2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40 * Isolate one page from the LRU lists. If successful put it onto
41 * the indicated list with elevated page count.
44 * -EBUSY: page not on LRU list
45 * 0: page removed from LRU list and added to the specified list.
47 int isolate_lru_page(struct page
*page
, struct list_head
*pagelist
)
52 struct zone
*zone
= page_zone(page
);
54 spin_lock_irq(&zone
->lru_lock
);
55 if (PageLRU(page
) && get_page_unless_zero(page
)) {
59 del_page_from_active_list(zone
, page
);
61 del_page_from_inactive_list(zone
, page
);
62 list_add_tail(&page
->lru
, pagelist
);
64 spin_unlock_irq(&zone
->lru_lock
);
70 * migrate_prep() needs to be called before we start compiling a list of pages
71 * to be migrated using isolate_lru_page().
73 int migrate_prep(void)
76 * Clear the LRU lists so pages can be isolated.
77 * Note that pages may be moved off the LRU after we have
78 * drained them. Those pages will fail to migrate like other
79 * pages that may be busy.
86 static inline void move_to_lru(struct page
*page
)
88 if (PageActive(page
)) {
90 * lru_cache_add_active checks that
91 * the PG_active bit is off.
93 ClearPageActive(page
);
94 lru_cache_add_active(page
);
102 * Add isolated pages on the list back to the LRU.
104 * returns the number of pages put back.
106 int putback_lru_pages(struct list_head
*l
)
112 list_for_each_entry_safe(page
, page2
, l
, lru
) {
113 list_del(&page
->lru
);
121 * Restore a potential migration pte to a working pte entry
123 static void remove_migration_pte(struct vm_area_struct
*vma
,
124 struct page
*old
, struct page
*new)
126 struct mm_struct
*mm
= vma
->vm_mm
;
133 unsigned long addr
= page_address_in_vma(new, vma
);
138 pgd
= pgd_offset(mm
, addr
);
139 if (!pgd_present(*pgd
))
142 pud
= pud_offset(pgd
, addr
);
143 if (!pud_present(*pud
))
146 pmd
= pmd_offset(pud
, addr
);
147 if (!pmd_present(*pmd
))
150 ptep
= pte_offset_map(pmd
, addr
);
152 if (!is_swap_pte(*ptep
)) {
157 ptl
= pte_lockptr(mm
, pmd
);
160 if (!is_swap_pte(pte
))
163 entry
= pte_to_swp_entry(pte
);
165 if (!is_migration_entry(entry
) || migration_entry_to_page(entry
) != old
)
169 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
170 * Failure is not an option here: we're now expected to remove every
171 * migration pte, and will cause crashes otherwise. Normally this
172 * is not an issue: mem_cgroup_prepare_migration bumped up the old
173 * page_cgroup count for safety, that's now attached to the new page,
174 * so this charge should just be another incrementation of the count,
175 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
176 * there's been a force_empty, those reference counts may no longer
177 * be reliable, and this charge can actually fail: oh well, we don't
178 * make the situation any worse by proceeding as if it had succeeded.
180 mem_cgroup_charge(new, mm
, GFP_ATOMIC
);
183 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
184 if (is_write_migration_entry(entry
))
185 pte
= pte_mkwrite(pte
);
186 flush_cache_page(vma
, addr
, pte_pfn(pte
));
187 set_pte_at(mm
, addr
, ptep
, pte
);
190 page_add_anon_rmap(new, vma
, addr
);
192 page_add_file_rmap(new);
194 /* No need to invalidate - it was non-present before */
195 update_mmu_cache(vma
, addr
, pte
);
198 pte_unmap_unlock(ptep
, ptl
);
202 * Note that remove_file_migration_ptes will only work on regular mappings,
203 * Nonlinear mappings do not use migration entries.
205 static void remove_file_migration_ptes(struct page
*old
, struct page
*new)
207 struct vm_area_struct
*vma
;
208 struct address_space
*mapping
= page_mapping(new);
209 struct prio_tree_iter iter
;
210 pgoff_t pgoff
= new->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
215 spin_lock(&mapping
->i_mmap_lock
);
217 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
)
218 remove_migration_pte(vma
, old
, new);
220 spin_unlock(&mapping
->i_mmap_lock
);
224 * Must hold mmap_sem lock on at least one of the vmas containing
225 * the page so that the anon_vma cannot vanish.
227 static void remove_anon_migration_ptes(struct page
*old
, struct page
*new)
229 struct anon_vma
*anon_vma
;
230 struct vm_area_struct
*vma
;
231 unsigned long mapping
;
233 mapping
= (unsigned long)new->mapping
;
235 if (!mapping
|| (mapping
& PAGE_MAPPING_ANON
) == 0)
239 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
241 anon_vma
= (struct anon_vma
*) (mapping
- PAGE_MAPPING_ANON
);
242 spin_lock(&anon_vma
->lock
);
244 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
)
245 remove_migration_pte(vma
, old
, new);
247 spin_unlock(&anon_vma
->lock
);
251 * Get rid of all migration entries and replace them by
252 * references to the indicated page.
254 static void remove_migration_ptes(struct page
*old
, struct page
*new)
257 remove_anon_migration_ptes(old
, new);
259 remove_file_migration_ptes(old
, new);
263 * Something used the pte of a page under migration. We need to
264 * get to the page and wait until migration is finished.
265 * When we return from this function the fault will be retried.
267 * This function is called from do_swap_page().
269 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
270 unsigned long address
)
277 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
279 if (!is_swap_pte(pte
))
282 entry
= pte_to_swp_entry(pte
);
283 if (!is_migration_entry(entry
))
286 page
= migration_entry_to_page(entry
);
289 pte_unmap_unlock(ptep
, ptl
);
290 wait_on_page_locked(page
);
294 pte_unmap_unlock(ptep
, ptl
);
298 * Replace the page in the mapping.
300 * The number of remaining references must be:
301 * 1 for anonymous pages without a mapping
302 * 2 for pages with a mapping
303 * 3 for pages with a mapping and PagePrivate set.
305 static int migrate_page_move_mapping(struct address_space
*mapping
,
306 struct page
*newpage
, struct page
*page
)
311 /* Anonymous page without mapping */
312 if (page_count(page
) != 1)
317 write_lock_irq(&mapping
->tree_lock
);
319 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
322 if (page_count(page
) != 2 + !!PagePrivate(page
) ||
323 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
324 write_unlock_irq(&mapping
->tree_lock
);
329 * Now we know that no one else is looking at the page.
331 get_page(newpage
); /* add cache reference */
333 if (PageSwapCache(page
)) {
334 SetPageSwapCache(newpage
);
335 set_page_private(newpage
, page_private(page
));
339 radix_tree_replace_slot(pslot
, newpage
);
342 * Drop cache reference from old page.
343 * We know this isn't the last reference.
348 * If moved to a different zone then also account
349 * the page for that zone. Other VM counters will be
350 * taken care of when we establish references to the
351 * new page and drop references to the old page.
353 * Note that anonymous pages are accounted for
354 * via NR_FILE_PAGES and NR_ANON_PAGES if they
355 * are mapped to swap space.
357 __dec_zone_page_state(page
, NR_FILE_PAGES
);
358 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
360 write_unlock_irq(&mapping
->tree_lock
);
366 * Copy the page to its new location
368 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
370 copy_highpage(newpage
, page
);
373 SetPageError(newpage
);
374 if (PageReferenced(page
))
375 SetPageReferenced(newpage
);
376 if (PageUptodate(page
))
377 SetPageUptodate(newpage
);
378 if (PageActive(page
))
379 SetPageActive(newpage
);
380 if (PageChecked(page
))
381 SetPageChecked(newpage
);
382 if (PageMappedToDisk(page
))
383 SetPageMappedToDisk(newpage
);
385 if (PageDirty(page
)) {
386 clear_page_dirty_for_io(page
);
388 * Want to mark the page and the radix tree as dirty, and
389 * redo the accounting that clear_page_dirty_for_io undid,
390 * but we can't use set_page_dirty because that function
391 * is actually a signal that all of the page has become dirty.
392 * Wheras only part of our page may be dirty.
394 __set_page_dirty_nobuffers(newpage
);
398 ClearPageSwapCache(page
);
400 ClearPageActive(page
);
401 ClearPagePrivate(page
);
402 set_page_private(page
, 0);
403 page
->mapping
= NULL
;
406 * If any waiters have accumulated on the new page then
409 if (PageWriteback(newpage
))
410 end_page_writeback(newpage
);
413 /************************************************************
414 * Migration functions
415 ***********************************************************/
417 /* Always fail migration. Used for mappings that are not movable */
418 int fail_migrate_page(struct address_space
*mapping
,
419 struct page
*newpage
, struct page
*page
)
423 EXPORT_SYMBOL(fail_migrate_page
);
426 * Common logic to directly migrate a single page suitable for
427 * pages that do not use PagePrivate.
429 * Pages are locked upon entry and exit.
431 int migrate_page(struct address_space
*mapping
,
432 struct page
*newpage
, struct page
*page
)
436 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
438 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
443 migrate_page_copy(newpage
, page
);
446 EXPORT_SYMBOL(migrate_page
);
450 * Migration function for pages with buffers. This function can only be used
451 * if the underlying filesystem guarantees that no other references to "page"
454 int buffer_migrate_page(struct address_space
*mapping
,
455 struct page
*newpage
, struct page
*page
)
457 struct buffer_head
*bh
, *head
;
460 if (!page_has_buffers(page
))
461 return migrate_page(mapping
, newpage
, page
);
463 head
= page_buffers(page
);
465 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
474 bh
= bh
->b_this_page
;
476 } while (bh
!= head
);
478 ClearPagePrivate(page
);
479 set_page_private(newpage
, page_private(page
));
480 set_page_private(page
, 0);
486 set_bh_page(bh
, newpage
, bh_offset(bh
));
487 bh
= bh
->b_this_page
;
489 } while (bh
!= head
);
491 SetPagePrivate(newpage
);
493 migrate_page_copy(newpage
, page
);
499 bh
= bh
->b_this_page
;
501 } while (bh
!= head
);
505 EXPORT_SYMBOL(buffer_migrate_page
);
509 * Writeback a page to clean the dirty state
511 static int writeout(struct address_space
*mapping
, struct page
*page
)
513 struct writeback_control wbc
= {
514 .sync_mode
= WB_SYNC_NONE
,
517 .range_end
= LLONG_MAX
,
523 if (!mapping
->a_ops
->writepage
)
524 /* No write method for the address space */
527 if (!clear_page_dirty_for_io(page
))
528 /* Someone else already triggered a write */
532 * A dirty page may imply that the underlying filesystem has
533 * the page on some queue. So the page must be clean for
534 * migration. Writeout may mean we loose the lock and the
535 * page state is no longer what we checked for earlier.
536 * At this point we know that the migration attempt cannot
539 remove_migration_ptes(page
, page
);
541 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
543 /* I/O Error writing */
546 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
547 /* unlocked. Relock */
554 * Default handling if a filesystem does not provide a migration function.
556 static int fallback_migrate_page(struct address_space
*mapping
,
557 struct page
*newpage
, struct page
*page
)
560 return writeout(mapping
, page
);
563 * Buffers may be managed in a filesystem specific way.
564 * We must have no buffers or drop them.
566 if (PagePrivate(page
) &&
567 !try_to_release_page(page
, GFP_KERNEL
))
570 return migrate_page(mapping
, newpage
, page
);
574 * Move a page to a newly allocated page
575 * The page is locked and all ptes have been successfully removed.
577 * The new page will have replaced the old page if this function
580 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
582 struct address_space
*mapping
;
586 * Block others from accessing the page when we get around to
587 * establishing additional references. We are the only one
588 * holding a reference to the new page at this point.
590 if (TestSetPageLocked(newpage
))
593 /* Prepare mapping for the new page.*/
594 newpage
->index
= page
->index
;
595 newpage
->mapping
= page
->mapping
;
597 mapping
= page_mapping(page
);
599 rc
= migrate_page(mapping
, newpage
, page
);
600 else if (mapping
->a_ops
->migratepage
)
602 * Most pages have a mapping and most filesystems
603 * should provide a migration function. Anonymous
604 * pages are part of swap space which also has its
605 * own migration function. This is the most common
606 * path for page migration.
608 rc
= mapping
->a_ops
->migratepage(mapping
,
611 rc
= fallback_migrate_page(mapping
, newpage
, page
);
614 mem_cgroup_page_migration(page
, newpage
);
615 remove_migration_ptes(page
, newpage
);
617 newpage
->mapping
= NULL
;
619 unlock_page(newpage
);
625 * Obtain the lock on page, remove all ptes and migrate the page
626 * to the newly allocated page in newpage.
628 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
629 struct page
*page
, int force
)
633 struct page
*newpage
= get_new_page(page
, private, &result
);
640 if (page_count(page
) == 1)
641 /* page was freed from under us. So we are done. */
645 if (TestSetPageLocked(page
)) {
651 if (PageWriteback(page
)) {
654 wait_on_page_writeback(page
);
657 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
658 * we cannot notice that anon_vma is freed while we migrates a page.
659 * This rcu_read_lock() delays freeing anon_vma pointer until the end
660 * of migration. File cache pages are no problem because of page_lock()
661 * File Caches may use write_page() or lock_page() in migration, then,
662 * just care Anon page here.
664 if (PageAnon(page
)) {
670 * Corner case handling:
671 * 1. When a new swap-cache page is read into, it is added to the LRU
672 * and treated as swapcache but it has no rmap yet.
673 * Calling try_to_unmap() against a page->mapping==NULL page will
674 * trigger a BUG. So handle it here.
675 * 2. An orphaned page (see truncate_complete_page) might have
676 * fs-private metadata. The page can be picked up due to memory
677 * offlining. Everywhere else except page reclaim, the page is
678 * invisible to the vm, so the page can not be migrated. So try to
679 * free the metadata, so the page can be freed.
681 if (!page
->mapping
) {
682 if (!PageAnon(page
) && PagePrivate(page
)) {
684 * Go direct to try_to_free_buffers() here because
685 * a) that's what try_to_release_page() would do anyway
686 * b) we may be under rcu_read_lock() here, so we can't
687 * use GFP_KERNEL which is what try_to_release_page()
688 * needs to be effective.
690 try_to_free_buffers(page
);
695 charge
= mem_cgroup_prepare_migration(page
);
696 /* Establish migration ptes or remove ptes */
697 try_to_unmap(page
, 1);
699 if (!page_mapped(page
))
700 rc
= move_to_new_page(newpage
, page
);
703 remove_migration_ptes(page
, page
);
705 mem_cgroup_end_migration(page
);
707 mem_cgroup_end_migration(newpage
);
718 * A page that has been migrated has all references
719 * removed and will be freed. A page that has not been
720 * migrated will have kepts its references and be
723 list_del(&page
->lru
);
729 * Move the new page to the LRU. If migration was not successful
730 * then this will free the page.
732 move_to_lru(newpage
);
737 *result
= page_to_nid(newpage
);
745 * The function takes one list of pages to migrate and a function
746 * that determines from the page to be migrated and the private data
747 * the target of the move and allocates the page.
749 * The function returns after 10 attempts or if no pages
750 * are movable anymore because to has become empty
751 * or no retryable pages exist anymore. All pages will be
752 * returned to the LRU or freed.
754 * Return: Number of pages not migrated or error code.
756 int migrate_pages(struct list_head
*from
,
757 new_page_t get_new_page
, unsigned long private)
764 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
768 current
->flags
|= PF_SWAPWRITE
;
770 for(pass
= 0; pass
< 10 && retry
; pass
++) {
773 list_for_each_entry_safe(page
, page2
, from
, lru
) {
776 rc
= unmap_and_move(get_new_page
, private,
788 /* Permanent failure */
797 current
->flags
&= ~PF_SWAPWRITE
;
799 putback_lru_pages(from
);
804 return nr_failed
+ retry
;
809 * Move a list of individual pages
811 struct page_to_node
{
818 static struct page
*new_page_node(struct page
*p
, unsigned long private,
821 struct page_to_node
*pm
= (struct page_to_node
*)private;
823 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
826 if (pm
->node
== MAX_NUMNODES
)
829 *result
= &pm
->status
;
831 return alloc_pages_node(pm
->node
,
832 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
836 * Move a set of pages as indicated in the pm array. The addr
837 * field must be set to the virtual address of the page to be moved
838 * and the node number must contain a valid target node.
840 static int do_move_pages(struct mm_struct
*mm
, struct page_to_node
*pm
,
844 struct page_to_node
*pp
;
847 down_read(&mm
->mmap_sem
);
850 * Build a list of pages to migrate
853 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
854 struct vm_area_struct
*vma
;
858 * A valid page pointer that will not match any of the
859 * pages that will be moved.
861 pp
->page
= ZERO_PAGE(0);
864 vma
= find_vma(mm
, pp
->addr
);
865 if (!vma
|| !vma_migratable(vma
))
868 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
878 if (PageReserved(page
)) /* Check for zero page */
882 err
= page_to_nid(page
);
886 * Node already in the right place
891 if (page_mapcount(page
) > 1 &&
895 err
= isolate_lru_page(page
, &pagelist
);
898 * Either remove the duplicate refcount from
899 * isolate_lru_page() or drop the page ref if it was
907 if (!list_empty(&pagelist
))
908 err
= migrate_pages(&pagelist
, new_page_node
,
913 up_read(&mm
->mmap_sem
);
918 * Determine the nodes of a list of pages. The addr in the pm array
919 * must have been set to the virtual address of which we want to determine
922 static int do_pages_stat(struct mm_struct
*mm
, struct page_to_node
*pm
)
924 down_read(&mm
->mmap_sem
);
926 for ( ; pm
->node
!= MAX_NUMNODES
; pm
++) {
927 struct vm_area_struct
*vma
;
932 vma
= find_vma(mm
, pm
->addr
);
936 page
= follow_page(vma
, pm
->addr
, 0);
943 /* Use PageReserved to check for zero page */
944 if (!page
|| PageReserved(page
))
947 err
= page_to_nid(page
);
952 up_read(&mm
->mmap_sem
);
957 * Move a list of pages in the address space of the currently executing
960 asmlinkage
long sys_move_pages(pid_t pid
, unsigned long nr_pages
,
961 const void __user
* __user
*pages
,
962 const int __user
*nodes
,
963 int __user
*status
, int flags
)
967 struct task_struct
*task
;
968 nodemask_t task_nodes
;
969 struct mm_struct
*mm
;
970 struct page_to_node
*pm
= NULL
;
973 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
976 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
979 /* Find the mm_struct */
980 read_lock(&tasklist_lock
);
981 task
= pid
? find_task_by_vpid(pid
) : current
;
983 read_unlock(&tasklist_lock
);
986 mm
= get_task_mm(task
);
987 read_unlock(&tasklist_lock
);
993 * Check if this process has the right to modify the specified
994 * process. The right exists if the process has administrative
995 * capabilities, superuser privileges or the same
996 * userid as the target process.
998 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
999 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
1000 !capable(CAP_SYS_NICE
)) {
1005 err
= security_task_movememory(task
);
1010 task_nodes
= cpuset_mems_allowed(task
);
1012 /* Limit nr_pages so that the multiplication may not overflow */
1013 if (nr_pages
>= ULONG_MAX
/ sizeof(struct page_to_node
) - 1) {
1018 pm
= vmalloc((nr_pages
+ 1) * sizeof(struct page_to_node
));
1025 * Get parameters from user space and initialize the pm
1026 * array. Return various errors if the user did something wrong.
1028 for (i
= 0; i
< nr_pages
; i
++) {
1029 const void __user
*p
;
1032 if (get_user(p
, pages
+ i
))
1035 pm
[i
].addr
= (unsigned long)p
;
1039 if (get_user(node
, nodes
+ i
))
1043 if (!node_state(node
, N_HIGH_MEMORY
))
1047 if (!node_isset(node
, task_nodes
))
1052 pm
[i
].node
= 0; /* anything to not match MAX_NUMNODES */
1055 pm
[nr_pages
].node
= MAX_NUMNODES
;
1058 err
= do_move_pages(mm
, pm
, flags
& MPOL_MF_MOVE_ALL
);
1060 err
= do_pages_stat(mm
, pm
);
1063 /* Return status information */
1064 for (i
= 0; i
< nr_pages
; i
++)
1065 if (put_user(pm
[i
].status
, status
+ i
))
1076 * Call migration functions in the vma_ops that may prepare
1077 * memory in a vm for migration. migration functions may perform
1078 * the migration for vmas that do not have an underlying page struct.
1080 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1081 const nodemask_t
*from
, unsigned long flags
)
1083 struct vm_area_struct
*vma
;
1086 for(vma
= mm
->mmap
; vma
->vm_next
&& !err
; vma
= vma
->vm_next
) {
1087 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1088 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);