[PATCH] i386: switch_to(): misplaced parentheses
[linux-2.6/mini2440.git] / drivers / macintosh / therm_pm72.c
blobc1fe0b368f7624ff12653f0f3f87d85e571939b7
1 /*
2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
9 *
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
32 * safe enough ...
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
42 * implementation...
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
56 * History:
58 * Nov. 13, 2003 : 0.5
59 * - First release
61 * Nov. 14, 2003 : 0.6
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
64 * do much.
65 * - Move a bunch of definitions to .h file
67 * Nov. 18, 2003 : 0.7
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
72 * Dec. 18, 2003 : 0.8
73 * - Fix typo when reading back fan speed on 2 CPU machines
75 * Mar. 11, 2004 : 0.9
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
81 * pressure on i2c
83 * Oct. 20, 2004 : 1.1
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
85 * pumps when present
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
92 * Mar. 10, 2005 : 1.2
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
100 #include <linux/types.h>
101 #include <linux/module.h>
102 #include <linux/errno.h>
103 #include <linux/kernel.h>
104 #include <linux/delay.h>
105 #include <linux/sched.h>
106 #include <linux/slab.h>
107 #include <linux/init.h>
108 #include <linux/spinlock.h>
109 #include <linux/smp_lock.h>
110 #include <linux/wait.h>
111 #include <linux/reboot.h>
112 #include <linux/kmod.h>
113 #include <linux/i2c.h>
114 #include <asm/prom.h>
115 #include <asm/machdep.h>
116 #include <asm/io.h>
117 #include <asm/system.h>
118 #include <asm/sections.h>
119 #include <asm/of_device.h>
120 #include <asm/macio.h>
122 #include "therm_pm72.h"
124 #define VERSION "1.2b2"
126 #undef DEBUG
128 #ifdef DEBUG
129 #define DBG(args...) printk(args)
130 #else
131 #define DBG(args...) do { } while(0)
132 #endif
136 * Driver statics
139 static struct of_device * of_dev;
140 static struct i2c_adapter * u3_0;
141 static struct i2c_adapter * u3_1;
142 static struct i2c_adapter * k2;
143 static struct i2c_client * fcu;
144 static struct cpu_pid_state cpu_state[2];
145 static struct basckside_pid_params backside_params;
146 static struct backside_pid_state backside_state;
147 static struct drives_pid_state drives_state;
148 static struct dimm_pid_state dimms_state;
149 static int state;
150 static int cpu_count;
151 static int cpu_pid_type;
152 static pid_t ctrl_task;
153 static struct completion ctrl_complete;
154 static int critical_state;
155 static int rackmac;
156 static s32 dimm_output_clamp;
158 static DECLARE_MUTEX(driver_lock);
161 * We have 3 types of CPU PID control. One is "split" old style control
162 * for intake & exhaust fans, the other is "combined" control for both
163 * CPUs that also deals with the pumps when present. To be "compatible"
164 * with OS X at this point, we only use "COMBINED" on the machines that
165 * are identified as having the pumps (though that identification is at
166 * least dodgy). Ultimately, we could probably switch completely to this
167 * algorithm provided we hack it to deal with the UP case
169 #define CPU_PID_TYPE_SPLIT 0
170 #define CPU_PID_TYPE_COMBINED 1
171 #define CPU_PID_TYPE_RACKMAC 2
174 * This table describes all fans in the FCU. The "id" and "type" values
175 * are defaults valid for all earlier machines. Newer machines will
176 * eventually override the table content based on the device-tree
178 struct fcu_fan_table
180 char* loc; /* location code */
181 int type; /* 0 = rpm, 1 = pwm, 2 = pump */
182 int id; /* id or -1 */
185 #define FCU_FAN_RPM 0
186 #define FCU_FAN_PWM 1
188 #define FCU_FAN_ABSENT_ID -1
190 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
192 struct fcu_fan_table fcu_fans[] = {
193 [BACKSIDE_FAN_PWM_INDEX] = {
194 .loc = "BACKSIDE,SYS CTRLR FAN",
195 .type = FCU_FAN_PWM,
196 .id = BACKSIDE_FAN_PWM_DEFAULT_ID,
198 [DRIVES_FAN_RPM_INDEX] = {
199 .loc = "DRIVE BAY",
200 .type = FCU_FAN_RPM,
201 .id = DRIVES_FAN_RPM_DEFAULT_ID,
203 [SLOTS_FAN_PWM_INDEX] = {
204 .loc = "SLOT,PCI FAN",
205 .type = FCU_FAN_PWM,
206 .id = SLOTS_FAN_PWM_DEFAULT_ID,
208 [CPUA_INTAKE_FAN_RPM_INDEX] = {
209 .loc = "CPU A INTAKE",
210 .type = FCU_FAN_RPM,
211 .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
213 [CPUA_EXHAUST_FAN_RPM_INDEX] = {
214 .loc = "CPU A EXHAUST",
215 .type = FCU_FAN_RPM,
216 .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
218 [CPUB_INTAKE_FAN_RPM_INDEX] = {
219 .loc = "CPU B INTAKE",
220 .type = FCU_FAN_RPM,
221 .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
223 [CPUB_EXHAUST_FAN_RPM_INDEX] = {
224 .loc = "CPU B EXHAUST",
225 .type = FCU_FAN_RPM,
226 .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
228 /* pumps aren't present by default, have to be looked up in the
229 * device-tree
231 [CPUA_PUMP_RPM_INDEX] = {
232 .loc = "CPU A PUMP",
233 .type = FCU_FAN_RPM,
234 .id = FCU_FAN_ABSENT_ID,
236 [CPUB_PUMP_RPM_INDEX] = {
237 .loc = "CPU B PUMP",
238 .type = FCU_FAN_RPM,
239 .id = FCU_FAN_ABSENT_ID,
241 /* Xserve fans */
242 [CPU_A1_FAN_RPM_INDEX] = {
243 .loc = "CPU A 1",
244 .type = FCU_FAN_RPM,
245 .id = FCU_FAN_ABSENT_ID,
247 [CPU_A2_FAN_RPM_INDEX] = {
248 .loc = "CPU A 2",
249 .type = FCU_FAN_RPM,
250 .id = FCU_FAN_ABSENT_ID,
252 [CPU_A3_FAN_RPM_INDEX] = {
253 .loc = "CPU A 3",
254 .type = FCU_FAN_RPM,
255 .id = FCU_FAN_ABSENT_ID,
257 [CPU_B1_FAN_RPM_INDEX] = {
258 .loc = "CPU B 1",
259 .type = FCU_FAN_RPM,
260 .id = FCU_FAN_ABSENT_ID,
262 [CPU_B2_FAN_RPM_INDEX] = {
263 .loc = "CPU B 2",
264 .type = FCU_FAN_RPM,
265 .id = FCU_FAN_ABSENT_ID,
267 [CPU_B3_FAN_RPM_INDEX] = {
268 .loc = "CPU B 3",
269 .type = FCU_FAN_RPM,
270 .id = FCU_FAN_ABSENT_ID,
275 * i2c_driver structure to attach to the host i2c controller
278 static int therm_pm72_attach(struct i2c_adapter *adapter);
279 static int therm_pm72_detach(struct i2c_adapter *adapter);
281 static struct i2c_driver therm_pm72_driver =
283 .driver = {
284 .name = "therm_pm72",
286 .attach_adapter = therm_pm72_attach,
287 .detach_adapter = therm_pm72_detach,
291 * Utility function to create an i2c_client structure and
292 * attach it to one of u3 adapters
294 static struct i2c_client *attach_i2c_chip(int id, const char *name)
296 struct i2c_client *clt;
297 struct i2c_adapter *adap;
299 if (id & 0x200)
300 adap = k2;
301 else if (id & 0x100)
302 adap = u3_1;
303 else
304 adap = u3_0;
305 if (adap == NULL)
306 return NULL;
308 clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
309 if (clt == NULL)
310 return NULL;
311 memset(clt, 0, sizeof(struct i2c_client));
313 clt->addr = (id >> 1) & 0x7f;
314 clt->adapter = adap;
315 clt->driver = &therm_pm72_driver;
316 strncpy(clt->name, name, I2C_NAME_SIZE-1);
318 if (i2c_attach_client(clt)) {
319 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
320 kfree(clt);
321 return NULL;
323 return clt;
327 * Utility function to get rid of the i2c_client structure
328 * (will also detach from the adapter hopepfully)
330 static void detach_i2c_chip(struct i2c_client *clt)
332 i2c_detach_client(clt);
333 kfree(clt);
337 * Here are the i2c chip access wrappers
340 static void initialize_adc(struct cpu_pid_state *state)
342 int rc;
343 u8 buf[2];
345 /* Read ADC the configuration register and cache it. We
346 * also make sure Config2 contains proper values, I've seen
347 * cases where we got stale grabage in there, thus preventing
348 * proper reading of conv. values
351 /* Clear Config2 */
352 buf[0] = 5;
353 buf[1] = 0;
354 i2c_master_send(state->monitor, buf, 2);
356 /* Read & cache Config1 */
357 buf[0] = 1;
358 rc = i2c_master_send(state->monitor, buf, 1);
359 if (rc > 0) {
360 rc = i2c_master_recv(state->monitor, buf, 1);
361 if (rc > 0) {
362 state->adc_config = buf[0];
363 DBG("ADC config reg: %02x\n", state->adc_config);
364 /* Disable shutdown mode */
365 state->adc_config &= 0xfe;
366 buf[0] = 1;
367 buf[1] = state->adc_config;
368 rc = i2c_master_send(state->monitor, buf, 2);
371 if (rc <= 0)
372 printk(KERN_ERR "therm_pm72: Error reading ADC config"
373 " register !\n");
376 static int read_smon_adc(struct cpu_pid_state *state, int chan)
378 int rc, data, tries = 0;
379 u8 buf[2];
381 for (;;) {
382 /* Set channel */
383 buf[0] = 1;
384 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
385 rc = i2c_master_send(state->monitor, buf, 2);
386 if (rc <= 0)
387 goto error;
388 /* Wait for convertion */
389 msleep(1);
390 /* Switch to data register */
391 buf[0] = 4;
392 rc = i2c_master_send(state->monitor, buf, 1);
393 if (rc <= 0)
394 goto error;
395 /* Read result */
396 rc = i2c_master_recv(state->monitor, buf, 2);
397 if (rc < 0)
398 goto error;
399 data = ((u16)buf[0]) << 8 | (u16)buf[1];
400 return data >> 6;
401 error:
402 DBG("Error reading ADC, retrying...\n");
403 if (++tries > 10) {
404 printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
405 return -1;
407 msleep(10);
411 static int read_lm87_reg(struct i2c_client * chip, int reg)
413 int rc, tries = 0;
414 u8 buf;
416 for (;;) {
417 /* Set address */
418 buf = (u8)reg;
419 rc = i2c_master_send(chip, &buf, 1);
420 if (rc <= 0)
421 goto error;
422 rc = i2c_master_recv(chip, &buf, 1);
423 if (rc <= 0)
424 goto error;
425 return (int)buf;
426 error:
427 DBG("Error reading LM87, retrying...\n");
428 if (++tries > 10) {
429 printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
430 return -1;
432 msleep(10);
436 static int fan_read_reg(int reg, unsigned char *buf, int nb)
438 int tries, nr, nw;
440 buf[0] = reg;
441 tries = 0;
442 for (;;) {
443 nw = i2c_master_send(fcu, buf, 1);
444 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
445 break;
446 msleep(10);
447 ++tries;
449 if (nw <= 0) {
450 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
451 return -EIO;
453 tries = 0;
454 for (;;) {
455 nr = i2c_master_recv(fcu, buf, nb);
456 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
457 break;
458 msleep(10);
459 ++tries;
461 if (nr <= 0)
462 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
463 return nr;
466 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
468 int tries, nw;
469 unsigned char buf[16];
471 buf[0] = reg;
472 memcpy(buf+1, ptr, nb);
473 ++nb;
474 tries = 0;
475 for (;;) {
476 nw = i2c_master_send(fcu, buf, nb);
477 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
478 break;
479 msleep(10);
480 ++tries;
482 if (nw < 0)
483 printk(KERN_ERR "Failure writing to FCU: %d", nw);
484 return nw;
487 static int start_fcu(void)
489 unsigned char buf = 0xff;
490 int rc;
492 rc = fan_write_reg(0xe, &buf, 1);
493 if (rc < 0)
494 return -EIO;
495 rc = fan_write_reg(0x2e, &buf, 1);
496 if (rc < 0)
497 return -EIO;
498 return 0;
501 static int set_rpm_fan(int fan_index, int rpm)
503 unsigned char buf[2];
504 int rc, id;
506 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
507 return -EINVAL;
508 id = fcu_fans[fan_index].id;
509 if (id == FCU_FAN_ABSENT_ID)
510 return -EINVAL;
512 if (rpm < 300)
513 rpm = 300;
514 else if (rpm > 8191)
515 rpm = 8191;
516 buf[0] = rpm >> 5;
517 buf[1] = rpm << 3;
518 rc = fan_write_reg(0x10 + (id * 2), buf, 2);
519 if (rc < 0)
520 return -EIO;
521 return 0;
524 static int get_rpm_fan(int fan_index, int programmed)
526 unsigned char failure;
527 unsigned char active;
528 unsigned char buf[2];
529 int rc, id, reg_base;
531 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
532 return -EINVAL;
533 id = fcu_fans[fan_index].id;
534 if (id == FCU_FAN_ABSENT_ID)
535 return -EINVAL;
537 rc = fan_read_reg(0xb, &failure, 1);
538 if (rc != 1)
539 return -EIO;
540 if ((failure & (1 << id)) != 0)
541 return -EFAULT;
542 rc = fan_read_reg(0xd, &active, 1);
543 if (rc != 1)
544 return -EIO;
545 if ((active & (1 << id)) == 0)
546 return -ENXIO;
548 /* Programmed value or real current speed */
549 reg_base = programmed ? 0x10 : 0x11;
550 rc = fan_read_reg(reg_base + (id * 2), buf, 2);
551 if (rc != 2)
552 return -EIO;
554 return (buf[0] << 5) | buf[1] >> 3;
557 static int set_pwm_fan(int fan_index, int pwm)
559 unsigned char buf[2];
560 int rc, id;
562 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
563 return -EINVAL;
564 id = fcu_fans[fan_index].id;
565 if (id == FCU_FAN_ABSENT_ID)
566 return -EINVAL;
568 if (pwm < 10)
569 pwm = 10;
570 else if (pwm > 100)
571 pwm = 100;
572 pwm = (pwm * 2559) / 1000;
573 buf[0] = pwm;
574 rc = fan_write_reg(0x30 + (id * 2), buf, 1);
575 if (rc < 0)
576 return rc;
577 return 0;
580 static int get_pwm_fan(int fan_index)
582 unsigned char failure;
583 unsigned char active;
584 unsigned char buf[2];
585 int rc, id;
587 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
588 return -EINVAL;
589 id = fcu_fans[fan_index].id;
590 if (id == FCU_FAN_ABSENT_ID)
591 return -EINVAL;
593 rc = fan_read_reg(0x2b, &failure, 1);
594 if (rc != 1)
595 return -EIO;
596 if ((failure & (1 << id)) != 0)
597 return -EFAULT;
598 rc = fan_read_reg(0x2d, &active, 1);
599 if (rc != 1)
600 return -EIO;
601 if ((active & (1 << id)) == 0)
602 return -ENXIO;
604 /* Programmed value or real current speed */
605 rc = fan_read_reg(0x30 + (id * 2), buf, 1);
606 if (rc != 1)
607 return -EIO;
609 return (buf[0] * 1000) / 2559;
613 * Utility routine to read the CPU calibration EEPROM data
614 * from the device-tree
616 static int read_eeprom(int cpu, struct mpu_data *out)
618 struct device_node *np;
619 char nodename[64];
620 u8 *data;
621 int len;
623 /* prom.c routine for finding a node by path is a bit brain dead
624 * and requires exact @xxx unit numbers. This is a bit ugly but
625 * will work for these machines
627 sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
628 np = of_find_node_by_path(nodename);
629 if (np == NULL) {
630 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
631 return -ENODEV;
633 data = (u8 *)get_property(np, "cpuid", &len);
634 if (data == NULL) {
635 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
636 of_node_put(np);
637 return -ENODEV;
639 memcpy(out, data, sizeof(struct mpu_data));
640 of_node_put(np);
642 return 0;
645 static void fetch_cpu_pumps_minmax(void)
647 struct cpu_pid_state *state0 = &cpu_state[0];
648 struct cpu_pid_state *state1 = &cpu_state[1];
649 u16 pump_min = 0, pump_max = 0xffff;
650 u16 tmp[4];
652 /* Try to fetch pumps min/max infos from eeprom */
654 memcpy(&tmp, &state0->mpu.processor_part_num, 8);
655 if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
656 pump_min = max(pump_min, tmp[0]);
657 pump_max = min(pump_max, tmp[1]);
659 if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
660 pump_min = max(pump_min, tmp[2]);
661 pump_max = min(pump_max, tmp[3]);
664 /* Double check the values, this _IS_ needed as the EEPROM on
665 * some dual 2.5Ghz G5s seem, at least, to have both min & max
666 * same to the same value ... (grrrr)
668 if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
669 pump_min = CPU_PUMP_OUTPUT_MIN;
670 pump_max = CPU_PUMP_OUTPUT_MAX;
673 state0->pump_min = state1->pump_min = pump_min;
674 state0->pump_max = state1->pump_max = pump_max;
678 * Now, unfortunately, sysfs doesn't give us a nice void * we could
679 * pass around to the attribute functions, so we don't really have
680 * choice but implement a bunch of them...
682 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
683 * the input twice... I accept patches :)
685 #define BUILD_SHOW_FUNC_FIX(name, data) \
686 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
688 ssize_t r; \
689 down(&driver_lock); \
690 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
691 up(&driver_lock); \
692 return r; \
694 #define BUILD_SHOW_FUNC_INT(name, data) \
695 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
697 return sprintf(buf, "%d", data); \
700 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
701 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
702 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
703 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
704 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
706 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
707 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
708 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
709 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
710 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
712 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
713 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
715 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
716 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
718 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
720 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
721 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
722 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
723 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
724 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
726 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
727 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
728 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
729 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
730 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
732 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
733 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
735 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
736 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
738 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
741 * CPUs fans control loop
744 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
746 s32 ltemp, volts, amps;
747 int index, rc = 0;
749 /* Default (in case of error) */
750 *temp = state->cur_temp;
751 *power = state->cur_power;
753 if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
754 index = (state->index == 0) ?
755 CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
756 else
757 index = (state->index == 0) ?
758 CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
760 /* Read current fan status */
761 rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
762 if (rc < 0) {
763 /* XXX What do we do now ? Nothing for now, keep old value, but
764 * return error upstream
766 DBG(" cpu %d, fan reading error !\n", state->index);
767 } else {
768 state->rpm = rc;
769 DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
772 /* Get some sensor readings and scale it */
773 ltemp = read_smon_adc(state, 1);
774 if (ltemp == -1) {
775 /* XXX What do we do now ? */
776 state->overtemp++;
777 if (rc == 0)
778 rc = -EIO;
779 DBG(" cpu %d, temp reading error !\n", state->index);
780 } else {
781 /* Fixup temperature according to diode calibration
783 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
784 state->index,
785 ltemp, state->mpu.mdiode, state->mpu.bdiode);
786 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
787 state->last_temp = *temp;
788 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
792 * Read voltage & current and calculate power
794 volts = read_smon_adc(state, 3);
795 amps = read_smon_adc(state, 4);
797 /* Scale voltage and current raw sensor values according to fixed scales
798 * obtained in Darwin and calculate power from I and V
800 volts *= ADC_CPU_VOLTAGE_SCALE;
801 amps *= ADC_CPU_CURRENT_SCALE;
802 *power = (((u64)volts) * ((u64)amps)) >> 16;
803 state->voltage = volts;
804 state->current_a = amps;
805 state->last_power = *power;
807 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
808 state->index, FIX32TOPRINT(state->current_a),
809 FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
811 return 0;
814 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
816 s32 power_target, integral, derivative, proportional, adj_in_target, sval;
817 s64 integ_p, deriv_p, prop_p, sum;
818 int i;
820 /* Calculate power target value (could be done once for all)
821 * and convert to a 16.16 fp number
823 power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
824 DBG(" power target: %d.%03d, error: %d.%03d\n",
825 FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
827 /* Store temperature and power in history array */
828 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
829 state->temp_history[state->cur_temp] = temp;
830 state->cur_power = (state->cur_power + 1) % state->count_power;
831 state->power_history[state->cur_power] = power;
832 state->error_history[state->cur_power] = power_target - power;
834 /* If first loop, fill the history table */
835 if (state->first) {
836 for (i = 0; i < (state->count_power - 1); i++) {
837 state->cur_power = (state->cur_power + 1) % state->count_power;
838 state->power_history[state->cur_power] = power;
839 state->error_history[state->cur_power] = power_target - power;
841 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
842 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
843 state->temp_history[state->cur_temp] = temp;
845 state->first = 0;
848 /* Calculate the integral term normally based on the "power" values */
849 sum = 0;
850 integral = 0;
851 for (i = 0; i < state->count_power; i++)
852 integral += state->error_history[i];
853 integral *= CPU_PID_INTERVAL;
854 DBG(" integral: %08x\n", integral);
856 /* Calculate the adjusted input (sense value).
857 * G_r is 12.20
858 * integ is 16.16
859 * so the result is 28.36
861 * input target is mpu.ttarget, input max is mpu.tmax
863 integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
864 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
865 sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
866 adj_in_target = (state->mpu.ttarget << 16);
867 if (adj_in_target > sval)
868 adj_in_target = sval;
869 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
870 state->mpu.ttarget);
872 /* Calculate the derivative term */
873 derivative = state->temp_history[state->cur_temp] -
874 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
875 % CPU_TEMP_HISTORY_SIZE];
876 derivative /= CPU_PID_INTERVAL;
877 deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
878 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
879 sum += deriv_p;
881 /* Calculate the proportional term */
882 proportional = temp - adj_in_target;
883 prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
884 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
885 sum += prop_p;
887 /* Scale sum */
888 sum >>= 36;
890 DBG(" sum: %d\n", (int)sum);
891 state->rpm += (s32)sum;
894 static void do_monitor_cpu_combined(void)
896 struct cpu_pid_state *state0 = &cpu_state[0];
897 struct cpu_pid_state *state1 = &cpu_state[1];
898 s32 temp0, power0, temp1, power1;
899 s32 temp_combi, power_combi;
900 int rc, intake, pump;
902 rc = do_read_one_cpu_values(state0, &temp0, &power0);
903 if (rc < 0) {
904 /* XXX What do we do now ? */
906 state1->overtemp = 0;
907 rc = do_read_one_cpu_values(state1, &temp1, &power1);
908 if (rc < 0) {
909 /* XXX What do we do now ? */
911 if (state1->overtemp)
912 state0->overtemp++;
914 temp_combi = max(temp0, temp1);
915 power_combi = max(power0, power1);
917 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
918 * full blown immediately and try to trigger a shutdown
920 if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
921 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
922 temp_combi >> 16);
923 state0->overtemp += CPU_MAX_OVERTEMP / 4;
924 } else if (temp_combi > (state0->mpu.tmax << 16))
925 state0->overtemp++;
926 else
927 state0->overtemp = 0;
928 if (state0->overtemp >= CPU_MAX_OVERTEMP)
929 critical_state = 1;
930 if (state0->overtemp > 0) {
931 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
932 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
933 pump = state0->pump_max;
934 goto do_set_fans;
937 /* Do the PID */
938 do_cpu_pid(state0, temp_combi, power_combi);
940 /* Range check */
941 state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
942 state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
944 /* Calculate intake fan speed */
945 intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
946 intake = max(intake, (int)state0->mpu.rminn_intake_fan);
947 intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
948 state0->intake_rpm = intake;
950 /* Calculate pump speed */
951 pump = (state0->rpm * state0->pump_max) /
952 state0->mpu.rmaxn_exhaust_fan;
953 pump = min(pump, state0->pump_max);
954 pump = max(pump, state0->pump_min);
956 do_set_fans:
957 /* We copy values from state 0 to state 1 for /sysfs */
958 state1->rpm = state0->rpm;
959 state1->intake_rpm = state0->intake_rpm;
961 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
962 state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
964 /* We should check for errors, shouldn't we ? But then, what
965 * do we do once the error occurs ? For FCU notified fan
966 * failures (-EFAULT) we probably want to notify userland
967 * some way...
969 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
970 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
971 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
972 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
974 if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
975 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
976 if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
977 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
980 static void do_monitor_cpu_split(struct cpu_pid_state *state)
982 s32 temp, power;
983 int rc, intake;
985 /* Read current fan status */
986 rc = do_read_one_cpu_values(state, &temp, &power);
987 if (rc < 0) {
988 /* XXX What do we do now ? */
991 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
992 * full blown immediately and try to trigger a shutdown
994 if (temp >= ((state->mpu.tmax + 8) << 16)) {
995 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
996 " (%d) !\n",
997 state->index, temp >> 16);
998 state->overtemp += CPU_MAX_OVERTEMP / 4;
999 } else if (temp > (state->mpu.tmax << 16))
1000 state->overtemp++;
1001 else
1002 state->overtemp = 0;
1003 if (state->overtemp >= CPU_MAX_OVERTEMP)
1004 critical_state = 1;
1005 if (state->overtemp > 0) {
1006 state->rpm = state->mpu.rmaxn_exhaust_fan;
1007 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1008 goto do_set_fans;
1011 /* Do the PID */
1012 do_cpu_pid(state, temp, power);
1014 /* Range check */
1015 state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1016 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1018 /* Calculate intake fan */
1019 intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1020 intake = max(intake, (int)state->mpu.rminn_intake_fan);
1021 intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1022 state->intake_rpm = intake;
1024 do_set_fans:
1025 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1026 state->index, (int)state->rpm, intake, state->overtemp);
1028 /* We should check for errors, shouldn't we ? But then, what
1029 * do we do once the error occurs ? For FCU notified fan
1030 * failures (-EFAULT) we probably want to notify userland
1031 * some way...
1033 if (state->index == 0) {
1034 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1035 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1036 } else {
1037 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1038 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1042 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1044 s32 temp, power, fan_min;
1045 int rc;
1047 /* Read current fan status */
1048 rc = do_read_one_cpu_values(state, &temp, &power);
1049 if (rc < 0) {
1050 /* XXX What do we do now ? */
1053 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1054 * full blown immediately and try to trigger a shutdown
1056 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1057 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1058 " (%d) !\n",
1059 state->index, temp >> 16);
1060 state->overtemp = CPU_MAX_OVERTEMP / 4;
1061 } else if (temp > (state->mpu.tmax << 16))
1062 state->overtemp++;
1063 else
1064 state->overtemp = 0;
1065 if (state->overtemp >= CPU_MAX_OVERTEMP)
1066 critical_state = 1;
1067 if (state->overtemp > 0) {
1068 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1069 goto do_set_fans;
1072 /* Do the PID */
1073 do_cpu_pid(state, temp, power);
1075 /* Check clamp from dimms */
1076 fan_min = dimm_output_clamp;
1077 fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1079 state->rpm = max(state->rpm, (int)fan_min);
1080 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1081 state->intake_rpm = state->rpm;
1083 do_set_fans:
1084 DBG("** CPU %d RPM: %d overtemp: %d\n",
1085 state->index, (int)state->rpm, state->overtemp);
1087 /* We should check for errors, shouldn't we ? But then, what
1088 * do we do once the error occurs ? For FCU notified fan
1089 * failures (-EFAULT) we probably want to notify userland
1090 * some way...
1092 if (state->index == 0) {
1093 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1094 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1095 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1096 } else {
1097 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1098 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1099 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1104 * Initialize the state structure for one CPU control loop
1106 static int init_cpu_state(struct cpu_pid_state *state, int index)
1108 state->index = index;
1109 state->first = 1;
1110 state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1111 state->overtemp = 0;
1112 state->adc_config = 0x00;
1115 if (index == 0)
1116 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1117 else if (index == 1)
1118 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1119 if (state->monitor == NULL)
1120 goto fail;
1122 if (read_eeprom(index, &state->mpu))
1123 goto fail;
1125 state->count_power = state->mpu.tguardband;
1126 if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1127 printk(KERN_WARNING "Warning ! too many power history slots\n");
1128 state->count_power = CPU_POWER_HISTORY_SIZE;
1130 DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1132 if (index == 0) {
1133 device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1134 device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1135 device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1136 device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1137 device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1138 } else {
1139 device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1140 device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1141 device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1142 device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1143 device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1146 return 0;
1147 fail:
1148 if (state->monitor)
1149 detach_i2c_chip(state->monitor);
1150 state->monitor = NULL;
1152 return -ENODEV;
1156 * Dispose of the state data for one CPU control loop
1158 static void dispose_cpu_state(struct cpu_pid_state *state)
1160 if (state->monitor == NULL)
1161 return;
1163 if (state->index == 0) {
1164 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1165 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1166 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1167 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1168 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1169 } else {
1170 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1171 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1172 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1173 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1174 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1177 detach_i2c_chip(state->monitor);
1178 state->monitor = NULL;
1182 * Motherboard backside & U3 heatsink fan control loop
1184 static void do_monitor_backside(struct backside_pid_state *state)
1186 s32 temp, integral, derivative, fan_min;
1187 s64 integ_p, deriv_p, prop_p, sum;
1188 int i, rc;
1190 if (--state->ticks != 0)
1191 return;
1192 state->ticks = backside_params.interval;
1194 DBG("backside:\n");
1196 /* Check fan status */
1197 rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1198 if (rc < 0) {
1199 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1200 /* XXX What do we do now ? */
1201 } else
1202 state->pwm = rc;
1203 DBG(" current pwm: %d\n", state->pwm);
1205 /* Get some sensor readings */
1206 temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1207 state->last_temp = temp;
1208 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1209 FIX32TOPRINT(backside_params.input_target));
1211 /* Store temperature and error in history array */
1212 state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1213 state->sample_history[state->cur_sample] = temp;
1214 state->error_history[state->cur_sample] = temp - backside_params.input_target;
1216 /* If first loop, fill the history table */
1217 if (state->first) {
1218 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1219 state->cur_sample = (state->cur_sample + 1) %
1220 BACKSIDE_PID_HISTORY_SIZE;
1221 state->sample_history[state->cur_sample] = temp;
1222 state->error_history[state->cur_sample] =
1223 temp - backside_params.input_target;
1225 state->first = 0;
1228 /* Calculate the integral term */
1229 sum = 0;
1230 integral = 0;
1231 for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1232 integral += state->error_history[i];
1233 integral *= backside_params.interval;
1234 DBG(" integral: %08x\n", integral);
1235 integ_p = ((s64)backside_params.G_r) * (s64)integral;
1236 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1237 sum += integ_p;
1239 /* Calculate the derivative term */
1240 derivative = state->error_history[state->cur_sample] -
1241 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1242 % BACKSIDE_PID_HISTORY_SIZE];
1243 derivative /= backside_params.interval;
1244 deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1245 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1246 sum += deriv_p;
1248 /* Calculate the proportional term */
1249 prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1250 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1251 sum += prop_p;
1253 /* Scale sum */
1254 sum >>= 36;
1256 DBG(" sum: %d\n", (int)sum);
1257 if (backside_params.additive)
1258 state->pwm += (s32)sum;
1259 else
1260 state->pwm = sum;
1262 /* Check for clamp */
1263 fan_min = (dimm_output_clamp * 100) / 14000;
1264 fan_min = max(fan_min, backside_params.output_min);
1266 state->pwm = max(state->pwm, fan_min);
1267 state->pwm = min(state->pwm, backside_params.output_max);
1269 DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1270 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1274 * Initialize the state structure for the backside fan control loop
1276 static int init_backside_state(struct backside_pid_state *state)
1278 struct device_node *u3;
1279 int u3h = 1; /* conservative by default */
1282 * There are different PID params for machines with U3 and machines
1283 * with U3H, pick the right ones now
1285 u3 = of_find_node_by_path("/u3@0,f8000000");
1286 if (u3 != NULL) {
1287 u32 *vers = (u32 *)get_property(u3, "device-rev", NULL);
1288 if (vers)
1289 if (((*vers) & 0x3f) < 0x34)
1290 u3h = 0;
1291 of_node_put(u3);
1294 if (rackmac) {
1295 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1296 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1297 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1298 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1299 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1300 backside_params.G_r = BACKSIDE_PID_G_r;
1301 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1302 backside_params.additive = 0;
1303 } else if (u3h) {
1304 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1305 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1306 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1307 backside_params.interval = BACKSIDE_PID_INTERVAL;
1308 backside_params.G_p = BACKSIDE_PID_G_p;
1309 backside_params.G_r = BACKSIDE_PID_G_r;
1310 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1311 backside_params.additive = 1;
1312 } else {
1313 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1314 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1315 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1316 backside_params.interval = BACKSIDE_PID_INTERVAL;
1317 backside_params.G_p = BACKSIDE_PID_G_p;
1318 backside_params.G_r = BACKSIDE_PID_G_r;
1319 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1320 backside_params.additive = 1;
1323 state->ticks = 1;
1324 state->first = 1;
1325 state->pwm = 50;
1327 state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1328 if (state->monitor == NULL)
1329 return -ENODEV;
1331 device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1332 device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1334 return 0;
1338 * Dispose of the state data for the backside control loop
1340 static void dispose_backside_state(struct backside_pid_state *state)
1342 if (state->monitor == NULL)
1343 return;
1345 device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1346 device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1348 detach_i2c_chip(state->monitor);
1349 state->monitor = NULL;
1353 * Drives bay fan control loop
1355 static void do_monitor_drives(struct drives_pid_state *state)
1357 s32 temp, integral, derivative;
1358 s64 integ_p, deriv_p, prop_p, sum;
1359 int i, rc;
1361 if (--state->ticks != 0)
1362 return;
1363 state->ticks = DRIVES_PID_INTERVAL;
1365 DBG("drives:\n");
1367 /* Check fan status */
1368 rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1369 if (rc < 0) {
1370 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1371 /* XXX What do we do now ? */
1372 } else
1373 state->rpm = rc;
1374 DBG(" current rpm: %d\n", state->rpm);
1376 /* Get some sensor readings */
1377 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, DS1775_TEMP)) << 8;
1378 state->last_temp = temp;
1379 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1380 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1382 /* Store temperature and error in history array */
1383 state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1384 state->sample_history[state->cur_sample] = temp;
1385 state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1387 /* If first loop, fill the history table */
1388 if (state->first) {
1389 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1390 state->cur_sample = (state->cur_sample + 1) %
1391 DRIVES_PID_HISTORY_SIZE;
1392 state->sample_history[state->cur_sample] = temp;
1393 state->error_history[state->cur_sample] =
1394 temp - DRIVES_PID_INPUT_TARGET;
1396 state->first = 0;
1399 /* Calculate the integral term */
1400 sum = 0;
1401 integral = 0;
1402 for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1403 integral += state->error_history[i];
1404 integral *= DRIVES_PID_INTERVAL;
1405 DBG(" integral: %08x\n", integral);
1406 integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1407 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1408 sum += integ_p;
1410 /* Calculate the derivative term */
1411 derivative = state->error_history[state->cur_sample] -
1412 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1413 % DRIVES_PID_HISTORY_SIZE];
1414 derivative /= DRIVES_PID_INTERVAL;
1415 deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1416 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1417 sum += deriv_p;
1419 /* Calculate the proportional term */
1420 prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1421 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1422 sum += prop_p;
1424 /* Scale sum */
1425 sum >>= 36;
1427 DBG(" sum: %d\n", (int)sum);
1428 state->rpm += (s32)sum;
1430 state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1431 state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1433 DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1434 set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1438 * Initialize the state structure for the drives bay fan control loop
1440 static int init_drives_state(struct drives_pid_state *state)
1442 state->ticks = 1;
1443 state->first = 1;
1444 state->rpm = 1000;
1446 state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1447 if (state->monitor == NULL)
1448 return -ENODEV;
1450 device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1451 device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1453 return 0;
1457 * Dispose of the state data for the drives control loop
1459 static void dispose_drives_state(struct drives_pid_state *state)
1461 if (state->monitor == NULL)
1462 return;
1464 device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1465 device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1467 detach_i2c_chip(state->monitor);
1468 state->monitor = NULL;
1472 * DIMMs temp control loop
1474 static void do_monitor_dimms(struct dimm_pid_state *state)
1476 s32 temp, integral, derivative, fan_min;
1477 s64 integ_p, deriv_p, prop_p, sum;
1478 int i;
1480 if (--state->ticks != 0)
1481 return;
1482 state->ticks = DIMM_PID_INTERVAL;
1484 DBG("DIMM:\n");
1486 DBG(" current value: %d\n", state->output);
1488 temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1489 if (temp < 0)
1490 return;
1491 temp <<= 16;
1492 state->last_temp = temp;
1493 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1494 FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1496 /* Store temperature and error in history array */
1497 state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1498 state->sample_history[state->cur_sample] = temp;
1499 state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1501 /* If first loop, fill the history table */
1502 if (state->first) {
1503 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1504 state->cur_sample = (state->cur_sample + 1) %
1505 DIMM_PID_HISTORY_SIZE;
1506 state->sample_history[state->cur_sample] = temp;
1507 state->error_history[state->cur_sample] =
1508 temp - DIMM_PID_INPUT_TARGET;
1510 state->first = 0;
1513 /* Calculate the integral term */
1514 sum = 0;
1515 integral = 0;
1516 for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1517 integral += state->error_history[i];
1518 integral *= DIMM_PID_INTERVAL;
1519 DBG(" integral: %08x\n", integral);
1520 integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1521 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1522 sum += integ_p;
1524 /* Calculate the derivative term */
1525 derivative = state->error_history[state->cur_sample] -
1526 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1527 % DIMM_PID_HISTORY_SIZE];
1528 derivative /= DIMM_PID_INTERVAL;
1529 deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1530 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1531 sum += deriv_p;
1533 /* Calculate the proportional term */
1534 prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1535 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1536 sum += prop_p;
1538 /* Scale sum */
1539 sum >>= 36;
1541 DBG(" sum: %d\n", (int)sum);
1542 state->output = (s32)sum;
1543 state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1544 state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1545 dimm_output_clamp = state->output;
1547 DBG("** DIMM clamp value: %d\n", (int)state->output);
1549 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1550 fan_min = (dimm_output_clamp * 100) / 14000;
1551 fan_min = max(fan_min, backside_params.output_min);
1552 if (backside_state.pwm < fan_min) {
1553 backside_state.pwm = fan_min;
1554 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1555 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1560 * Initialize the state structure for the DIMM temp control loop
1562 static int init_dimms_state(struct dimm_pid_state *state)
1564 state->ticks = 1;
1565 state->first = 1;
1566 state->output = 4000;
1568 state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1569 if (state->monitor == NULL)
1570 return -ENODEV;
1572 device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
1574 return 0;
1578 * Dispose of the state data for the drives control loop
1580 static void dispose_dimms_state(struct dimm_pid_state *state)
1582 if (state->monitor == NULL)
1583 return;
1585 device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1587 detach_i2c_chip(state->monitor);
1588 state->monitor = NULL;
1591 static int call_critical_overtemp(void)
1593 char *argv[] = { critical_overtemp_path, NULL };
1594 static char *envp[] = { "HOME=/",
1595 "TERM=linux",
1596 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1597 NULL };
1599 return call_usermodehelper(critical_overtemp_path, argv, envp, 0);
1604 * Here's the kernel thread that calls the various control loops
1606 static int main_control_loop(void *x)
1608 daemonize("kfand");
1610 DBG("main_control_loop started\n");
1612 down(&driver_lock);
1614 if (start_fcu() < 0) {
1615 printk(KERN_ERR "kfand: failed to start FCU\n");
1616 up(&driver_lock);
1617 goto out;
1620 /* Set the PCI fan once for now */
1621 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1623 /* Initialize ADCs */
1624 initialize_adc(&cpu_state[0]);
1625 if (cpu_state[1].monitor != NULL)
1626 initialize_adc(&cpu_state[1]);
1628 up(&driver_lock);
1630 while (state == state_attached) {
1631 unsigned long elapsed, start;
1633 start = jiffies;
1635 down(&driver_lock);
1637 /* First, we always calculate the new DIMMs state on an Xserve */
1638 if (rackmac)
1639 do_monitor_dimms(&dimms_state);
1641 /* Then, the CPUs */
1642 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1643 do_monitor_cpu_combined();
1644 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1645 do_monitor_cpu_rack(&cpu_state[0]);
1646 if (cpu_state[1].monitor != NULL)
1647 do_monitor_cpu_rack(&cpu_state[1]);
1648 // better deal with UP
1649 } else {
1650 do_monitor_cpu_split(&cpu_state[0]);
1651 if (cpu_state[1].monitor != NULL)
1652 do_monitor_cpu_split(&cpu_state[1]);
1653 // better deal with UP
1655 /* Then, the rest */
1656 do_monitor_backside(&backside_state);
1657 if (!rackmac)
1658 do_monitor_drives(&drives_state);
1659 up(&driver_lock);
1661 if (critical_state == 1) {
1662 printk(KERN_WARNING "Temperature control detected a critical condition\n");
1663 printk(KERN_WARNING "Attempting to shut down...\n");
1664 if (call_critical_overtemp()) {
1665 printk(KERN_WARNING "Can't call %s, power off now!\n",
1666 critical_overtemp_path);
1667 machine_power_off();
1670 if (critical_state > 0)
1671 critical_state++;
1672 if (critical_state > MAX_CRITICAL_STATE) {
1673 printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1674 machine_power_off();
1677 // FIXME: Deal with signals
1678 elapsed = jiffies - start;
1679 if (elapsed < HZ)
1680 schedule_timeout_interruptible(HZ - elapsed);
1683 out:
1684 DBG("main_control_loop ended\n");
1686 ctrl_task = 0;
1687 complete_and_exit(&ctrl_complete, 0);
1691 * Dispose the control loops when tearing down
1693 static void dispose_control_loops(void)
1695 dispose_cpu_state(&cpu_state[0]);
1696 dispose_cpu_state(&cpu_state[1]);
1697 dispose_backside_state(&backside_state);
1698 dispose_drives_state(&drives_state);
1699 dispose_dimms_state(&dimms_state);
1703 * Create the control loops. U3-0 i2c bus is up, so we can now
1704 * get to the various sensors
1706 static int create_control_loops(void)
1708 struct device_node *np;
1710 /* Count CPUs from the device-tree, we don't care how many are
1711 * actually used by Linux
1713 cpu_count = 0;
1714 for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1715 cpu_count++;
1717 DBG("counted %d CPUs in the device-tree\n", cpu_count);
1719 /* Decide the type of PID algorithm to use based on the presence of
1720 * the pumps, though that may not be the best way, that is good enough
1721 * for now
1723 if (rackmac)
1724 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1725 else if (machine_is_compatible("PowerMac7,3")
1726 && (cpu_count > 1)
1727 && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1728 && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1729 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1730 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1731 } else
1732 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1734 /* Create control loops for everything. If any fail, everything
1735 * fails
1737 if (init_cpu_state(&cpu_state[0], 0))
1738 goto fail;
1739 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1740 fetch_cpu_pumps_minmax();
1742 if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1743 goto fail;
1744 if (init_backside_state(&backside_state))
1745 goto fail;
1746 if (rackmac && init_dimms_state(&dimms_state))
1747 goto fail;
1748 if (!rackmac && init_drives_state(&drives_state))
1749 goto fail;
1751 DBG("all control loops up !\n");
1753 return 0;
1755 fail:
1756 DBG("failure creating control loops, disposing\n");
1758 dispose_control_loops();
1760 return -ENODEV;
1764 * Start the control loops after everything is up, that is create
1765 * the thread that will make them run
1767 static void start_control_loops(void)
1769 init_completion(&ctrl_complete);
1771 ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1775 * Stop the control loops when tearing down
1777 static void stop_control_loops(void)
1779 if (ctrl_task != 0)
1780 wait_for_completion(&ctrl_complete);
1784 * Attach to the i2c FCU after detecting U3-1 bus
1786 static int attach_fcu(void)
1788 fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1789 if (fcu == NULL)
1790 return -ENODEV;
1792 DBG("FCU attached\n");
1794 return 0;
1798 * Detach from the i2c FCU when tearing down
1800 static void detach_fcu(void)
1802 if (fcu)
1803 detach_i2c_chip(fcu);
1804 fcu = NULL;
1808 * Attach to the i2c controller. We probe the various chips based
1809 * on the device-tree nodes and build everything for the driver to
1810 * run, we then kick the driver monitoring thread
1812 static int therm_pm72_attach(struct i2c_adapter *adapter)
1814 down(&driver_lock);
1816 /* Check state */
1817 if (state == state_detached)
1818 state = state_attaching;
1819 if (state != state_attaching) {
1820 up(&driver_lock);
1821 return 0;
1824 /* Check if we are looking for one of these */
1825 if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
1826 u3_0 = adapter;
1827 DBG("found U3-0\n");
1828 if (k2 || !rackmac)
1829 if (create_control_loops())
1830 u3_0 = NULL;
1831 } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
1832 u3_1 = adapter;
1833 DBG("found U3-1, attaching FCU\n");
1834 if (attach_fcu())
1835 u3_1 = NULL;
1836 } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
1837 k2 = adapter;
1838 DBG("Found K2\n");
1839 if (u3_0 && rackmac)
1840 if (create_control_loops())
1841 k2 = NULL;
1843 /* We got all we need, start control loops */
1844 if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
1845 DBG("everything up, starting control loops\n");
1846 state = state_attached;
1847 start_control_loops();
1849 up(&driver_lock);
1851 return 0;
1855 * Called on every adapter when the driver or the i2c controller
1856 * is going away.
1858 static int therm_pm72_detach(struct i2c_adapter *adapter)
1860 down(&driver_lock);
1862 if (state != state_detached)
1863 state = state_detaching;
1865 /* Stop control loops if any */
1866 DBG("stopping control loops\n");
1867 up(&driver_lock);
1868 stop_control_loops();
1869 down(&driver_lock);
1871 if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
1872 DBG("lost U3-0, disposing control loops\n");
1873 dispose_control_loops();
1874 u3_0 = NULL;
1877 if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
1878 DBG("lost U3-1, detaching FCU\n");
1879 detach_fcu();
1880 u3_1 = NULL;
1882 if (u3_0 == NULL && u3_1 == NULL)
1883 state = state_detached;
1885 up(&driver_lock);
1887 return 0;
1890 static int fan_check_loc_match(const char *loc, int fan)
1892 char tmp[64];
1893 char *c, *e;
1895 strlcpy(tmp, fcu_fans[fan].loc, 64);
1897 c = tmp;
1898 for (;;) {
1899 e = strchr(c, ',');
1900 if (e)
1901 *e = 0;
1902 if (strcmp(loc, c) == 0)
1903 return 1;
1904 if (e == NULL)
1905 break;
1906 c = e + 1;
1908 return 0;
1911 static void fcu_lookup_fans(struct device_node *fcu_node)
1913 struct device_node *np = NULL;
1914 int i;
1916 /* The table is filled by default with values that are suitable
1917 * for the old machines without device-tree informations. We scan
1918 * the device-tree and override those values with whatever is
1919 * there
1922 DBG("Looking up FCU controls in device-tree...\n");
1924 while ((np = of_get_next_child(fcu_node, np)) != NULL) {
1925 int type = -1;
1926 char *loc;
1927 u32 *reg;
1929 DBG(" control: %s, type: %s\n", np->name, np->type);
1931 /* Detect control type */
1932 if (!strcmp(np->type, "fan-rpm-control") ||
1933 !strcmp(np->type, "fan-rpm"))
1934 type = FCU_FAN_RPM;
1935 if (!strcmp(np->type, "fan-pwm-control") ||
1936 !strcmp(np->type, "fan-pwm"))
1937 type = FCU_FAN_PWM;
1938 /* Only care about fans for now */
1939 if (type == -1)
1940 continue;
1942 /* Lookup for a matching location */
1943 loc = (char *)get_property(np, "location", NULL);
1944 reg = (u32 *)get_property(np, "reg", NULL);
1945 if (loc == NULL || reg == NULL)
1946 continue;
1947 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
1949 for (i = 0; i < FCU_FAN_COUNT; i++) {
1950 int fan_id;
1952 if (!fan_check_loc_match(loc, i))
1953 continue;
1954 DBG(" location match, index: %d\n", i);
1955 fcu_fans[i].id = FCU_FAN_ABSENT_ID;
1956 if (type != fcu_fans[i].type) {
1957 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
1958 "in device-tree for %s\n", np->full_name);
1959 break;
1961 if (type == FCU_FAN_RPM)
1962 fan_id = ((*reg) - 0x10) / 2;
1963 else
1964 fan_id = ((*reg) - 0x30) / 2;
1965 if (fan_id > 7) {
1966 printk(KERN_WARNING "therm_pm72: Can't parse "
1967 "fan ID in device-tree for %s\n", np->full_name);
1968 break;
1970 DBG(" fan id -> %d, type -> %d\n", fan_id, type);
1971 fcu_fans[i].id = fan_id;
1975 /* Now dump the array */
1976 printk(KERN_INFO "Detected fan controls:\n");
1977 for (i = 0; i < FCU_FAN_COUNT; i++) {
1978 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
1979 continue;
1980 printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
1981 fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
1982 fcu_fans[i].id, fcu_fans[i].loc);
1986 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
1988 state = state_detached;
1990 /* Lookup the fans in the device tree */
1991 fcu_lookup_fans(dev->node);
1993 /* Add the driver */
1994 return i2c_add_driver(&therm_pm72_driver);
1997 static int fcu_of_remove(struct of_device* dev)
1999 i2c_del_driver(&therm_pm72_driver);
2001 return 0;
2004 static struct of_device_id fcu_match[] =
2007 .type = "fcu",
2012 static struct of_platform_driver fcu_of_platform_driver =
2014 .name = "temperature",
2015 .match_table = fcu_match,
2016 .probe = fcu_of_probe,
2017 .remove = fcu_of_remove
2021 * Check machine type, attach to i2c controller
2023 static int __init therm_pm72_init(void)
2025 struct device_node *np;
2027 rackmac = machine_is_compatible("RackMac3,1");
2029 if (!machine_is_compatible("PowerMac7,2") &&
2030 !machine_is_compatible("PowerMac7,3") &&
2031 !rackmac)
2032 return -ENODEV;
2034 printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2036 np = of_find_node_by_type(NULL, "fcu");
2037 if (np == NULL) {
2038 /* Some machines have strangely broken device-tree */
2039 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2040 if (np == NULL) {
2041 printk(KERN_ERR "Can't find FCU in device-tree !\n");
2042 return -ENODEV;
2045 of_dev = of_platform_device_create(np, "temperature", NULL);
2046 if (of_dev == NULL) {
2047 printk(KERN_ERR "Can't register FCU platform device !\n");
2048 return -ENODEV;
2051 of_register_driver(&fcu_of_platform_driver);
2053 return 0;
2056 static void __exit therm_pm72_exit(void)
2058 of_unregister_driver(&fcu_of_platform_driver);
2060 if (of_dev)
2061 of_device_unregister(of_dev);
2064 module_init(therm_pm72_init);
2065 module_exit(therm_pm72_exit);
2067 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2068 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2069 MODULE_LICENSE("GPL");