;
3338 * If it's a regular read/write or a barrier with data attached,
3339 * go through the normal accounting stuff before submission.
3341 if (!bio_empty_barrier(bio)) {
3343 BIO_BUG_ON(!bio->bi_size);
3344 BIO_BUG_ON(!bio->bi_io_vec);
3346 if (rw & WRITE) {
3347 count_vm_events(PGPGOUT, count);
3348 } else {
3349 task_io_account_read(bio->bi_size);
3350 count_vm_events(PGPGIN, count);
3353 if (unlikely(block_dump)) {
3354 char b[BDEVNAME_SIZE];
3355 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3356 current->comm, current->pid,
3357 (rw & WRITE) ? "WRITE" : "READ",
3358 (unsigned long long)bio->bi_sector,
3359 bdevname(bio->bi_bdev,b));
3363 generic_make_request(bio);
3366 EXPORT_SYMBOL(submit_bio);
3368 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3370 if (blk_fs_request(rq)) {
3371 rq->hard_sector += nsect;
3372 rq->hard_nr_sectors -= nsect;
3375 * Move the I/O submission pointers ahead if required.
3377 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3378 (rq->sector <= rq->hard_sector)) {
3379 rq->sector = rq->hard_sector;
3380 rq->nr_sectors = rq->hard_nr_sectors;
3381 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3382 rq->current_nr_sectors = rq->hard_cur_sectors;
3383 rq->buffer = bio_data(rq->bio);
3387 * if total number of sectors is less than the first segment
3388 * size, something has gone terribly wrong
3390 if (rq->nr_sectors < rq->current_nr_sectors) {
3391 printk("blk: request botched\n");
3392 rq->nr_sectors = rq->current_nr_sectors;
3397 static int __end_that_request_first(struct request *req, int uptodate,
3398 int nr_bytes)
3400 int total_bytes, bio_nbytes, error, next_idx = 0;
3401 struct bio *bio;
3403 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3406 * extend uptodate bool to allow < 0 value to be direct io error
3408 error = 0;
3409 if (end_io_error(uptodate))
3410 error = !uptodate ? -EIO : uptodate;
3413 * for a REQ_BLOCK_PC request, we want to carry any eventual
3414 * sense key with us all the way through
3416 if (!blk_pc_request(req))
3417 req->errors = 0;
3419 if (!uptodate) {
3420 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3421 printk("end_request: I/O error, dev %s, sector %llu\n",
3422 req->rq_disk ? req->rq_disk->disk_name : "?",
3423 (unsigned long long)req->sector);
3426 if (blk_fs_request(req) && req->rq_disk) {
3427 const int rw = rq_data_dir(req);
3429 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3432 total_bytes = bio_nbytes = 0;
3433 while ((bio = req->bio) != NULL) {
3434 int nbytes;
3437 * For an empty barrier request, the low level driver must
3438 * store a potential error location in ->sector. We pass
3439 * that back up in ->bi_sector.
3441 if (blk_empty_barrier(req))
3442 bio->bi_sector = req->sector;
3444 if (nr_bytes >= bio->bi_size) {
3445 req->bio = bio->bi_next;
3446 nbytes = bio->bi_size;
3447 req_bio_endio(req, bio, nbytes, error);
3448 next_idx = 0;
3449 bio_nbytes = 0;
3450 } else {
3451 int idx = bio->bi_idx + next_idx;
3453 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3454 blk_dump_rq_flags(req, "__end_that");
3455 printk("%s: bio idx %d >= vcnt %d\n",
3456 __FUNCTION__,
3457 bio->bi_idx, bio->bi_vcnt);
3458 break;
3461 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3462 BIO_BUG_ON(nbytes > bio->bi_size);
3465 * not a complete bvec done
3467 if (unlikely(nbytes > nr_bytes)) {
3468 bio_nbytes += nr_bytes;
3469 total_bytes += nr_bytes;
3470 break;
3474 * advance to the next vector
3476 next_idx++;
3477 bio_nbytes += nbytes;
3480 total_bytes += nbytes;
3481 nr_bytes -= nbytes;
3483 if ((bio = req->bio)) {
3485 * end more in this run, or just return 'not-done'
3487 if (unlikely(nr_bytes <= 0))
3488 break;
3493 * completely done
3495 if (!req->bio)
3496 return 0;
3499 * if the request wasn't completed, update state
3501 if (bio_nbytes) {
3502 req_bio_endio(req, bio, bio_nbytes, error);
3503 bio->bi_idx += next_idx;
3504 bio_iovec(bio)->bv_offset += nr_bytes;
3505 bio_iovec(bio)->bv_len -= nr_bytes;
3508 blk_recalc_rq_sectors(req, total_bytes >> 9);
3509 blk_recalc_rq_segments(req);
3510 return 1;
3514 * end_that_request_first - end I/O on a request
3515 * @req: the request being processed
3516 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3517 * @nr_sectors: number of sectors to end I/O on
3519 * Description:
3520 * Ends I/O on a number of sectors attached to @req, and sets it up
3521 * for the next range of segments (if any) in the cluster.
3523 * Return:
3524 * 0 - we are done with this request, call end_that_request_last()
3525 * 1 - still buffers pending for this request
3527 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3529 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3532 EXPORT_SYMBOL(end_that_request_first);
3535 * end_that_request_chunk - end I/O on a request
3536 * @req: the request being processed
3537 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3538 * @nr_bytes: number of bytes to complete
3540 * Description:
3541 * Ends I/O on a number of bytes attached to @req, and sets it up
3542 * for the next range of segments (if any). Like end_that_request_first(),
3543 * but deals with bytes instead of sectors.
3545 * Return:
3546 * 0 - we are done with this request, call end_that_request_last()
3547 * 1 - still buffers pending for this request
3549 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3551 return __end_that_request_first(req, uptodate, nr_bytes);
3554 EXPORT_SYMBOL(end_that_request_chunk);
3557 * splice the completion data to a local structure and hand off to
3558 * process_completion_queue() to complete the requests
3560 static void blk_done_softirq(struct softirq_action *h)
3562 struct list_head *cpu_list, local_list;
3564 local_irq_disable();
3565 cpu_list = &__get_cpu_var(blk_cpu_done);
3566 list_replace_init(cpu_list, &local_list);
3567 local_irq_enable();
3569 while (!list_empty(&local_list)) {
3570 struct request *rq = list_entry(local_list.next, struct request, donelist);
3572 list_del_init(&rq->donelist);
3573 rq->q->softirq_done_fn(rq);
3577 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
3578 void *hcpu)
3581 * If a CPU goes away, splice its entries to the current CPU
3582 * and trigger a run of the softirq
3584 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3585 int cpu = (unsigned long) hcpu;
3587 local_irq_disable();
3588 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3589 &__get_cpu_var(blk_cpu_done));
3590 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3591 local_irq_enable();
3594 return NOTIFY_OK;
3598 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
3599 .notifier_call = blk_cpu_notify,
3603 * blk_complete_request - end I/O on a request
3604 * @req: the request being processed
3606 * Description:
3607 * Ends all I/O on a request. It does not handle partial completions,
3608 * unless the driver actually implements this in its completion callback
3609 * through requeueing. The actual completion happens out-of-order,
3610 * through a softirq handler. The user must have registered a completion
3611 * callback through blk_queue_softirq_done().
3614 void blk_complete_request(struct request *req)
3616 struct list_head *cpu_list;
3617 unsigned long flags;
3619 BUG_ON(!req->q->softirq_done_fn);
3621 local_irq_save(flags);
3623 cpu_list = &__get_cpu_var(blk_cpu_done);
3624 list_add_tail(&req->donelist, cpu_list);
3625 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3627 local_irq_restore(flags);
3630 EXPORT_SYMBOL(blk_complete_request);
3633 * queue lock must be held
3635 void end_that_request_last(struct request *req, int uptodate)
3637 struct gendisk *disk = req->rq_disk;
3638 int error;
3641 * extend uptodate bool to allow < 0 value to be direct io error
3643 error = 0;
3644 if (end_io_error(uptodate))
3645 error = !uptodate ? -EIO : uptodate;
3647 if (unlikely(laptop_mode) && blk_fs_request(req))
3648 laptop_io_completion();
3651 * Account IO completion. bar_rq isn't accounted as a normal
3652 * IO on queueing nor completion. Accounting the containing
3653 * request is enough.
3655 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3656 unsigned long duration = jiffies - req->start_time;
3657 const int rw = rq_data_dir(req);
3659 __disk_stat_inc(disk, ios[rw]);
3660 __disk_stat_add(disk, ticks[rw], duration);
3661 disk_round_stats(disk);
3662 disk->in_flight--;
3664 if (req->end_io)
3665 req->end_io(req, error);
3666 else
3667 __blk_put_request(req->q, req);
3670 EXPORT_SYMBOL(end_that_request_last);
3672 static inline void __end_request(struct request *rq, int uptodate,
3673 unsigned int nr_bytes, int dequeue)
3675 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3676 if (dequeue)
3677 blkdev_dequeue_request(rq);
3678 add_disk_randomness(rq->rq_disk);
3679 end_that_request_last(rq, uptodate);
3683 static unsigned int rq_byte_size(struct request *rq)
3685 if (blk_fs_request(rq))
3686 return rq->hard_nr_sectors << 9;
3688 return rq->data_len;
3692 * end_queued_request - end all I/O on a queued request
3693 * @rq: the request being processed
3694 * @uptodate: error value or 0/1 uptodate flag
3696 * Description:
3697 * Ends all I/O on a request, and removes it from the block layer queues.
3698 * Not suitable for normal IO completion, unless the driver still has
3699 * the request attached to the block layer.
3702 void end_queued_request(struct request *rq, int uptodate)
3704 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3706 EXPORT_SYMBOL(end_queued_request);
3709 * end_dequeued_request - end all I/O on a dequeued request
3710 * @rq: the request being processed
3711 * @uptodate: error value or 0/1 uptodate flag
3713 * Description:
3714 * Ends all I/O on a request. The request must already have been
3715 * dequeued using blkdev_dequeue_request(), as is normally the case
3716 * for most drivers.
3719 void end_dequeued_request(struct request *rq, int uptodate)
3721 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3723 EXPORT_SYMBOL(end_dequeued_request);
3727 * end_request - end I/O on the current segment of the request
3728 * @rq: the request being processed
3729 * @uptodate: error value or 0/1 uptodate flag
3731 * Description:
3732 * Ends I/O on the current segment of a request. If that is the only
3733 * remaining segment, the request is also completed and freed.
3735 * This is a remnant of how older block drivers handled IO completions.
3736 * Modern drivers typically end IO on the full request in one go, unless
3737 * they have a residual value to account for. For that case this function
3738 * isn't really useful, unless the residual just happens to be the
3739 * full current segment. In other words, don't use this function in new
3740 * code. Either use end_request_completely(), or the
3741 * end_that_request_chunk() (along with end_that_request_last()) for
3742 * partial completions.
3745 void end_request(struct request *req, int uptodate)
3747 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3749 EXPORT_SYMBOL(end_request);
3751 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3752 struct bio *bio)
3754 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3755 rq->cmd_flags |= (bio->bi_rw & 3);
3757 rq->nr_phys_segments = bio_phys_segments(q, bio);
3758 rq->nr_hw_segments = bio_hw_segments(q, bio);
3759 rq->current_nr_sectors = bio_cur_sectors(bio);
3760 rq->hard_cur_sectors = rq->current_nr_sectors;
3761 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3762 rq->buffer = bio_data(bio);
3763 rq->data_len = bio->bi_size;
3765 rq->bio = rq->biotail = bio;
3767 if (bio->bi_bdev)
3768 rq->rq_disk = bio->bi_bdev->bd_disk;
3771 int kblockd_schedule_work(struct work_struct *work)
3773 return queue_work(kblockd_workqueue, work);
3776 EXPORT_SYMBOL(kblockd_schedule_work);
3778 void kblockd_flush_work(struct work_struct *work)
3780 cancel_work_sync(work);
3782 EXPORT_SYMBOL(kblockd_flush_work);
3784 int __init blk_dev_init(void)
3786 int i;
3788 kblockd_workqueue = create_workqueue("kblockd");
3789 if (!kblockd_workqueue)
3790 panic("Failed to create kblockd\n");
3792 request_cachep = kmem_cache_create("blkdev_requests",
3793 sizeof(struct request), 0, SLAB_PANIC, NULL);
3795 requestq_cachep = kmem_cache_create("blkdev_queue",
3796 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3798 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3799 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3801 for_each_possible_cpu(i)
3802 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3804 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3805 register_hotcpu_notifier(&blk_cpu_notifier);
3807 blk_max_low_pfn = max_low_pfn - 1;
3808 blk_max_pfn = max_pfn - 1;
3810 return 0;
3814 * IO Context helper functions
3816 void put_io_context(struct io_context *ioc)
3818 if (ioc == NULL)
3819 return;
3821 BUG_ON(atomic_read(&ioc->refcount) == 0);
3823 if (atomic_dec_and_test(&ioc->refcount)) {
3824 struct cfq_io_context *cic;
3826 rcu_read_lock();
3827 if (ioc->aic && ioc->aic->dtor)
3828 ioc->aic->dtor(ioc->aic);
3829 if (ioc->cic_root.rb_node != NULL) {
3830 struct rb_node *n = rb_first(&ioc->cic_root);
3832 cic = rb_entry(n, struct cfq_io_context, rb_node);
3833 cic->dtor(ioc);
3835 rcu_read_unlock();
3837 kmem_cache_free(iocontext_cachep, ioc);
3840 EXPORT_SYMBOL(put_io_context);
3842 /* Called by the exitting task */
3843 void exit_io_context(void)
3845 struct io_context *ioc;
3846 struct cfq_io_context *cic;
3848 task_lock(current);
3849 ioc = current->io_context;
3850 current->io_context = NULL;
3851 task_unlock(current);
3853 ioc->task = NULL;
3854 if (ioc->aic && ioc->aic->exit)
3855 ioc->aic->exit(ioc->aic);
3856 if (ioc->cic_root.rb_node != NULL) {
3857 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3858 cic->exit(ioc);
3861 put_io_context(ioc);
3865 * If the current task has no IO context then create one and initialise it.
3866 * Otherwise, return its existing IO context.
3868 * This returned IO context doesn't have a specifically elevated refcount,
3869 * but since the current task itself holds a reference, the context can be
3870 * used in general code, so long as it stays within `current` context.
3872 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3874 struct task_struct *tsk = current;
3875 struct io_context *ret;
3877 ret = tsk->io_context;
3878 if (likely(ret))
3879 return ret;
3881 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3882 if (ret) {
3883 atomic_set(&ret->refcount, 1);
3884 ret->task = current;
3885 ret->ioprio_changed = 0;
3886 ret->last_waited = jiffies; /* doesn't matter... */
3887 ret->nr_batch_requests = 0; /* because this is 0 */
3888 ret->aic = NULL;
3889 ret->cic_root.rb_node = NULL;
3890 ret->ioc_data = NULL;
3891 /* make sure set_task_ioprio() sees the settings above */
3892 smp_wmb();
3893 tsk->io_context = ret;
3896 return ret;
3900 * If the current task has no IO context then create one and initialise it.
3901 * If it does have a context, take a ref on it.
3903 * This is always called in the context of the task which submitted the I/O.
3905 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3907 struct io_context *ret;
3908 ret = current_io_context(gfp_flags, node);
3909 if (likely(ret))
3910 atomic_inc(&ret->refcount);
3911 return ret;
3913 EXPORT_SYMBOL(get_io_context);
3915 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3917 struct io_context *src = *psrc;
3918 struct io_context *dst = *pdst;
3920 if (src) {
3921 BUG_ON(atomic_read(&src->refcount) == 0);
3922 atomic_inc(&src->refcount);
3923 put_io_context(dst);
3924 *pdst = src;
3927 EXPORT_SYMBOL(copy_io_context);
3929 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3931 struct io_context *temp;
3932 temp = *ioc1;
3933 *ioc1 = *ioc2;
3934 *ioc2 = temp;
3936 EXPORT_SYMBOL(swap_io_context);
3939 * sysfs parts below
3941 struct queue_sysfs_entry {
3942 struct attribute attr;
3943 ssize_t (*show)(struct request_queue *, char *);
3944 ssize_t (*store)(struct request_queue *, const char *, size_t);
3947 static ssize_t
3948 queue_var_show(unsigned int var, char *page)
3950 return sprintf(page, "%d\n", var);
3953 static ssize_t
3954 queue_var_store(unsigned long *var, const char *page, size_t count)
3956 char *p = (char *) page;
3958 *var = simple_strtoul(p, &p, 10);
3959 return count;
3962 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3964 return queue_var_show(q->nr_requests, (page));
3967 static ssize_t
3968 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3970 struct request_list *rl = &q->rq;
3971 unsigned long nr;
3972 int ret = queue_var_store(&nr, page, count);
3973 if (nr < BLKDEV_MIN_RQ)
3974 nr = BLKDEV_MIN_RQ;
3976 spin_lock_irq(q->queue_lock);
3977 q->nr_requests = nr;
3978 blk_queue_congestion_threshold(q);
3980 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3981 blk_set_queue_congested(q, READ);
3982 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3983 blk_clear_queue_congested(q, READ);
3985 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3986 blk_set_queue_congested(q, WRITE);
3987 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3988 blk_clear_queue_congested(q, WRITE);
3990 if (rl->count[READ] >= q->nr_requests) {
3991 blk_set_queue_full(q, READ);
3992 } else if (rl->count[READ]+1 <= q->nr_requests) {
3993 blk_clear_queue_full(q, READ);
3994 wake_up(&rl->wait[READ]);
3997 if (rl->count[WRITE] >= q->nr_requests) {
3998 blk_set_queue_full(q, WRITE);
3999 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4000 blk_clear_queue_full(q, WRITE);
4001 wake_up(&rl->wait[WRITE]);
4003 spin_unlock_irq(q->queue_lock);
4004 return ret;
4007 static ssize_t queue_ra_show(struct request_queue *q, char *page)
4009 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4011 return queue_var_show(ra_kb, (page));
4014 static ssize_t
4015 queue_ra_store(struct request_queue *q, const char *page, size_t count)
4017 unsigned long ra_kb;
4018 ssize_t ret = queue_var_store(&ra_kb, page, count);
4020 spin_lock_irq(q->queue_lock);
4021 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4022 spin_unlock_irq(q->queue_lock);
4024 return ret;
4027 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4029 int max_sectors_kb = q->max_sectors >> 1;
4031 return queue_var_show(max_sectors_kb, (page));
4034 static ssize_t
4035 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4037 unsigned long max_sectors_kb,
4038 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4039 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4040 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
4041 int ra_kb;
4043 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4044 return -EINVAL;
4046 * Take the queue lock to update the readahead and max_sectors
4047 * values synchronously:
4049 spin_lock_irq(q->queue_lock);
4051 * Trim readahead window as well, if necessary:
4053 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4054 if (ra_kb > max_sectors_kb)
4055 q->backing_dev_info.ra_pages =
4056 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
4058 q->max_sectors = max_sectors_kb << 1;
4059 spin_unlock_irq(q->queue_lock);
4061 return ret;
4064 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4066 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4068 return queue_var_show(max_hw_sectors_kb, (page));
4072 static struct queue_sysfs_entry queue_requests_entry = {
4073 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4074 .show = queue_requests_show,
4075 .store = queue_requests_store,
4078 static struct queue_sysfs_entry queue_ra_entry = {
4079 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4080 .show = queue_ra_show,
4081 .store = queue_ra_store,
4084 static struct queue_sysfs_entry queue_max_sectors_entry = {
4085 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4086 .show = queue_max_sectors_show,
4087 .store = queue_max_sectors_store,
4090 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4091 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4092 .show = queue_max_hw_sectors_show,
4095 static struct queue_sysfs_entry queue_iosched_entry = {
4096 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4097 .show = elv_iosched_show,
4098 .store = elv_iosched_store,
4101 static struct attribute *default_attrs[] = {
4102 &queue_requests_entry.attr,
4103 &queue_ra_entry.attr,
4104 &queue_max_hw_sectors_entry.attr,
4105 &queue_max_sectors_entry.attr,
4106 &queue_iosched_entry.attr,
4107 NULL,
4110 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4112 static ssize_t
4113 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4115 struct queue_sysfs_entry *entry = to_queue(attr);
4116 struct request_queue *q =
4117 container_of(kobj, struct request_queue, kobj);
4118 ssize_t res;
4120 if (!entry->show)
4121 return -EIO;
4122 mutex_lock(&q->sysfs_lock);
4123 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4124 mutex_unlock(&q->sysfs_lock);
4125 return -ENOENT;
4127 res = entry->show(q, page);
4128 mutex_unlock(&q->sysfs_lock);
4129 return res;
4132 static ssize_t
4133 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4134 const char *page, size_t length)
4136 struct queue_sysfs_entry *entry = to_queue(attr);
4137 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4139 ssize_t res;
4141 if (!entry->store)
4142 return -EIO;
4143 mutex_lock(&q->sysfs_lock);
4144 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4145 mutex_unlock(&q->sysfs_lock);
4146 return -ENOENT;
4148 res = entry->store(q, page, length);
4149 mutex_unlock(&q->sysfs_lock);
4150 return res;
4153 static struct sysfs_ops queue_sysfs_ops = {
4154 .show = queue_attr_show,
4155 .store = queue_attr_store,
4158 static struct kobj_type queue_ktype = {
4159 .sysfs_ops = &queue_sysfs_ops,
4160 .default_attrs = default_attrs,
4161 .release = blk_release_queue,
4164 int blk_register_queue(struct gendisk *disk)
4166 int ret;
4168 struct request_queue *q = disk->queue;
4170 if (!q || !q->request_fn)
4171 return -ENXIO;
4173 q->kobj.parent = kobject_get(&disk->kobj);
4175 ret = kobject_add(&q->kobj);
4176 if (ret < 0)
4177 return ret;
4179 kobject_uevent(&q->kobj, KOBJ_ADD);
4181 ret = elv_register_queue(q);
4182 if (ret) {
4183 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4184 kobject_del(&q->kobj);
4185 return ret;
4188 return 0;
4191 void blk_unregister_queue(struct gendisk *disk)
4193 struct request_queue *q = disk->queue;
4195 if (q && q->request_fn) {
4196 elv_unregister_queue(q);
4198 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4199 kobject_del(&q->kobj);
4200 kobject_put(&disk->kobj);