4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
58 DEFINE_TRACE(sched_process_free
);
59 DEFINE_TRACE(sched_process_exit
);
60 DEFINE_TRACE(sched_process_wait
);
62 static void exit_mm(struct task_struct
* tsk
);
64 static inline int task_detached(struct task_struct
*p
)
66 return p
->exit_signal
== -1;
69 static void __unhash_process(struct task_struct
*p
)
72 detach_pid(p
, PIDTYPE_PID
);
73 if (thread_group_leader(p
)) {
74 detach_pid(p
, PIDTYPE_PGID
);
75 detach_pid(p
, PIDTYPE_SID
);
77 list_del_rcu(&p
->tasks
);
78 __get_cpu_var(process_counts
)--;
80 list_del_rcu(&p
->thread_group
);
81 list_del_init(&p
->sibling
);
85 * This function expects the tasklist_lock write-locked.
87 static void __exit_signal(struct task_struct
*tsk
)
89 struct signal_struct
*sig
= tsk
->signal
;
90 struct sighand_struct
*sighand
;
93 BUG_ON(!atomic_read(&sig
->count
));
95 sighand
= rcu_dereference(tsk
->sighand
);
96 spin_lock(&sighand
->siglock
);
98 posix_cpu_timers_exit(tsk
);
99 if (atomic_dec_and_test(&sig
->count
))
100 posix_cpu_timers_exit_group(tsk
);
103 * If there is any task waiting for the group exit
106 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
)
107 wake_up_process(sig
->group_exit_task
);
109 if (tsk
== sig
->curr_target
)
110 sig
->curr_target
= next_thread(tsk
);
112 * Accumulate here the counters for all threads but the
113 * group leader as they die, so they can be added into
114 * the process-wide totals when those are taken.
115 * The group leader stays around as a zombie as long
116 * as there are other threads. When it gets reaped,
117 * the exit.c code will add its counts into these totals.
118 * We won't ever get here for the group leader, since it
119 * will have been the last reference on the signal_struct.
121 sig
->gtime
= cputime_add(sig
->gtime
, task_gtime(tsk
));
122 sig
->min_flt
+= tsk
->min_flt
;
123 sig
->maj_flt
+= tsk
->maj_flt
;
124 sig
->nvcsw
+= tsk
->nvcsw
;
125 sig
->nivcsw
+= tsk
->nivcsw
;
126 sig
->inblock
+= task_io_get_inblock(tsk
);
127 sig
->oublock
+= task_io_get_oublock(tsk
);
128 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
129 sig
= NULL
; /* Marker for below. */
132 __unhash_process(tsk
);
135 * Do this under ->siglock, we can race with another thread
136 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
138 flush_sigqueue(&tsk
->pending
);
142 spin_unlock(&sighand
->siglock
);
144 __cleanup_sighand(sighand
);
145 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
147 flush_sigqueue(&sig
->shared_pending
);
148 taskstats_tgid_free(sig
);
150 * Make sure ->signal can't go away under rq->lock,
151 * see account_group_exec_runtime().
153 task_rq_unlock_wait(tsk
);
154 __cleanup_signal(sig
);
158 static void delayed_put_task_struct(struct rcu_head
*rhp
)
160 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
162 trace_sched_process_free(tsk
);
163 put_task_struct(tsk
);
167 void release_task(struct task_struct
* p
)
169 struct task_struct
*leader
;
172 tracehook_prepare_release_task(p
);
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials */
175 atomic_dec(&__task_cred(p
)->user
->processes
);
178 write_lock_irq(&tasklist_lock
);
179 tracehook_finish_release_task(p
);
183 * If we are the last non-leader member of the thread
184 * group, and the leader is zombie, then notify the
185 * group leader's parent process. (if it wants notification.)
188 leader
= p
->group_leader
;
189 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
190 BUG_ON(task_detached(leader
));
191 do_notify_parent(leader
, leader
->exit_signal
);
193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader.
197 * do_notify_parent() will have marked it self-reaping in
200 zap_leader
= task_detached(leader
);
203 * This maintains the invariant that release_task()
204 * only runs on a task in EXIT_DEAD, just for sanity.
207 leader
->exit_state
= EXIT_DEAD
;
210 write_unlock_irq(&tasklist_lock
);
212 call_rcu(&p
->rcu
, delayed_put_task_struct
);
215 if (unlikely(zap_leader
))
220 * This checks not only the pgrp, but falls back on the pid if no
221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
224 * The caller must hold rcu lock or the tasklist lock.
226 struct pid
*session_of_pgrp(struct pid
*pgrp
)
228 struct task_struct
*p
;
229 struct pid
*sid
= NULL
;
231 p
= pid_task(pgrp
, PIDTYPE_PGID
);
233 p
= pid_task(pgrp
, PIDTYPE_PID
);
235 sid
= task_session(p
);
241 * Determine if a process group is "orphaned", according to the POSIX
242 * definition in 2.2.2.52. Orphaned process groups are not to be affected
243 * by terminal-generated stop signals. Newly orphaned process groups are
244 * to receive a SIGHUP and a SIGCONT.
246 * "I ask you, have you ever known what it is to be an orphan?"
248 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
250 struct task_struct
*p
;
252 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
253 if ((p
== ignored_task
) ||
254 (p
->exit_state
&& thread_group_empty(p
)) ||
255 is_global_init(p
->real_parent
))
258 if (task_pgrp(p
->real_parent
) != pgrp
&&
259 task_session(p
->real_parent
) == task_session(p
))
261 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
266 int is_current_pgrp_orphaned(void)
270 read_lock(&tasklist_lock
);
271 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
272 read_unlock(&tasklist_lock
);
277 static int has_stopped_jobs(struct pid
*pgrp
)
280 struct task_struct
*p
;
282 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
283 if (!task_is_stopped(p
))
287 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
292 * Check to see if any process groups have become orphaned as
293 * a result of our exiting, and if they have any stopped jobs,
294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
297 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
299 struct pid
*pgrp
= task_pgrp(tsk
);
300 struct task_struct
*ignored_task
= tsk
;
303 /* exit: our father is in a different pgrp than
304 * we are and we were the only connection outside.
306 parent
= tsk
->real_parent
;
308 /* reparent: our child is in a different pgrp than
309 * we are, and it was the only connection outside.
313 if (task_pgrp(parent
) != pgrp
&&
314 task_session(parent
) == task_session(tsk
) &&
315 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
316 has_stopped_jobs(pgrp
)) {
317 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
318 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
325 * If a kernel thread is launched as a result of a system call, or if
326 * it ever exits, it should generally reparent itself to kthreadd so it
327 * isn't in the way of other processes and is correctly cleaned up on exit.
329 * The various task state such as scheduling policy and priority may have
330 * been inherited from a user process, so we reset them to sane values here.
332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
334 static void reparent_to_kthreadd(void)
336 write_lock_irq(&tasklist_lock
);
338 ptrace_unlink(current
);
339 /* Reparent to init */
340 current
->real_parent
= current
->parent
= kthreadd_task
;
341 list_move_tail(¤t
->sibling
, ¤t
->real_parent
->children
);
343 /* Set the exit signal to SIGCHLD so we signal init on exit */
344 current
->exit_signal
= SIGCHLD
;
346 if (task_nice(current
) < 0)
347 set_user_nice(current
, 0);
351 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
352 sizeof(current
->signal
->rlim
));
354 atomic_inc(&init_cred
.usage
);
355 commit_creds(&init_cred
);
356 write_unlock_irq(&tasklist_lock
);
359 void __set_special_pids(struct pid
*pid
)
361 struct task_struct
*curr
= current
->group_leader
;
362 pid_t nr
= pid_nr(pid
);
364 if (task_session(curr
) != pid
) {
365 change_pid(curr
, PIDTYPE_SID
, pid
);
366 set_task_session(curr
, nr
);
368 if (task_pgrp(curr
) != pid
) {
369 change_pid(curr
, PIDTYPE_PGID
, pid
);
370 set_task_pgrp(curr
, nr
);
374 static void set_special_pids(struct pid
*pid
)
376 write_lock_irq(&tasklist_lock
);
377 __set_special_pids(pid
);
378 write_unlock_irq(&tasklist_lock
);
382 * Let kernel threads use this to say that they
383 * allow a certain signal (since daemonize() will
384 * have disabled all of them by default).
386 int allow_signal(int sig
)
388 if (!valid_signal(sig
) || sig
< 1)
391 spin_lock_irq(¤t
->sighand
->siglock
);
392 sigdelset(¤t
->blocked
, sig
);
394 /* Kernel threads handle their own signals.
395 Let the signal code know it'll be handled, so
396 that they don't get converted to SIGKILL or
397 just silently dropped */
398 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
401 spin_unlock_irq(¤t
->sighand
->siglock
);
405 EXPORT_SYMBOL(allow_signal
);
407 int disallow_signal(int sig
)
409 if (!valid_signal(sig
) || sig
< 1)
412 spin_lock_irq(¤t
->sighand
->siglock
);
413 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
415 spin_unlock_irq(¤t
->sighand
->siglock
);
419 EXPORT_SYMBOL(disallow_signal
);
422 * Put all the gunge required to become a kernel thread without
423 * attached user resources in one place where it belongs.
426 void daemonize(const char *name
, ...)
429 struct fs_struct
*fs
;
432 va_start(args
, name
);
433 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
437 * If we were started as result of loading a module, close all of the
438 * user space pages. We don't need them, and if we didn't close them
439 * they would be locked into memory.
443 * We don't want to have TIF_FREEZE set if the system-wide hibernation
444 * or suspend transition begins right now.
446 current
->flags
|= (PF_NOFREEZE
| PF_KTHREAD
);
448 if (current
->nsproxy
!= &init_nsproxy
) {
449 get_nsproxy(&init_nsproxy
);
450 switch_task_namespaces(current
, &init_nsproxy
);
452 set_special_pids(&init_struct_pid
);
453 proc_clear_tty(current
);
455 /* Block and flush all signals */
456 sigfillset(&blocked
);
457 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
458 flush_signals(current
);
460 /* Become as one with the init task */
462 exit_fs(current
); /* current->fs->count--; */
465 atomic_inc(&fs
->count
);
468 current
->files
= init_task
.files
;
469 atomic_inc(¤t
->files
->count
);
471 reparent_to_kthreadd();
474 EXPORT_SYMBOL(daemonize
);
476 static void close_files(struct files_struct
* files
)
484 * It is safe to dereference the fd table without RCU or
485 * ->file_lock because this is the last reference to the
488 fdt
= files_fdtable(files
);
492 if (i
>= fdt
->max_fds
)
494 set
= fdt
->open_fds
->fds_bits
[j
++];
497 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
499 filp_close(file
, files
);
509 struct files_struct
*get_files_struct(struct task_struct
*task
)
511 struct files_struct
*files
;
516 atomic_inc(&files
->count
);
522 void put_files_struct(struct files_struct
*files
)
526 if (atomic_dec_and_test(&files
->count
)) {
529 * Free the fd and fdset arrays if we expanded them.
530 * If the fdtable was embedded, pass files for freeing
531 * at the end of the RCU grace period. Otherwise,
532 * you can free files immediately.
534 fdt
= files_fdtable(files
);
535 if (fdt
!= &files
->fdtab
)
536 kmem_cache_free(files_cachep
, files
);
541 void reset_files_struct(struct files_struct
*files
)
543 struct task_struct
*tsk
= current
;
544 struct files_struct
*old
;
550 put_files_struct(old
);
553 void exit_files(struct task_struct
*tsk
)
555 struct files_struct
* files
= tsk
->files
;
561 put_files_struct(files
);
565 void put_fs_struct(struct fs_struct
*fs
)
567 /* No need to hold fs->lock if we are killing it */
568 if (atomic_dec_and_test(&fs
->count
)) {
571 kmem_cache_free(fs_cachep
, fs
);
575 void exit_fs(struct task_struct
*tsk
)
577 struct fs_struct
* fs
= tsk
->fs
;
587 EXPORT_SYMBOL_GPL(exit_fs
);
589 #ifdef CONFIG_MM_OWNER
591 * Task p is exiting and it owned mm, lets find a new owner for it
594 mm_need_new_owner(struct mm_struct
*mm
, struct task_struct
*p
)
597 * If there are other users of the mm and the owner (us) is exiting
598 * we need to find a new owner to take on the responsibility.
600 if (atomic_read(&mm
->mm_users
) <= 1)
607 void mm_update_next_owner(struct mm_struct
*mm
)
609 struct task_struct
*c
, *g
, *p
= current
;
612 if (!mm_need_new_owner(mm
, p
))
615 read_lock(&tasklist_lock
);
617 * Search in the children
619 list_for_each_entry(c
, &p
->children
, sibling
) {
621 goto assign_new_owner
;
625 * Search in the siblings
627 list_for_each_entry(c
, &p
->parent
->children
, sibling
) {
629 goto assign_new_owner
;
633 * Search through everything else. We should not get
636 do_each_thread(g
, c
) {
638 goto assign_new_owner
;
639 } while_each_thread(g
, c
);
641 read_unlock(&tasklist_lock
);
643 * We found no owner yet mm_users > 1: this implies that we are
644 * most likely racing with swapoff (try_to_unuse()) or /proc or
645 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
646 * so that subsystems can understand the callback and take action.
648 down_write(&mm
->mmap_sem
);
649 cgroup_mm_owner_callbacks(mm
->owner
, NULL
);
651 up_write(&mm
->mmap_sem
);
657 read_unlock(&tasklist_lock
);
658 down_write(&mm
->mmap_sem
);
660 * The task_lock protects c->mm from changing.
661 * We always want mm->owner->mm == mm
666 up_write(&mm
->mmap_sem
);
670 cgroup_mm_owner_callbacks(mm
->owner
, c
);
673 up_write(&mm
->mmap_sem
);
676 #endif /* CONFIG_MM_OWNER */
679 * Turn us into a lazy TLB process if we
682 static void exit_mm(struct task_struct
* tsk
)
684 struct mm_struct
*mm
= tsk
->mm
;
685 struct core_state
*core_state
;
691 * Serialize with any possible pending coredump.
692 * We must hold mmap_sem around checking core_state
693 * and clearing tsk->mm. The core-inducing thread
694 * will increment ->nr_threads for each thread in the
695 * group with ->mm != NULL.
697 down_read(&mm
->mmap_sem
);
698 core_state
= mm
->core_state
;
700 struct core_thread self
;
701 up_read(&mm
->mmap_sem
);
704 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
706 * Implies mb(), the result of xchg() must be visible
707 * to core_state->dumper.
709 if (atomic_dec_and_test(&core_state
->nr_threads
))
710 complete(&core_state
->startup
);
713 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
714 if (!self
.task
) /* see coredump_finish() */
718 __set_task_state(tsk
, TASK_RUNNING
);
719 down_read(&mm
->mmap_sem
);
721 atomic_inc(&mm
->mm_count
);
722 BUG_ON(mm
!= tsk
->active_mm
);
723 /* more a memory barrier than a real lock */
726 up_read(&mm
->mmap_sem
);
727 enter_lazy_tlb(mm
, current
);
728 /* We don't want this task to be frozen prematurely */
729 clear_freeze_flag(tsk
);
731 mm_update_next_owner(mm
);
736 * Return nonzero if @parent's children should reap themselves.
738 * Called with write_lock_irq(&tasklist_lock) held.
740 static int ignoring_children(struct task_struct
*parent
)
743 struct sighand_struct
*psig
= parent
->sighand
;
745 spin_lock_irqsave(&psig
->siglock
, flags
);
746 ret
= (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
||
747 (psig
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDWAIT
));
748 spin_unlock_irqrestore(&psig
->siglock
, flags
);
753 * Detach all tasks we were using ptrace on.
754 * Any that need to be release_task'd are put on the @dead list.
756 * Called with write_lock(&tasklist_lock) held.
758 static void ptrace_exit(struct task_struct
*parent
, struct list_head
*dead
)
760 struct task_struct
*p
, *n
;
763 list_for_each_entry_safe(p
, n
, &parent
->ptraced
, ptrace_entry
) {
766 if (p
->exit_state
!= EXIT_ZOMBIE
)
770 * If it's a zombie, our attachedness prevented normal
771 * parent notification or self-reaping. Do notification
772 * now if it would have happened earlier. If it should
773 * reap itself, add it to the @dead list. We can't call
774 * release_task() here because we already hold tasklist_lock.
776 * If it's our own child, there is no notification to do.
777 * But if our normal children self-reap, then this child
778 * was prevented by ptrace and we must reap it now.
780 if (!task_detached(p
) && thread_group_empty(p
)) {
781 if (!same_thread_group(p
->real_parent
, parent
))
782 do_notify_parent(p
, p
->exit_signal
);
785 ign
= ignoring_children(parent
);
791 if (task_detached(p
)) {
793 * Mark it as in the process of being reaped.
795 p
->exit_state
= EXIT_DEAD
;
796 list_add(&p
->ptrace_entry
, dead
);
802 * Finish up exit-time ptrace cleanup.
804 * Called without locks.
806 static void ptrace_exit_finish(struct task_struct
*parent
,
807 struct list_head
*dead
)
809 struct task_struct
*p
, *n
;
811 BUG_ON(!list_empty(&parent
->ptraced
));
813 list_for_each_entry_safe(p
, n
, dead
, ptrace_entry
) {
814 list_del_init(&p
->ptrace_entry
);
819 static void reparent_thread(struct task_struct
*p
, struct task_struct
*father
)
821 if (p
->pdeath_signal
)
822 /* We already hold the tasklist_lock here. */
823 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
825 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
827 /* If this is a threaded reparent there is no need to
828 * notify anyone anything has happened.
830 if (same_thread_group(p
->real_parent
, father
))
833 /* We don't want people slaying init. */
834 if (!task_detached(p
))
835 p
->exit_signal
= SIGCHLD
;
837 /* If we'd notified the old parent about this child's death,
838 * also notify the new parent.
840 if (!ptrace_reparented(p
) &&
841 p
->exit_state
== EXIT_ZOMBIE
&&
842 !task_detached(p
) && thread_group_empty(p
))
843 do_notify_parent(p
, p
->exit_signal
);
845 kill_orphaned_pgrp(p
, father
);
849 * When we die, we re-parent all our children.
850 * Try to give them to another thread in our thread
851 * group, and if no such member exists, give it to
852 * the child reaper process (ie "init") in our pid
855 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
857 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
858 struct task_struct
*thread
;
861 while_each_thread(father
, thread
) {
862 if (thread
->flags
& PF_EXITING
)
864 if (unlikely(pid_ns
->child_reaper
== father
))
865 pid_ns
->child_reaper
= thread
;
869 if (unlikely(pid_ns
->child_reaper
== father
)) {
870 write_unlock_irq(&tasklist_lock
);
871 if (unlikely(pid_ns
== &init_pid_ns
))
872 panic("Attempted to kill init!");
874 zap_pid_ns_processes(pid_ns
);
875 write_lock_irq(&tasklist_lock
);
877 * We can not clear ->child_reaper or leave it alone.
878 * There may by stealth EXIT_DEAD tasks on ->children,
879 * forget_original_parent() must move them somewhere.
881 pid_ns
->child_reaper
= init_pid_ns
.child_reaper
;
884 return pid_ns
->child_reaper
;
887 static void forget_original_parent(struct task_struct
*father
)
889 struct task_struct
*p
, *n
, *reaper
;
890 LIST_HEAD(ptrace_dead
);
892 write_lock_irq(&tasklist_lock
);
893 reaper
= find_new_reaper(father
);
895 * First clean up ptrace if we were using it.
897 ptrace_exit(father
, &ptrace_dead
);
899 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
900 p
->real_parent
= reaper
;
901 if (p
->parent
== father
) {
903 p
->parent
= p
->real_parent
;
905 reparent_thread(p
, father
);
908 write_unlock_irq(&tasklist_lock
);
909 BUG_ON(!list_empty(&father
->children
));
911 ptrace_exit_finish(father
, &ptrace_dead
);
915 * Send signals to all our closest relatives so that they know
916 * to properly mourn us..
918 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
924 * This does two things:
926 * A. Make init inherit all the child processes
927 * B. Check to see if any process groups have become orphaned
928 * as a result of our exiting, and if they have any stopped
929 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
931 forget_original_parent(tsk
);
932 exit_task_namespaces(tsk
);
934 write_lock_irq(&tasklist_lock
);
936 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
938 /* Let father know we died
940 * Thread signals are configurable, but you aren't going to use
941 * that to send signals to arbitary processes.
942 * That stops right now.
944 * If the parent exec id doesn't match the exec id we saved
945 * when we started then we know the parent has changed security
948 * If our self_exec id doesn't match our parent_exec_id then
949 * we have changed execution domain as these two values started
950 * the same after a fork.
952 if (tsk
->exit_signal
!= SIGCHLD
&& !task_detached(tsk
) &&
953 (tsk
->parent_exec_id
!= tsk
->real_parent
->self_exec_id
||
954 tsk
->self_exec_id
!= tsk
->parent_exec_id
) &&
956 tsk
->exit_signal
= SIGCHLD
;
958 signal
= tracehook_notify_death(tsk
, &cookie
, group_dead
);
960 signal
= do_notify_parent(tsk
, signal
);
962 tsk
->exit_state
= signal
== DEATH_REAP
? EXIT_DEAD
: EXIT_ZOMBIE
;
964 /* mt-exec, de_thread() is waiting for us */
965 if (thread_group_leader(tsk
) &&
966 tsk
->signal
->group_exit_task
&&
967 tsk
->signal
->notify_count
< 0)
968 wake_up_process(tsk
->signal
->group_exit_task
);
970 write_unlock_irq(&tasklist_lock
);
972 tracehook_report_death(tsk
, signal
, cookie
, group_dead
);
974 /* If the process is dead, release it - nobody will wait for it */
975 if (signal
== DEATH_REAP
)
979 #ifdef CONFIG_DEBUG_STACK_USAGE
980 static void check_stack_usage(void)
982 static DEFINE_SPINLOCK(low_water_lock
);
983 static int lowest_to_date
= THREAD_SIZE
;
984 unsigned long *n
= end_of_stack(current
);
989 free
= (unsigned long)n
- (unsigned long)end_of_stack(current
);
991 if (free
>= lowest_to_date
)
994 spin_lock(&low_water_lock
);
995 if (free
< lowest_to_date
) {
996 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
998 current
->comm
, free
);
999 lowest_to_date
= free
;
1001 spin_unlock(&low_water_lock
);
1004 static inline void check_stack_usage(void) {}
1007 NORET_TYPE
void do_exit(long code
)
1009 struct task_struct
*tsk
= current
;
1012 profile_task_exit(tsk
);
1014 WARN_ON(atomic_read(&tsk
->fs_excl
));
1016 if (unlikely(in_interrupt()))
1017 panic("Aiee, killing interrupt handler!");
1018 if (unlikely(!tsk
->pid
))
1019 panic("Attempted to kill the idle task!");
1021 tracehook_report_exit(&code
);
1024 * We're taking recursive faults here in do_exit. Safest is to just
1025 * leave this task alone and wait for reboot.
1027 if (unlikely(tsk
->flags
& PF_EXITING
)) {
1029 "Fixing recursive fault but reboot is needed!\n");
1031 * We can do this unlocked here. The futex code uses
1032 * this flag just to verify whether the pi state
1033 * cleanup has been done or not. In the worst case it
1034 * loops once more. We pretend that the cleanup was
1035 * done as there is no way to return. Either the
1036 * OWNER_DIED bit is set by now or we push the blocked
1037 * task into the wait for ever nirwana as well.
1039 tsk
->flags
|= PF_EXITPIDONE
;
1040 if (tsk
->io_context
)
1042 set_current_state(TASK_UNINTERRUPTIBLE
);
1046 exit_signals(tsk
); /* sets PF_EXITING */
1048 * tsk->flags are checked in the futex code to protect against
1049 * an exiting task cleaning up the robust pi futexes.
1052 spin_unlock_wait(&tsk
->pi_lock
);
1054 if (unlikely(in_atomic()))
1055 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
1056 current
->comm
, task_pid_nr(current
),
1059 acct_update_integrals(tsk
);
1061 update_hiwater_rss(tsk
->mm
);
1062 update_hiwater_vm(tsk
->mm
);
1064 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
1066 hrtimer_cancel(&tsk
->signal
->real_timer
);
1067 exit_itimers(tsk
->signal
);
1069 acct_collect(code
, group_dead
);
1072 if (unlikely(tsk
->audit_context
))
1075 tsk
->exit_code
= code
;
1076 taskstats_exit(tsk
, group_dead
);
1082 trace_sched_process_exit(tsk
);
1087 check_stack_usage();
1089 cgroup_exit(tsk
, 1);
1091 if (group_dead
&& tsk
->signal
->leader
)
1092 disassociate_ctty(1);
1094 module_put(task_thread_info(tsk
)->exec_domain
->module
);
1096 module_put(tsk
->binfmt
->module
);
1098 proc_exit_connector(tsk
);
1099 exit_notify(tsk
, group_dead
);
1101 mpol_put(tsk
->mempolicy
);
1102 tsk
->mempolicy
= NULL
;
1106 * This must happen late, after the PID is not
1109 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1110 exit_pi_state_list(tsk
);
1111 if (unlikely(current
->pi_state_cache
))
1112 kfree(current
->pi_state_cache
);
1115 * Make sure we are holding no locks:
1117 debug_check_no_locks_held(tsk
);
1119 * We can do this unlocked here. The futex code uses this flag
1120 * just to verify whether the pi state cleanup has been done
1121 * or not. In the worst case it loops once more.
1123 tsk
->flags
|= PF_EXITPIDONE
;
1125 if (tsk
->io_context
)
1128 if (tsk
->splice_pipe
)
1129 __free_pipe_info(tsk
->splice_pipe
);
1132 /* causes final put_task_struct in finish_task_switch(). */
1133 tsk
->state
= TASK_DEAD
;
1136 /* Avoid "noreturn function does return". */
1138 cpu_relax(); /* For when BUG is null */
1141 EXPORT_SYMBOL_GPL(do_exit
);
1143 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1151 EXPORT_SYMBOL(complete_and_exit
);
1153 asmlinkage
long sys_exit(int error_code
)
1155 do_exit((error_code
&0xff)<<8);
1159 * Take down every thread in the group. This is called by fatal signals
1160 * as well as by sys_exit_group (below).
1163 do_group_exit(int exit_code
)
1165 struct signal_struct
*sig
= current
->signal
;
1167 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1169 if (signal_group_exit(sig
))
1170 exit_code
= sig
->group_exit_code
;
1171 else if (!thread_group_empty(current
)) {
1172 struct sighand_struct
*const sighand
= current
->sighand
;
1173 spin_lock_irq(&sighand
->siglock
);
1174 if (signal_group_exit(sig
))
1175 /* Another thread got here before we took the lock. */
1176 exit_code
= sig
->group_exit_code
;
1178 sig
->group_exit_code
= exit_code
;
1179 sig
->flags
= SIGNAL_GROUP_EXIT
;
1180 zap_other_threads(current
);
1182 spin_unlock_irq(&sighand
->siglock
);
1190 * this kills every thread in the thread group. Note that any externally
1191 * wait4()-ing process will get the correct exit code - even if this
1192 * thread is not the thread group leader.
1194 asmlinkage
void sys_exit_group(int error_code
)
1196 do_group_exit((error_code
& 0xff) << 8);
1199 static struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
1201 struct pid
*pid
= NULL
;
1202 if (type
== PIDTYPE_PID
)
1203 pid
= task
->pids
[type
].pid
;
1204 else if (type
< PIDTYPE_MAX
)
1205 pid
= task
->group_leader
->pids
[type
].pid
;
1209 static int eligible_child(enum pid_type type
, struct pid
*pid
, int options
,
1210 struct task_struct
*p
)
1214 if (type
< PIDTYPE_MAX
) {
1215 if (task_pid_type(p
, type
) != pid
)
1219 /* Wait for all children (clone and not) if __WALL is set;
1220 * otherwise, wait for clone children *only* if __WCLONE is
1221 * set; otherwise, wait for non-clone children *only*. (Note:
1222 * A "clone" child here is one that reports to its parent
1223 * using a signal other than SIGCHLD.) */
1224 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
1225 && !(options
& __WALL
))
1228 err
= security_task_wait(p
);
1235 static int wait_noreap_copyout(struct task_struct
*p
, pid_t pid
, uid_t uid
,
1236 int why
, int status
,
1237 struct siginfo __user
*infop
,
1238 struct rusage __user
*rusagep
)
1240 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1244 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1246 retval
= put_user(0, &infop
->si_errno
);
1248 retval
= put_user((short)why
, &infop
->si_code
);
1250 retval
= put_user(pid
, &infop
->si_pid
);
1252 retval
= put_user(uid
, &infop
->si_uid
);
1254 retval
= put_user(status
, &infop
->si_status
);
1261 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1262 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1263 * the lock and this task is uninteresting. If we return nonzero, we have
1264 * released the lock and the system call should return.
1266 static int wait_task_zombie(struct task_struct
*p
, int options
,
1267 struct siginfo __user
*infop
,
1268 int __user
*stat_addr
, struct rusage __user
*ru
)
1270 unsigned long state
;
1271 int retval
, status
, traced
;
1272 pid_t pid
= task_pid_vnr(p
);
1273 uid_t uid
= __task_cred(p
)->uid
;
1275 if (!likely(options
& WEXITED
))
1278 if (unlikely(options
& WNOWAIT
)) {
1279 int exit_code
= p
->exit_code
;
1283 read_unlock(&tasklist_lock
);
1284 if ((exit_code
& 0x7f) == 0) {
1286 status
= exit_code
>> 8;
1288 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1289 status
= exit_code
& 0x7f;
1291 return wait_noreap_copyout(p
, pid
, uid
, why
,
1296 * Try to move the task's state to DEAD
1297 * only one thread is allowed to do this:
1299 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1300 if (state
!= EXIT_ZOMBIE
) {
1301 BUG_ON(state
!= EXIT_DEAD
);
1305 traced
= ptrace_reparented(p
);
1307 if (likely(!traced
)) {
1308 struct signal_struct
*psig
;
1309 struct signal_struct
*sig
;
1310 struct task_cputime cputime
;
1313 * The resource counters for the group leader are in its
1314 * own task_struct. Those for dead threads in the group
1315 * are in its signal_struct, as are those for the child
1316 * processes it has previously reaped. All these
1317 * accumulate in the parent's signal_struct c* fields.
1319 * We don't bother to take a lock here to protect these
1320 * p->signal fields, because they are only touched by
1321 * __exit_signal, which runs with tasklist_lock
1322 * write-locked anyway, and so is excluded here. We do
1323 * need to protect the access to p->parent->signal fields,
1324 * as other threads in the parent group can be right
1325 * here reaping other children at the same time.
1327 * We use thread_group_cputime() to get times for the thread
1328 * group, which consolidates times for all threads in the
1329 * group including the group leader.
1331 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1332 psig
= p
->parent
->signal
;
1334 thread_group_cputime(p
, &cputime
);
1336 cputime_add(psig
->cutime
,
1337 cputime_add(cputime
.utime
,
1340 cputime_add(psig
->cstime
,
1341 cputime_add(cputime
.stime
,
1344 cputime_add(psig
->cgtime
,
1345 cputime_add(p
->gtime
,
1346 cputime_add(sig
->gtime
,
1349 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1351 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1353 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1355 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1357 task_io_get_inblock(p
) +
1358 sig
->inblock
+ sig
->cinblock
;
1360 task_io_get_oublock(p
) +
1361 sig
->oublock
+ sig
->coublock
;
1362 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1363 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1364 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1368 * Now we are sure this task is interesting, and no other
1369 * thread can reap it because we set its state to EXIT_DEAD.
1371 read_unlock(&tasklist_lock
);
1373 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1374 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1375 ? p
->signal
->group_exit_code
: p
->exit_code
;
1376 if (!retval
&& stat_addr
)
1377 retval
= put_user(status
, stat_addr
);
1378 if (!retval
&& infop
)
1379 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1380 if (!retval
&& infop
)
1381 retval
= put_user(0, &infop
->si_errno
);
1382 if (!retval
&& infop
) {
1385 if ((status
& 0x7f) == 0) {
1389 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1392 retval
= put_user((short)why
, &infop
->si_code
);
1394 retval
= put_user(status
, &infop
->si_status
);
1396 if (!retval
&& infop
)
1397 retval
= put_user(pid
, &infop
->si_pid
);
1398 if (!retval
&& infop
)
1399 retval
= put_user(uid
, &infop
->si_uid
);
1404 write_lock_irq(&tasklist_lock
);
1405 /* We dropped tasklist, ptracer could die and untrace */
1408 * If this is not a detached task, notify the parent.
1409 * If it's still not detached after that, don't release
1412 if (!task_detached(p
)) {
1413 do_notify_parent(p
, p
->exit_signal
);
1414 if (!task_detached(p
)) {
1415 p
->exit_state
= EXIT_ZOMBIE
;
1419 write_unlock_irq(&tasklist_lock
);
1428 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1429 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1430 * the lock and this task is uninteresting. If we return nonzero, we have
1431 * released the lock and the system call should return.
1433 static int wait_task_stopped(int ptrace
, struct task_struct
*p
,
1434 int options
, struct siginfo __user
*infop
,
1435 int __user
*stat_addr
, struct rusage __user
*ru
)
1437 int retval
, exit_code
, why
;
1438 uid_t uid
= 0; /* unneeded, required by compiler */
1441 if (!(options
& WUNTRACED
))
1445 spin_lock_irq(&p
->sighand
->siglock
);
1447 if (unlikely(!task_is_stopped_or_traced(p
)))
1450 if (!ptrace
&& p
->signal
->group_stop_count
> 0)
1452 * A group stop is in progress and this is the group leader.
1453 * We won't report until all threads have stopped.
1457 exit_code
= p
->exit_code
;
1461 if (!unlikely(options
& WNOWAIT
))
1464 /* don't need the RCU readlock here as we're holding a spinlock */
1465 uid
= __task_cred(p
)->uid
;
1467 spin_unlock_irq(&p
->sighand
->siglock
);
1472 * Now we are pretty sure this task is interesting.
1473 * Make sure it doesn't get reaped out from under us while we
1474 * give up the lock and then examine it below. We don't want to
1475 * keep holding onto the tasklist_lock while we call getrusage and
1476 * possibly take page faults for user memory.
1479 pid
= task_pid_vnr(p
);
1480 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1481 read_unlock(&tasklist_lock
);
1483 if (unlikely(options
& WNOWAIT
))
1484 return wait_noreap_copyout(p
, pid
, uid
,
1488 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1489 if (!retval
&& stat_addr
)
1490 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1491 if (!retval
&& infop
)
1492 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1493 if (!retval
&& infop
)
1494 retval
= put_user(0, &infop
->si_errno
);
1495 if (!retval
&& infop
)
1496 retval
= put_user((short)why
, &infop
->si_code
);
1497 if (!retval
&& infop
)
1498 retval
= put_user(exit_code
, &infop
->si_status
);
1499 if (!retval
&& infop
)
1500 retval
= put_user(pid
, &infop
->si_pid
);
1501 if (!retval
&& infop
)
1502 retval
= put_user(uid
, &infop
->si_uid
);
1512 * Handle do_wait work for one task in a live, non-stopped state.
1513 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1514 * the lock and this task is uninteresting. If we return nonzero, we have
1515 * released the lock and the system call should return.
1517 static int wait_task_continued(struct task_struct
*p
, int options
,
1518 struct siginfo __user
*infop
,
1519 int __user
*stat_addr
, struct rusage __user
*ru
)
1525 if (!unlikely(options
& WCONTINUED
))
1528 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1531 spin_lock_irq(&p
->sighand
->siglock
);
1532 /* Re-check with the lock held. */
1533 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1534 spin_unlock_irq(&p
->sighand
->siglock
);
1537 if (!unlikely(options
& WNOWAIT
))
1538 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1539 uid
= __task_cred(p
)->uid
;
1540 spin_unlock_irq(&p
->sighand
->siglock
);
1542 pid
= task_pid_vnr(p
);
1544 read_unlock(&tasklist_lock
);
1547 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1549 if (!retval
&& stat_addr
)
1550 retval
= put_user(0xffff, stat_addr
);
1554 retval
= wait_noreap_copyout(p
, pid
, uid
,
1555 CLD_CONTINUED
, SIGCONT
,
1557 BUG_ON(retval
== 0);
1564 * Consider @p for a wait by @parent.
1566 * -ECHILD should be in *@notask_error before the first call.
1567 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1568 * Returns zero if the search for a child should continue;
1569 * then *@notask_error is 0 if @p is an eligible child,
1570 * or another error from security_task_wait(), or still -ECHILD.
1572 static int wait_consider_task(struct task_struct
*parent
, int ptrace
,
1573 struct task_struct
*p
, int *notask_error
,
1574 enum pid_type type
, struct pid
*pid
, int options
,
1575 struct siginfo __user
*infop
,
1576 int __user
*stat_addr
, struct rusage __user
*ru
)
1578 int ret
= eligible_child(type
, pid
, options
, p
);
1582 if (unlikely(ret
< 0)) {
1584 * If we have not yet seen any eligible child,
1585 * then let this error code replace -ECHILD.
1586 * A permission error will give the user a clue
1587 * to look for security policy problems, rather
1588 * than for mysterious wait bugs.
1591 *notask_error
= ret
;
1594 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1596 * This child is hidden by ptrace.
1597 * We aren't allowed to see it now, but eventually we will.
1603 if (p
->exit_state
== EXIT_DEAD
)
1607 * We don't reap group leaders with subthreads.
1609 if (p
->exit_state
== EXIT_ZOMBIE
&& !delay_group_leader(p
))
1610 return wait_task_zombie(p
, options
, infop
, stat_addr
, ru
);
1613 * It's stopped or running now, so it might
1614 * later continue, exit, or stop again.
1618 if (task_is_stopped_or_traced(p
))
1619 return wait_task_stopped(ptrace
, p
, options
,
1620 infop
, stat_addr
, ru
);
1622 return wait_task_continued(p
, options
, infop
, stat_addr
, ru
);
1626 * Do the work of do_wait() for one thread in the group, @tsk.
1628 * -ECHILD should be in *@notask_error before the first call.
1629 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1630 * Returns zero if the search for a child should continue; then
1631 * *@notask_error is 0 if there were any eligible children,
1632 * or another error from security_task_wait(), or still -ECHILD.
1634 static int do_wait_thread(struct task_struct
*tsk
, int *notask_error
,
1635 enum pid_type type
, struct pid
*pid
, int options
,
1636 struct siginfo __user
*infop
, int __user
*stat_addr
,
1637 struct rusage __user
*ru
)
1639 struct task_struct
*p
;
1641 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1643 * Do not consider detached threads.
1645 if (!task_detached(p
)) {
1646 int ret
= wait_consider_task(tsk
, 0, p
, notask_error
,
1648 infop
, stat_addr
, ru
);
1657 static int ptrace_do_wait(struct task_struct
*tsk
, int *notask_error
,
1658 enum pid_type type
, struct pid
*pid
, int options
,
1659 struct siginfo __user
*infop
, int __user
*stat_addr
,
1660 struct rusage __user
*ru
)
1662 struct task_struct
*p
;
1665 * Traditionally we see ptrace'd stopped tasks regardless of options.
1667 options
|= WUNTRACED
;
1669 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1670 int ret
= wait_consider_task(tsk
, 1, p
, notask_error
,
1672 infop
, stat_addr
, ru
);
1680 static long do_wait(enum pid_type type
, struct pid
*pid
, int options
,
1681 struct siginfo __user
*infop
, int __user
*stat_addr
,
1682 struct rusage __user
*ru
)
1684 DECLARE_WAITQUEUE(wait
, current
);
1685 struct task_struct
*tsk
;
1688 trace_sched_process_wait(pid
);
1690 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1693 * If there is nothing that can match our critiera just get out.
1694 * We will clear @retval to zero if we see any child that might later
1695 * match our criteria, even if we are not able to reap it yet.
1698 if ((type
< PIDTYPE_MAX
) && (!pid
|| hlist_empty(&pid
->tasks
[type
])))
1701 current
->state
= TASK_INTERRUPTIBLE
;
1702 read_lock(&tasklist_lock
);
1705 int tsk_result
= do_wait_thread(tsk
, &retval
,
1707 infop
, stat_addr
, ru
);
1709 tsk_result
= ptrace_do_wait(tsk
, &retval
,
1711 infop
, stat_addr
, ru
);
1714 * tasklist_lock is unlocked and we have a final result.
1716 retval
= tsk_result
;
1720 if (options
& __WNOTHREAD
)
1722 tsk
= next_thread(tsk
);
1723 BUG_ON(tsk
->signal
!= current
->signal
);
1724 } while (tsk
!= current
);
1725 read_unlock(&tasklist_lock
);
1727 if (!retval
&& !(options
& WNOHANG
)) {
1728 retval
= -ERESTARTSYS
;
1729 if (!signal_pending(current
)) {
1736 current
->state
= TASK_RUNNING
;
1737 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1743 * For a WNOHANG return, clear out all the fields
1744 * we would set so the user can easily tell the
1748 retval
= put_user(0, &infop
->si_signo
);
1750 retval
= put_user(0, &infop
->si_errno
);
1752 retval
= put_user(0, &infop
->si_code
);
1754 retval
= put_user(0, &infop
->si_pid
);
1756 retval
= put_user(0, &infop
->si_uid
);
1758 retval
= put_user(0, &infop
->si_status
);
1764 asmlinkage
long sys_waitid(int which
, pid_t upid
,
1765 struct siginfo __user
*infop
, int options
,
1766 struct rusage __user
*ru
)
1768 struct pid
*pid
= NULL
;
1772 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1774 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1787 type
= PIDTYPE_PGID
;
1795 if (type
< PIDTYPE_MAX
)
1796 pid
= find_get_pid(upid
);
1797 ret
= do_wait(type
, pid
, options
, infop
, NULL
, ru
);
1800 /* avoid REGPARM breakage on x86: */
1801 asmlinkage_protect(5, ret
, which
, upid
, infop
, options
, ru
);
1805 asmlinkage
long sys_wait4(pid_t upid
, int __user
*stat_addr
,
1806 int options
, struct rusage __user
*ru
)
1808 struct pid
*pid
= NULL
;
1812 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1813 __WNOTHREAD
|__WCLONE
|__WALL
))
1818 else if (upid
< 0) {
1819 type
= PIDTYPE_PGID
;
1820 pid
= find_get_pid(-upid
);
1821 } else if (upid
== 0) {
1822 type
= PIDTYPE_PGID
;
1823 pid
= get_pid(task_pgrp(current
));
1824 } else /* upid > 0 */ {
1826 pid
= find_get_pid(upid
);
1829 ret
= do_wait(type
, pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1832 /* avoid REGPARM breakage on x86: */
1833 asmlinkage_protect(4, ret
, upid
, stat_addr
, options
, ru
);
1837 #ifdef __ARCH_WANT_SYS_WAITPID
1840 * sys_waitpid() remains for compatibility. waitpid() should be
1841 * implemented by calling sys_wait4() from libc.a.
1843 asmlinkage
long sys_waitpid(pid_t pid
, int __user
*stat_addr
, int options
)
1845 return sys_wait4(pid
, stat_addr
, options
, NULL
);