2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
13 #include <linux/swap.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/task_io_accounting_ops.h>
19 #include <linux/buffer_head.h> /* grr. try_to_release_page,
25 * do_invalidatepage - invalidate part or all of a page
26 * @page: the page which is affected
27 * @offset: the index of the truncation point
29 * do_invalidatepage() is called when all or part of the page has become
30 * invalidated by a truncate operation.
32 * do_invalidatepage() does not have to release all buffers, but it must
33 * ensure that no dirty buffer is left outside @offset and that no I/O
34 * is underway against any of the blocks which are outside the truncation
35 * point. Because the caller is about to free (and possibly reuse) those
38 void do_invalidatepage(struct page
*page
, unsigned long offset
)
40 void (*invalidatepage
)(struct page
*, unsigned long);
41 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
;
44 invalidatepage
= block_invalidatepage
;
47 (*invalidatepage
)(page
, offset
);
50 static inline void truncate_partial_page(struct page
*page
, unsigned partial
)
52 zero_user_segment(page
, partial
, PAGE_CACHE_SIZE
);
53 if (PagePrivate(page
))
54 do_invalidatepage(page
, partial
);
58 * This cancels just the dirty bit on the kernel page itself, it
59 * does NOT actually remove dirty bits on any mmap's that may be
60 * around. It also leaves the page tagged dirty, so any sync
61 * activity will still find it on the dirty lists, and in particular,
62 * clear_page_dirty_for_io() will still look at the dirty bits in
65 * Doing this should *normally* only ever be done when a page
66 * is truncated, and is not actually mapped anywhere at all. However,
67 * fs/buffer.c does this when it notices that somebody has cleaned
68 * out all the buffers on a page without actually doing it through
69 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
71 void cancel_dirty_page(struct page
*page
, unsigned int account_size
)
73 if (TestClearPageDirty(page
)) {
74 struct address_space
*mapping
= page
->mapping
;
75 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
76 dec_zone_page_state(page
, NR_FILE_DIRTY
);
77 dec_bdi_stat(mapping
->backing_dev_info
,
80 task_io_account_cancelled_write(account_size
);
84 EXPORT_SYMBOL(cancel_dirty_page
);
87 * If truncate cannot remove the fs-private metadata from the page, the page
88 * becomes orphaned. It will be left on the LRU and may even be mapped into
89 * user pagetables if we're racing with filemap_fault().
91 * We need to bale out if page->mapping is no longer equal to the original
92 * mapping. This happens a) when the VM reclaimed the page while we waited on
93 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
94 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
97 truncate_complete_page(struct address_space
*mapping
, struct page
*page
)
99 if (page
->mapping
!= mapping
)
102 if (PagePrivate(page
))
103 do_invalidatepage(page
, 0);
105 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
107 clear_page_mlock(page
);
108 remove_from_page_cache(page
);
109 ClearPageMappedToDisk(page
);
110 page_cache_release(page
); /* pagecache ref */
114 * This is for invalidate_mapping_pages(). That function can be called at
115 * any time, and is not supposed to throw away dirty pages. But pages can
116 * be marked dirty at any time too, so use remove_mapping which safely
117 * discards clean, unused pages.
119 * Returns non-zero if the page was successfully invalidated.
122 invalidate_complete_page(struct address_space
*mapping
, struct page
*page
)
126 if (page
->mapping
!= mapping
)
129 if (PagePrivate(page
) && !try_to_release_page(page
, 0))
132 clear_page_mlock(page
);
133 ret
= remove_mapping(mapping
, page
);
139 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
140 * @mapping: mapping to truncate
141 * @lstart: offset from which to truncate
142 * @lend: offset to which to truncate
144 * Truncate the page cache, removing the pages that are between
145 * specified offsets (and zeroing out partial page
146 * (if lstart is not page aligned)).
148 * Truncate takes two passes - the first pass is nonblocking. It will not
149 * block on page locks and it will not block on writeback. The second pass
150 * will wait. This is to prevent as much IO as possible in the affected region.
151 * The first pass will remove most pages, so the search cost of the second pass
154 * When looking at page->index outside the page lock we need to be careful to
155 * copy it into a local to avoid races (it could change at any time).
157 * We pass down the cache-hot hint to the page freeing code. Even if the
158 * mapping is large, it is probably the case that the final pages are the most
159 * recently touched, and freeing happens in ascending file offset order.
161 void truncate_inode_pages_range(struct address_space
*mapping
,
162 loff_t lstart
, loff_t lend
)
164 const pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
166 const unsigned partial
= lstart
& (PAGE_CACHE_SIZE
- 1);
171 if (mapping
->nrpages
== 0)
174 BUG_ON((lend
& (PAGE_CACHE_SIZE
- 1)) != (PAGE_CACHE_SIZE
- 1));
175 end
= (lend
>> PAGE_CACHE_SHIFT
);
177 pagevec_init(&pvec
, 0);
179 while (next
<= end
&&
180 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
181 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
182 struct page
*page
= pvec
.pages
[i
];
183 pgoff_t page_index
= page
->index
;
185 if (page_index
> end
) {
190 if (page_index
> next
)
193 if (!trylock_page(page
))
195 if (PageWriteback(page
)) {
199 if (page_mapped(page
)) {
200 unmap_mapping_range(mapping
,
201 (loff_t
)page_index
<<PAGE_CACHE_SHIFT
,
204 truncate_complete_page(mapping
, page
);
207 pagevec_release(&pvec
);
212 struct page
*page
= find_lock_page(mapping
, start
- 1);
214 wait_on_page_writeback(page
);
215 truncate_partial_page(page
, partial
);
217 page_cache_release(page
);
224 if (!pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
230 if (pvec
.pages
[0]->index
> end
) {
231 pagevec_release(&pvec
);
234 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
235 struct page
*page
= pvec
.pages
[i
];
237 if (page
->index
> end
)
240 wait_on_page_writeback(page
);
241 if (page_mapped(page
)) {
242 unmap_mapping_range(mapping
,
243 (loff_t
)page
->index
<<PAGE_CACHE_SHIFT
,
246 if (page
->index
> next
)
249 truncate_complete_page(mapping
, page
);
252 pagevec_release(&pvec
);
255 EXPORT_SYMBOL(truncate_inode_pages_range
);
258 * truncate_inode_pages - truncate *all* the pages from an offset
259 * @mapping: mapping to truncate
260 * @lstart: offset from which to truncate
262 * Called under (and serialised by) inode->i_mutex.
264 void truncate_inode_pages(struct address_space
*mapping
, loff_t lstart
)
266 truncate_inode_pages_range(mapping
, lstart
, (loff_t
)-1);
268 EXPORT_SYMBOL(truncate_inode_pages
);
270 unsigned long __invalidate_mapping_pages(struct address_space
*mapping
,
271 pgoff_t start
, pgoff_t end
, bool be_atomic
)
274 pgoff_t next
= start
;
275 unsigned long ret
= 0;
278 pagevec_init(&pvec
, 0);
279 while (next
<= end
&&
280 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
281 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
282 struct page
*page
= pvec
.pages
[i
];
286 lock_failed
= !trylock_page(page
);
289 * We really shouldn't be looking at the ->index of an
290 * unlocked page. But we're not allowed to lock these
291 * pages. So we rely upon nobody altering the ->index
292 * of this (pinned-by-us) page.
301 if (PageDirty(page
) || PageWriteback(page
))
303 if (page_mapped(page
))
305 ret
+= invalidate_complete_page(mapping
, page
);
311 pagevec_release(&pvec
);
312 if (likely(!be_atomic
))
319 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
320 * @mapping: the address_space which holds the pages to invalidate
321 * @start: the offset 'from' which to invalidate
322 * @end: the offset 'to' which to invalidate (inclusive)
324 * This function only removes the unlocked pages, if you want to
325 * remove all the pages of one inode, you must call truncate_inode_pages.
327 * invalidate_mapping_pages() will not block on IO activity. It will not
328 * invalidate pages which are dirty, locked, under writeback or mapped into
331 unsigned long invalidate_mapping_pages(struct address_space
*mapping
,
332 pgoff_t start
, pgoff_t end
)
334 return __invalidate_mapping_pages(mapping
, start
, end
, false);
336 EXPORT_SYMBOL(invalidate_mapping_pages
);
339 * This is like invalidate_complete_page(), except it ignores the page's
340 * refcount. We do this because invalidate_inode_pages2() needs stronger
341 * invalidation guarantees, and cannot afford to leave pages behind because
342 * shrink_page_list() has a temp ref on them, or because they're transiently
343 * sitting in the lru_cache_add() pagevecs.
346 invalidate_complete_page2(struct address_space
*mapping
, struct page
*page
)
348 if (page
->mapping
!= mapping
)
351 if (PagePrivate(page
) && !try_to_release_page(page
, GFP_KERNEL
))
354 spin_lock_irq(&mapping
->tree_lock
);
358 clear_page_mlock(page
);
359 BUG_ON(PagePrivate(page
));
360 __remove_from_page_cache(page
);
361 spin_unlock_irq(&mapping
->tree_lock
);
362 page_cache_release(page
); /* pagecache ref */
365 spin_unlock_irq(&mapping
->tree_lock
);
369 static int do_launder_page(struct address_space
*mapping
, struct page
*page
)
371 if (!PageDirty(page
))
373 if (page
->mapping
!= mapping
|| mapping
->a_ops
->launder_page
== NULL
)
375 return mapping
->a_ops
->launder_page(page
);
379 * invalidate_inode_pages2_range - remove range of pages from an address_space
380 * @mapping: the address_space
381 * @start: the page offset 'from' which to invalidate
382 * @end: the page offset 'to' which to invalidate (inclusive)
384 * Any pages which are found to be mapped into pagetables are unmapped prior to
387 * Returns -EBUSY if any pages could not be invalidated.
389 int invalidate_inode_pages2_range(struct address_space
*mapping
,
390 pgoff_t start
, pgoff_t end
)
397 int did_range_unmap
= 0;
400 pagevec_init(&pvec
, 0);
402 while (next
<= end
&& !wrapped
&&
403 pagevec_lookup(&pvec
, mapping
, next
,
404 min(end
- next
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1)) {
405 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
406 struct page
*page
= pvec
.pages
[i
];
410 if (page
->mapping
!= mapping
) {
414 page_index
= page
->index
;
415 next
= page_index
+ 1;
418 if (page_index
> end
) {
422 wait_on_page_writeback(page
);
423 if (page_mapped(page
)) {
424 if (!did_range_unmap
) {
426 * Zap the rest of the file in one hit.
428 unmap_mapping_range(mapping
,
429 (loff_t
)page_index
<<PAGE_CACHE_SHIFT
,
430 (loff_t
)(end
- page_index
+ 1)
438 unmap_mapping_range(mapping
,
439 (loff_t
)page_index
<<PAGE_CACHE_SHIFT
,
443 BUG_ON(page_mapped(page
));
444 ret2
= do_launder_page(mapping
, page
);
446 if (!invalidate_complete_page2(mapping
, page
))
453 pagevec_release(&pvec
);
458 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range
);
461 * invalidate_inode_pages2 - remove all pages from an address_space
462 * @mapping: the address_space
464 * Any pages which are found to be mapped into pagetables are unmapped prior to
467 * Returns -EIO if any pages could not be invalidated.
469 int invalidate_inode_pages2(struct address_space
*mapping
)
471 return invalidate_inode_pages2_range(mapping
, 0, -1);
473 EXPORT_SYMBOL_GPL(invalidate_inode_pages2
);