KVM: Don't assign vcpu->cr3 if it's invalid: check first, set last
[linux-2.6/mini2440.git] / drivers / kvm / kvm_main.c
blob5dc60170278241235d34009b6094b63fcd10c7b3
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
41 #include <asm/processor.h>
42 #include <asm/msr.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
45 #include <asm/desc.h>
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 static cpumask_t cpus_hardware_enabled;
55 struct kvm_arch_ops *kvm_arch_ops;
56 struct kmem_cache *kvm_vcpu_cache;
57 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
59 static __read_mostly struct preempt_ops kvm_preempt_ops;
61 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
63 static struct kvm_stats_debugfs_item {
64 const char *name;
65 int offset;
66 struct dentry *dentry;
67 } debugfs_entries[] = {
68 { "pf_fixed", STAT_OFFSET(pf_fixed) },
69 { "pf_guest", STAT_OFFSET(pf_guest) },
70 { "tlb_flush", STAT_OFFSET(tlb_flush) },
71 { "invlpg", STAT_OFFSET(invlpg) },
72 { "exits", STAT_OFFSET(exits) },
73 { "io_exits", STAT_OFFSET(io_exits) },
74 { "mmio_exits", STAT_OFFSET(mmio_exits) },
75 { "signal_exits", STAT_OFFSET(signal_exits) },
76 { "irq_window", STAT_OFFSET(irq_window_exits) },
77 { "halt_exits", STAT_OFFSET(halt_exits) },
78 { "request_irq", STAT_OFFSET(request_irq_exits) },
79 { "irq_exits", STAT_OFFSET(irq_exits) },
80 { "light_exits", STAT_OFFSET(light_exits) },
81 { "efer_reload", STAT_OFFSET(efer_reload) },
82 { NULL }
85 static struct dentry *debugfs_dir;
87 #define MAX_IO_MSRS 256
89 #define CR0_RESERVED_BITS \
90 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
91 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
92 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
93 #define CR4_RESERVED_BITS \
94 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
95 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
96 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
97 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
99 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
100 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
102 #ifdef CONFIG_X86_64
103 // LDT or TSS descriptor in the GDT. 16 bytes.
104 struct segment_descriptor_64 {
105 struct segment_descriptor s;
106 u32 base_higher;
107 u32 pad_zero;
110 #endif
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
115 unsigned long segment_base(u16 selector)
117 struct descriptor_table gdt;
118 struct segment_descriptor *d;
119 unsigned long table_base;
120 typedef unsigned long ul;
121 unsigned long v;
123 if (selector == 0)
124 return 0;
126 asm ("sgdt %0" : "=m"(gdt));
127 table_base = gdt.base;
129 if (selector & 4) { /* from ldt */
130 u16 ldt_selector;
132 asm ("sldt %0" : "=g"(ldt_selector));
133 table_base = segment_base(ldt_selector);
135 d = (struct segment_descriptor *)(table_base + (selector & ~7));
136 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
137 #ifdef CONFIG_X86_64
138 if (d->system == 0
139 && (d->type == 2 || d->type == 9 || d->type == 11))
140 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
141 #endif
142 return v;
144 EXPORT_SYMBOL_GPL(segment_base);
146 static inline int valid_vcpu(int n)
148 return likely(n >= 0 && n < KVM_MAX_VCPUS);
151 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
153 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
154 return;
156 vcpu->guest_fpu_loaded = 1;
157 fx_save(&vcpu->host_fx_image);
158 fx_restore(&vcpu->guest_fx_image);
160 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
162 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
164 if (!vcpu->guest_fpu_loaded)
165 return;
167 vcpu->guest_fpu_loaded = 0;
168 fx_save(&vcpu->guest_fx_image);
169 fx_restore(&vcpu->host_fx_image);
171 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
174 * Switches to specified vcpu, until a matching vcpu_put()
176 static void vcpu_load(struct kvm_vcpu *vcpu)
178 int cpu;
180 mutex_lock(&vcpu->mutex);
181 cpu = get_cpu();
182 preempt_notifier_register(&vcpu->preempt_notifier);
183 kvm_arch_ops->vcpu_load(vcpu, cpu);
184 put_cpu();
187 static void vcpu_put(struct kvm_vcpu *vcpu)
189 preempt_disable();
190 kvm_arch_ops->vcpu_put(vcpu);
191 preempt_notifier_unregister(&vcpu->preempt_notifier);
192 preempt_enable();
193 mutex_unlock(&vcpu->mutex);
196 static void ack_flush(void *_completed)
198 atomic_t *completed = _completed;
200 atomic_inc(completed);
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 int i, cpu, needed;
206 cpumask_t cpus;
207 struct kvm_vcpu *vcpu;
208 atomic_t completed;
210 atomic_set(&completed, 0);
211 cpus_clear(cpus);
212 needed = 0;
213 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
214 vcpu = kvm->vcpus[i];
215 if (!vcpu)
216 continue;
217 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
218 continue;
219 cpu = vcpu->cpu;
220 if (cpu != -1 && cpu != raw_smp_processor_id())
221 if (!cpu_isset(cpu, cpus)) {
222 cpu_set(cpu, cpus);
223 ++needed;
228 * We really want smp_call_function_mask() here. But that's not
229 * available, so ipi all cpus in parallel and wait for them
230 * to complete.
232 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
233 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
234 while (atomic_read(&completed) != needed) {
235 cpu_relax();
236 barrier();
240 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
242 struct page *page;
243 int r;
245 mutex_init(&vcpu->mutex);
246 vcpu->cpu = -1;
247 vcpu->mmu.root_hpa = INVALID_PAGE;
248 vcpu->kvm = kvm;
249 vcpu->vcpu_id = id;
251 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
252 if (!page) {
253 r = -ENOMEM;
254 goto fail;
256 vcpu->run = page_address(page);
258 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
259 if (!page) {
260 r = -ENOMEM;
261 goto fail_free_run;
263 vcpu->pio_data = page_address(page);
265 r = kvm_mmu_create(vcpu);
266 if (r < 0)
267 goto fail_free_pio_data;
269 return 0;
271 fail_free_pio_data:
272 free_page((unsigned long)vcpu->pio_data);
273 fail_free_run:
274 free_page((unsigned long)vcpu->run);
275 fail:
276 return -ENOMEM;
278 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
280 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
282 kvm_mmu_destroy(vcpu);
283 free_page((unsigned long)vcpu->pio_data);
284 free_page((unsigned long)vcpu->run);
286 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
288 static struct kvm *kvm_create_vm(void)
290 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
292 if (!kvm)
293 return ERR_PTR(-ENOMEM);
295 kvm_io_bus_init(&kvm->pio_bus);
296 mutex_init(&kvm->lock);
297 INIT_LIST_HEAD(&kvm->active_mmu_pages);
298 kvm_io_bus_init(&kvm->mmio_bus);
299 spin_lock(&kvm_lock);
300 list_add(&kvm->vm_list, &vm_list);
301 spin_unlock(&kvm_lock);
302 return kvm;
305 static int kvm_dev_open(struct inode *inode, struct file *filp)
307 return 0;
311 * Free any memory in @free but not in @dont.
313 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
314 struct kvm_memory_slot *dont)
316 int i;
318 if (!dont || free->phys_mem != dont->phys_mem)
319 if (free->phys_mem) {
320 for (i = 0; i < free->npages; ++i)
321 if (free->phys_mem[i])
322 __free_page(free->phys_mem[i]);
323 vfree(free->phys_mem);
326 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
327 vfree(free->dirty_bitmap);
329 free->phys_mem = NULL;
330 free->npages = 0;
331 free->dirty_bitmap = NULL;
334 static void kvm_free_physmem(struct kvm *kvm)
336 int i;
338 for (i = 0; i < kvm->nmemslots; ++i)
339 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
342 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
344 int i;
346 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
347 if (vcpu->pio.guest_pages[i]) {
348 __free_page(vcpu->pio.guest_pages[i]);
349 vcpu->pio.guest_pages[i] = NULL;
353 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
355 vcpu_load(vcpu);
356 kvm_mmu_unload(vcpu);
357 vcpu_put(vcpu);
360 static void kvm_free_vcpus(struct kvm *kvm)
362 unsigned int i;
365 * Unpin any mmu pages first.
367 for (i = 0; i < KVM_MAX_VCPUS; ++i)
368 if (kvm->vcpus[i])
369 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
370 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
371 if (kvm->vcpus[i]) {
372 kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
373 kvm->vcpus[i] = NULL;
379 static int kvm_dev_release(struct inode *inode, struct file *filp)
381 return 0;
384 static void kvm_destroy_vm(struct kvm *kvm)
386 spin_lock(&kvm_lock);
387 list_del(&kvm->vm_list);
388 spin_unlock(&kvm_lock);
389 kvm_io_bus_destroy(&kvm->pio_bus);
390 kvm_io_bus_destroy(&kvm->mmio_bus);
391 kvm_free_vcpus(kvm);
392 kvm_free_physmem(kvm);
393 kfree(kvm);
396 static int kvm_vm_release(struct inode *inode, struct file *filp)
398 struct kvm *kvm = filp->private_data;
400 kvm_destroy_vm(kvm);
401 return 0;
404 static void inject_gp(struct kvm_vcpu *vcpu)
406 kvm_arch_ops->inject_gp(vcpu, 0);
410 * Load the pae pdptrs. Return true is they are all valid.
412 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
414 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
415 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
416 int i;
417 u64 *pdpt;
418 int ret;
419 struct page *page;
420 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
422 mutex_lock(&vcpu->kvm->lock);
423 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
424 if (!page) {
425 ret = 0;
426 goto out;
429 pdpt = kmap_atomic(page, KM_USER0);
430 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
431 kunmap_atomic(pdpt, KM_USER0);
433 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
434 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
435 ret = 0;
436 goto out;
439 ret = 1;
441 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
442 out:
443 mutex_unlock(&vcpu->kvm->lock);
445 return ret;
448 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
450 if (cr0 & CR0_RESERVED_BITS) {
451 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
452 cr0, vcpu->cr0);
453 inject_gp(vcpu);
454 return;
457 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
458 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
459 inject_gp(vcpu);
460 return;
463 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
464 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
465 "and a clear PE flag\n");
466 inject_gp(vcpu);
467 return;
470 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
471 #ifdef CONFIG_X86_64
472 if ((vcpu->shadow_efer & EFER_LME)) {
473 int cs_db, cs_l;
475 if (!is_pae(vcpu)) {
476 printk(KERN_DEBUG "set_cr0: #GP, start paging "
477 "in long mode while PAE is disabled\n");
478 inject_gp(vcpu);
479 return;
481 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
482 if (cs_l) {
483 printk(KERN_DEBUG "set_cr0: #GP, start paging "
484 "in long mode while CS.L == 1\n");
485 inject_gp(vcpu);
486 return;
489 } else
490 #endif
491 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
492 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
493 "reserved bits\n");
494 inject_gp(vcpu);
495 return;
500 kvm_arch_ops->set_cr0(vcpu, cr0);
501 vcpu->cr0 = cr0;
503 mutex_lock(&vcpu->kvm->lock);
504 kvm_mmu_reset_context(vcpu);
505 mutex_unlock(&vcpu->kvm->lock);
506 return;
508 EXPORT_SYMBOL_GPL(set_cr0);
510 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
512 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
514 EXPORT_SYMBOL_GPL(lmsw);
516 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
518 if (cr4 & CR4_RESERVED_BITS) {
519 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
520 inject_gp(vcpu);
521 return;
524 if (is_long_mode(vcpu)) {
525 if (!(cr4 & X86_CR4_PAE)) {
526 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
527 "in long mode\n");
528 inject_gp(vcpu);
529 return;
531 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
532 && !load_pdptrs(vcpu, vcpu->cr3)) {
533 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
534 inject_gp(vcpu);
535 return;
538 if (cr4 & X86_CR4_VMXE) {
539 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
540 inject_gp(vcpu);
541 return;
543 kvm_arch_ops->set_cr4(vcpu, cr4);
544 mutex_lock(&vcpu->kvm->lock);
545 kvm_mmu_reset_context(vcpu);
546 mutex_unlock(&vcpu->kvm->lock);
548 EXPORT_SYMBOL_GPL(set_cr4);
550 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
552 if (is_long_mode(vcpu)) {
553 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
554 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
555 inject_gp(vcpu);
556 return;
558 } else {
559 if (is_pae(vcpu)) {
560 if (cr3 & CR3_PAE_RESERVED_BITS) {
561 printk(KERN_DEBUG
562 "set_cr3: #GP, reserved bits\n");
563 inject_gp(vcpu);
564 return;
566 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
567 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
568 "reserved bits\n");
569 inject_gp(vcpu);
570 return;
572 } else {
573 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
574 printk(KERN_DEBUG
575 "set_cr3: #GP, reserved bits\n");
576 inject_gp(vcpu);
577 return;
582 mutex_lock(&vcpu->kvm->lock);
584 * Does the new cr3 value map to physical memory? (Note, we
585 * catch an invalid cr3 even in real-mode, because it would
586 * cause trouble later on when we turn on paging anyway.)
588 * A real CPU would silently accept an invalid cr3 and would
589 * attempt to use it - with largely undefined (and often hard
590 * to debug) behavior on the guest side.
592 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
593 inject_gp(vcpu);
594 else {
595 vcpu->cr3 = cr3;
596 vcpu->mmu.new_cr3(vcpu);
598 mutex_unlock(&vcpu->kvm->lock);
600 EXPORT_SYMBOL_GPL(set_cr3);
602 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
604 if (cr8 & CR8_RESERVED_BITS) {
605 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
606 inject_gp(vcpu);
607 return;
609 vcpu->cr8 = cr8;
611 EXPORT_SYMBOL_GPL(set_cr8);
613 void fx_init(struct kvm_vcpu *vcpu)
615 unsigned after_mxcsr_mask;
617 /* Initialize guest FPU by resetting ours and saving into guest's */
618 preempt_disable();
619 fx_save(&vcpu->host_fx_image);
620 fpu_init();
621 fx_save(&vcpu->guest_fx_image);
622 fx_restore(&vcpu->host_fx_image);
623 preempt_enable();
625 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
626 vcpu->guest_fx_image.mxcsr = 0x1f80;
627 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
628 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
630 EXPORT_SYMBOL_GPL(fx_init);
633 * Allocate some memory and give it an address in the guest physical address
634 * space.
636 * Discontiguous memory is allowed, mostly for framebuffers.
638 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
639 struct kvm_memory_region *mem)
641 int r;
642 gfn_t base_gfn;
643 unsigned long npages;
644 unsigned long i;
645 struct kvm_memory_slot *memslot;
646 struct kvm_memory_slot old, new;
647 int memory_config_version;
649 r = -EINVAL;
650 /* General sanity checks */
651 if (mem->memory_size & (PAGE_SIZE - 1))
652 goto out;
653 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
654 goto out;
655 if (mem->slot >= KVM_MEMORY_SLOTS)
656 goto out;
657 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
658 goto out;
660 memslot = &kvm->memslots[mem->slot];
661 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
662 npages = mem->memory_size >> PAGE_SHIFT;
664 if (!npages)
665 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
667 raced:
668 mutex_lock(&kvm->lock);
670 memory_config_version = kvm->memory_config_version;
671 new = old = *memslot;
673 new.base_gfn = base_gfn;
674 new.npages = npages;
675 new.flags = mem->flags;
677 /* Disallow changing a memory slot's size. */
678 r = -EINVAL;
679 if (npages && old.npages && npages != old.npages)
680 goto out_unlock;
682 /* Check for overlaps */
683 r = -EEXIST;
684 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
685 struct kvm_memory_slot *s = &kvm->memslots[i];
687 if (s == memslot)
688 continue;
689 if (!((base_gfn + npages <= s->base_gfn) ||
690 (base_gfn >= s->base_gfn + s->npages)))
691 goto out_unlock;
694 * Do memory allocations outside lock. memory_config_version will
695 * detect any races.
697 mutex_unlock(&kvm->lock);
699 /* Deallocate if slot is being removed */
700 if (!npages)
701 new.phys_mem = NULL;
703 /* Free page dirty bitmap if unneeded */
704 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
705 new.dirty_bitmap = NULL;
707 r = -ENOMEM;
709 /* Allocate if a slot is being created */
710 if (npages && !new.phys_mem) {
711 new.phys_mem = vmalloc(npages * sizeof(struct page *));
713 if (!new.phys_mem)
714 goto out_free;
716 memset(new.phys_mem, 0, npages * sizeof(struct page *));
717 for (i = 0; i < npages; ++i) {
718 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
719 | __GFP_ZERO);
720 if (!new.phys_mem[i])
721 goto out_free;
722 set_page_private(new.phys_mem[i],0);
726 /* Allocate page dirty bitmap if needed */
727 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
728 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
730 new.dirty_bitmap = vmalloc(dirty_bytes);
731 if (!new.dirty_bitmap)
732 goto out_free;
733 memset(new.dirty_bitmap, 0, dirty_bytes);
736 mutex_lock(&kvm->lock);
738 if (memory_config_version != kvm->memory_config_version) {
739 mutex_unlock(&kvm->lock);
740 kvm_free_physmem_slot(&new, &old);
741 goto raced;
744 r = -EAGAIN;
745 if (kvm->busy)
746 goto out_unlock;
748 if (mem->slot >= kvm->nmemslots)
749 kvm->nmemslots = mem->slot + 1;
751 *memslot = new;
752 ++kvm->memory_config_version;
754 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
755 kvm_flush_remote_tlbs(kvm);
757 mutex_unlock(&kvm->lock);
759 kvm_free_physmem_slot(&old, &new);
760 return 0;
762 out_unlock:
763 mutex_unlock(&kvm->lock);
764 out_free:
765 kvm_free_physmem_slot(&new, &old);
766 out:
767 return r;
771 * Get (and clear) the dirty memory log for a memory slot.
773 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
774 struct kvm_dirty_log *log)
776 struct kvm_memory_slot *memslot;
777 int r, i;
778 int n;
779 unsigned long any = 0;
781 mutex_lock(&kvm->lock);
784 * Prevent changes to guest memory configuration even while the lock
785 * is not taken.
787 ++kvm->busy;
788 mutex_unlock(&kvm->lock);
789 r = -EINVAL;
790 if (log->slot >= KVM_MEMORY_SLOTS)
791 goto out;
793 memslot = &kvm->memslots[log->slot];
794 r = -ENOENT;
795 if (!memslot->dirty_bitmap)
796 goto out;
798 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
800 for (i = 0; !any && i < n/sizeof(long); ++i)
801 any = memslot->dirty_bitmap[i];
803 r = -EFAULT;
804 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
805 goto out;
807 /* If nothing is dirty, don't bother messing with page tables. */
808 if (any) {
809 mutex_lock(&kvm->lock);
810 kvm_mmu_slot_remove_write_access(kvm, log->slot);
811 kvm_flush_remote_tlbs(kvm);
812 memset(memslot->dirty_bitmap, 0, n);
813 mutex_unlock(&kvm->lock);
816 r = 0;
818 out:
819 mutex_lock(&kvm->lock);
820 --kvm->busy;
821 mutex_unlock(&kvm->lock);
822 return r;
826 * Set a new alias region. Aliases map a portion of physical memory into
827 * another portion. This is useful for memory windows, for example the PC
828 * VGA region.
830 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
831 struct kvm_memory_alias *alias)
833 int r, n;
834 struct kvm_mem_alias *p;
836 r = -EINVAL;
837 /* General sanity checks */
838 if (alias->memory_size & (PAGE_SIZE - 1))
839 goto out;
840 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
841 goto out;
842 if (alias->slot >= KVM_ALIAS_SLOTS)
843 goto out;
844 if (alias->guest_phys_addr + alias->memory_size
845 < alias->guest_phys_addr)
846 goto out;
847 if (alias->target_phys_addr + alias->memory_size
848 < alias->target_phys_addr)
849 goto out;
851 mutex_lock(&kvm->lock);
853 p = &kvm->aliases[alias->slot];
854 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
855 p->npages = alias->memory_size >> PAGE_SHIFT;
856 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
858 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
859 if (kvm->aliases[n - 1].npages)
860 break;
861 kvm->naliases = n;
863 kvm_mmu_zap_all(kvm);
865 mutex_unlock(&kvm->lock);
867 return 0;
869 out:
870 return r;
873 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
875 int i;
876 struct kvm_mem_alias *alias;
878 for (i = 0; i < kvm->naliases; ++i) {
879 alias = &kvm->aliases[i];
880 if (gfn >= alias->base_gfn
881 && gfn < alias->base_gfn + alias->npages)
882 return alias->target_gfn + gfn - alias->base_gfn;
884 return gfn;
887 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
889 int i;
891 for (i = 0; i < kvm->nmemslots; ++i) {
892 struct kvm_memory_slot *memslot = &kvm->memslots[i];
894 if (gfn >= memslot->base_gfn
895 && gfn < memslot->base_gfn + memslot->npages)
896 return memslot;
898 return NULL;
901 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
903 gfn = unalias_gfn(kvm, gfn);
904 return __gfn_to_memslot(kvm, gfn);
907 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
909 struct kvm_memory_slot *slot;
911 gfn = unalias_gfn(kvm, gfn);
912 slot = __gfn_to_memslot(kvm, gfn);
913 if (!slot)
914 return NULL;
915 return slot->phys_mem[gfn - slot->base_gfn];
917 EXPORT_SYMBOL_GPL(gfn_to_page);
919 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
921 int i;
922 struct kvm_memory_slot *memslot;
923 unsigned long rel_gfn;
925 for (i = 0; i < kvm->nmemslots; ++i) {
926 memslot = &kvm->memslots[i];
928 if (gfn >= memslot->base_gfn
929 && gfn < memslot->base_gfn + memslot->npages) {
931 if (!memslot->dirty_bitmap)
932 return;
934 rel_gfn = gfn - memslot->base_gfn;
936 /* avoid RMW */
937 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
938 set_bit(rel_gfn, memslot->dirty_bitmap);
939 return;
944 int emulator_read_std(unsigned long addr,
945 void *val,
946 unsigned int bytes,
947 struct kvm_vcpu *vcpu)
949 void *data = val;
951 while (bytes) {
952 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
953 unsigned offset = addr & (PAGE_SIZE-1);
954 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
955 unsigned long pfn;
956 struct page *page;
957 void *page_virt;
959 if (gpa == UNMAPPED_GVA)
960 return X86EMUL_PROPAGATE_FAULT;
961 pfn = gpa >> PAGE_SHIFT;
962 page = gfn_to_page(vcpu->kvm, pfn);
963 if (!page)
964 return X86EMUL_UNHANDLEABLE;
965 page_virt = kmap_atomic(page, KM_USER0);
967 memcpy(data, page_virt + offset, tocopy);
969 kunmap_atomic(page_virt, KM_USER0);
971 bytes -= tocopy;
972 data += tocopy;
973 addr += tocopy;
976 return X86EMUL_CONTINUE;
978 EXPORT_SYMBOL_GPL(emulator_read_std);
980 static int emulator_write_std(unsigned long addr,
981 const void *val,
982 unsigned int bytes,
983 struct kvm_vcpu *vcpu)
985 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
986 addr, bytes);
987 return X86EMUL_UNHANDLEABLE;
990 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
991 gpa_t addr)
994 * Note that its important to have this wrapper function because
995 * in the very near future we will be checking for MMIOs against
996 * the LAPIC as well as the general MMIO bus
998 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1001 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1002 gpa_t addr)
1004 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1007 static int emulator_read_emulated(unsigned long addr,
1008 void *val,
1009 unsigned int bytes,
1010 struct kvm_vcpu *vcpu)
1012 struct kvm_io_device *mmio_dev;
1013 gpa_t gpa;
1015 if (vcpu->mmio_read_completed) {
1016 memcpy(val, vcpu->mmio_data, bytes);
1017 vcpu->mmio_read_completed = 0;
1018 return X86EMUL_CONTINUE;
1019 } else if (emulator_read_std(addr, val, bytes, vcpu)
1020 == X86EMUL_CONTINUE)
1021 return X86EMUL_CONTINUE;
1023 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1024 if (gpa == UNMAPPED_GVA)
1025 return X86EMUL_PROPAGATE_FAULT;
1028 * Is this MMIO handled locally?
1030 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1031 if (mmio_dev) {
1032 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1033 return X86EMUL_CONTINUE;
1036 vcpu->mmio_needed = 1;
1037 vcpu->mmio_phys_addr = gpa;
1038 vcpu->mmio_size = bytes;
1039 vcpu->mmio_is_write = 0;
1041 return X86EMUL_UNHANDLEABLE;
1044 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1045 const void *val, int bytes)
1047 struct page *page;
1048 void *virt;
1050 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1051 return 0;
1052 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1053 if (!page)
1054 return 0;
1055 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1056 virt = kmap_atomic(page, KM_USER0);
1057 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1058 memcpy(virt + offset_in_page(gpa), val, bytes);
1059 kunmap_atomic(virt, KM_USER0);
1060 return 1;
1063 static int emulator_write_emulated_onepage(unsigned long addr,
1064 const void *val,
1065 unsigned int bytes,
1066 struct kvm_vcpu *vcpu)
1068 struct kvm_io_device *mmio_dev;
1069 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1071 if (gpa == UNMAPPED_GVA) {
1072 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1073 return X86EMUL_PROPAGATE_FAULT;
1076 if (emulator_write_phys(vcpu, gpa, val, bytes))
1077 return X86EMUL_CONTINUE;
1080 * Is this MMIO handled locally?
1082 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1083 if (mmio_dev) {
1084 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1085 return X86EMUL_CONTINUE;
1088 vcpu->mmio_needed = 1;
1089 vcpu->mmio_phys_addr = gpa;
1090 vcpu->mmio_size = bytes;
1091 vcpu->mmio_is_write = 1;
1092 memcpy(vcpu->mmio_data, val, bytes);
1094 return X86EMUL_CONTINUE;
1097 int emulator_write_emulated(unsigned long addr,
1098 const void *val,
1099 unsigned int bytes,
1100 struct kvm_vcpu *vcpu)
1102 /* Crossing a page boundary? */
1103 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1104 int rc, now;
1106 now = -addr & ~PAGE_MASK;
1107 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1108 if (rc != X86EMUL_CONTINUE)
1109 return rc;
1110 addr += now;
1111 val += now;
1112 bytes -= now;
1114 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1116 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1118 static int emulator_cmpxchg_emulated(unsigned long addr,
1119 const void *old,
1120 const void *new,
1121 unsigned int bytes,
1122 struct kvm_vcpu *vcpu)
1124 static int reported;
1126 if (!reported) {
1127 reported = 1;
1128 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1130 return emulator_write_emulated(addr, new, bytes, vcpu);
1133 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1135 return kvm_arch_ops->get_segment_base(vcpu, seg);
1138 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1140 return X86EMUL_CONTINUE;
1143 int emulate_clts(struct kvm_vcpu *vcpu)
1145 unsigned long cr0;
1147 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1148 kvm_arch_ops->set_cr0(vcpu, cr0);
1149 return X86EMUL_CONTINUE;
1152 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1154 struct kvm_vcpu *vcpu = ctxt->vcpu;
1156 switch (dr) {
1157 case 0 ... 3:
1158 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1159 return X86EMUL_CONTINUE;
1160 default:
1161 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1162 __FUNCTION__, dr);
1163 return X86EMUL_UNHANDLEABLE;
1167 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1169 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1170 int exception;
1172 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1173 if (exception) {
1174 /* FIXME: better handling */
1175 return X86EMUL_UNHANDLEABLE;
1177 return X86EMUL_CONTINUE;
1180 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1182 static int reported;
1183 u8 opcodes[4];
1184 unsigned long rip = ctxt->vcpu->rip;
1185 unsigned long rip_linear;
1187 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1189 if (reported)
1190 return;
1192 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
1194 printk(KERN_ERR "emulation failed but !mmio_needed?"
1195 " rip %lx %02x %02x %02x %02x\n",
1196 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1197 reported = 1;
1200 struct x86_emulate_ops emulate_ops = {
1201 .read_std = emulator_read_std,
1202 .write_std = emulator_write_std,
1203 .read_emulated = emulator_read_emulated,
1204 .write_emulated = emulator_write_emulated,
1205 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1208 int emulate_instruction(struct kvm_vcpu *vcpu,
1209 struct kvm_run *run,
1210 unsigned long cr2,
1211 u16 error_code)
1213 struct x86_emulate_ctxt emulate_ctxt;
1214 int r;
1215 int cs_db, cs_l;
1217 vcpu->mmio_fault_cr2 = cr2;
1218 kvm_arch_ops->cache_regs(vcpu);
1220 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1222 emulate_ctxt.vcpu = vcpu;
1223 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1224 emulate_ctxt.cr2 = cr2;
1225 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1226 ? X86EMUL_MODE_REAL : cs_l
1227 ? X86EMUL_MODE_PROT64 : cs_db
1228 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1230 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1231 emulate_ctxt.cs_base = 0;
1232 emulate_ctxt.ds_base = 0;
1233 emulate_ctxt.es_base = 0;
1234 emulate_ctxt.ss_base = 0;
1235 } else {
1236 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1237 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1238 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1239 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1242 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1243 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1245 vcpu->mmio_is_write = 0;
1246 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1248 if ((r || vcpu->mmio_is_write) && run) {
1249 run->exit_reason = KVM_EXIT_MMIO;
1250 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1251 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1252 run->mmio.len = vcpu->mmio_size;
1253 run->mmio.is_write = vcpu->mmio_is_write;
1256 if (r) {
1257 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1258 return EMULATE_DONE;
1259 if (!vcpu->mmio_needed) {
1260 report_emulation_failure(&emulate_ctxt);
1261 return EMULATE_FAIL;
1263 return EMULATE_DO_MMIO;
1266 kvm_arch_ops->decache_regs(vcpu);
1267 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1269 if (vcpu->mmio_is_write) {
1270 vcpu->mmio_needed = 0;
1271 return EMULATE_DO_MMIO;
1274 return EMULATE_DONE;
1276 EXPORT_SYMBOL_GPL(emulate_instruction);
1278 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1280 if (vcpu->irq_summary)
1281 return 1;
1283 vcpu->run->exit_reason = KVM_EXIT_HLT;
1284 ++vcpu->stat.halt_exits;
1285 return 0;
1287 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1289 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1291 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1293 kvm_arch_ops->cache_regs(vcpu);
1294 ret = -KVM_EINVAL;
1295 #ifdef CONFIG_X86_64
1296 if (is_long_mode(vcpu)) {
1297 nr = vcpu->regs[VCPU_REGS_RAX];
1298 a0 = vcpu->regs[VCPU_REGS_RDI];
1299 a1 = vcpu->regs[VCPU_REGS_RSI];
1300 a2 = vcpu->regs[VCPU_REGS_RDX];
1301 a3 = vcpu->regs[VCPU_REGS_RCX];
1302 a4 = vcpu->regs[VCPU_REGS_R8];
1303 a5 = vcpu->regs[VCPU_REGS_R9];
1304 } else
1305 #endif
1307 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1308 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1309 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1310 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1311 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1312 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1313 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1315 switch (nr) {
1316 default:
1317 run->hypercall.nr = nr;
1318 run->hypercall.args[0] = a0;
1319 run->hypercall.args[1] = a1;
1320 run->hypercall.args[2] = a2;
1321 run->hypercall.args[3] = a3;
1322 run->hypercall.args[4] = a4;
1323 run->hypercall.args[5] = a5;
1324 run->hypercall.ret = ret;
1325 run->hypercall.longmode = is_long_mode(vcpu);
1326 kvm_arch_ops->decache_regs(vcpu);
1327 return 0;
1329 vcpu->regs[VCPU_REGS_RAX] = ret;
1330 kvm_arch_ops->decache_regs(vcpu);
1331 return 1;
1333 EXPORT_SYMBOL_GPL(kvm_hypercall);
1335 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1337 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1340 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1342 struct descriptor_table dt = { limit, base };
1344 kvm_arch_ops->set_gdt(vcpu, &dt);
1347 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1349 struct descriptor_table dt = { limit, base };
1351 kvm_arch_ops->set_idt(vcpu, &dt);
1354 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1355 unsigned long *rflags)
1357 lmsw(vcpu, msw);
1358 *rflags = kvm_arch_ops->get_rflags(vcpu);
1361 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1363 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1364 switch (cr) {
1365 case 0:
1366 return vcpu->cr0;
1367 case 2:
1368 return vcpu->cr2;
1369 case 3:
1370 return vcpu->cr3;
1371 case 4:
1372 return vcpu->cr4;
1373 default:
1374 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1375 return 0;
1379 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1380 unsigned long *rflags)
1382 switch (cr) {
1383 case 0:
1384 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1385 *rflags = kvm_arch_ops->get_rflags(vcpu);
1386 break;
1387 case 2:
1388 vcpu->cr2 = val;
1389 break;
1390 case 3:
1391 set_cr3(vcpu, val);
1392 break;
1393 case 4:
1394 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1395 break;
1396 default:
1397 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1402 * Register the para guest with the host:
1404 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1406 struct kvm_vcpu_para_state *para_state;
1407 hpa_t para_state_hpa, hypercall_hpa;
1408 struct page *para_state_page;
1409 unsigned char *hypercall;
1410 gpa_t hypercall_gpa;
1412 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1413 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1416 * Needs to be page aligned:
1418 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1419 goto err_gp;
1421 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1422 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1423 if (is_error_hpa(para_state_hpa))
1424 goto err_gp;
1426 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1427 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1428 para_state = kmap(para_state_page);
1430 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1431 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1433 para_state->host_version = KVM_PARA_API_VERSION;
1435 * We cannot support guests that try to register themselves
1436 * with a newer API version than the host supports:
1438 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1439 para_state->ret = -KVM_EINVAL;
1440 goto err_kunmap_skip;
1443 hypercall_gpa = para_state->hypercall_gpa;
1444 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1445 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1446 if (is_error_hpa(hypercall_hpa)) {
1447 para_state->ret = -KVM_EINVAL;
1448 goto err_kunmap_skip;
1451 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1452 vcpu->para_state_page = para_state_page;
1453 vcpu->para_state_gpa = para_state_gpa;
1454 vcpu->hypercall_gpa = hypercall_gpa;
1456 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1457 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1458 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1459 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1460 kunmap_atomic(hypercall, KM_USER1);
1462 para_state->ret = 0;
1463 err_kunmap_skip:
1464 kunmap(para_state_page);
1465 return 0;
1466 err_gp:
1467 return 1;
1470 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1472 u64 data;
1474 switch (msr) {
1475 case 0xc0010010: /* SYSCFG */
1476 case 0xc0010015: /* HWCR */
1477 case MSR_IA32_PLATFORM_ID:
1478 case MSR_IA32_P5_MC_ADDR:
1479 case MSR_IA32_P5_MC_TYPE:
1480 case MSR_IA32_MC0_CTL:
1481 case MSR_IA32_MCG_STATUS:
1482 case MSR_IA32_MCG_CAP:
1483 case MSR_IA32_MC0_MISC:
1484 case MSR_IA32_MC0_MISC+4:
1485 case MSR_IA32_MC0_MISC+8:
1486 case MSR_IA32_MC0_MISC+12:
1487 case MSR_IA32_MC0_MISC+16:
1488 case MSR_IA32_UCODE_REV:
1489 case MSR_IA32_PERF_STATUS:
1490 case MSR_IA32_EBL_CR_POWERON:
1491 /* MTRR registers */
1492 case 0xfe:
1493 case 0x200 ... 0x2ff:
1494 data = 0;
1495 break;
1496 case 0xcd: /* fsb frequency */
1497 data = 3;
1498 break;
1499 case MSR_IA32_APICBASE:
1500 data = vcpu->apic_base;
1501 break;
1502 case MSR_IA32_MISC_ENABLE:
1503 data = vcpu->ia32_misc_enable_msr;
1504 break;
1505 #ifdef CONFIG_X86_64
1506 case MSR_EFER:
1507 data = vcpu->shadow_efer;
1508 break;
1509 #endif
1510 default:
1511 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1512 return 1;
1514 *pdata = data;
1515 return 0;
1517 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1520 * Reads an msr value (of 'msr_index') into 'pdata'.
1521 * Returns 0 on success, non-0 otherwise.
1522 * Assumes vcpu_load() was already called.
1524 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1526 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1529 #ifdef CONFIG_X86_64
1531 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1533 if (efer & EFER_RESERVED_BITS) {
1534 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1535 efer);
1536 inject_gp(vcpu);
1537 return;
1540 if (is_paging(vcpu)
1541 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1542 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1543 inject_gp(vcpu);
1544 return;
1547 kvm_arch_ops->set_efer(vcpu, efer);
1549 efer &= ~EFER_LMA;
1550 efer |= vcpu->shadow_efer & EFER_LMA;
1552 vcpu->shadow_efer = efer;
1555 #endif
1557 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1559 switch (msr) {
1560 #ifdef CONFIG_X86_64
1561 case MSR_EFER:
1562 set_efer(vcpu, data);
1563 break;
1564 #endif
1565 case MSR_IA32_MC0_STATUS:
1566 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1567 __FUNCTION__, data);
1568 break;
1569 case MSR_IA32_MCG_STATUS:
1570 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1571 __FUNCTION__, data);
1572 break;
1573 case MSR_IA32_UCODE_REV:
1574 case MSR_IA32_UCODE_WRITE:
1575 case 0x200 ... 0x2ff: /* MTRRs */
1576 break;
1577 case MSR_IA32_APICBASE:
1578 vcpu->apic_base = data;
1579 break;
1580 case MSR_IA32_MISC_ENABLE:
1581 vcpu->ia32_misc_enable_msr = data;
1582 break;
1584 * This is the 'probe whether the host is KVM' logic:
1586 case MSR_KVM_API_MAGIC:
1587 return vcpu_register_para(vcpu, data);
1589 default:
1590 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1591 return 1;
1593 return 0;
1595 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1598 * Writes msr value into into the appropriate "register".
1599 * Returns 0 on success, non-0 otherwise.
1600 * Assumes vcpu_load() was already called.
1602 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1604 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1607 void kvm_resched(struct kvm_vcpu *vcpu)
1609 if (!need_resched())
1610 return;
1611 cond_resched();
1613 EXPORT_SYMBOL_GPL(kvm_resched);
1615 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1617 int i;
1618 u32 function;
1619 struct kvm_cpuid_entry *e, *best;
1621 kvm_arch_ops->cache_regs(vcpu);
1622 function = vcpu->regs[VCPU_REGS_RAX];
1623 vcpu->regs[VCPU_REGS_RAX] = 0;
1624 vcpu->regs[VCPU_REGS_RBX] = 0;
1625 vcpu->regs[VCPU_REGS_RCX] = 0;
1626 vcpu->regs[VCPU_REGS_RDX] = 0;
1627 best = NULL;
1628 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1629 e = &vcpu->cpuid_entries[i];
1630 if (e->function == function) {
1631 best = e;
1632 break;
1635 * Both basic or both extended?
1637 if (((e->function ^ function) & 0x80000000) == 0)
1638 if (!best || e->function > best->function)
1639 best = e;
1641 if (best) {
1642 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1643 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1644 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1645 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1647 kvm_arch_ops->decache_regs(vcpu);
1648 kvm_arch_ops->skip_emulated_instruction(vcpu);
1650 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1652 static int pio_copy_data(struct kvm_vcpu *vcpu)
1654 void *p = vcpu->pio_data;
1655 void *q;
1656 unsigned bytes;
1657 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1659 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1660 PAGE_KERNEL);
1661 if (!q) {
1662 free_pio_guest_pages(vcpu);
1663 return -ENOMEM;
1665 q += vcpu->pio.guest_page_offset;
1666 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1667 if (vcpu->pio.in)
1668 memcpy(q, p, bytes);
1669 else
1670 memcpy(p, q, bytes);
1671 q -= vcpu->pio.guest_page_offset;
1672 vunmap(q);
1673 free_pio_guest_pages(vcpu);
1674 return 0;
1677 static int complete_pio(struct kvm_vcpu *vcpu)
1679 struct kvm_pio_request *io = &vcpu->pio;
1680 long delta;
1681 int r;
1683 kvm_arch_ops->cache_regs(vcpu);
1685 if (!io->string) {
1686 if (io->in)
1687 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1688 io->size);
1689 } else {
1690 if (io->in) {
1691 r = pio_copy_data(vcpu);
1692 if (r) {
1693 kvm_arch_ops->cache_regs(vcpu);
1694 return r;
1698 delta = 1;
1699 if (io->rep) {
1700 delta *= io->cur_count;
1702 * The size of the register should really depend on
1703 * current address size.
1705 vcpu->regs[VCPU_REGS_RCX] -= delta;
1707 if (io->down)
1708 delta = -delta;
1709 delta *= io->size;
1710 if (io->in)
1711 vcpu->regs[VCPU_REGS_RDI] += delta;
1712 else
1713 vcpu->regs[VCPU_REGS_RSI] += delta;
1716 kvm_arch_ops->decache_regs(vcpu);
1718 io->count -= io->cur_count;
1719 io->cur_count = 0;
1721 if (!io->count)
1722 kvm_arch_ops->skip_emulated_instruction(vcpu);
1723 return 0;
1726 static void kernel_pio(struct kvm_io_device *pio_dev,
1727 struct kvm_vcpu *vcpu,
1728 void *pd)
1730 /* TODO: String I/O for in kernel device */
1732 if (vcpu->pio.in)
1733 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1734 vcpu->pio.size,
1735 pd);
1736 else
1737 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1738 vcpu->pio.size,
1739 pd);
1742 static void pio_string_write(struct kvm_io_device *pio_dev,
1743 struct kvm_vcpu *vcpu)
1745 struct kvm_pio_request *io = &vcpu->pio;
1746 void *pd = vcpu->pio_data;
1747 int i;
1749 for (i = 0; i < io->cur_count; i++) {
1750 kvm_iodevice_write(pio_dev, io->port,
1751 io->size,
1752 pd);
1753 pd += io->size;
1757 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1758 int size, unsigned long count, int string, int down,
1759 gva_t address, int rep, unsigned port)
1761 unsigned now, in_page;
1762 int i, ret = 0;
1763 int nr_pages = 1;
1764 struct page *page;
1765 struct kvm_io_device *pio_dev;
1767 vcpu->run->exit_reason = KVM_EXIT_IO;
1768 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1769 vcpu->run->io.size = size;
1770 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1771 vcpu->run->io.count = count;
1772 vcpu->run->io.port = port;
1773 vcpu->pio.count = count;
1774 vcpu->pio.cur_count = count;
1775 vcpu->pio.size = size;
1776 vcpu->pio.in = in;
1777 vcpu->pio.port = port;
1778 vcpu->pio.string = string;
1779 vcpu->pio.down = down;
1780 vcpu->pio.guest_page_offset = offset_in_page(address);
1781 vcpu->pio.rep = rep;
1783 pio_dev = vcpu_find_pio_dev(vcpu, port);
1784 if (!string) {
1785 kvm_arch_ops->cache_regs(vcpu);
1786 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1787 kvm_arch_ops->decache_regs(vcpu);
1788 if (pio_dev) {
1789 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1790 complete_pio(vcpu);
1791 return 1;
1793 return 0;
1796 if (!count) {
1797 kvm_arch_ops->skip_emulated_instruction(vcpu);
1798 return 1;
1801 now = min(count, PAGE_SIZE / size);
1803 if (!down)
1804 in_page = PAGE_SIZE - offset_in_page(address);
1805 else
1806 in_page = offset_in_page(address) + size;
1807 now = min(count, (unsigned long)in_page / size);
1808 if (!now) {
1810 * String I/O straddles page boundary. Pin two guest pages
1811 * so that we satisfy atomicity constraints. Do just one
1812 * transaction to avoid complexity.
1814 nr_pages = 2;
1815 now = 1;
1817 if (down) {
1819 * String I/O in reverse. Yuck. Kill the guest, fix later.
1821 printk(KERN_ERR "kvm: guest string pio down\n");
1822 inject_gp(vcpu);
1823 return 1;
1825 vcpu->run->io.count = now;
1826 vcpu->pio.cur_count = now;
1828 for (i = 0; i < nr_pages; ++i) {
1829 mutex_lock(&vcpu->kvm->lock);
1830 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1831 if (page)
1832 get_page(page);
1833 vcpu->pio.guest_pages[i] = page;
1834 mutex_unlock(&vcpu->kvm->lock);
1835 if (!page) {
1836 inject_gp(vcpu);
1837 free_pio_guest_pages(vcpu);
1838 return 1;
1842 if (!vcpu->pio.in) {
1843 /* string PIO write */
1844 ret = pio_copy_data(vcpu);
1845 if (ret >= 0 && pio_dev) {
1846 pio_string_write(pio_dev, vcpu);
1847 complete_pio(vcpu);
1848 if (vcpu->pio.count == 0)
1849 ret = 1;
1851 } else if (pio_dev)
1852 printk(KERN_ERR "no string pio read support yet, "
1853 "port %x size %d count %ld\n",
1854 port, size, count);
1856 return ret;
1858 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1860 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1862 int r;
1863 sigset_t sigsaved;
1865 vcpu_load(vcpu);
1867 if (vcpu->sigset_active)
1868 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1870 /* re-sync apic's tpr */
1871 vcpu->cr8 = kvm_run->cr8;
1873 if (vcpu->pio.cur_count) {
1874 r = complete_pio(vcpu);
1875 if (r)
1876 goto out;
1879 if (vcpu->mmio_needed) {
1880 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1881 vcpu->mmio_read_completed = 1;
1882 vcpu->mmio_needed = 0;
1883 r = emulate_instruction(vcpu, kvm_run,
1884 vcpu->mmio_fault_cr2, 0);
1885 if (r == EMULATE_DO_MMIO) {
1887 * Read-modify-write. Back to userspace.
1889 r = 0;
1890 goto out;
1894 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1895 kvm_arch_ops->cache_regs(vcpu);
1896 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1897 kvm_arch_ops->decache_regs(vcpu);
1900 r = kvm_arch_ops->run(vcpu, kvm_run);
1902 out:
1903 if (vcpu->sigset_active)
1904 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1906 vcpu_put(vcpu);
1907 return r;
1910 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1911 struct kvm_regs *regs)
1913 vcpu_load(vcpu);
1915 kvm_arch_ops->cache_regs(vcpu);
1917 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1918 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1919 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1920 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1921 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1922 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1923 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1924 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1925 #ifdef CONFIG_X86_64
1926 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1927 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1928 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1929 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1930 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1931 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1932 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1933 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1934 #endif
1936 regs->rip = vcpu->rip;
1937 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1940 * Don't leak debug flags in case they were set for guest debugging
1942 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1943 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1945 vcpu_put(vcpu);
1947 return 0;
1950 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1951 struct kvm_regs *regs)
1953 vcpu_load(vcpu);
1955 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1956 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1957 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1958 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1959 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1960 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1961 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1962 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1963 #ifdef CONFIG_X86_64
1964 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1965 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1966 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1967 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1968 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1969 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1970 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1971 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1972 #endif
1974 vcpu->rip = regs->rip;
1975 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1977 kvm_arch_ops->decache_regs(vcpu);
1979 vcpu_put(vcpu);
1981 return 0;
1984 static void get_segment(struct kvm_vcpu *vcpu,
1985 struct kvm_segment *var, int seg)
1987 return kvm_arch_ops->get_segment(vcpu, var, seg);
1990 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1991 struct kvm_sregs *sregs)
1993 struct descriptor_table dt;
1995 vcpu_load(vcpu);
1997 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1998 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1999 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2000 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2001 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2002 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2004 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2005 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2007 kvm_arch_ops->get_idt(vcpu, &dt);
2008 sregs->idt.limit = dt.limit;
2009 sregs->idt.base = dt.base;
2010 kvm_arch_ops->get_gdt(vcpu, &dt);
2011 sregs->gdt.limit = dt.limit;
2012 sregs->gdt.base = dt.base;
2014 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2015 sregs->cr0 = vcpu->cr0;
2016 sregs->cr2 = vcpu->cr2;
2017 sregs->cr3 = vcpu->cr3;
2018 sregs->cr4 = vcpu->cr4;
2019 sregs->cr8 = vcpu->cr8;
2020 sregs->efer = vcpu->shadow_efer;
2021 sregs->apic_base = vcpu->apic_base;
2023 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2024 sizeof sregs->interrupt_bitmap);
2026 vcpu_put(vcpu);
2028 return 0;
2031 static void set_segment(struct kvm_vcpu *vcpu,
2032 struct kvm_segment *var, int seg)
2034 return kvm_arch_ops->set_segment(vcpu, var, seg);
2037 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2038 struct kvm_sregs *sregs)
2040 int mmu_reset_needed = 0;
2041 int i;
2042 struct descriptor_table dt;
2044 vcpu_load(vcpu);
2046 dt.limit = sregs->idt.limit;
2047 dt.base = sregs->idt.base;
2048 kvm_arch_ops->set_idt(vcpu, &dt);
2049 dt.limit = sregs->gdt.limit;
2050 dt.base = sregs->gdt.base;
2051 kvm_arch_ops->set_gdt(vcpu, &dt);
2053 vcpu->cr2 = sregs->cr2;
2054 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2055 vcpu->cr3 = sregs->cr3;
2057 vcpu->cr8 = sregs->cr8;
2059 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2060 #ifdef CONFIG_X86_64
2061 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2062 #endif
2063 vcpu->apic_base = sregs->apic_base;
2065 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2067 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2068 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2070 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2071 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2072 if (!is_long_mode(vcpu) && is_pae(vcpu))
2073 load_pdptrs(vcpu, vcpu->cr3);
2075 if (mmu_reset_needed)
2076 kvm_mmu_reset_context(vcpu);
2078 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2079 sizeof vcpu->irq_pending);
2080 vcpu->irq_summary = 0;
2081 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2082 if (vcpu->irq_pending[i])
2083 __set_bit(i, &vcpu->irq_summary);
2085 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2086 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2087 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2088 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2089 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2090 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2092 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2093 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2095 vcpu_put(vcpu);
2097 return 0;
2101 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2102 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2104 * This list is modified at module load time to reflect the
2105 * capabilities of the host cpu.
2107 static u32 msrs_to_save[] = {
2108 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2109 MSR_K6_STAR,
2110 #ifdef CONFIG_X86_64
2111 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2112 #endif
2113 MSR_IA32_TIME_STAMP_COUNTER,
2116 static unsigned num_msrs_to_save;
2118 static u32 emulated_msrs[] = {
2119 MSR_IA32_MISC_ENABLE,
2122 static __init void kvm_init_msr_list(void)
2124 u32 dummy[2];
2125 unsigned i, j;
2127 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2128 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2129 continue;
2130 if (j < i)
2131 msrs_to_save[j] = msrs_to_save[i];
2132 j++;
2134 num_msrs_to_save = j;
2138 * Adapt set_msr() to msr_io()'s calling convention
2140 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2142 return kvm_set_msr(vcpu, index, *data);
2146 * Read or write a bunch of msrs. All parameters are kernel addresses.
2148 * @return number of msrs set successfully.
2150 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2151 struct kvm_msr_entry *entries,
2152 int (*do_msr)(struct kvm_vcpu *vcpu,
2153 unsigned index, u64 *data))
2155 int i;
2157 vcpu_load(vcpu);
2159 for (i = 0; i < msrs->nmsrs; ++i)
2160 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2161 break;
2163 vcpu_put(vcpu);
2165 return i;
2169 * Read or write a bunch of msrs. Parameters are user addresses.
2171 * @return number of msrs set successfully.
2173 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2174 int (*do_msr)(struct kvm_vcpu *vcpu,
2175 unsigned index, u64 *data),
2176 int writeback)
2178 struct kvm_msrs msrs;
2179 struct kvm_msr_entry *entries;
2180 int r, n;
2181 unsigned size;
2183 r = -EFAULT;
2184 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2185 goto out;
2187 r = -E2BIG;
2188 if (msrs.nmsrs >= MAX_IO_MSRS)
2189 goto out;
2191 r = -ENOMEM;
2192 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2193 entries = vmalloc(size);
2194 if (!entries)
2195 goto out;
2197 r = -EFAULT;
2198 if (copy_from_user(entries, user_msrs->entries, size))
2199 goto out_free;
2201 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2202 if (r < 0)
2203 goto out_free;
2205 r = -EFAULT;
2206 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2207 goto out_free;
2209 r = n;
2211 out_free:
2212 vfree(entries);
2213 out:
2214 return r;
2218 * Translate a guest virtual address to a guest physical address.
2220 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2221 struct kvm_translation *tr)
2223 unsigned long vaddr = tr->linear_address;
2224 gpa_t gpa;
2226 vcpu_load(vcpu);
2227 mutex_lock(&vcpu->kvm->lock);
2228 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2229 tr->physical_address = gpa;
2230 tr->valid = gpa != UNMAPPED_GVA;
2231 tr->writeable = 1;
2232 tr->usermode = 0;
2233 mutex_unlock(&vcpu->kvm->lock);
2234 vcpu_put(vcpu);
2236 return 0;
2239 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2240 struct kvm_interrupt *irq)
2242 if (irq->irq < 0 || irq->irq >= 256)
2243 return -EINVAL;
2244 vcpu_load(vcpu);
2246 set_bit(irq->irq, vcpu->irq_pending);
2247 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2249 vcpu_put(vcpu);
2251 return 0;
2254 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2255 struct kvm_debug_guest *dbg)
2257 int r;
2259 vcpu_load(vcpu);
2261 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2263 vcpu_put(vcpu);
2265 return r;
2268 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2269 unsigned long address,
2270 int *type)
2272 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2273 unsigned long pgoff;
2274 struct page *page;
2276 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2277 if (pgoff == 0)
2278 page = virt_to_page(vcpu->run);
2279 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2280 page = virt_to_page(vcpu->pio_data);
2281 else
2282 return NOPAGE_SIGBUS;
2283 get_page(page);
2284 if (type != NULL)
2285 *type = VM_FAULT_MINOR;
2287 return page;
2290 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2291 .nopage = kvm_vcpu_nopage,
2294 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2296 vma->vm_ops = &kvm_vcpu_vm_ops;
2297 return 0;
2300 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2302 struct kvm_vcpu *vcpu = filp->private_data;
2304 fput(vcpu->kvm->filp);
2305 return 0;
2308 static struct file_operations kvm_vcpu_fops = {
2309 .release = kvm_vcpu_release,
2310 .unlocked_ioctl = kvm_vcpu_ioctl,
2311 .compat_ioctl = kvm_vcpu_ioctl,
2312 .mmap = kvm_vcpu_mmap,
2316 * Allocates an inode for the vcpu.
2318 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2320 int fd, r;
2321 struct inode *inode;
2322 struct file *file;
2324 r = anon_inode_getfd(&fd, &inode, &file,
2325 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2326 if (r)
2327 return r;
2328 atomic_inc(&vcpu->kvm->filp->f_count);
2329 return fd;
2333 * Creates some virtual cpus. Good luck creating more than one.
2335 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2337 int r;
2338 struct kvm_vcpu *vcpu;
2340 if (!valid_vcpu(n))
2341 return -EINVAL;
2343 vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2344 if (IS_ERR(vcpu))
2345 return PTR_ERR(vcpu);
2347 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2349 /* We do fxsave: this must be aligned. */
2350 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2352 vcpu_load(vcpu);
2353 r = kvm_mmu_setup(vcpu);
2354 vcpu_put(vcpu);
2355 if (r < 0)
2356 goto free_vcpu;
2358 mutex_lock(&kvm->lock);
2359 if (kvm->vcpus[n]) {
2360 r = -EEXIST;
2361 mutex_unlock(&kvm->lock);
2362 goto mmu_unload;
2364 kvm->vcpus[n] = vcpu;
2365 mutex_unlock(&kvm->lock);
2367 /* Now it's all set up, let userspace reach it */
2368 r = create_vcpu_fd(vcpu);
2369 if (r < 0)
2370 goto unlink;
2371 return r;
2373 unlink:
2374 mutex_lock(&kvm->lock);
2375 kvm->vcpus[n] = NULL;
2376 mutex_unlock(&kvm->lock);
2378 mmu_unload:
2379 vcpu_load(vcpu);
2380 kvm_mmu_unload(vcpu);
2381 vcpu_put(vcpu);
2383 free_vcpu:
2384 kvm_arch_ops->vcpu_free(vcpu);
2385 return r;
2388 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2390 u64 efer;
2391 int i;
2392 struct kvm_cpuid_entry *e, *entry;
2394 rdmsrl(MSR_EFER, efer);
2395 entry = NULL;
2396 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2397 e = &vcpu->cpuid_entries[i];
2398 if (e->function == 0x80000001) {
2399 entry = e;
2400 break;
2403 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2404 entry->edx &= ~(1 << 20);
2405 printk(KERN_INFO "kvm: guest NX capability removed\n");
2409 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2410 struct kvm_cpuid *cpuid,
2411 struct kvm_cpuid_entry __user *entries)
2413 int r;
2415 r = -E2BIG;
2416 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2417 goto out;
2418 r = -EFAULT;
2419 if (copy_from_user(&vcpu->cpuid_entries, entries,
2420 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2421 goto out;
2422 vcpu->cpuid_nent = cpuid->nent;
2423 cpuid_fix_nx_cap(vcpu);
2424 return 0;
2426 out:
2427 return r;
2430 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2432 if (sigset) {
2433 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2434 vcpu->sigset_active = 1;
2435 vcpu->sigset = *sigset;
2436 } else
2437 vcpu->sigset_active = 0;
2438 return 0;
2442 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2443 * we have asm/x86/processor.h
2445 struct fxsave {
2446 u16 cwd;
2447 u16 swd;
2448 u16 twd;
2449 u16 fop;
2450 u64 rip;
2451 u64 rdp;
2452 u32 mxcsr;
2453 u32 mxcsr_mask;
2454 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2455 #ifdef CONFIG_X86_64
2456 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2457 #else
2458 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2459 #endif
2462 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2464 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2466 vcpu_load(vcpu);
2468 memcpy(fpu->fpr, fxsave->st_space, 128);
2469 fpu->fcw = fxsave->cwd;
2470 fpu->fsw = fxsave->swd;
2471 fpu->ftwx = fxsave->twd;
2472 fpu->last_opcode = fxsave->fop;
2473 fpu->last_ip = fxsave->rip;
2474 fpu->last_dp = fxsave->rdp;
2475 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2477 vcpu_put(vcpu);
2479 return 0;
2482 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2484 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2486 vcpu_load(vcpu);
2488 memcpy(fxsave->st_space, fpu->fpr, 128);
2489 fxsave->cwd = fpu->fcw;
2490 fxsave->swd = fpu->fsw;
2491 fxsave->twd = fpu->ftwx;
2492 fxsave->fop = fpu->last_opcode;
2493 fxsave->rip = fpu->last_ip;
2494 fxsave->rdp = fpu->last_dp;
2495 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2497 vcpu_put(vcpu);
2499 return 0;
2502 static long kvm_vcpu_ioctl(struct file *filp,
2503 unsigned int ioctl, unsigned long arg)
2505 struct kvm_vcpu *vcpu = filp->private_data;
2506 void __user *argp = (void __user *)arg;
2507 int r = -EINVAL;
2509 switch (ioctl) {
2510 case KVM_RUN:
2511 r = -EINVAL;
2512 if (arg)
2513 goto out;
2514 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2515 break;
2516 case KVM_GET_REGS: {
2517 struct kvm_regs kvm_regs;
2519 memset(&kvm_regs, 0, sizeof kvm_regs);
2520 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2521 if (r)
2522 goto out;
2523 r = -EFAULT;
2524 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2525 goto out;
2526 r = 0;
2527 break;
2529 case KVM_SET_REGS: {
2530 struct kvm_regs kvm_regs;
2532 r = -EFAULT;
2533 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2534 goto out;
2535 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2536 if (r)
2537 goto out;
2538 r = 0;
2539 break;
2541 case KVM_GET_SREGS: {
2542 struct kvm_sregs kvm_sregs;
2544 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2545 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2546 if (r)
2547 goto out;
2548 r = -EFAULT;
2549 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2550 goto out;
2551 r = 0;
2552 break;
2554 case KVM_SET_SREGS: {
2555 struct kvm_sregs kvm_sregs;
2557 r = -EFAULT;
2558 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2559 goto out;
2560 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2561 if (r)
2562 goto out;
2563 r = 0;
2564 break;
2566 case KVM_TRANSLATE: {
2567 struct kvm_translation tr;
2569 r = -EFAULT;
2570 if (copy_from_user(&tr, argp, sizeof tr))
2571 goto out;
2572 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2573 if (r)
2574 goto out;
2575 r = -EFAULT;
2576 if (copy_to_user(argp, &tr, sizeof tr))
2577 goto out;
2578 r = 0;
2579 break;
2581 case KVM_INTERRUPT: {
2582 struct kvm_interrupt irq;
2584 r = -EFAULT;
2585 if (copy_from_user(&irq, argp, sizeof irq))
2586 goto out;
2587 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2588 if (r)
2589 goto out;
2590 r = 0;
2591 break;
2593 case KVM_DEBUG_GUEST: {
2594 struct kvm_debug_guest dbg;
2596 r = -EFAULT;
2597 if (copy_from_user(&dbg, argp, sizeof dbg))
2598 goto out;
2599 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2600 if (r)
2601 goto out;
2602 r = 0;
2603 break;
2605 case KVM_GET_MSRS:
2606 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2607 break;
2608 case KVM_SET_MSRS:
2609 r = msr_io(vcpu, argp, do_set_msr, 0);
2610 break;
2611 case KVM_SET_CPUID: {
2612 struct kvm_cpuid __user *cpuid_arg = argp;
2613 struct kvm_cpuid cpuid;
2615 r = -EFAULT;
2616 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2617 goto out;
2618 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2619 if (r)
2620 goto out;
2621 break;
2623 case KVM_SET_SIGNAL_MASK: {
2624 struct kvm_signal_mask __user *sigmask_arg = argp;
2625 struct kvm_signal_mask kvm_sigmask;
2626 sigset_t sigset, *p;
2628 p = NULL;
2629 if (argp) {
2630 r = -EFAULT;
2631 if (copy_from_user(&kvm_sigmask, argp,
2632 sizeof kvm_sigmask))
2633 goto out;
2634 r = -EINVAL;
2635 if (kvm_sigmask.len != sizeof sigset)
2636 goto out;
2637 r = -EFAULT;
2638 if (copy_from_user(&sigset, sigmask_arg->sigset,
2639 sizeof sigset))
2640 goto out;
2641 p = &sigset;
2643 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2644 break;
2646 case KVM_GET_FPU: {
2647 struct kvm_fpu fpu;
2649 memset(&fpu, 0, sizeof fpu);
2650 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2651 if (r)
2652 goto out;
2653 r = -EFAULT;
2654 if (copy_to_user(argp, &fpu, sizeof fpu))
2655 goto out;
2656 r = 0;
2657 break;
2659 case KVM_SET_FPU: {
2660 struct kvm_fpu fpu;
2662 r = -EFAULT;
2663 if (copy_from_user(&fpu, argp, sizeof fpu))
2664 goto out;
2665 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2666 if (r)
2667 goto out;
2668 r = 0;
2669 break;
2671 default:
2674 out:
2675 return r;
2678 static long kvm_vm_ioctl(struct file *filp,
2679 unsigned int ioctl, unsigned long arg)
2681 struct kvm *kvm = filp->private_data;
2682 void __user *argp = (void __user *)arg;
2683 int r = -EINVAL;
2685 switch (ioctl) {
2686 case KVM_CREATE_VCPU:
2687 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2688 if (r < 0)
2689 goto out;
2690 break;
2691 case KVM_SET_MEMORY_REGION: {
2692 struct kvm_memory_region kvm_mem;
2694 r = -EFAULT;
2695 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2696 goto out;
2697 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2698 if (r)
2699 goto out;
2700 break;
2702 case KVM_GET_DIRTY_LOG: {
2703 struct kvm_dirty_log log;
2705 r = -EFAULT;
2706 if (copy_from_user(&log, argp, sizeof log))
2707 goto out;
2708 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2709 if (r)
2710 goto out;
2711 break;
2713 case KVM_SET_MEMORY_ALIAS: {
2714 struct kvm_memory_alias alias;
2716 r = -EFAULT;
2717 if (copy_from_user(&alias, argp, sizeof alias))
2718 goto out;
2719 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2720 if (r)
2721 goto out;
2722 break;
2724 default:
2727 out:
2728 return r;
2731 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2732 unsigned long address,
2733 int *type)
2735 struct kvm *kvm = vma->vm_file->private_data;
2736 unsigned long pgoff;
2737 struct page *page;
2739 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2740 page = gfn_to_page(kvm, pgoff);
2741 if (!page)
2742 return NOPAGE_SIGBUS;
2743 get_page(page);
2744 if (type != NULL)
2745 *type = VM_FAULT_MINOR;
2747 return page;
2750 static struct vm_operations_struct kvm_vm_vm_ops = {
2751 .nopage = kvm_vm_nopage,
2754 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2756 vma->vm_ops = &kvm_vm_vm_ops;
2757 return 0;
2760 static struct file_operations kvm_vm_fops = {
2761 .release = kvm_vm_release,
2762 .unlocked_ioctl = kvm_vm_ioctl,
2763 .compat_ioctl = kvm_vm_ioctl,
2764 .mmap = kvm_vm_mmap,
2767 static int kvm_dev_ioctl_create_vm(void)
2769 int fd, r;
2770 struct inode *inode;
2771 struct file *file;
2772 struct kvm *kvm;
2774 kvm = kvm_create_vm();
2775 if (IS_ERR(kvm))
2776 return PTR_ERR(kvm);
2777 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2778 if (r) {
2779 kvm_destroy_vm(kvm);
2780 return r;
2783 kvm->filp = file;
2785 return fd;
2788 static long kvm_dev_ioctl(struct file *filp,
2789 unsigned int ioctl, unsigned long arg)
2791 void __user *argp = (void __user *)arg;
2792 long r = -EINVAL;
2794 switch (ioctl) {
2795 case KVM_GET_API_VERSION:
2796 r = -EINVAL;
2797 if (arg)
2798 goto out;
2799 r = KVM_API_VERSION;
2800 break;
2801 case KVM_CREATE_VM:
2802 r = -EINVAL;
2803 if (arg)
2804 goto out;
2805 r = kvm_dev_ioctl_create_vm();
2806 break;
2807 case KVM_GET_MSR_INDEX_LIST: {
2808 struct kvm_msr_list __user *user_msr_list = argp;
2809 struct kvm_msr_list msr_list;
2810 unsigned n;
2812 r = -EFAULT;
2813 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2814 goto out;
2815 n = msr_list.nmsrs;
2816 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2817 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2818 goto out;
2819 r = -E2BIG;
2820 if (n < num_msrs_to_save)
2821 goto out;
2822 r = -EFAULT;
2823 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2824 num_msrs_to_save * sizeof(u32)))
2825 goto out;
2826 if (copy_to_user(user_msr_list->indices
2827 + num_msrs_to_save * sizeof(u32),
2828 &emulated_msrs,
2829 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2830 goto out;
2831 r = 0;
2832 break;
2834 case KVM_CHECK_EXTENSION:
2836 * No extensions defined at present.
2838 r = 0;
2839 break;
2840 case KVM_GET_VCPU_MMAP_SIZE:
2841 r = -EINVAL;
2842 if (arg)
2843 goto out;
2844 r = 2 * PAGE_SIZE;
2845 break;
2846 default:
2849 out:
2850 return r;
2853 static struct file_operations kvm_chardev_ops = {
2854 .open = kvm_dev_open,
2855 .release = kvm_dev_release,
2856 .unlocked_ioctl = kvm_dev_ioctl,
2857 .compat_ioctl = kvm_dev_ioctl,
2860 static struct miscdevice kvm_dev = {
2861 KVM_MINOR,
2862 "kvm",
2863 &kvm_chardev_ops,
2867 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2868 * cached on it.
2870 static void decache_vcpus_on_cpu(int cpu)
2872 struct kvm *vm;
2873 struct kvm_vcpu *vcpu;
2874 int i;
2876 spin_lock(&kvm_lock);
2877 list_for_each_entry(vm, &vm_list, vm_list)
2878 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2879 vcpu = vm->vcpus[i];
2880 if (!vcpu)
2881 continue;
2883 * If the vcpu is locked, then it is running on some
2884 * other cpu and therefore it is not cached on the
2885 * cpu in question.
2887 * If it's not locked, check the last cpu it executed
2888 * on.
2890 if (mutex_trylock(&vcpu->mutex)) {
2891 if (vcpu->cpu == cpu) {
2892 kvm_arch_ops->vcpu_decache(vcpu);
2893 vcpu->cpu = -1;
2895 mutex_unlock(&vcpu->mutex);
2898 spin_unlock(&kvm_lock);
2901 static void hardware_enable(void *junk)
2903 int cpu = raw_smp_processor_id();
2905 if (cpu_isset(cpu, cpus_hardware_enabled))
2906 return;
2907 cpu_set(cpu, cpus_hardware_enabled);
2908 kvm_arch_ops->hardware_enable(NULL);
2911 static void hardware_disable(void *junk)
2913 int cpu = raw_smp_processor_id();
2915 if (!cpu_isset(cpu, cpus_hardware_enabled))
2916 return;
2917 cpu_clear(cpu, cpus_hardware_enabled);
2918 decache_vcpus_on_cpu(cpu);
2919 kvm_arch_ops->hardware_disable(NULL);
2922 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2923 void *v)
2925 int cpu = (long)v;
2927 switch (val) {
2928 case CPU_DYING:
2929 case CPU_DYING_FROZEN:
2930 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2931 cpu);
2932 hardware_disable(NULL);
2933 break;
2934 case CPU_UP_CANCELED:
2935 case CPU_UP_CANCELED_FROZEN:
2936 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2937 cpu);
2938 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2939 break;
2940 case CPU_ONLINE:
2941 case CPU_ONLINE_FROZEN:
2942 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2943 cpu);
2944 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
2945 break;
2947 return NOTIFY_OK;
2950 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2951 void *v)
2953 if (val == SYS_RESTART) {
2955 * Some (well, at least mine) BIOSes hang on reboot if
2956 * in vmx root mode.
2958 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2959 on_each_cpu(hardware_disable, NULL, 0, 1);
2961 return NOTIFY_OK;
2964 static struct notifier_block kvm_reboot_notifier = {
2965 .notifier_call = kvm_reboot,
2966 .priority = 0,
2969 void kvm_io_bus_init(struct kvm_io_bus *bus)
2971 memset(bus, 0, sizeof(*bus));
2974 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2976 int i;
2978 for (i = 0; i < bus->dev_count; i++) {
2979 struct kvm_io_device *pos = bus->devs[i];
2981 kvm_iodevice_destructor(pos);
2985 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
2987 int i;
2989 for (i = 0; i < bus->dev_count; i++) {
2990 struct kvm_io_device *pos = bus->devs[i];
2992 if (pos->in_range(pos, addr))
2993 return pos;
2996 return NULL;
2999 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3001 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3003 bus->devs[bus->dev_count++] = dev;
3006 static struct notifier_block kvm_cpu_notifier = {
3007 .notifier_call = kvm_cpu_hotplug,
3008 .priority = 20, /* must be > scheduler priority */
3011 static u64 stat_get(void *_offset)
3013 unsigned offset = (long)_offset;
3014 u64 total = 0;
3015 struct kvm *kvm;
3016 struct kvm_vcpu *vcpu;
3017 int i;
3019 spin_lock(&kvm_lock);
3020 list_for_each_entry(kvm, &vm_list, vm_list)
3021 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3022 vcpu = kvm->vcpus[i];
3023 if (vcpu)
3024 total += *(u32 *)((void *)vcpu + offset);
3026 spin_unlock(&kvm_lock);
3027 return total;
3030 static void stat_set(void *offset, u64 val)
3034 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3036 static __init void kvm_init_debug(void)
3038 struct kvm_stats_debugfs_item *p;
3040 debugfs_dir = debugfs_create_dir("kvm", NULL);
3041 for (p = debugfs_entries; p->name; ++p)
3042 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3043 (void *)(long)p->offset,
3044 &stat_fops);
3047 static void kvm_exit_debug(void)
3049 struct kvm_stats_debugfs_item *p;
3051 for (p = debugfs_entries; p->name; ++p)
3052 debugfs_remove(p->dentry);
3053 debugfs_remove(debugfs_dir);
3056 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3058 hardware_disable(NULL);
3059 return 0;
3062 static int kvm_resume(struct sys_device *dev)
3064 hardware_enable(NULL);
3065 return 0;
3068 static struct sysdev_class kvm_sysdev_class = {
3069 set_kset_name("kvm"),
3070 .suspend = kvm_suspend,
3071 .resume = kvm_resume,
3074 static struct sys_device kvm_sysdev = {
3075 .id = 0,
3076 .cls = &kvm_sysdev_class,
3079 hpa_t bad_page_address;
3081 static inline
3082 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3084 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3087 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3089 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3091 kvm_arch_ops->vcpu_load(vcpu, cpu);
3094 static void kvm_sched_out(struct preempt_notifier *pn,
3095 struct task_struct *next)
3097 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3099 kvm_arch_ops->vcpu_put(vcpu);
3102 int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
3103 struct module *module)
3105 int r;
3106 int cpu;
3108 if (kvm_arch_ops) {
3109 printk(KERN_ERR "kvm: already loaded the other module\n");
3110 return -EEXIST;
3113 if (!ops->cpu_has_kvm_support()) {
3114 printk(KERN_ERR "kvm: no hardware support\n");
3115 return -EOPNOTSUPP;
3117 if (ops->disabled_by_bios()) {
3118 printk(KERN_ERR "kvm: disabled by bios\n");
3119 return -EOPNOTSUPP;
3122 kvm_arch_ops = ops;
3124 r = kvm_arch_ops->hardware_setup();
3125 if (r < 0)
3126 goto out;
3128 for_each_online_cpu(cpu) {
3129 smp_call_function_single(cpu,
3130 kvm_arch_ops->check_processor_compatibility,
3131 &r, 0, 1);
3132 if (r < 0)
3133 goto out_free_0;
3136 on_each_cpu(hardware_enable, NULL, 0, 1);
3137 r = register_cpu_notifier(&kvm_cpu_notifier);
3138 if (r)
3139 goto out_free_1;
3140 register_reboot_notifier(&kvm_reboot_notifier);
3142 r = sysdev_class_register(&kvm_sysdev_class);
3143 if (r)
3144 goto out_free_2;
3146 r = sysdev_register(&kvm_sysdev);
3147 if (r)
3148 goto out_free_3;
3150 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3151 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3152 __alignof__(struct kvm_vcpu), 0, 0);
3153 if (!kvm_vcpu_cache) {
3154 r = -ENOMEM;
3155 goto out_free_4;
3158 kvm_chardev_ops.owner = module;
3160 r = misc_register(&kvm_dev);
3161 if (r) {
3162 printk (KERN_ERR "kvm: misc device register failed\n");
3163 goto out_free;
3166 kvm_preempt_ops.sched_in = kvm_sched_in;
3167 kvm_preempt_ops.sched_out = kvm_sched_out;
3169 return r;
3171 out_free:
3172 kmem_cache_destroy(kvm_vcpu_cache);
3173 out_free_4:
3174 sysdev_unregister(&kvm_sysdev);
3175 out_free_3:
3176 sysdev_class_unregister(&kvm_sysdev_class);
3177 out_free_2:
3178 unregister_reboot_notifier(&kvm_reboot_notifier);
3179 unregister_cpu_notifier(&kvm_cpu_notifier);
3180 out_free_1:
3181 on_each_cpu(hardware_disable, NULL, 0, 1);
3182 out_free_0:
3183 kvm_arch_ops->hardware_unsetup();
3184 out:
3185 kvm_arch_ops = NULL;
3186 return r;
3189 void kvm_exit_arch(void)
3191 misc_deregister(&kvm_dev);
3192 kmem_cache_destroy(kvm_vcpu_cache);
3193 sysdev_unregister(&kvm_sysdev);
3194 sysdev_class_unregister(&kvm_sysdev_class);
3195 unregister_reboot_notifier(&kvm_reboot_notifier);
3196 unregister_cpu_notifier(&kvm_cpu_notifier);
3197 on_each_cpu(hardware_disable, NULL, 0, 1);
3198 kvm_arch_ops->hardware_unsetup();
3199 kvm_arch_ops = NULL;
3202 static __init int kvm_init(void)
3204 static struct page *bad_page;
3205 int r;
3207 r = kvm_mmu_module_init();
3208 if (r)
3209 goto out4;
3211 kvm_init_debug();
3213 kvm_init_msr_list();
3215 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3216 r = -ENOMEM;
3217 goto out;
3220 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3221 memset(__va(bad_page_address), 0, PAGE_SIZE);
3223 return 0;
3225 out:
3226 kvm_exit_debug();
3227 kvm_mmu_module_exit();
3228 out4:
3229 return r;
3232 static __exit void kvm_exit(void)
3234 kvm_exit_debug();
3235 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3236 kvm_mmu_module_exit();
3239 module_init(kvm_init)
3240 module_exit(kvm_exit)
3242 EXPORT_SYMBOL_GPL(kvm_init_arch);
3243 EXPORT_SYMBOL_GPL(kvm_exit_arch);