2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
33 * The slab_lock protects operations on the object of a particular
34 * slab and its metadata in the page struct. If the slab lock
35 * has been taken then no allocations nor frees can be performed
36 * on the objects in the slab nor can the slab be added or removed
37 * from the partial or full lists since this would mean modifying
38 * the page_struct of the slab.
40 * The list_lock protects the partial and full list on each node and
41 * the partial slab counter. If taken then no new slabs may be added or
42 * removed from the lists nor make the number of partial slabs be modified.
43 * (Note that the total number of slabs is an atomic value that may be
44 * modified without taking the list lock).
46 * The list_lock is a centralized lock and thus we avoid taking it as
47 * much as possible. As long as SLUB does not have to handle partial
48 * slabs, operations can continue without any centralized lock. F.e.
49 * allocating a long series of objects that fill up slabs does not require
52 * The lock order is sometimes inverted when we are trying to get a slab
53 * off a list. We take the list_lock and then look for a page on the list
54 * to use. While we do that objects in the slabs may be freed. We can
55 * only operate on the slab if we have also taken the slab_lock. So we use
56 * a slab_trylock() on the slab. If trylock was successful then no frees
57 * can occur anymore and we can use the slab for allocations etc. If the
58 * slab_trylock() does not succeed then frees are in progress in the slab and
59 * we must stay away from it for a while since we may cause a bouncing
60 * cacheline if we try to acquire the lock. So go onto the next slab.
61 * If all pages are busy then we may allocate a new slab instead of reusing
62 * a partial slab. A new slab has noone operating on it and thus there is
63 * no danger of cacheline contention.
65 * Interrupts are disabled during allocation and deallocation in order to
66 * make the slab allocator safe to use in the context of an irq. In addition
67 * interrupts are disabled to ensure that the processor does not change
68 * while handling per_cpu slabs, due to kernel preemption.
70 * SLUB assigns one slab for allocation to each processor.
71 * Allocations only occur from these slabs called cpu slabs.
73 * Slabs with free elements are kept on a partial list and during regular
74 * operations no list for full slabs is used. If an object in a full slab is
75 * freed then the slab will show up again on the partial lists.
76 * We track full slabs for debugging purposes though because otherwise we
77 * cannot scan all objects.
79 * Slabs are freed when they become empty. Teardown and setup is
80 * minimal so we rely on the page allocators per cpu caches for
81 * fast frees and allocs.
83 * Overloading of page flags that are otherwise used for LRU management.
85 * PageActive The slab is frozen and exempt from list processing.
86 * This means that the slab is dedicated to a purpose
87 * such as satisfying allocations for a specific
88 * processor. Objects may be freed in the slab while
89 * it is frozen but slab_free will then skip the usual
90 * list operations. It is up to the processor holding
91 * the slab to integrate the slab into the slab lists
92 * when the slab is no longer needed.
94 * One use of this flag is to mark slabs that are
95 * used for allocations. Then such a slab becomes a cpu
96 * slab. The cpu slab may be equipped with an additional
97 * freelist that allows lockless access to
98 * free objects in addition to the regular freelist
99 * that requires the slab lock.
101 * PageError Slab requires special handling due to debug
102 * options set. This moves slab handling out of
103 * the fast path and disables lockless freelists.
106 #ifdef CONFIG_SLUB_DEBUG
113 * Issues still to be resolved:
115 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
117 * - Variable sizing of the per node arrays
120 /* Enable to test recovery from slab corruption on boot */
121 #undef SLUB_RESILIENCY_TEST
124 * Mininum number of partial slabs. These will be left on the partial
125 * lists even if they are empty. kmem_cache_shrink may reclaim them.
127 #define MIN_PARTIAL 5
130 * Maximum number of desirable partial slabs.
131 * The existence of more partial slabs makes kmem_cache_shrink
132 * sort the partial list by the number of objects in the.
134 #define MAX_PARTIAL 10
136 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 SLAB_POISON | SLAB_STORE_USER)
140 * Set of flags that will prevent slab merging
142 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
143 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
148 #ifndef ARCH_KMALLOC_MINALIGN
149 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
152 #ifndef ARCH_SLAB_MINALIGN
153 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
156 /* Internal SLUB flags */
157 #define __OBJECT_POISON 0x80000000 /* Poison object */
158 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
160 static int kmem_size
= sizeof(struct kmem_cache
);
163 static struct notifier_block slab_notifier
;
167 DOWN
, /* No slab functionality available */
168 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
169 UP
, /* Everything works but does not show up in sysfs */
173 /* A list of all slab caches on the system */
174 static DECLARE_RWSEM(slub_lock
);
175 static LIST_HEAD(slab_caches
);
178 * Tracking user of a slab.
181 void *addr
; /* Called from address */
182 int cpu
; /* Was running on cpu */
183 int pid
; /* Pid context */
184 unsigned long when
; /* When did the operation occur */
187 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
189 #ifdef CONFIG_SLUB_DEBUG
190 static int sysfs_slab_add(struct kmem_cache
*);
191 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
192 static void sysfs_slab_remove(struct kmem_cache
*);
195 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
196 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
198 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
205 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
207 #ifdef CONFIG_SLUB_STATS
212 /********************************************************************
213 * Core slab cache functions
214 *******************************************************************/
216 int slab_is_available(void)
218 return slab_state
>= UP
;
221 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
224 return s
->node
[node
];
226 return &s
->local_node
;
230 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
233 return s
->cpu_slab
[cpu
];
239 /* Verify that a pointer has an address that is valid within a slab page */
240 static inline int check_valid_pointer(struct kmem_cache
*s
,
241 struct page
*page
, const void *object
)
248 base
= page_address(page
);
249 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
250 (object
- base
) % s
->size
) {
258 * Slow version of get and set free pointer.
260 * This version requires touching the cache lines of kmem_cache which
261 * we avoid to do in the fast alloc free paths. There we obtain the offset
262 * from the page struct.
264 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
266 return *(void **)(object
+ s
->offset
);
269 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
271 *(void **)(object
+ s
->offset
) = fp
;
274 /* Loop over all objects in a slab */
275 #define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
280 #define for_each_free_object(__p, __s, __free) \
281 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
286 return (p
- addr
) / s
->size
;
289 static inline struct kmem_cache_order_objects
oo_make(int order
,
292 struct kmem_cache_order_objects x
= {
293 (order
<< 16) + (PAGE_SIZE
<< order
) / size
299 static inline int oo_order(struct kmem_cache_order_objects x
)
304 static inline int oo_objects(struct kmem_cache_order_objects x
)
306 return x
.x
& ((1 << 16) - 1);
309 #ifdef CONFIG_SLUB_DEBUG
313 #ifdef CONFIG_SLUB_DEBUG_ON
314 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
316 static int slub_debug
;
319 static char *slub_debug_slabs
;
324 static void print_section(char *text
, u8
*addr
, unsigned int length
)
332 for (i
= 0; i
< length
; i
++) {
334 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
337 printk(KERN_CONT
" %02x", addr
[i
]);
339 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
341 printk(KERN_CONT
" %s\n", ascii
);
348 printk(KERN_CONT
" ");
352 printk(KERN_CONT
" %s\n", ascii
);
356 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
357 enum track_item alloc
)
362 p
= object
+ s
->offset
+ sizeof(void *);
364 p
= object
+ s
->inuse
;
369 static void set_track(struct kmem_cache
*s
, void *object
,
370 enum track_item alloc
, void *addr
)
375 p
= object
+ s
->offset
+ sizeof(void *);
377 p
= object
+ s
->inuse
;
382 p
->cpu
= smp_processor_id();
383 p
->pid
= current
->pid
;
386 memset(p
, 0, sizeof(struct track
));
389 static void init_tracking(struct kmem_cache
*s
, void *object
)
391 if (!(s
->flags
& SLAB_STORE_USER
))
394 set_track(s
, object
, TRACK_FREE
, NULL
);
395 set_track(s
, object
, TRACK_ALLOC
, NULL
);
398 static void print_track(const char *s
, struct track
*t
)
403 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
404 s
, t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
407 static void print_tracking(struct kmem_cache
*s
, void *object
)
409 if (!(s
->flags
& SLAB_STORE_USER
))
412 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
413 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
416 static void print_page_info(struct page
*page
)
418 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
419 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
423 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
429 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
431 printk(KERN_ERR
"========================================"
432 "=====================================\n");
433 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
434 printk(KERN_ERR
"----------------------------------------"
435 "-------------------------------------\n\n");
438 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
444 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
446 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
449 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
451 unsigned int off
; /* Offset of last byte */
452 u8
*addr
= page_address(page
);
454 print_tracking(s
, p
);
456 print_page_info(page
);
458 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
459 p
, p
- addr
, get_freepointer(s
, p
));
462 print_section("Bytes b4", p
- 16, 16);
464 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
466 if (s
->flags
& SLAB_RED_ZONE
)
467 print_section("Redzone", p
+ s
->objsize
,
468 s
->inuse
- s
->objsize
);
471 off
= s
->offset
+ sizeof(void *);
475 if (s
->flags
& SLAB_STORE_USER
)
476 off
+= 2 * sizeof(struct track
);
479 /* Beginning of the filler is the free pointer */
480 print_section("Padding", p
+ off
, s
->size
- off
);
485 static void object_err(struct kmem_cache
*s
, struct page
*page
,
486 u8
*object
, char *reason
)
488 slab_bug(s
, "%s", reason
);
489 print_trailer(s
, page
, object
);
492 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
498 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
500 slab_bug(s
, "%s", buf
);
501 print_page_info(page
);
505 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
509 if (s
->flags
& __OBJECT_POISON
) {
510 memset(p
, POISON_FREE
, s
->objsize
- 1);
511 p
[s
->objsize
- 1] = POISON_END
;
514 if (s
->flags
& SLAB_RED_ZONE
)
515 memset(p
+ s
->objsize
,
516 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
517 s
->inuse
- s
->objsize
);
520 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
523 if (*start
!= (u8
)value
)
531 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
532 void *from
, void *to
)
534 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
535 memset(from
, data
, to
- from
);
538 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
539 u8
*object
, char *what
,
540 u8
*start
, unsigned int value
, unsigned int bytes
)
545 fault
= check_bytes(start
, value
, bytes
);
550 while (end
> fault
&& end
[-1] == value
)
553 slab_bug(s
, "%s overwritten", what
);
554 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
555 fault
, end
- 1, fault
[0], value
);
556 print_trailer(s
, page
, object
);
558 restore_bytes(s
, what
, value
, fault
, end
);
566 * Bytes of the object to be managed.
567 * If the freepointer may overlay the object then the free
568 * pointer is the first word of the object.
570 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
573 * object + s->objsize
574 * Padding to reach word boundary. This is also used for Redzoning.
575 * Padding is extended by another word if Redzoning is enabled and
578 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
579 * 0xcc (RED_ACTIVE) for objects in use.
582 * Meta data starts here.
584 * A. Free pointer (if we cannot overwrite object on free)
585 * B. Tracking data for SLAB_STORE_USER
586 * C. Padding to reach required alignment boundary or at mininum
587 * one word if debugging is on to be able to detect writes
588 * before the word boundary.
590 * Padding is done using 0x5a (POISON_INUSE)
593 * Nothing is used beyond s->size.
595 * If slabcaches are merged then the objsize and inuse boundaries are mostly
596 * ignored. And therefore no slab options that rely on these boundaries
597 * may be used with merged slabcaches.
600 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
602 unsigned long off
= s
->inuse
; /* The end of info */
605 /* Freepointer is placed after the object. */
606 off
+= sizeof(void *);
608 if (s
->flags
& SLAB_STORE_USER
)
609 /* We also have user information there */
610 off
+= 2 * sizeof(struct track
);
615 return check_bytes_and_report(s
, page
, p
, "Object padding",
616 p
+ off
, POISON_INUSE
, s
->size
- off
);
619 /* Check the pad bytes at the end of a slab page */
620 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
628 if (!(s
->flags
& SLAB_POISON
))
631 start
= page_address(page
);
632 length
= (PAGE_SIZE
<< compound_order(page
));
633 end
= start
+ length
;
634 remainder
= length
% s
->size
;
638 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
641 while (end
> fault
&& end
[-1] == POISON_INUSE
)
644 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
645 print_section("Padding", end
- remainder
, remainder
);
647 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
651 static int check_object(struct kmem_cache
*s
, struct page
*page
,
652 void *object
, int active
)
655 u8
*endobject
= object
+ s
->objsize
;
657 if (s
->flags
& SLAB_RED_ZONE
) {
659 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
661 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
662 endobject
, red
, s
->inuse
- s
->objsize
))
665 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
666 check_bytes_and_report(s
, page
, p
, "Alignment padding",
667 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
671 if (s
->flags
& SLAB_POISON
) {
672 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
673 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
674 POISON_FREE
, s
->objsize
- 1) ||
675 !check_bytes_and_report(s
, page
, p
, "Poison",
676 p
+ s
->objsize
- 1, POISON_END
, 1)))
679 * check_pad_bytes cleans up on its own.
681 check_pad_bytes(s
, page
, p
);
684 if (!s
->offset
&& active
)
686 * Object and freepointer overlap. Cannot check
687 * freepointer while object is allocated.
691 /* Check free pointer validity */
692 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
693 object_err(s
, page
, p
, "Freepointer corrupt");
695 * No choice but to zap it and thus loose the remainder
696 * of the free objects in this slab. May cause
697 * another error because the object count is now wrong.
699 set_freepointer(s
, p
, NULL
);
705 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
709 VM_BUG_ON(!irqs_disabled());
711 if (!PageSlab(page
)) {
712 slab_err(s
, page
, "Not a valid slab page");
716 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
717 if (page
->objects
> maxobj
) {
718 slab_err(s
, page
, "objects %u > max %u",
719 s
->name
, page
->objects
, maxobj
);
722 if (page
->inuse
> page
->objects
) {
723 slab_err(s
, page
, "inuse %u > max %u",
724 s
->name
, page
->inuse
, page
->objects
);
727 /* Slab_pad_check fixes things up after itself */
728 slab_pad_check(s
, page
);
733 * Determine if a certain object on a page is on the freelist. Must hold the
734 * slab lock to guarantee that the chains are in a consistent state.
736 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
739 void *fp
= page
->freelist
;
741 unsigned long max_objects
;
743 while (fp
&& nr
<= page
->objects
) {
746 if (!check_valid_pointer(s
, page
, fp
)) {
748 object_err(s
, page
, object
,
749 "Freechain corrupt");
750 set_freepointer(s
, object
, NULL
);
753 slab_err(s
, page
, "Freepointer corrupt");
754 page
->freelist
= NULL
;
755 page
->inuse
= page
->objects
;
756 slab_fix(s
, "Freelist cleared");
762 fp
= get_freepointer(s
, object
);
766 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
767 if (max_objects
> 65535)
770 if (page
->objects
!= max_objects
) {
771 slab_err(s
, page
, "Wrong number of objects. Found %d but "
772 "should be %d", page
->objects
, max_objects
);
773 page
->objects
= max_objects
;
774 slab_fix(s
, "Number of objects adjusted.");
776 if (page
->inuse
!= page
->objects
- nr
) {
777 slab_err(s
, page
, "Wrong object count. Counter is %d but "
778 "counted were %d", page
->inuse
, page
->objects
- nr
);
779 page
->inuse
= page
->objects
- nr
;
780 slab_fix(s
, "Object count adjusted.");
782 return search
== NULL
;
785 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
788 if (s
->flags
& SLAB_TRACE
) {
789 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791 alloc
? "alloc" : "free",
796 print_section("Object", (void *)object
, s
->objsize
);
803 * Tracking of fully allocated slabs for debugging purposes.
805 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
807 spin_lock(&n
->list_lock
);
808 list_add(&page
->lru
, &n
->full
);
809 spin_unlock(&n
->list_lock
);
812 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
814 struct kmem_cache_node
*n
;
816 if (!(s
->flags
& SLAB_STORE_USER
))
819 n
= get_node(s
, page_to_nid(page
));
821 spin_lock(&n
->list_lock
);
822 list_del(&page
->lru
);
823 spin_unlock(&n
->list_lock
);
826 /* Tracking of the number of slabs for debugging purposes */
827 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
829 struct kmem_cache_node
*n
= get_node(s
, node
);
831 return atomic_long_read(&n
->nr_slabs
);
834 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
836 struct kmem_cache_node
*n
= get_node(s
, node
);
839 * May be called early in order to allocate a slab for the
840 * kmem_cache_node structure. Solve the chicken-egg
841 * dilemma by deferring the increment of the count during
842 * bootstrap (see early_kmem_cache_node_alloc).
844 if (!NUMA_BUILD
|| n
) {
845 atomic_long_inc(&n
->nr_slabs
);
846 atomic_long_add(objects
, &n
->total_objects
);
849 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
851 struct kmem_cache_node
*n
= get_node(s
, node
);
853 atomic_long_dec(&n
->nr_slabs
);
854 atomic_long_sub(objects
, &n
->total_objects
);
857 /* Object debug checks for alloc/free paths */
858 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
861 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
864 init_object(s
, object
, 0);
865 init_tracking(s
, object
);
868 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
869 void *object
, void *addr
)
871 if (!check_slab(s
, page
))
874 if (!on_freelist(s
, page
, object
)) {
875 object_err(s
, page
, object
, "Object already allocated");
879 if (!check_valid_pointer(s
, page
, object
)) {
880 object_err(s
, page
, object
, "Freelist Pointer check fails");
884 if (!check_object(s
, page
, object
, 0))
887 /* Success perform special debug activities for allocs */
888 if (s
->flags
& SLAB_STORE_USER
)
889 set_track(s
, object
, TRACK_ALLOC
, addr
);
890 trace(s
, page
, object
, 1);
891 init_object(s
, object
, 1);
895 if (PageSlab(page
)) {
897 * If this is a slab page then lets do the best we can
898 * to avoid issues in the future. Marking all objects
899 * as used avoids touching the remaining objects.
901 slab_fix(s
, "Marking all objects used");
902 page
->inuse
= page
->objects
;
903 page
->freelist
= NULL
;
908 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
909 void *object
, void *addr
)
911 if (!check_slab(s
, page
))
914 if (!check_valid_pointer(s
, page
, object
)) {
915 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
919 if (on_freelist(s
, page
, object
)) {
920 object_err(s
, page
, object
, "Object already free");
924 if (!check_object(s
, page
, object
, 1))
927 if (unlikely(s
!= page
->slab
)) {
928 if (!PageSlab(page
)) {
929 slab_err(s
, page
, "Attempt to free object(0x%p) "
930 "outside of slab", object
);
931 } else if (!page
->slab
) {
933 "SLUB <none>: no slab for object 0x%p.\n",
937 object_err(s
, page
, object
,
938 "page slab pointer corrupt.");
942 /* Special debug activities for freeing objects */
943 if (!PageSlubFrozen(page
) && !page
->freelist
)
944 remove_full(s
, page
);
945 if (s
->flags
& SLAB_STORE_USER
)
946 set_track(s
, object
, TRACK_FREE
, addr
);
947 trace(s
, page
, object
, 0);
948 init_object(s
, object
, 0);
952 slab_fix(s
, "Object at 0x%p not freed", object
);
956 static int __init
setup_slub_debug(char *str
)
958 slub_debug
= DEBUG_DEFAULT_FLAGS
;
959 if (*str
++ != '=' || !*str
)
961 * No options specified. Switch on full debugging.
967 * No options but restriction on slabs. This means full
968 * debugging for slabs matching a pattern.
975 * Switch off all debugging measures.
980 * Determine which debug features should be switched on
982 for (; *str
&& *str
!= ','; str
++) {
983 switch (tolower(*str
)) {
985 slub_debug
|= SLAB_DEBUG_FREE
;
988 slub_debug
|= SLAB_RED_ZONE
;
991 slub_debug
|= SLAB_POISON
;
994 slub_debug
|= SLAB_STORE_USER
;
997 slub_debug
|= SLAB_TRACE
;
1000 printk(KERN_ERR
"slub_debug option '%c' "
1001 "unknown. skipped\n", *str
);
1007 slub_debug_slabs
= str
+ 1;
1012 __setup("slub_debug", setup_slub_debug
);
1014 static unsigned long kmem_cache_flags(unsigned long objsize
,
1015 unsigned long flags
, const char *name
,
1016 void (*ctor
)(void *))
1019 * Enable debugging if selected on the kernel commandline.
1021 if (slub_debug
&& (!slub_debug_slabs
||
1022 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1023 flags
|= slub_debug
;
1028 static inline void setup_object_debug(struct kmem_cache
*s
,
1029 struct page
*page
, void *object
) {}
1031 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1032 struct page
*page
, void *object
, void *addr
) { return 0; }
1034 static inline int free_debug_processing(struct kmem_cache
*s
,
1035 struct page
*page
, void *object
, void *addr
) { return 0; }
1037 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1039 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1040 void *object
, int active
) { return 1; }
1041 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1042 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1043 unsigned long flags
, const char *name
,
1044 void (*ctor
)(void *))
1048 #define slub_debug 0
1050 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1052 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1054 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1059 * Slab allocation and freeing
1061 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1062 struct kmem_cache_order_objects oo
)
1064 int order
= oo_order(oo
);
1067 return alloc_pages(flags
, order
);
1069 return alloc_pages_node(node
, flags
, order
);
1072 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1075 struct kmem_cache_order_objects oo
= s
->oo
;
1077 flags
|= s
->allocflags
;
1079 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1081 if (unlikely(!page
)) {
1084 * Allocation may have failed due to fragmentation.
1085 * Try a lower order alloc if possible
1087 page
= alloc_slab_page(flags
, node
, oo
);
1091 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1093 page
->objects
= oo_objects(oo
);
1094 mod_zone_page_state(page_zone(page
),
1095 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1096 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1102 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1105 setup_object_debug(s
, page
, object
);
1106 if (unlikely(s
->ctor
))
1110 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1117 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1119 page
= allocate_slab(s
,
1120 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1124 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1126 page
->flags
|= 1 << PG_slab
;
1127 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1128 SLAB_STORE_USER
| SLAB_TRACE
))
1129 __SetPageSlubDebug(page
);
1131 start
= page_address(page
);
1133 if (unlikely(s
->flags
& SLAB_POISON
))
1134 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1137 for_each_object(p
, s
, start
, page
->objects
) {
1138 setup_object(s
, page
, last
);
1139 set_freepointer(s
, last
, p
);
1142 setup_object(s
, page
, last
);
1143 set_freepointer(s
, last
, NULL
);
1145 page
->freelist
= start
;
1151 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1153 int order
= compound_order(page
);
1154 int pages
= 1 << order
;
1156 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1159 slab_pad_check(s
, page
);
1160 for_each_object(p
, s
, page_address(page
),
1162 check_object(s
, page
, p
, 0);
1163 __ClearPageSlubDebug(page
);
1166 mod_zone_page_state(page_zone(page
),
1167 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1168 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1171 __ClearPageSlab(page
);
1172 reset_page_mapcount(page
);
1173 __free_pages(page
, order
);
1176 static void rcu_free_slab(struct rcu_head
*h
)
1180 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1181 __free_slab(page
->slab
, page
);
1184 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1186 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1188 * RCU free overloads the RCU head over the LRU
1190 struct rcu_head
*head
= (void *)&page
->lru
;
1192 call_rcu(head
, rcu_free_slab
);
1194 __free_slab(s
, page
);
1197 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1199 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1204 * Per slab locking using the pagelock
1206 static __always_inline
void slab_lock(struct page
*page
)
1208 bit_spin_lock(PG_locked
, &page
->flags
);
1211 static __always_inline
void slab_unlock(struct page
*page
)
1213 __bit_spin_unlock(PG_locked
, &page
->flags
);
1216 static __always_inline
int slab_trylock(struct page
*page
)
1220 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1225 * Management of partially allocated slabs
1227 static void add_partial(struct kmem_cache_node
*n
,
1228 struct page
*page
, int tail
)
1230 spin_lock(&n
->list_lock
);
1233 list_add_tail(&page
->lru
, &n
->partial
);
1235 list_add(&page
->lru
, &n
->partial
);
1236 spin_unlock(&n
->list_lock
);
1239 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1241 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1243 spin_lock(&n
->list_lock
);
1244 list_del(&page
->lru
);
1246 spin_unlock(&n
->list_lock
);
1250 * Lock slab and remove from the partial list.
1252 * Must hold list_lock.
1254 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1257 if (slab_trylock(page
)) {
1258 list_del(&page
->lru
);
1260 __SetPageSlubFrozen(page
);
1267 * Try to allocate a partial slab from a specific node.
1269 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1274 * Racy check. If we mistakenly see no partial slabs then we
1275 * just allocate an empty slab. If we mistakenly try to get a
1276 * partial slab and there is none available then get_partials()
1279 if (!n
|| !n
->nr_partial
)
1282 spin_lock(&n
->list_lock
);
1283 list_for_each_entry(page
, &n
->partial
, lru
)
1284 if (lock_and_freeze_slab(n
, page
))
1288 spin_unlock(&n
->list_lock
);
1293 * Get a page from somewhere. Search in increasing NUMA distances.
1295 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1298 struct zonelist
*zonelist
;
1301 enum zone_type high_zoneidx
= gfp_zone(flags
);
1305 * The defrag ratio allows a configuration of the tradeoffs between
1306 * inter node defragmentation and node local allocations. A lower
1307 * defrag_ratio increases the tendency to do local allocations
1308 * instead of attempting to obtain partial slabs from other nodes.
1310 * If the defrag_ratio is set to 0 then kmalloc() always
1311 * returns node local objects. If the ratio is higher then kmalloc()
1312 * may return off node objects because partial slabs are obtained
1313 * from other nodes and filled up.
1315 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1316 * defrag_ratio = 1000) then every (well almost) allocation will
1317 * first attempt to defrag slab caches on other nodes. This means
1318 * scanning over all nodes to look for partial slabs which may be
1319 * expensive if we do it every time we are trying to find a slab
1320 * with available objects.
1322 if (!s
->remote_node_defrag_ratio
||
1323 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1326 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1327 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1328 struct kmem_cache_node
*n
;
1330 n
= get_node(s
, zone_to_nid(zone
));
1332 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1333 n
->nr_partial
> n
->min_partial
) {
1334 page
= get_partial_node(n
);
1344 * Get a partial page, lock it and return it.
1346 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1349 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1351 page
= get_partial_node(get_node(s
, searchnode
));
1352 if (page
|| (flags
& __GFP_THISNODE
))
1355 return get_any_partial(s
, flags
);
1359 * Move a page back to the lists.
1361 * Must be called with the slab lock held.
1363 * On exit the slab lock will have been dropped.
1365 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1367 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1368 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1370 __ClearPageSlubFrozen(page
);
1373 if (page
->freelist
) {
1374 add_partial(n
, page
, tail
);
1375 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1377 stat(c
, DEACTIVATE_FULL
);
1378 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1379 (s
->flags
& SLAB_STORE_USER
))
1384 stat(c
, DEACTIVATE_EMPTY
);
1385 if (n
->nr_partial
< n
->min_partial
) {
1387 * Adding an empty slab to the partial slabs in order
1388 * to avoid page allocator overhead. This slab needs
1389 * to come after the other slabs with objects in
1390 * so that the others get filled first. That way the
1391 * size of the partial list stays small.
1393 * kmem_cache_shrink can reclaim any empty slabs from
1396 add_partial(n
, page
, 1);
1400 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1401 discard_slab(s
, page
);
1407 * Remove the cpu slab
1409 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1411 struct page
*page
= c
->page
;
1415 stat(c
, DEACTIVATE_REMOTE_FREES
);
1417 * Merge cpu freelist into slab freelist. Typically we get here
1418 * because both freelists are empty. So this is unlikely
1421 while (unlikely(c
->freelist
)) {
1424 tail
= 0; /* Hot objects. Put the slab first */
1426 /* Retrieve object from cpu_freelist */
1427 object
= c
->freelist
;
1428 c
->freelist
= c
->freelist
[c
->offset
];
1430 /* And put onto the regular freelist */
1431 object
[c
->offset
] = page
->freelist
;
1432 page
->freelist
= object
;
1436 unfreeze_slab(s
, page
, tail
);
1439 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1441 stat(c
, CPUSLAB_FLUSH
);
1443 deactivate_slab(s
, c
);
1449 * Called from IPI handler with interrupts disabled.
1451 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1453 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1455 if (likely(c
&& c
->page
))
1459 static void flush_cpu_slab(void *d
)
1461 struct kmem_cache
*s
= d
;
1463 __flush_cpu_slab(s
, smp_processor_id());
1466 static void flush_all(struct kmem_cache
*s
)
1468 on_each_cpu(flush_cpu_slab
, s
, 1);
1472 * Check if the objects in a per cpu structure fit numa
1473 * locality expectations.
1475 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1478 if (node
!= -1 && c
->node
!= node
)
1485 * Slow path. The lockless freelist is empty or we need to perform
1488 * Interrupts are disabled.
1490 * Processing is still very fast if new objects have been freed to the
1491 * regular freelist. In that case we simply take over the regular freelist
1492 * as the lockless freelist and zap the regular freelist.
1494 * If that is not working then we fall back to the partial lists. We take the
1495 * first element of the freelist as the object to allocate now and move the
1496 * rest of the freelist to the lockless freelist.
1498 * And if we were unable to get a new slab from the partial slab lists then
1499 * we need to allocate a new slab. This is the slowest path since it involves
1500 * a call to the page allocator and the setup of a new slab.
1502 static void *__slab_alloc(struct kmem_cache
*s
,
1503 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1508 /* We handle __GFP_ZERO in the caller */
1509 gfpflags
&= ~__GFP_ZERO
;
1515 if (unlikely(!node_match(c
, node
)))
1518 stat(c
, ALLOC_REFILL
);
1521 object
= c
->page
->freelist
;
1522 if (unlikely(!object
))
1524 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1527 c
->freelist
= object
[c
->offset
];
1528 c
->page
->inuse
= c
->page
->objects
;
1529 c
->page
->freelist
= NULL
;
1530 c
->node
= page_to_nid(c
->page
);
1532 slab_unlock(c
->page
);
1533 stat(c
, ALLOC_SLOWPATH
);
1537 deactivate_slab(s
, c
);
1540 new = get_partial(s
, gfpflags
, node
);
1543 stat(c
, ALLOC_FROM_PARTIAL
);
1547 if (gfpflags
& __GFP_WAIT
)
1550 new = new_slab(s
, gfpflags
, node
);
1552 if (gfpflags
& __GFP_WAIT
)
1553 local_irq_disable();
1556 c
= get_cpu_slab(s
, smp_processor_id());
1557 stat(c
, ALLOC_SLAB
);
1561 __SetPageSlubFrozen(new);
1567 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1571 c
->page
->freelist
= object
[c
->offset
];
1577 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1578 * have the fastpath folded into their functions. So no function call
1579 * overhead for requests that can be satisfied on the fastpath.
1581 * The fastpath works by first checking if the lockless freelist can be used.
1582 * If not then __slab_alloc is called for slow processing.
1584 * Otherwise we can simply pick the next object from the lockless free list.
1586 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1587 gfp_t gfpflags
, int node
, void *addr
)
1590 struct kmem_cache_cpu
*c
;
1591 unsigned long flags
;
1592 unsigned int objsize
;
1594 local_irq_save(flags
);
1595 c
= get_cpu_slab(s
, smp_processor_id());
1596 objsize
= c
->objsize
;
1597 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1599 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1602 object
= c
->freelist
;
1603 c
->freelist
= object
[c
->offset
];
1604 stat(c
, ALLOC_FASTPATH
);
1606 local_irq_restore(flags
);
1608 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1609 memset(object
, 0, objsize
);
1614 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1616 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1618 EXPORT_SYMBOL(kmem_cache_alloc
);
1621 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1623 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1625 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1629 * Slow patch handling. This may still be called frequently since objects
1630 * have a longer lifetime than the cpu slabs in most processing loads.
1632 * So we still attempt to reduce cache line usage. Just take the slab
1633 * lock and free the item. If there is no additional partial page
1634 * handling required then we can return immediately.
1636 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1637 void *x
, void *addr
, unsigned int offset
)
1640 void **object
= (void *)x
;
1641 struct kmem_cache_cpu
*c
;
1643 c
= get_cpu_slab(s
, raw_smp_processor_id());
1644 stat(c
, FREE_SLOWPATH
);
1647 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1651 prior
= object
[offset
] = page
->freelist
;
1652 page
->freelist
= object
;
1655 if (unlikely(PageSlubFrozen(page
))) {
1656 stat(c
, FREE_FROZEN
);
1660 if (unlikely(!page
->inuse
))
1664 * Objects left in the slab. If it was not on the partial list before
1667 if (unlikely(!prior
)) {
1668 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1669 stat(c
, FREE_ADD_PARTIAL
);
1679 * Slab still on the partial list.
1681 remove_partial(s
, page
);
1682 stat(c
, FREE_REMOVE_PARTIAL
);
1686 discard_slab(s
, page
);
1690 if (!free_debug_processing(s
, page
, x
, addr
))
1696 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1697 * can perform fastpath freeing without additional function calls.
1699 * The fastpath is only possible if we are freeing to the current cpu slab
1700 * of this processor. This typically the case if we have just allocated
1703 * If fastpath is not possible then fall back to __slab_free where we deal
1704 * with all sorts of special processing.
1706 static __always_inline
void slab_free(struct kmem_cache
*s
,
1707 struct page
*page
, void *x
, void *addr
)
1709 void **object
= (void *)x
;
1710 struct kmem_cache_cpu
*c
;
1711 unsigned long flags
;
1713 local_irq_save(flags
);
1714 c
= get_cpu_slab(s
, smp_processor_id());
1715 debug_check_no_locks_freed(object
, c
->objsize
);
1716 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1717 debug_check_no_obj_freed(object
, s
->objsize
);
1718 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1719 object
[c
->offset
] = c
->freelist
;
1720 c
->freelist
= object
;
1721 stat(c
, FREE_FASTPATH
);
1723 __slab_free(s
, page
, x
, addr
, c
->offset
);
1725 local_irq_restore(flags
);
1728 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1732 page
= virt_to_head_page(x
);
1734 slab_free(s
, page
, x
, __builtin_return_address(0));
1736 EXPORT_SYMBOL(kmem_cache_free
);
1738 /* Figure out on which slab object the object resides */
1739 static struct page
*get_object_page(const void *x
)
1741 struct page
*page
= virt_to_head_page(x
);
1743 if (!PageSlab(page
))
1750 * Object placement in a slab is made very easy because we always start at
1751 * offset 0. If we tune the size of the object to the alignment then we can
1752 * get the required alignment by putting one properly sized object after
1755 * Notice that the allocation order determines the sizes of the per cpu
1756 * caches. Each processor has always one slab available for allocations.
1757 * Increasing the allocation order reduces the number of times that slabs
1758 * must be moved on and off the partial lists and is therefore a factor in
1763 * Mininum / Maximum order of slab pages. This influences locking overhead
1764 * and slab fragmentation. A higher order reduces the number of partial slabs
1765 * and increases the number of allocations possible without having to
1766 * take the list_lock.
1768 static int slub_min_order
;
1769 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1770 static int slub_min_objects
;
1773 * Merge control. If this is set then no merging of slab caches will occur.
1774 * (Could be removed. This was introduced to pacify the merge skeptics.)
1776 static int slub_nomerge
;
1779 * Calculate the order of allocation given an slab object size.
1781 * The order of allocation has significant impact on performance and other
1782 * system components. Generally order 0 allocations should be preferred since
1783 * order 0 does not cause fragmentation in the page allocator. Larger objects
1784 * be problematic to put into order 0 slabs because there may be too much
1785 * unused space left. We go to a higher order if more than 1/16th of the slab
1788 * In order to reach satisfactory performance we must ensure that a minimum
1789 * number of objects is in one slab. Otherwise we may generate too much
1790 * activity on the partial lists which requires taking the list_lock. This is
1791 * less a concern for large slabs though which are rarely used.
1793 * slub_max_order specifies the order where we begin to stop considering the
1794 * number of objects in a slab as critical. If we reach slub_max_order then
1795 * we try to keep the page order as low as possible. So we accept more waste
1796 * of space in favor of a small page order.
1798 * Higher order allocations also allow the placement of more objects in a
1799 * slab and thereby reduce object handling overhead. If the user has
1800 * requested a higher mininum order then we start with that one instead of
1801 * the smallest order which will fit the object.
1803 static inline int slab_order(int size
, int min_objects
,
1804 int max_order
, int fract_leftover
)
1808 int min_order
= slub_min_order
;
1810 if ((PAGE_SIZE
<< min_order
) / size
> 65535)
1811 return get_order(size
* 65535) - 1;
1813 for (order
= max(min_order
,
1814 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1815 order
<= max_order
; order
++) {
1817 unsigned long slab_size
= PAGE_SIZE
<< order
;
1819 if (slab_size
< min_objects
* size
)
1822 rem
= slab_size
% size
;
1824 if (rem
<= slab_size
/ fract_leftover
)
1832 static inline int calculate_order(int size
)
1839 * Attempt to find best configuration for a slab. This
1840 * works by first attempting to generate a layout with
1841 * the best configuration and backing off gradually.
1843 * First we reduce the acceptable waste in a slab. Then
1844 * we reduce the minimum objects required in a slab.
1846 min_objects
= slub_min_objects
;
1848 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1849 while (min_objects
> 1) {
1851 while (fraction
>= 4) {
1852 order
= slab_order(size
, min_objects
,
1853 slub_max_order
, fraction
);
1854 if (order
<= slub_max_order
)
1862 * We were unable to place multiple objects in a slab. Now
1863 * lets see if we can place a single object there.
1865 order
= slab_order(size
, 1, slub_max_order
, 1);
1866 if (order
<= slub_max_order
)
1870 * Doh this slab cannot be placed using slub_max_order.
1872 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1873 if (order
<= MAX_ORDER
)
1879 * Figure out what the alignment of the objects will be.
1881 static unsigned long calculate_alignment(unsigned long flags
,
1882 unsigned long align
, unsigned long size
)
1885 * If the user wants hardware cache aligned objects then follow that
1886 * suggestion if the object is sufficiently large.
1888 * The hardware cache alignment cannot override the specified
1889 * alignment though. If that is greater then use it.
1891 if (flags
& SLAB_HWCACHE_ALIGN
) {
1892 unsigned long ralign
= cache_line_size();
1893 while (size
<= ralign
/ 2)
1895 align
= max(align
, ralign
);
1898 if (align
< ARCH_SLAB_MINALIGN
)
1899 align
= ARCH_SLAB_MINALIGN
;
1901 return ALIGN(align
, sizeof(void *));
1904 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1905 struct kmem_cache_cpu
*c
)
1910 c
->offset
= s
->offset
/ sizeof(void *);
1911 c
->objsize
= s
->objsize
;
1912 #ifdef CONFIG_SLUB_STATS
1913 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1918 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
1923 * The larger the object size is, the more pages we want on the partial
1924 * list to avoid pounding the page allocator excessively.
1926 n
->min_partial
= ilog2(s
->size
);
1927 if (n
->min_partial
< MIN_PARTIAL
)
1928 n
->min_partial
= MIN_PARTIAL
;
1929 else if (n
->min_partial
> MAX_PARTIAL
)
1930 n
->min_partial
= MAX_PARTIAL
;
1932 spin_lock_init(&n
->list_lock
);
1933 INIT_LIST_HEAD(&n
->partial
);
1934 #ifdef CONFIG_SLUB_DEBUG
1935 atomic_long_set(&n
->nr_slabs
, 0);
1936 atomic_long_set(&n
->total_objects
, 0);
1937 INIT_LIST_HEAD(&n
->full
);
1943 * Per cpu array for per cpu structures.
1945 * The per cpu array places all kmem_cache_cpu structures from one processor
1946 * close together meaning that it becomes possible that multiple per cpu
1947 * structures are contained in one cacheline. This may be particularly
1948 * beneficial for the kmalloc caches.
1950 * A desktop system typically has around 60-80 slabs. With 100 here we are
1951 * likely able to get per cpu structures for all caches from the array defined
1952 * here. We must be able to cover all kmalloc caches during bootstrap.
1954 * If the per cpu array is exhausted then fall back to kmalloc
1955 * of individual cachelines. No sharing is possible then.
1957 #define NR_KMEM_CACHE_CPU 100
1959 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1960 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1962 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1963 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1965 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1966 int cpu
, gfp_t flags
)
1968 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1971 per_cpu(kmem_cache_cpu_free
, cpu
) =
1972 (void *)c
->freelist
;
1974 /* Table overflow: So allocate ourselves */
1976 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1977 flags
, cpu_to_node(cpu
));
1982 init_kmem_cache_cpu(s
, c
);
1986 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1988 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1989 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
1993 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
1994 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
1997 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2001 for_each_online_cpu(cpu
) {
2002 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2005 s
->cpu_slab
[cpu
] = NULL
;
2006 free_kmem_cache_cpu(c
, cpu
);
2011 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2015 for_each_online_cpu(cpu
) {
2016 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2021 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2023 free_kmem_cache_cpus(s
);
2026 s
->cpu_slab
[cpu
] = c
;
2032 * Initialize the per cpu array.
2034 static void init_alloc_cpu_cpu(int cpu
)
2038 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2041 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2042 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2044 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2047 static void __init
init_alloc_cpu(void)
2051 for_each_online_cpu(cpu
)
2052 init_alloc_cpu_cpu(cpu
);
2056 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2057 static inline void init_alloc_cpu(void) {}
2059 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2061 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2068 * No kmalloc_node yet so do it by hand. We know that this is the first
2069 * slab on the node for this slabcache. There are no concurrent accesses
2072 * Note that this function only works on the kmalloc_node_cache
2073 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2074 * memory on a fresh node that has no slab structures yet.
2076 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2080 struct kmem_cache_node
*n
;
2081 unsigned long flags
;
2083 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2085 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2088 if (page_to_nid(page
) != node
) {
2089 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2091 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2092 "in order to be able to continue\n");
2097 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2099 kmalloc_caches
->node
[node
] = n
;
2100 #ifdef CONFIG_SLUB_DEBUG
2101 init_object(kmalloc_caches
, n
, 1);
2102 init_tracking(kmalloc_caches
, n
);
2104 init_kmem_cache_node(n
, kmalloc_caches
);
2105 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2108 * lockdep requires consistent irq usage for each lock
2109 * so even though there cannot be a race this early in
2110 * the boot sequence, we still disable irqs.
2112 local_irq_save(flags
);
2113 add_partial(n
, page
, 0);
2114 local_irq_restore(flags
);
2118 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2122 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2123 struct kmem_cache_node
*n
= s
->node
[node
];
2124 if (n
&& n
!= &s
->local_node
)
2125 kmem_cache_free(kmalloc_caches
, n
);
2126 s
->node
[node
] = NULL
;
2130 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2135 if (slab_state
>= UP
)
2136 local_node
= page_to_nid(virt_to_page(s
));
2140 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2141 struct kmem_cache_node
*n
;
2143 if (local_node
== node
)
2146 if (slab_state
== DOWN
) {
2147 n
= early_kmem_cache_node_alloc(gfpflags
,
2151 n
= kmem_cache_alloc_node(kmalloc_caches
,
2155 free_kmem_cache_nodes(s
);
2161 init_kmem_cache_node(n
, s
);
2166 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2170 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2172 init_kmem_cache_node(&s
->local_node
, s
);
2178 * calculate_sizes() determines the order and the distribution of data within
2181 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2183 unsigned long flags
= s
->flags
;
2184 unsigned long size
= s
->objsize
;
2185 unsigned long align
= s
->align
;
2189 * Round up object size to the next word boundary. We can only
2190 * place the free pointer at word boundaries and this determines
2191 * the possible location of the free pointer.
2193 size
= ALIGN(size
, sizeof(void *));
2195 #ifdef CONFIG_SLUB_DEBUG
2197 * Determine if we can poison the object itself. If the user of
2198 * the slab may touch the object after free or before allocation
2199 * then we should never poison the object itself.
2201 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2203 s
->flags
|= __OBJECT_POISON
;
2205 s
->flags
&= ~__OBJECT_POISON
;
2209 * If we are Redzoning then check if there is some space between the
2210 * end of the object and the free pointer. If not then add an
2211 * additional word to have some bytes to store Redzone information.
2213 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2214 size
+= sizeof(void *);
2218 * With that we have determined the number of bytes in actual use
2219 * by the object. This is the potential offset to the free pointer.
2223 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2226 * Relocate free pointer after the object if it is not
2227 * permitted to overwrite the first word of the object on
2230 * This is the case if we do RCU, have a constructor or
2231 * destructor or are poisoning the objects.
2234 size
+= sizeof(void *);
2237 #ifdef CONFIG_SLUB_DEBUG
2238 if (flags
& SLAB_STORE_USER
)
2240 * Need to store information about allocs and frees after
2243 size
+= 2 * sizeof(struct track
);
2245 if (flags
& SLAB_RED_ZONE
)
2247 * Add some empty padding so that we can catch
2248 * overwrites from earlier objects rather than let
2249 * tracking information or the free pointer be
2250 * corrupted if an user writes before the start
2253 size
+= sizeof(void *);
2257 * Determine the alignment based on various parameters that the
2258 * user specified and the dynamic determination of cache line size
2261 align
= calculate_alignment(flags
, align
, s
->objsize
);
2264 * SLUB stores one object immediately after another beginning from
2265 * offset 0. In order to align the objects we have to simply size
2266 * each object to conform to the alignment.
2268 size
= ALIGN(size
, align
);
2270 if (forced_order
>= 0)
2271 order
= forced_order
;
2273 order
= calculate_order(size
);
2280 s
->allocflags
|= __GFP_COMP
;
2282 if (s
->flags
& SLAB_CACHE_DMA
)
2283 s
->allocflags
|= SLUB_DMA
;
2285 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2286 s
->allocflags
|= __GFP_RECLAIMABLE
;
2289 * Determine the number of objects per slab
2291 s
->oo
= oo_make(order
, size
);
2292 s
->min
= oo_make(get_order(size
), size
);
2293 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2296 return !!oo_objects(s
->oo
);
2300 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2301 const char *name
, size_t size
,
2302 size_t align
, unsigned long flags
,
2303 void (*ctor
)(void *))
2305 memset(s
, 0, kmem_size
);
2310 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2312 if (!calculate_sizes(s
, -1))
2317 s
->remote_node_defrag_ratio
= 1000;
2319 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2322 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2324 free_kmem_cache_nodes(s
);
2326 if (flags
& SLAB_PANIC
)
2327 panic("Cannot create slab %s size=%lu realsize=%u "
2328 "order=%u offset=%u flags=%lx\n",
2329 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2335 * Check if a given pointer is valid
2337 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2341 page
= get_object_page(object
);
2343 if (!page
|| s
!= page
->slab
)
2344 /* No slab or wrong slab */
2347 if (!check_valid_pointer(s
, page
, object
))
2351 * We could also check if the object is on the slabs freelist.
2352 * But this would be too expensive and it seems that the main
2353 * purpose of kmem_ptr_valid() is to check if the object belongs
2354 * to a certain slab.
2358 EXPORT_SYMBOL(kmem_ptr_validate
);
2361 * Determine the size of a slab object
2363 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2367 EXPORT_SYMBOL(kmem_cache_size
);
2369 const char *kmem_cache_name(struct kmem_cache
*s
)
2373 EXPORT_SYMBOL(kmem_cache_name
);
2375 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2378 #ifdef CONFIG_SLUB_DEBUG
2379 void *addr
= page_address(page
);
2381 DECLARE_BITMAP(map
, page
->objects
);
2383 bitmap_zero(map
, page
->objects
);
2384 slab_err(s
, page
, "%s", text
);
2386 for_each_free_object(p
, s
, page
->freelist
)
2387 set_bit(slab_index(p
, s
, addr
), map
);
2389 for_each_object(p
, s
, addr
, page
->objects
) {
2391 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2392 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2394 print_tracking(s
, p
);
2402 * Attempt to free all partial slabs on a node.
2404 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2406 unsigned long flags
;
2407 struct page
*page
, *h
;
2409 spin_lock_irqsave(&n
->list_lock
, flags
);
2410 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2412 list_del(&page
->lru
);
2413 discard_slab(s
, page
);
2416 list_slab_objects(s
, page
,
2417 "Objects remaining on kmem_cache_close()");
2420 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2424 * Release all resources used by a slab cache.
2426 static inline int kmem_cache_close(struct kmem_cache
*s
)
2432 /* Attempt to free all objects */
2433 free_kmem_cache_cpus(s
);
2434 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2435 struct kmem_cache_node
*n
= get_node(s
, node
);
2438 if (n
->nr_partial
|| slabs_node(s
, node
))
2441 free_kmem_cache_nodes(s
);
2446 * Close a cache and release the kmem_cache structure
2447 * (must be used for caches created using kmem_cache_create)
2449 void kmem_cache_destroy(struct kmem_cache
*s
)
2451 down_write(&slub_lock
);
2455 up_write(&slub_lock
);
2456 if (kmem_cache_close(s
)) {
2457 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2458 "still has objects.\n", s
->name
, __func__
);
2461 sysfs_slab_remove(s
);
2463 up_write(&slub_lock
);
2465 EXPORT_SYMBOL(kmem_cache_destroy
);
2467 /********************************************************************
2469 *******************************************************************/
2471 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2472 EXPORT_SYMBOL(kmalloc_caches
);
2474 static int __init
setup_slub_min_order(char *str
)
2476 get_option(&str
, &slub_min_order
);
2481 __setup("slub_min_order=", setup_slub_min_order
);
2483 static int __init
setup_slub_max_order(char *str
)
2485 get_option(&str
, &slub_max_order
);
2490 __setup("slub_max_order=", setup_slub_max_order
);
2492 static int __init
setup_slub_min_objects(char *str
)
2494 get_option(&str
, &slub_min_objects
);
2499 __setup("slub_min_objects=", setup_slub_min_objects
);
2501 static int __init
setup_slub_nomerge(char *str
)
2507 __setup("slub_nomerge", setup_slub_nomerge
);
2509 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2510 const char *name
, int size
, gfp_t gfp_flags
)
2512 unsigned int flags
= 0;
2514 if (gfp_flags
& SLUB_DMA
)
2515 flags
= SLAB_CACHE_DMA
;
2517 down_write(&slub_lock
);
2518 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2522 list_add(&s
->list
, &slab_caches
);
2523 up_write(&slub_lock
);
2524 if (sysfs_slab_add(s
))
2529 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2532 #ifdef CONFIG_ZONE_DMA
2533 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2535 static void sysfs_add_func(struct work_struct
*w
)
2537 struct kmem_cache
*s
;
2539 down_write(&slub_lock
);
2540 list_for_each_entry(s
, &slab_caches
, list
) {
2541 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2542 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2546 up_write(&slub_lock
);
2549 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2551 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2553 struct kmem_cache
*s
;
2557 s
= kmalloc_caches_dma
[index
];
2561 /* Dynamically create dma cache */
2562 if (flags
& __GFP_WAIT
)
2563 down_write(&slub_lock
);
2565 if (!down_write_trylock(&slub_lock
))
2569 if (kmalloc_caches_dma
[index
])
2572 realsize
= kmalloc_caches
[index
].objsize
;
2573 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2574 (unsigned int)realsize
);
2575 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2577 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2578 realsize
, ARCH_KMALLOC_MINALIGN
,
2579 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2585 list_add(&s
->list
, &slab_caches
);
2586 kmalloc_caches_dma
[index
] = s
;
2588 schedule_work(&sysfs_add_work
);
2591 up_write(&slub_lock
);
2593 return kmalloc_caches_dma
[index
];
2598 * Conversion table for small slabs sizes / 8 to the index in the
2599 * kmalloc array. This is necessary for slabs < 192 since we have non power
2600 * of two cache sizes there. The size of larger slabs can be determined using
2603 static s8 size_index
[24] = {
2630 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2636 return ZERO_SIZE_PTR
;
2638 index
= size_index
[(size
- 1) / 8];
2640 index
= fls(size
- 1);
2642 #ifdef CONFIG_ZONE_DMA
2643 if (unlikely((flags
& SLUB_DMA
)))
2644 return dma_kmalloc_cache(index
, flags
);
2647 return &kmalloc_caches
[index
];
2650 void *__kmalloc(size_t size
, gfp_t flags
)
2652 struct kmem_cache
*s
;
2654 if (unlikely(size
> PAGE_SIZE
))
2655 return kmalloc_large(size
, flags
);
2657 s
= get_slab(size
, flags
);
2659 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2662 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2664 EXPORT_SYMBOL(__kmalloc
);
2666 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2668 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2672 return page_address(page
);
2678 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2680 struct kmem_cache
*s
;
2682 if (unlikely(size
> PAGE_SIZE
))
2683 return kmalloc_large_node(size
, flags
, node
);
2685 s
= get_slab(size
, flags
);
2687 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2690 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2692 EXPORT_SYMBOL(__kmalloc_node
);
2695 size_t ksize(const void *object
)
2698 struct kmem_cache
*s
;
2700 if (unlikely(object
== ZERO_SIZE_PTR
))
2703 page
= virt_to_head_page(object
);
2705 if (unlikely(!PageSlab(page
))) {
2706 WARN_ON(!PageCompound(page
));
2707 return PAGE_SIZE
<< compound_order(page
);
2711 #ifdef CONFIG_SLUB_DEBUG
2713 * Debugging requires use of the padding between object
2714 * and whatever may come after it.
2716 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2721 * If we have the need to store the freelist pointer
2722 * back there or track user information then we can
2723 * only use the space before that information.
2725 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2728 * Else we can use all the padding etc for the allocation
2733 void kfree(const void *x
)
2736 void *object
= (void *)x
;
2738 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2741 page
= virt_to_head_page(x
);
2742 if (unlikely(!PageSlab(page
))) {
2743 BUG_ON(!PageCompound(page
));
2747 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2749 EXPORT_SYMBOL(kfree
);
2752 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2753 * the remaining slabs by the number of items in use. The slabs with the
2754 * most items in use come first. New allocations will then fill those up
2755 * and thus they can be removed from the partial lists.
2757 * The slabs with the least items are placed last. This results in them
2758 * being allocated from last increasing the chance that the last objects
2759 * are freed in them.
2761 int kmem_cache_shrink(struct kmem_cache
*s
)
2765 struct kmem_cache_node
*n
;
2768 int objects
= oo_objects(s
->max
);
2769 struct list_head
*slabs_by_inuse
=
2770 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2771 unsigned long flags
;
2773 if (!slabs_by_inuse
)
2777 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2778 n
= get_node(s
, node
);
2783 for (i
= 0; i
< objects
; i
++)
2784 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2786 spin_lock_irqsave(&n
->list_lock
, flags
);
2789 * Build lists indexed by the items in use in each slab.
2791 * Note that concurrent frees may occur while we hold the
2792 * list_lock. page->inuse here is the upper limit.
2794 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2795 if (!page
->inuse
&& slab_trylock(page
)) {
2797 * Must hold slab lock here because slab_free
2798 * may have freed the last object and be
2799 * waiting to release the slab.
2801 list_del(&page
->lru
);
2804 discard_slab(s
, page
);
2806 list_move(&page
->lru
,
2807 slabs_by_inuse
+ page
->inuse
);
2812 * Rebuild the partial list with the slabs filled up most
2813 * first and the least used slabs at the end.
2815 for (i
= objects
- 1; i
>= 0; i
--)
2816 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2818 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2821 kfree(slabs_by_inuse
);
2824 EXPORT_SYMBOL(kmem_cache_shrink
);
2826 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2827 static int slab_mem_going_offline_callback(void *arg
)
2829 struct kmem_cache
*s
;
2831 down_read(&slub_lock
);
2832 list_for_each_entry(s
, &slab_caches
, list
)
2833 kmem_cache_shrink(s
);
2834 up_read(&slub_lock
);
2839 static void slab_mem_offline_callback(void *arg
)
2841 struct kmem_cache_node
*n
;
2842 struct kmem_cache
*s
;
2843 struct memory_notify
*marg
= arg
;
2846 offline_node
= marg
->status_change_nid
;
2849 * If the node still has available memory. we need kmem_cache_node
2852 if (offline_node
< 0)
2855 down_read(&slub_lock
);
2856 list_for_each_entry(s
, &slab_caches
, list
) {
2857 n
= get_node(s
, offline_node
);
2860 * if n->nr_slabs > 0, slabs still exist on the node
2861 * that is going down. We were unable to free them,
2862 * and offline_pages() function shoudn't call this
2863 * callback. So, we must fail.
2865 BUG_ON(slabs_node(s
, offline_node
));
2867 s
->node
[offline_node
] = NULL
;
2868 kmem_cache_free(kmalloc_caches
, n
);
2871 up_read(&slub_lock
);
2874 static int slab_mem_going_online_callback(void *arg
)
2876 struct kmem_cache_node
*n
;
2877 struct kmem_cache
*s
;
2878 struct memory_notify
*marg
= arg
;
2879 int nid
= marg
->status_change_nid
;
2883 * If the node's memory is already available, then kmem_cache_node is
2884 * already created. Nothing to do.
2890 * We are bringing a node online. No memory is available yet. We must
2891 * allocate a kmem_cache_node structure in order to bring the node
2894 down_read(&slub_lock
);
2895 list_for_each_entry(s
, &slab_caches
, list
) {
2897 * XXX: kmem_cache_alloc_node will fallback to other nodes
2898 * since memory is not yet available from the node that
2901 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2906 init_kmem_cache_node(n
, s
);
2910 up_read(&slub_lock
);
2914 static int slab_memory_callback(struct notifier_block
*self
,
2915 unsigned long action
, void *arg
)
2920 case MEM_GOING_ONLINE
:
2921 ret
= slab_mem_going_online_callback(arg
);
2923 case MEM_GOING_OFFLINE
:
2924 ret
= slab_mem_going_offline_callback(arg
);
2927 case MEM_CANCEL_ONLINE
:
2928 slab_mem_offline_callback(arg
);
2931 case MEM_CANCEL_OFFLINE
:
2935 ret
= notifier_from_errno(ret
);
2941 #endif /* CONFIG_MEMORY_HOTPLUG */
2943 /********************************************************************
2944 * Basic setup of slabs
2945 *******************************************************************/
2947 void __init
kmem_cache_init(void)
2956 * Must first have the slab cache available for the allocations of the
2957 * struct kmem_cache_node's. There is special bootstrap code in
2958 * kmem_cache_open for slab_state == DOWN.
2960 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2961 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2962 kmalloc_caches
[0].refcount
= -1;
2965 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
2968 /* Able to allocate the per node structures */
2969 slab_state
= PARTIAL
;
2971 /* Caches that are not of the two-to-the-power-of size */
2972 if (KMALLOC_MIN_SIZE
<= 64) {
2973 create_kmalloc_cache(&kmalloc_caches
[1],
2974 "kmalloc-96", 96, GFP_KERNEL
);
2976 create_kmalloc_cache(&kmalloc_caches
[2],
2977 "kmalloc-192", 192, GFP_KERNEL
);
2981 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
2982 create_kmalloc_cache(&kmalloc_caches
[i
],
2983 "kmalloc", 1 << i
, GFP_KERNEL
);
2989 * Patch up the size_index table if we have strange large alignment
2990 * requirements for the kmalloc array. This is only the case for
2991 * MIPS it seems. The standard arches will not generate any code here.
2993 * Largest permitted alignment is 256 bytes due to the way we
2994 * handle the index determination for the smaller caches.
2996 * Make sure that nothing crazy happens if someone starts tinkering
2997 * around with ARCH_KMALLOC_MINALIGN
2999 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3000 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3002 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3003 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3005 if (KMALLOC_MIN_SIZE
== 128) {
3007 * The 192 byte sized cache is not used if the alignment
3008 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3011 for (i
= 128 + 8; i
<= 192; i
+= 8)
3012 size_index
[(i
- 1) / 8] = 8;
3017 /* Provide the correct kmalloc names now that the caches are up */
3018 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
3019 kmalloc_caches
[i
]. name
=
3020 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3023 register_cpu_notifier(&slab_notifier
);
3024 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3025 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3027 kmem_size
= sizeof(struct kmem_cache
);
3031 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3032 " CPUs=%d, Nodes=%d\n",
3033 caches
, cache_line_size(),
3034 slub_min_order
, slub_max_order
, slub_min_objects
,
3035 nr_cpu_ids
, nr_node_ids
);
3039 * Find a mergeable slab cache
3041 static int slab_unmergeable(struct kmem_cache
*s
)
3043 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3050 * We may have set a slab to be unmergeable during bootstrap.
3052 if (s
->refcount
< 0)
3058 static struct kmem_cache
*find_mergeable(size_t size
,
3059 size_t align
, unsigned long flags
, const char *name
,
3060 void (*ctor
)(void *))
3062 struct kmem_cache
*s
;
3064 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3070 size
= ALIGN(size
, sizeof(void *));
3071 align
= calculate_alignment(flags
, align
, size
);
3072 size
= ALIGN(size
, align
);
3073 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3075 list_for_each_entry(s
, &slab_caches
, list
) {
3076 if (slab_unmergeable(s
))
3082 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3085 * Check if alignment is compatible.
3086 * Courtesy of Adrian Drzewiecki
3088 if ((s
->size
& ~(align
- 1)) != s
->size
)
3091 if (s
->size
- size
>= sizeof(void *))
3099 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3100 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3102 struct kmem_cache
*s
;
3104 down_write(&slub_lock
);
3105 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3111 * Adjust the object sizes so that we clear
3112 * the complete object on kzalloc.
3114 s
->objsize
= max(s
->objsize
, (int)size
);
3117 * And then we need to update the object size in the
3118 * per cpu structures
3120 for_each_online_cpu(cpu
)
3121 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3123 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3124 up_write(&slub_lock
);
3126 if (sysfs_slab_alias(s
, name
))
3131 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3133 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3134 size
, align
, flags
, ctor
)) {
3135 list_add(&s
->list
, &slab_caches
);
3136 up_write(&slub_lock
);
3137 if (sysfs_slab_add(s
))
3143 up_write(&slub_lock
);
3146 if (flags
& SLAB_PANIC
)
3147 panic("Cannot create slabcache %s\n", name
);
3152 EXPORT_SYMBOL(kmem_cache_create
);
3156 * Use the cpu notifier to insure that the cpu slabs are flushed when
3159 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3160 unsigned long action
, void *hcpu
)
3162 long cpu
= (long)hcpu
;
3163 struct kmem_cache
*s
;
3164 unsigned long flags
;
3167 case CPU_UP_PREPARE
:
3168 case CPU_UP_PREPARE_FROZEN
:
3169 init_alloc_cpu_cpu(cpu
);
3170 down_read(&slub_lock
);
3171 list_for_each_entry(s
, &slab_caches
, list
)
3172 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3174 up_read(&slub_lock
);
3177 case CPU_UP_CANCELED
:
3178 case CPU_UP_CANCELED_FROZEN
:
3180 case CPU_DEAD_FROZEN
:
3181 down_read(&slub_lock
);
3182 list_for_each_entry(s
, &slab_caches
, list
) {
3183 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3185 local_irq_save(flags
);
3186 __flush_cpu_slab(s
, cpu
);
3187 local_irq_restore(flags
);
3188 free_kmem_cache_cpu(c
, cpu
);
3189 s
->cpu_slab
[cpu
] = NULL
;
3191 up_read(&slub_lock
);
3199 static struct notifier_block __cpuinitdata slab_notifier
= {
3200 .notifier_call
= slab_cpuup_callback
3205 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3207 struct kmem_cache
*s
;
3209 if (unlikely(size
> PAGE_SIZE
))
3210 return kmalloc_large(size
, gfpflags
);
3212 s
= get_slab(size
, gfpflags
);
3214 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3217 return slab_alloc(s
, gfpflags
, -1, caller
);
3220 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3221 int node
, void *caller
)
3223 struct kmem_cache
*s
;
3225 if (unlikely(size
> PAGE_SIZE
))
3226 return kmalloc_large_node(size
, gfpflags
, node
);
3228 s
= get_slab(size
, gfpflags
);
3230 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3233 return slab_alloc(s
, gfpflags
, node
, caller
);
3236 #ifdef CONFIG_SLUB_DEBUG
3237 static unsigned long count_partial(struct kmem_cache_node
*n
,
3238 int (*get_count
)(struct page
*))
3240 unsigned long flags
;
3241 unsigned long x
= 0;
3244 spin_lock_irqsave(&n
->list_lock
, flags
);
3245 list_for_each_entry(page
, &n
->partial
, lru
)
3246 x
+= get_count(page
);
3247 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3251 static int count_inuse(struct page
*page
)
3256 static int count_total(struct page
*page
)
3258 return page
->objects
;
3261 static int count_free(struct page
*page
)
3263 return page
->objects
- page
->inuse
;
3266 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3270 void *addr
= page_address(page
);
3272 if (!check_slab(s
, page
) ||
3273 !on_freelist(s
, page
, NULL
))
3276 /* Now we know that a valid freelist exists */
3277 bitmap_zero(map
, page
->objects
);
3279 for_each_free_object(p
, s
, page
->freelist
) {
3280 set_bit(slab_index(p
, s
, addr
), map
);
3281 if (!check_object(s
, page
, p
, 0))
3285 for_each_object(p
, s
, addr
, page
->objects
)
3286 if (!test_bit(slab_index(p
, s
, addr
), map
))
3287 if (!check_object(s
, page
, p
, 1))
3292 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3295 if (slab_trylock(page
)) {
3296 validate_slab(s
, page
, map
);
3299 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3302 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3303 if (!PageSlubDebug(page
))
3304 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3305 "on slab 0x%p\n", s
->name
, page
);
3307 if (PageSlubDebug(page
))
3308 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3309 "slab 0x%p\n", s
->name
, page
);
3313 static int validate_slab_node(struct kmem_cache
*s
,
3314 struct kmem_cache_node
*n
, unsigned long *map
)
3316 unsigned long count
= 0;
3318 unsigned long flags
;
3320 spin_lock_irqsave(&n
->list_lock
, flags
);
3322 list_for_each_entry(page
, &n
->partial
, lru
) {
3323 validate_slab_slab(s
, page
, map
);
3326 if (count
!= n
->nr_partial
)
3327 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3328 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3330 if (!(s
->flags
& SLAB_STORE_USER
))
3333 list_for_each_entry(page
, &n
->full
, lru
) {
3334 validate_slab_slab(s
, page
, map
);
3337 if (count
!= atomic_long_read(&n
->nr_slabs
))
3338 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3339 "counter=%ld\n", s
->name
, count
,
3340 atomic_long_read(&n
->nr_slabs
));
3343 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3347 static long validate_slab_cache(struct kmem_cache
*s
)
3350 unsigned long count
= 0;
3351 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3352 sizeof(unsigned long), GFP_KERNEL
);
3358 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3359 struct kmem_cache_node
*n
= get_node(s
, node
);
3361 count
+= validate_slab_node(s
, n
, map
);
3367 #ifdef SLUB_RESILIENCY_TEST
3368 static void resiliency_test(void)
3372 printk(KERN_ERR
"SLUB resiliency testing\n");
3373 printk(KERN_ERR
"-----------------------\n");
3374 printk(KERN_ERR
"A. Corruption after allocation\n");
3376 p
= kzalloc(16, GFP_KERNEL
);
3378 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3379 " 0x12->0x%p\n\n", p
+ 16);
3381 validate_slab_cache(kmalloc_caches
+ 4);
3383 /* Hmmm... The next two are dangerous */
3384 p
= kzalloc(32, GFP_KERNEL
);
3385 p
[32 + sizeof(void *)] = 0x34;
3386 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3387 " 0x34 -> -0x%p\n", p
);
3389 "If allocated object is overwritten then not detectable\n\n");
3391 validate_slab_cache(kmalloc_caches
+ 5);
3392 p
= kzalloc(64, GFP_KERNEL
);
3393 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3395 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3398 "If allocated object is overwritten then not detectable\n\n");
3399 validate_slab_cache(kmalloc_caches
+ 6);
3401 printk(KERN_ERR
"\nB. Corruption after free\n");
3402 p
= kzalloc(128, GFP_KERNEL
);
3405 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3406 validate_slab_cache(kmalloc_caches
+ 7);
3408 p
= kzalloc(256, GFP_KERNEL
);
3411 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3413 validate_slab_cache(kmalloc_caches
+ 8);
3415 p
= kzalloc(512, GFP_KERNEL
);
3418 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3419 validate_slab_cache(kmalloc_caches
+ 9);
3422 static void resiliency_test(void) {};
3426 * Generate lists of code addresses where slabcache objects are allocated
3431 unsigned long count
;
3444 unsigned long count
;
3445 struct location
*loc
;
3448 static void free_loc_track(struct loc_track
*t
)
3451 free_pages((unsigned long)t
->loc
,
3452 get_order(sizeof(struct location
) * t
->max
));
3455 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3460 order
= get_order(sizeof(struct location
) * max
);
3462 l
= (void *)__get_free_pages(flags
, order
);
3467 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3475 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3476 const struct track
*track
)
3478 long start
, end
, pos
;
3481 unsigned long age
= jiffies
- track
->when
;
3487 pos
= start
+ (end
- start
+ 1) / 2;
3490 * There is nothing at "end". If we end up there
3491 * we need to add something to before end.
3496 caddr
= t
->loc
[pos
].addr
;
3497 if (track
->addr
== caddr
) {
3503 if (age
< l
->min_time
)
3505 if (age
> l
->max_time
)
3508 if (track
->pid
< l
->min_pid
)
3509 l
->min_pid
= track
->pid
;
3510 if (track
->pid
> l
->max_pid
)
3511 l
->max_pid
= track
->pid
;
3513 cpu_set(track
->cpu
, l
->cpus
);
3515 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3519 if (track
->addr
< caddr
)
3526 * Not found. Insert new tracking element.
3528 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3534 (t
->count
- pos
) * sizeof(struct location
));
3537 l
->addr
= track
->addr
;
3541 l
->min_pid
= track
->pid
;
3542 l
->max_pid
= track
->pid
;
3543 cpus_clear(l
->cpus
);
3544 cpu_set(track
->cpu
, l
->cpus
);
3545 nodes_clear(l
->nodes
);
3546 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3550 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3551 struct page
*page
, enum track_item alloc
)
3553 void *addr
= page_address(page
);
3554 DECLARE_BITMAP(map
, page
->objects
);
3557 bitmap_zero(map
, page
->objects
);
3558 for_each_free_object(p
, s
, page
->freelist
)
3559 set_bit(slab_index(p
, s
, addr
), map
);
3561 for_each_object(p
, s
, addr
, page
->objects
)
3562 if (!test_bit(slab_index(p
, s
, addr
), map
))
3563 add_location(t
, s
, get_track(s
, p
, alloc
));
3566 static int list_locations(struct kmem_cache
*s
, char *buf
,
3567 enum track_item alloc
)
3571 struct loc_track t
= { 0, 0, NULL
};
3574 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3576 return sprintf(buf
, "Out of memory\n");
3578 /* Push back cpu slabs */
3581 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3582 struct kmem_cache_node
*n
= get_node(s
, node
);
3583 unsigned long flags
;
3586 if (!atomic_long_read(&n
->nr_slabs
))
3589 spin_lock_irqsave(&n
->list_lock
, flags
);
3590 list_for_each_entry(page
, &n
->partial
, lru
)
3591 process_slab(&t
, s
, page
, alloc
);
3592 list_for_each_entry(page
, &n
->full
, lru
)
3593 process_slab(&t
, s
, page
, alloc
);
3594 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3597 for (i
= 0; i
< t
.count
; i
++) {
3598 struct location
*l
= &t
.loc
[i
];
3600 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3602 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3605 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3607 len
+= sprintf(buf
+ len
, "<not-available>");
3609 if (l
->sum_time
!= l
->min_time
) {
3610 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3612 (long)div_u64(l
->sum_time
, l
->count
),
3615 len
+= sprintf(buf
+ len
, " age=%ld",
3618 if (l
->min_pid
!= l
->max_pid
)
3619 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3620 l
->min_pid
, l
->max_pid
);
3622 len
+= sprintf(buf
+ len
, " pid=%ld",
3625 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3626 len
< PAGE_SIZE
- 60) {
3627 len
+= sprintf(buf
+ len
, " cpus=");
3628 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3632 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3633 len
< PAGE_SIZE
- 60) {
3634 len
+= sprintf(buf
+ len
, " nodes=");
3635 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3639 len
+= sprintf(buf
+ len
, "\n");
3644 len
+= sprintf(buf
, "No data\n");
3648 enum slab_stat_type
{
3649 SL_ALL
, /* All slabs */
3650 SL_PARTIAL
, /* Only partially allocated slabs */
3651 SL_CPU
, /* Only slabs used for cpu caches */
3652 SL_OBJECTS
, /* Determine allocated objects not slabs */
3653 SL_TOTAL
/* Determine object capacity not slabs */
3656 #define SO_ALL (1 << SL_ALL)
3657 #define SO_PARTIAL (1 << SL_PARTIAL)
3658 #define SO_CPU (1 << SL_CPU)
3659 #define SO_OBJECTS (1 << SL_OBJECTS)
3660 #define SO_TOTAL (1 << SL_TOTAL)
3662 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3663 char *buf
, unsigned long flags
)
3665 unsigned long total
= 0;
3668 unsigned long *nodes
;
3669 unsigned long *per_cpu
;
3671 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3674 per_cpu
= nodes
+ nr_node_ids
;
3676 if (flags
& SO_CPU
) {
3679 for_each_possible_cpu(cpu
) {
3680 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3682 if (!c
|| c
->node
< 0)
3686 if (flags
& SO_TOTAL
)
3687 x
= c
->page
->objects
;
3688 else if (flags
& SO_OBJECTS
)
3694 nodes
[c
->node
] += x
;
3700 if (flags
& SO_ALL
) {
3701 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3702 struct kmem_cache_node
*n
= get_node(s
, node
);
3704 if (flags
& SO_TOTAL
)
3705 x
= atomic_long_read(&n
->total_objects
);
3706 else if (flags
& SO_OBJECTS
)
3707 x
= atomic_long_read(&n
->total_objects
) -
3708 count_partial(n
, count_free
);
3711 x
= atomic_long_read(&n
->nr_slabs
);
3716 } else if (flags
& SO_PARTIAL
) {
3717 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3718 struct kmem_cache_node
*n
= get_node(s
, node
);
3720 if (flags
& SO_TOTAL
)
3721 x
= count_partial(n
, count_total
);
3722 else if (flags
& SO_OBJECTS
)
3723 x
= count_partial(n
, count_inuse
);
3730 x
= sprintf(buf
, "%lu", total
);
3732 for_each_node_state(node
, N_NORMAL_MEMORY
)
3734 x
+= sprintf(buf
+ x
, " N%d=%lu",
3738 return x
+ sprintf(buf
+ x
, "\n");
3741 static int any_slab_objects(struct kmem_cache
*s
)
3745 for_each_online_node(node
) {
3746 struct kmem_cache_node
*n
= get_node(s
, node
);
3751 if (atomic_long_read(&n
->total_objects
))
3757 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3758 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3760 struct slab_attribute
{
3761 struct attribute attr
;
3762 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3763 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3766 #define SLAB_ATTR_RO(_name) \
3767 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3769 #define SLAB_ATTR(_name) \
3770 static struct slab_attribute _name##_attr = \
3771 __ATTR(_name, 0644, _name##_show, _name##_store)
3773 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3775 return sprintf(buf
, "%d\n", s
->size
);
3777 SLAB_ATTR_RO(slab_size
);
3779 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3781 return sprintf(buf
, "%d\n", s
->align
);
3783 SLAB_ATTR_RO(align
);
3785 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3787 return sprintf(buf
, "%d\n", s
->objsize
);
3789 SLAB_ATTR_RO(object_size
);
3791 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3793 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3795 SLAB_ATTR_RO(objs_per_slab
);
3797 static ssize_t
order_store(struct kmem_cache
*s
,
3798 const char *buf
, size_t length
)
3800 unsigned long order
;
3803 err
= strict_strtoul(buf
, 10, &order
);
3807 if (order
> slub_max_order
|| order
< slub_min_order
)
3810 calculate_sizes(s
, order
);
3814 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3816 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3820 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3823 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3825 return n
+ sprintf(buf
+ n
, "\n");
3831 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3833 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3835 SLAB_ATTR_RO(aliases
);
3837 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3839 return show_slab_objects(s
, buf
, SO_ALL
);
3841 SLAB_ATTR_RO(slabs
);
3843 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3845 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3847 SLAB_ATTR_RO(partial
);
3849 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3851 return show_slab_objects(s
, buf
, SO_CPU
);
3853 SLAB_ATTR_RO(cpu_slabs
);
3855 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3857 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3859 SLAB_ATTR_RO(objects
);
3861 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3863 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3865 SLAB_ATTR_RO(objects_partial
);
3867 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3869 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3871 SLAB_ATTR_RO(total_objects
);
3873 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3875 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3878 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3879 const char *buf
, size_t length
)
3881 s
->flags
&= ~SLAB_DEBUG_FREE
;
3883 s
->flags
|= SLAB_DEBUG_FREE
;
3886 SLAB_ATTR(sanity_checks
);
3888 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3890 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3893 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3896 s
->flags
&= ~SLAB_TRACE
;
3898 s
->flags
|= SLAB_TRACE
;
3903 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3905 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3908 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3909 const char *buf
, size_t length
)
3911 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3913 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3916 SLAB_ATTR(reclaim_account
);
3918 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3920 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3922 SLAB_ATTR_RO(hwcache_align
);
3924 #ifdef CONFIG_ZONE_DMA
3925 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3927 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3929 SLAB_ATTR_RO(cache_dma
);
3932 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3934 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3936 SLAB_ATTR_RO(destroy_by_rcu
);
3938 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3940 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3943 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3944 const char *buf
, size_t length
)
3946 if (any_slab_objects(s
))
3949 s
->flags
&= ~SLAB_RED_ZONE
;
3951 s
->flags
|= SLAB_RED_ZONE
;
3952 calculate_sizes(s
, -1);
3955 SLAB_ATTR(red_zone
);
3957 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3959 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3962 static ssize_t
poison_store(struct kmem_cache
*s
,
3963 const char *buf
, size_t length
)
3965 if (any_slab_objects(s
))
3968 s
->flags
&= ~SLAB_POISON
;
3970 s
->flags
|= SLAB_POISON
;
3971 calculate_sizes(s
, -1);
3976 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3978 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3981 static ssize_t
store_user_store(struct kmem_cache
*s
,
3982 const char *buf
, size_t length
)
3984 if (any_slab_objects(s
))
3987 s
->flags
&= ~SLAB_STORE_USER
;
3989 s
->flags
|= SLAB_STORE_USER
;
3990 calculate_sizes(s
, -1);
3993 SLAB_ATTR(store_user
);
3995 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4000 static ssize_t
validate_store(struct kmem_cache
*s
,
4001 const char *buf
, size_t length
)
4005 if (buf
[0] == '1') {
4006 ret
= validate_slab_cache(s
);
4012 SLAB_ATTR(validate
);
4014 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4019 static ssize_t
shrink_store(struct kmem_cache
*s
,
4020 const char *buf
, size_t length
)
4022 if (buf
[0] == '1') {
4023 int rc
= kmem_cache_shrink(s
);
4033 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4035 if (!(s
->flags
& SLAB_STORE_USER
))
4037 return list_locations(s
, buf
, TRACK_ALLOC
);
4039 SLAB_ATTR_RO(alloc_calls
);
4041 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4043 if (!(s
->flags
& SLAB_STORE_USER
))
4045 return list_locations(s
, buf
, TRACK_FREE
);
4047 SLAB_ATTR_RO(free_calls
);
4050 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4052 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4055 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4056 const char *buf
, size_t length
)
4058 unsigned long ratio
;
4061 err
= strict_strtoul(buf
, 10, &ratio
);
4066 s
->remote_node_defrag_ratio
= ratio
* 10;
4070 SLAB_ATTR(remote_node_defrag_ratio
);
4073 #ifdef CONFIG_SLUB_STATS
4074 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4076 unsigned long sum
= 0;
4079 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4084 for_each_online_cpu(cpu
) {
4085 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4091 len
= sprintf(buf
, "%lu", sum
);
4094 for_each_online_cpu(cpu
) {
4095 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4096 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4100 return len
+ sprintf(buf
+ len
, "\n");
4103 #define STAT_ATTR(si, text) \
4104 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4106 return show_stat(s, buf, si); \
4108 SLAB_ATTR_RO(text); \
4110 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4111 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4112 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4113 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4114 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4115 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4116 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4117 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4118 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4119 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4120 STAT_ATTR(FREE_SLAB
, free_slab
);
4121 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4122 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4123 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4124 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4125 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4126 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4127 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4130 static struct attribute
*slab_attrs
[] = {
4131 &slab_size_attr
.attr
,
4132 &object_size_attr
.attr
,
4133 &objs_per_slab_attr
.attr
,
4136 &objects_partial_attr
.attr
,
4137 &total_objects_attr
.attr
,
4140 &cpu_slabs_attr
.attr
,
4144 &sanity_checks_attr
.attr
,
4146 &hwcache_align_attr
.attr
,
4147 &reclaim_account_attr
.attr
,
4148 &destroy_by_rcu_attr
.attr
,
4149 &red_zone_attr
.attr
,
4151 &store_user_attr
.attr
,
4152 &validate_attr
.attr
,
4154 &alloc_calls_attr
.attr
,
4155 &free_calls_attr
.attr
,
4156 #ifdef CONFIG_ZONE_DMA
4157 &cache_dma_attr
.attr
,
4160 &remote_node_defrag_ratio_attr
.attr
,
4162 #ifdef CONFIG_SLUB_STATS
4163 &alloc_fastpath_attr
.attr
,
4164 &alloc_slowpath_attr
.attr
,
4165 &free_fastpath_attr
.attr
,
4166 &free_slowpath_attr
.attr
,
4167 &free_frozen_attr
.attr
,
4168 &free_add_partial_attr
.attr
,
4169 &free_remove_partial_attr
.attr
,
4170 &alloc_from_partial_attr
.attr
,
4171 &alloc_slab_attr
.attr
,
4172 &alloc_refill_attr
.attr
,
4173 &free_slab_attr
.attr
,
4174 &cpuslab_flush_attr
.attr
,
4175 &deactivate_full_attr
.attr
,
4176 &deactivate_empty_attr
.attr
,
4177 &deactivate_to_head_attr
.attr
,
4178 &deactivate_to_tail_attr
.attr
,
4179 &deactivate_remote_frees_attr
.attr
,
4180 &order_fallback_attr
.attr
,
4185 static struct attribute_group slab_attr_group
= {
4186 .attrs
= slab_attrs
,
4189 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4190 struct attribute
*attr
,
4193 struct slab_attribute
*attribute
;
4194 struct kmem_cache
*s
;
4197 attribute
= to_slab_attr(attr
);
4200 if (!attribute
->show
)
4203 err
= attribute
->show(s
, buf
);
4208 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4209 struct attribute
*attr
,
4210 const char *buf
, size_t len
)
4212 struct slab_attribute
*attribute
;
4213 struct kmem_cache
*s
;
4216 attribute
= to_slab_attr(attr
);
4219 if (!attribute
->store
)
4222 err
= attribute
->store(s
, buf
, len
);
4227 static void kmem_cache_release(struct kobject
*kobj
)
4229 struct kmem_cache
*s
= to_slab(kobj
);
4234 static struct sysfs_ops slab_sysfs_ops
= {
4235 .show
= slab_attr_show
,
4236 .store
= slab_attr_store
,
4239 static struct kobj_type slab_ktype
= {
4240 .sysfs_ops
= &slab_sysfs_ops
,
4241 .release
= kmem_cache_release
4244 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4246 struct kobj_type
*ktype
= get_ktype(kobj
);
4248 if (ktype
== &slab_ktype
)
4253 static struct kset_uevent_ops slab_uevent_ops
= {
4254 .filter
= uevent_filter
,
4257 static struct kset
*slab_kset
;
4259 #define ID_STR_LENGTH 64
4261 /* Create a unique string id for a slab cache:
4263 * Format :[flags-]size
4265 static char *create_unique_id(struct kmem_cache
*s
)
4267 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4274 * First flags affecting slabcache operations. We will only
4275 * get here for aliasable slabs so we do not need to support
4276 * too many flags. The flags here must cover all flags that
4277 * are matched during merging to guarantee that the id is
4280 if (s
->flags
& SLAB_CACHE_DMA
)
4282 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4284 if (s
->flags
& SLAB_DEBUG_FREE
)
4288 p
+= sprintf(p
, "%07d", s
->size
);
4289 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4293 static int sysfs_slab_add(struct kmem_cache
*s
)
4299 if (slab_state
< SYSFS
)
4300 /* Defer until later */
4303 unmergeable
= slab_unmergeable(s
);
4306 * Slabcache can never be merged so we can use the name proper.
4307 * This is typically the case for debug situations. In that
4308 * case we can catch duplicate names easily.
4310 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4314 * Create a unique name for the slab as a target
4317 name
= create_unique_id(s
);
4320 s
->kobj
.kset
= slab_kset
;
4321 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4323 kobject_put(&s
->kobj
);
4327 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4330 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4332 /* Setup first alias */
4333 sysfs_slab_alias(s
, s
->name
);
4339 static void sysfs_slab_remove(struct kmem_cache
*s
)
4341 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4342 kobject_del(&s
->kobj
);
4343 kobject_put(&s
->kobj
);
4347 * Need to buffer aliases during bootup until sysfs becomes
4348 * available lest we loose that information.
4350 struct saved_alias
{
4351 struct kmem_cache
*s
;
4353 struct saved_alias
*next
;
4356 static struct saved_alias
*alias_list
;
4358 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4360 struct saved_alias
*al
;
4362 if (slab_state
== SYSFS
) {
4364 * If we have a leftover link then remove it.
4366 sysfs_remove_link(&slab_kset
->kobj
, name
);
4367 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4370 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4376 al
->next
= alias_list
;
4381 static int __init
slab_sysfs_init(void)
4383 struct kmem_cache
*s
;
4386 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4388 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4394 list_for_each_entry(s
, &slab_caches
, list
) {
4395 err
= sysfs_slab_add(s
);
4397 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4398 " to sysfs\n", s
->name
);
4401 while (alias_list
) {
4402 struct saved_alias
*al
= alias_list
;
4404 alias_list
= alias_list
->next
;
4405 err
= sysfs_slab_alias(al
->s
, al
->name
);
4407 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4408 " %s to sysfs\n", s
->name
);
4416 __initcall(slab_sysfs_init
);
4420 * The /proc/slabinfo ABI
4422 #ifdef CONFIG_SLABINFO
4423 static void print_slabinfo_header(struct seq_file
*m
)
4425 seq_puts(m
, "slabinfo - version: 2.1\n");
4426 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4427 "<objperslab> <pagesperslab>");
4428 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4429 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4433 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4437 down_read(&slub_lock
);
4439 print_slabinfo_header(m
);
4441 return seq_list_start(&slab_caches
, *pos
);
4444 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4446 return seq_list_next(p
, &slab_caches
, pos
);
4449 static void s_stop(struct seq_file
*m
, void *p
)
4451 up_read(&slub_lock
);
4454 static int s_show(struct seq_file
*m
, void *p
)
4456 unsigned long nr_partials
= 0;
4457 unsigned long nr_slabs
= 0;
4458 unsigned long nr_inuse
= 0;
4459 unsigned long nr_objs
= 0;
4460 unsigned long nr_free
= 0;
4461 struct kmem_cache
*s
;
4464 s
= list_entry(p
, struct kmem_cache
, list
);
4466 for_each_online_node(node
) {
4467 struct kmem_cache_node
*n
= get_node(s
, node
);
4472 nr_partials
+= n
->nr_partial
;
4473 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4474 nr_objs
+= atomic_long_read(&n
->total_objects
);
4475 nr_free
+= count_partial(n
, count_free
);
4478 nr_inuse
= nr_objs
- nr_free
;
4480 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4481 nr_objs
, s
->size
, oo_objects(s
->oo
),
4482 (1 << oo_order(s
->oo
)));
4483 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4484 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4490 static const struct seq_operations slabinfo_op
= {
4497 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4499 return seq_open(file
, &slabinfo_op
);
4502 static const struct file_operations proc_slabinfo_operations
= {
4503 .open
= slabinfo_open
,
4505 .llseek
= seq_lseek
,
4506 .release
= seq_release
,
4509 static int __init
slab_proc_init(void)
4511 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4514 module_init(slab_proc_init
);
4515 #endif /* CONFIG_SLABINFO */