2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
40 #include <asm-generic/rtc.h>
43 struct rtc_device
*rtc
;
46 struct resource
*iomem
;
48 void (*wake_on
)(struct device
*);
49 void (*wake_off
)(struct device
*);
54 /* newer hardware extends the original register set */
60 /* both platform and pnp busses use negative numbers for invalid irqs */
61 #define is_valid_irq(n) ((n) >= 0)
63 static const char driver_name
[] = "rtc_cmos";
65 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
66 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
67 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
69 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
71 static inline int is_intr(u8 rtc_intr
)
73 if (!(rtc_intr
& RTC_IRQF
))
75 return rtc_intr
& RTC_IRQMASK
;
78 /*----------------------------------------------------------------*/
80 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
81 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
82 * used in a broken "legacy replacement" mode. The breakage includes
83 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
86 * When that broken mode is in use, platform glue provides a partial
87 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
88 * want to use HPET for anything except those IRQs though...
90 #ifdef CONFIG_HPET_EMULATE_RTC
94 static inline int is_hpet_enabled(void)
99 static inline int hpet_mask_rtc_irq_bit(unsigned long mask
)
104 static inline int hpet_set_rtc_irq_bit(unsigned long mask
)
110 hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
115 static inline int hpet_set_periodic_freq(unsigned long freq
)
120 static inline int hpet_rtc_dropped_irq(void)
125 static inline int hpet_rtc_timer_init(void)
130 extern irq_handler_t hpet_rtc_interrupt
;
132 static inline int hpet_register_irq_handler(irq_handler_t handler
)
137 static inline int hpet_unregister_irq_handler(irq_handler_t handler
)
144 /*----------------------------------------------------------------*/
148 /* Most newer x86 systems have two register banks, the first used
149 * for RTC and NVRAM and the second only for NVRAM. Caller must
150 * own rtc_lock ... and we won't worry about access during NMI.
152 #define can_bank2 true
154 static inline unsigned char cmos_read_bank2(unsigned char addr
)
156 outb(addr
, RTC_PORT(2));
157 return inb(RTC_PORT(3));
160 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
162 outb(addr
, RTC_PORT(2));
163 outb(val
, RTC_PORT(2));
168 #define can_bank2 false
170 static inline unsigned char cmos_read_bank2(unsigned char addr
)
175 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
181 /*----------------------------------------------------------------*/
183 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
185 /* REVISIT: if the clock has a "century" register, use
186 * that instead of the heuristic in get_rtc_time().
187 * That'll make Y3K compatility (year > 2070) easy!
193 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
195 /* REVISIT: set the "century" register if available
197 * NOTE: this ignores the issue whereby updating the seconds
198 * takes effect exactly 500ms after we write the register.
199 * (Also queueing and other delays before we get this far.)
201 return set_rtc_time(t
);
204 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
206 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
207 unsigned char rtc_control
;
209 if (!is_valid_irq(cmos
->irq
))
212 /* Basic alarms only support hour, minute, and seconds fields.
213 * Some also support day and month, for alarms up to a year in
216 t
->time
.tm_mday
= -1;
219 spin_lock_irq(&rtc_lock
);
220 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
221 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
222 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
224 if (cmos
->day_alrm
) {
225 /* ignore upper bits on readback per ACPI spec */
226 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
) & 0x3f;
227 if (!t
->time
.tm_mday
)
228 t
->time
.tm_mday
= -1;
230 if (cmos
->mon_alrm
) {
231 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
237 rtc_control
= CMOS_READ(RTC_CONTROL
);
238 spin_unlock_irq(&rtc_lock
);
240 /* REVISIT this assumes PC style usage: always BCD */
242 if (((unsigned)t
->time
.tm_sec
) < 0x60)
243 t
->time
.tm_sec
= bcd2bin(t
->time
.tm_sec
);
246 if (((unsigned)t
->time
.tm_min
) < 0x60)
247 t
->time
.tm_min
= bcd2bin(t
->time
.tm_min
);
250 if (((unsigned)t
->time
.tm_hour
) < 0x24)
251 t
->time
.tm_hour
= bcd2bin(t
->time
.tm_hour
);
253 t
->time
.tm_hour
= -1;
255 if (cmos
->day_alrm
) {
256 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
257 t
->time
.tm_mday
= bcd2bin(t
->time
.tm_mday
);
259 t
->time
.tm_mday
= -1;
260 if (cmos
->mon_alrm
) {
261 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
262 t
->time
.tm_mon
= bcd2bin(t
->time
.tm_mon
) - 1;
267 t
->time
.tm_year
= -1;
269 t
->enabled
= !!(rtc_control
& RTC_AIE
);
275 static void cmos_checkintr(struct cmos_rtc
*cmos
, unsigned char rtc_control
)
277 unsigned char rtc_intr
;
279 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
280 * allegedly some older rtcs need that to handle irqs properly
282 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
284 if (is_hpet_enabled())
287 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
288 if (is_intr(rtc_intr
))
289 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
292 static void cmos_irq_enable(struct cmos_rtc
*cmos
, unsigned char mask
)
294 unsigned char rtc_control
;
296 /* flush any pending IRQ status, notably for update irqs,
297 * before we enable new IRQs
299 rtc_control
= CMOS_READ(RTC_CONTROL
);
300 cmos_checkintr(cmos
, rtc_control
);
303 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
304 hpet_set_rtc_irq_bit(mask
);
306 cmos_checkintr(cmos
, rtc_control
);
309 static void cmos_irq_disable(struct cmos_rtc
*cmos
, unsigned char mask
)
311 unsigned char rtc_control
;
313 rtc_control
= CMOS_READ(RTC_CONTROL
);
314 rtc_control
&= ~mask
;
315 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
316 hpet_mask_rtc_irq_bit(mask
);
318 cmos_checkintr(cmos
, rtc_control
);
321 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
323 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
324 unsigned char mon
, mday
, hrs
, min
, sec
;
326 if (!is_valid_irq(cmos
->irq
))
329 /* REVISIT this assumes PC style usage: always BCD */
331 /* Writing 0xff means "don't care" or "match all". */
333 mon
= t
->time
.tm_mon
+ 1;
334 mon
= (mon
<= 12) ? bin2bcd(mon
) : 0xff;
336 mday
= t
->time
.tm_mday
;
337 mday
= (mday
>= 1 && mday
<= 31) ? bin2bcd(mday
) : 0xff;
339 hrs
= t
->time
.tm_hour
;
340 hrs
= (hrs
< 24) ? bin2bcd(hrs
) : 0xff;
342 min
= t
->time
.tm_min
;
343 min
= (min
< 60) ? bin2bcd(min
) : 0xff;
345 sec
= t
->time
.tm_sec
;
346 sec
= (sec
< 60) ? bin2bcd(sec
) : 0xff;
348 spin_lock_irq(&rtc_lock
);
350 /* next rtc irq must not be from previous alarm setting */
351 cmos_irq_disable(cmos
, RTC_AIE
);
354 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
355 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
356 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
358 /* the system may support an "enhanced" alarm */
359 if (cmos
->day_alrm
) {
360 CMOS_WRITE(mday
, cmos
->day_alrm
);
362 CMOS_WRITE(mon
, cmos
->mon_alrm
);
365 /* FIXME the HPET alarm glue currently ignores day_alrm
368 hpet_set_alarm_time(t
->time
.tm_hour
, t
->time
.tm_min
, t
->time
.tm_sec
);
371 cmos_irq_enable(cmos
, RTC_AIE
);
373 spin_unlock_irq(&rtc_lock
);
378 static int cmos_irq_set_freq(struct device
*dev
, int freq
)
380 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
384 if (!is_valid_irq(cmos
->irq
))
387 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
393 spin_lock_irqsave(&rtc_lock
, flags
);
394 hpet_set_periodic_freq(freq
);
395 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| f
, RTC_FREQ_SELECT
);
396 spin_unlock_irqrestore(&rtc_lock
, flags
);
401 static int cmos_irq_set_state(struct device
*dev
, int enabled
)
403 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
406 if (!is_valid_irq(cmos
->irq
))
409 spin_lock_irqsave(&rtc_lock
, flags
);
412 cmos_irq_enable(cmos
, RTC_PIE
);
414 cmos_irq_disable(cmos
, RTC_PIE
);
416 spin_unlock_irqrestore(&rtc_lock
, flags
);
420 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
423 cmos_rtc_ioctl(struct device
*dev
, unsigned int cmd
, unsigned long arg
)
425 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
433 if (!is_valid_irq(cmos
->irq
))
436 /* PIE ON/OFF is handled by cmos_irq_set_state() */
441 spin_lock_irqsave(&rtc_lock
, flags
);
443 case RTC_AIE_OFF
: /* alarm off */
444 cmos_irq_disable(cmos
, RTC_AIE
);
446 case RTC_AIE_ON
: /* alarm on */
447 cmos_irq_enable(cmos
, RTC_AIE
);
449 case RTC_UIE_OFF
: /* update off */
450 cmos_irq_disable(cmos
, RTC_UIE
);
452 case RTC_UIE_ON
: /* update on */
453 cmos_irq_enable(cmos
, RTC_UIE
);
456 spin_unlock_irqrestore(&rtc_lock
, flags
);
461 #define cmos_rtc_ioctl NULL
464 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
466 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
468 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
469 unsigned char rtc_control
, valid
;
471 spin_lock_irq(&rtc_lock
);
472 rtc_control
= CMOS_READ(RTC_CONTROL
);
473 valid
= CMOS_READ(RTC_VALID
);
474 spin_unlock_irq(&rtc_lock
);
476 /* NOTE: at least ICH6 reports battery status using a different
477 * (non-RTC) bit; and SQWE is ignored on many current systems.
479 return seq_printf(seq
,
480 "periodic_IRQ\t: %s\n"
482 "HPET_emulated\t: %s\n"
483 // "square_wave\t: %s\n"
486 "periodic_freq\t: %d\n"
487 "batt_status\t: %s\n",
488 (rtc_control
& RTC_PIE
) ? "yes" : "no",
489 (rtc_control
& RTC_UIE
) ? "yes" : "no",
490 is_hpet_enabled() ? "yes" : "no",
491 // (rtc_control & RTC_SQWE) ? "yes" : "no",
492 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
493 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
495 (valid
& RTC_VRT
) ? "okay" : "dead");
499 #define cmos_procfs NULL
502 static const struct rtc_class_ops cmos_rtc_ops
= {
503 .ioctl
= cmos_rtc_ioctl
,
504 .read_time
= cmos_read_time
,
505 .set_time
= cmos_set_time
,
506 .read_alarm
= cmos_read_alarm
,
507 .set_alarm
= cmos_set_alarm
,
509 .irq_set_freq
= cmos_irq_set_freq
,
510 .irq_set_state
= cmos_irq_set_state
,
513 /*----------------------------------------------------------------*/
516 * All these chips have at least 64 bytes of address space, shared by
517 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
518 * by boot firmware. Modern chips have 128 or 256 bytes.
521 #define NVRAM_OFFSET (RTC_REG_D + 1)
524 cmos_nvram_read(struct kobject
*kobj
, struct bin_attribute
*attr
,
525 char *buf
, loff_t off
, size_t count
)
529 if (unlikely(off
>= attr
->size
))
531 if (unlikely(off
< 0))
533 if ((off
+ count
) > attr
->size
)
534 count
= attr
->size
- off
;
537 spin_lock_irq(&rtc_lock
);
538 for (retval
= 0; count
; count
--, off
++, retval
++) {
540 *buf
++ = CMOS_READ(off
);
542 *buf
++ = cmos_read_bank2(off
);
546 spin_unlock_irq(&rtc_lock
);
552 cmos_nvram_write(struct kobject
*kobj
, struct bin_attribute
*attr
,
553 char *buf
, loff_t off
, size_t count
)
555 struct cmos_rtc
*cmos
;
558 cmos
= dev_get_drvdata(container_of(kobj
, struct device
, kobj
));
559 if (unlikely(off
>= attr
->size
))
561 if (unlikely(off
< 0))
563 if ((off
+ count
) > attr
->size
)
564 count
= attr
->size
- off
;
566 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
567 * checksum on part of the NVRAM data. That's currently ignored
568 * here. If userspace is smart enough to know what fields of
569 * NVRAM to update, updating checksums is also part of its job.
572 spin_lock_irq(&rtc_lock
);
573 for (retval
= 0; count
; count
--, off
++, retval
++) {
574 /* don't trash RTC registers */
575 if (off
== cmos
->day_alrm
576 || off
== cmos
->mon_alrm
577 || off
== cmos
->century
)
580 CMOS_WRITE(*buf
++, off
);
582 cmos_write_bank2(*buf
++, off
);
586 spin_unlock_irq(&rtc_lock
);
591 static struct bin_attribute nvram
= {
594 .mode
= S_IRUGO
| S_IWUSR
,
597 .read
= cmos_nvram_read
,
598 .write
= cmos_nvram_write
,
599 /* size gets set up later */
602 /*----------------------------------------------------------------*/
604 static struct cmos_rtc cmos_rtc
;
606 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
611 spin_lock(&rtc_lock
);
613 /* When the HPET interrupt handler calls us, the interrupt
614 * status is passed as arg1 instead of the irq number. But
615 * always clear irq status, even when HPET is in the way.
617 * Note that HPET and RTC are almost certainly out of phase,
618 * giving different IRQ status ...
620 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
621 rtc_control
= CMOS_READ(RTC_CONTROL
);
622 if (is_hpet_enabled())
623 irqstat
= (unsigned long)irq
& 0xF0;
624 irqstat
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
626 /* All Linux RTC alarms should be treated as if they were oneshot.
627 * Similar code may be needed in system wakeup paths, in case the
628 * alarm woke the system.
630 if (irqstat
& RTC_AIE
) {
631 rtc_control
&= ~RTC_AIE
;
632 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
633 hpet_mask_rtc_irq_bit(RTC_AIE
);
635 CMOS_READ(RTC_INTR_FLAGS
);
637 spin_unlock(&rtc_lock
);
639 if (is_intr(irqstat
)) {
640 rtc_update_irq(p
, 1, irqstat
);
650 #define INITSECTION __init
653 static int INITSECTION
654 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
656 struct cmos_rtc_board_info
*info
= dev
->platform_data
;
658 unsigned char rtc_control
;
659 unsigned address_space
;
661 /* there can be only one ... */
668 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
670 * REVISIT non-x86 systems may instead use memory space resources
671 * (needing ioremap etc), not i/o space resources like this ...
673 ports
= request_region(ports
->start
,
674 ports
->end
+ 1 - ports
->start
,
677 dev_dbg(dev
, "i/o registers already in use\n");
681 cmos_rtc
.irq
= rtc_irq
;
682 cmos_rtc
.iomem
= ports
;
684 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
685 * driver did, but don't reject unknown configs. Old hardware
686 * won't address 128 bytes. Newer chips have multiple banks,
687 * though they may not be listed in one I/O resource.
689 #if defined(CONFIG_ATARI)
691 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__sparc__)
694 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
697 if (can_bank2
&& ports
->end
> (ports
->start
+ 1))
700 /* For ACPI systems extension info comes from the FADT. On others,
701 * board specific setup provides it as appropriate. Systems where
702 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
703 * some almost-clones) can provide hooks to make that behave.
705 * Note that ACPI doesn't preclude putting these registers into
706 * "extended" areas of the chip, including some that we won't yet
707 * expect CMOS_READ and friends to handle.
710 if (info
->rtc_day_alarm
&& info
->rtc_day_alarm
< 128)
711 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
712 if (info
->rtc_mon_alarm
&& info
->rtc_mon_alarm
< 128)
713 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
714 if (info
->rtc_century
&& info
->rtc_century
< 128)
715 cmos_rtc
.century
= info
->rtc_century
;
717 if (info
->wake_on
&& info
->wake_off
) {
718 cmos_rtc
.wake_on
= info
->wake_on
;
719 cmos_rtc
.wake_off
= info
->wake_off
;
723 cmos_rtc
.rtc
= rtc_device_register(driver_name
, dev
,
724 &cmos_rtc_ops
, THIS_MODULE
);
725 if (IS_ERR(cmos_rtc
.rtc
)) {
726 retval
= PTR_ERR(cmos_rtc
.rtc
);
731 dev_set_drvdata(dev
, &cmos_rtc
);
732 rename_region(ports
, cmos_rtc
.rtc
->dev
.bus_id
);
734 spin_lock_irq(&rtc_lock
);
736 /* force periodic irq to CMOS reset default of 1024Hz;
738 * REVISIT it's been reported that at least one x86_64 ALI mobo
739 * doesn't use 32KHz here ... for portability we might need to
740 * do something about other clock frequencies.
742 cmos_rtc
.rtc
->irq_freq
= 1024;
743 hpet_set_periodic_freq(cmos_rtc
.rtc
->irq_freq
);
744 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
747 cmos_irq_disable(&cmos_rtc
, RTC_PIE
| RTC_AIE
| RTC_UIE
);
749 rtc_control
= CMOS_READ(RTC_CONTROL
);
751 spin_unlock_irq(&rtc_lock
);
753 /* FIXME teach the alarm code how to handle binary mode;
754 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
756 if (is_valid_irq(rtc_irq
) &&
757 (!(rtc_control
& RTC_24H
) || (rtc_control
& (RTC_DM_BINARY
)))) {
758 dev_dbg(dev
, "only 24-hr BCD mode supported\n");
763 if (is_valid_irq(rtc_irq
)) {
764 irq_handler_t rtc_cmos_int_handler
;
766 if (is_hpet_enabled()) {
769 rtc_cmos_int_handler
= hpet_rtc_interrupt
;
770 err
= hpet_register_irq_handler(cmos_interrupt
);
772 printk(KERN_WARNING
"hpet_register_irq_handler "
773 " failed in rtc_init().");
777 rtc_cmos_int_handler
= cmos_interrupt
;
779 retval
= request_irq(rtc_irq
, rtc_cmos_int_handler
,
780 IRQF_DISABLED
, cmos_rtc
.rtc
->dev
.bus_id
,
783 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
787 hpet_rtc_timer_init();
789 /* export at least the first block of NVRAM */
790 nvram
.size
= address_space
- NVRAM_OFFSET
;
791 retval
= sysfs_create_bin_file(&dev
->kobj
, &nvram
);
793 dev_dbg(dev
, "can't create nvram file? %d\n", retval
);
797 pr_info("%s: alarms up to one %s%s, %zd bytes nvram%s\n",
798 cmos_rtc
.rtc
->dev
.bus_id
,
799 is_valid_irq(rtc_irq
)
805 cmos_rtc
.century
? ", y3k" : "",
807 is_hpet_enabled() ? ", hpet irqs" : "");
812 if (is_valid_irq(rtc_irq
))
813 free_irq(rtc_irq
, cmos_rtc
.rtc
);
816 rtc_device_unregister(cmos_rtc
.rtc
);
818 release_region(ports
->start
, ports
->end
+ 1 - ports
->start
);
822 static void cmos_do_shutdown(void)
824 spin_lock_irq(&rtc_lock
);
825 cmos_irq_disable(&cmos_rtc
, RTC_IRQMASK
);
826 spin_unlock_irq(&rtc_lock
);
829 static void __exit
cmos_do_remove(struct device
*dev
)
831 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
832 struct resource
*ports
;
836 sysfs_remove_bin_file(&dev
->kobj
, &nvram
);
838 if (is_valid_irq(cmos
->irq
)) {
839 free_irq(cmos
->irq
, cmos
->rtc
);
840 hpet_unregister_irq_handler(cmos_interrupt
);
843 rtc_device_unregister(cmos
->rtc
);
847 release_region(ports
->start
, ports
->end
+ 1 - ports
->start
);
851 dev_set_drvdata(dev
, NULL
);
856 static int cmos_suspend(struct device
*dev
, pm_message_t mesg
)
858 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
861 /* only the alarm might be a wakeup event source */
862 spin_lock_irq(&rtc_lock
);
863 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
864 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
867 if (device_may_wakeup(dev
))
868 mask
= RTC_IRQMASK
& ~RTC_AIE
;
872 CMOS_WRITE(tmp
, RTC_CONTROL
);
873 hpet_mask_rtc_irq_bit(mask
);
875 cmos_checkintr(cmos
, tmp
);
877 spin_unlock_irq(&rtc_lock
);
880 cmos
->enabled_wake
= 1;
884 enable_irq_wake(cmos
->irq
);
887 pr_debug("%s: suspend%s, ctrl %02x\n",
888 cmos_rtc
.rtc
->dev
.bus_id
,
889 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
895 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
896 * after a detour through G3 "mechanical off", although the ACPI spec
897 * says wakeup should only work from G1/S4 "hibernate". To most users,
898 * distinctions between S4 and S5 are pointless. So when the hardware
899 * allows, don't draw that distinction.
901 static inline int cmos_poweroff(struct device
*dev
)
903 return cmos_suspend(dev
, PMSG_HIBERNATE
);
906 static int cmos_resume(struct device
*dev
)
908 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
909 unsigned char tmp
= cmos
->suspend_ctrl
;
911 /* re-enable any irqs previously active */
912 if (tmp
& RTC_IRQMASK
) {
915 if (cmos
->enabled_wake
) {
919 disable_irq_wake(cmos
->irq
);
920 cmos
->enabled_wake
= 0;
923 spin_lock_irq(&rtc_lock
);
925 CMOS_WRITE(tmp
, RTC_CONTROL
);
926 hpet_set_rtc_irq_bit(tmp
& RTC_IRQMASK
);
928 mask
= CMOS_READ(RTC_INTR_FLAGS
);
929 mask
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
930 if (!is_hpet_enabled() || !is_intr(mask
))
933 /* force one-shot behavior if HPET blocked
934 * the wake alarm's irq
936 rtc_update_irq(cmos
->rtc
, 1, mask
);
938 hpet_mask_rtc_irq_bit(RTC_AIE
);
939 } while (mask
& RTC_AIE
);
940 spin_unlock_irq(&rtc_lock
);
943 pr_debug("%s: resume, ctrl %02x\n",
944 cmos_rtc
.rtc
->dev
.bus_id
,
951 #define cmos_suspend NULL
952 #define cmos_resume NULL
954 static inline int cmos_poweroff(struct device
*dev
)
961 /*----------------------------------------------------------------*/
963 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
964 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
965 * probably list them in similar PNPBIOS tables; so PNP is more common.
967 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
968 * predate even PNPBIOS should set up platform_bus devices.
973 #include <linux/acpi.h>
976 static u32
rtc_handler(void *context
)
978 acpi_clear_event(ACPI_EVENT_RTC
);
979 acpi_disable_event(ACPI_EVENT_RTC
, 0);
980 return ACPI_INTERRUPT_HANDLED
;
983 static inline void rtc_wake_setup(void)
985 acpi_install_fixed_event_handler(ACPI_EVENT_RTC
, rtc_handler
, NULL
);
987 * After the RTC handler is installed, the Fixed_RTC event should
988 * be disabled. Only when the RTC alarm is set will it be enabled.
990 acpi_clear_event(ACPI_EVENT_RTC
);
991 acpi_disable_event(ACPI_EVENT_RTC
, 0);
994 static void rtc_wake_on(struct device
*dev
)
996 acpi_clear_event(ACPI_EVENT_RTC
);
997 acpi_enable_event(ACPI_EVENT_RTC
, 0);
1000 static void rtc_wake_off(struct device
*dev
)
1002 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1005 #define rtc_wake_setup() do{}while(0)
1006 #define rtc_wake_on NULL
1007 #define rtc_wake_off NULL
1010 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1011 * its device node and pass extra config data. This helps its driver use
1012 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1013 * that this board's RTC is wakeup-capable (per ACPI spec).
1015 static struct cmos_rtc_board_info acpi_rtc_info
;
1017 static void __devinit
1018 cmos_wake_setup(struct device
*dev
)
1024 acpi_rtc_info
.wake_on
= rtc_wake_on
;
1025 acpi_rtc_info
.wake_off
= rtc_wake_off
;
1027 /* workaround bug in some ACPI tables */
1028 if (acpi_gbl_FADT
.month_alarm
&& !acpi_gbl_FADT
.day_alarm
) {
1029 dev_dbg(dev
, "bogus FADT month_alarm (%d)\n",
1030 acpi_gbl_FADT
.month_alarm
);
1031 acpi_gbl_FADT
.month_alarm
= 0;
1034 acpi_rtc_info
.rtc_day_alarm
= acpi_gbl_FADT
.day_alarm
;
1035 acpi_rtc_info
.rtc_mon_alarm
= acpi_gbl_FADT
.month_alarm
;
1036 acpi_rtc_info
.rtc_century
= acpi_gbl_FADT
.century
;
1038 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1039 if (acpi_gbl_FADT
.flags
& ACPI_FADT_S4_RTC_WAKE
)
1040 dev_info(dev
, "RTC can wake from S4\n");
1042 dev
->platform_data
= &acpi_rtc_info
;
1044 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1045 device_init_wakeup(dev
, 1);
1050 static void __devinit
1051 cmos_wake_setup(struct device
*dev
)
1059 #include <linux/pnp.h>
1061 static int __devinit
1062 cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
1064 cmos_wake_setup(&pnp
->dev
);
1066 if (pnp_port_start(pnp
,0) == 0x70 && !pnp_irq_valid(pnp
,0))
1067 /* Some machines contain a PNP entry for the RTC, but
1068 * don't define the IRQ. It should always be safe to
1069 * hardcode it in these cases
1071 return cmos_do_probe(&pnp
->dev
,
1072 pnp_get_resource(pnp
, IORESOURCE_IO
, 0), 8);
1074 return cmos_do_probe(&pnp
->dev
,
1075 pnp_get_resource(pnp
, IORESOURCE_IO
, 0),
1079 static void __exit
cmos_pnp_remove(struct pnp_dev
*pnp
)
1081 cmos_do_remove(&pnp
->dev
);
1086 static int cmos_pnp_suspend(struct pnp_dev
*pnp
, pm_message_t mesg
)
1088 return cmos_suspend(&pnp
->dev
, mesg
);
1091 static int cmos_pnp_resume(struct pnp_dev
*pnp
)
1093 return cmos_resume(&pnp
->dev
);
1097 #define cmos_pnp_suspend NULL
1098 #define cmos_pnp_resume NULL
1101 static void cmos_pnp_shutdown(struct device
*pdev
)
1103 if (system_state
== SYSTEM_POWER_OFF
&& !cmos_poweroff(pdev
))
1109 static const struct pnp_device_id rtc_ids
[] = {
1110 { .id
= "PNP0b00", },
1111 { .id
= "PNP0b01", },
1112 { .id
= "PNP0b02", },
1115 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
1117 static struct pnp_driver cmos_pnp_driver
= {
1118 .name
= (char *) driver_name
,
1119 .id_table
= rtc_ids
,
1120 .probe
= cmos_pnp_probe
,
1121 .remove
= __exit_p(cmos_pnp_remove
),
1123 /* flag ensures resume() gets called, and stops syslog spam */
1124 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1125 .suspend
= cmos_pnp_suspend
,
1126 .resume
= cmos_pnp_resume
,
1128 .name
= (char *)driver_name
,
1129 .shutdown
= cmos_pnp_shutdown
,
1133 #endif /* CONFIG_PNP */
1135 /*----------------------------------------------------------------*/
1137 /* Platform setup should have set up an RTC device, when PNP is
1138 * unavailable ... this could happen even on (older) PCs.
1141 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
1143 cmos_wake_setup(&pdev
->dev
);
1144 return cmos_do_probe(&pdev
->dev
,
1145 platform_get_resource(pdev
, IORESOURCE_IO
, 0),
1146 platform_get_irq(pdev
, 0));
1149 static int __exit
cmos_platform_remove(struct platform_device
*pdev
)
1151 cmos_do_remove(&pdev
->dev
);
1155 static void cmos_platform_shutdown(struct platform_device
*pdev
)
1157 if (system_state
== SYSTEM_POWER_OFF
&& !cmos_poweroff(&pdev
->dev
))
1163 /* work with hotplug and coldplug */
1164 MODULE_ALIAS("platform:rtc_cmos");
1166 static struct platform_driver cmos_platform_driver
= {
1167 .remove
= __exit_p(cmos_platform_remove
),
1168 .shutdown
= cmos_platform_shutdown
,
1170 .name
= (char *) driver_name
,
1171 .suspend
= cmos_suspend
,
1172 .resume
= cmos_resume
,
1176 static int __init
cmos_init(void)
1181 pnp_register_driver(&cmos_pnp_driver
);
1185 retval
= platform_driver_probe(&cmos_platform_driver
,
1186 cmos_platform_probe
);
1192 pnp_unregister_driver(&cmos_pnp_driver
);
1196 module_init(cmos_init
);
1198 static void __exit
cmos_exit(void)
1201 pnp_unregister_driver(&cmos_pnp_driver
);
1203 platform_driver_unregister(&cmos_platform_driver
);
1205 module_exit(cmos_exit
);
1208 MODULE_AUTHOR("David Brownell");
1209 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1210 MODULE_LICENSE("GPL");