Merge branch 'linus' into sched-devel
[linux-2.6/mini2440.git] / kernel / sched.c
blob554de40098037c8a115406c07036cfd751785cc3
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
77 #include "sched_cpupri.h"
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
84 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
93 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98 * Helpers for converting nanosecond timing to jiffy resolution
100 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
114 * single value that denotes runtime == period, ie unlimited time.
116 #define RUNTIME_INF ((u64)~0ULL)
118 #ifdef CONFIG_SMP
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 #endif
139 static inline int rt_policy(int policy)
141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 return 1;
143 return 0;
146 static inline int task_has_rt_policy(struct task_struct *p)
148 return rt_policy(p->policy);
152 * This is the priority-queue data structure of the RT scheduling class:
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
157 struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
168 static struct rt_bandwidth def_rt_bandwidth;
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
184 if (!overrun)
185 break;
187 idle = do_sched_rt_period_timer(rt_b, overrun);
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
199 spin_lock_init(&rt_b->rt_runtime_lock);
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
209 ktime_t now;
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
228 spin_unlock(&rt_b->rt_runtime_lock);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 hrtimer_cancel(&rt_b->rt_period_timer);
236 #endif
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
248 struct cfs_rq;
250 static LIST_HEAD(task_groups);
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
256 #endif
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264 #endif
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
270 struct rt_bandwidth rt_bandwidth;
271 #endif
273 struct rcu_head rcu;
274 struct list_head list;
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
281 #ifdef CONFIG_USER_SCHED
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
325 #define MIN_SHARES 2
326 #define MAX_SHARES (1UL << 18)
328 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329 #endif
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
334 struct task_group init_task_group;
336 /* return group to which a task belongs */
337 static inline struct task_group *task_group(struct task_struct *p)
339 struct task_group *tg;
341 #ifdef CONFIG_USER_SCHED
342 tg = p->user->tg;
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
346 #else
347 tg = &init_task_group;
348 #endif
349 return tg;
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
358 #endif
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
363 #endif
366 #else
368 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
370 #endif /* CONFIG_GROUP_SCHED */
372 /* CFS-related fields in a runqueue */
373 struct cfs_rq {
374 struct load_weight load;
375 unsigned long nr_running;
377 u64 exec_clock;
378 u64 min_vruntime;
380 struct rb_root tasks_timeline;
381 struct rb_node *rb_leftmost;
383 struct list_head tasks;
384 struct list_head *balance_iterator;
387 * 'curr' points to currently running entity on this cfs_rq.
388 * It is set to NULL otherwise (i.e when none are currently running).
390 struct sched_entity *curr, *next;
392 unsigned long nr_spread_over;
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
405 struct list_head leaf_cfs_rq_list;
406 struct task_group *tg; /* group that "owns" this runqueue */
407 #endif
410 /* Real-Time classes' related field in a runqueue: */
411 struct rt_rq {
412 struct rt_prio_array active;
413 unsigned long rt_nr_running;
414 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 int highest_prio; /* highest queued rt task prio */
416 #endif
417 #ifdef CONFIG_SMP
418 unsigned long rt_nr_migratory;
419 int overloaded;
420 #endif
421 int rt_throttled;
422 u64 rt_time;
423 u64 rt_runtime;
424 /* Nests inside the rq lock: */
425 spinlock_t rt_runtime_lock;
427 #ifdef CONFIG_RT_GROUP_SCHED
428 unsigned long rt_nr_boosted;
430 struct rq *rq;
431 struct list_head leaf_rt_rq_list;
432 struct task_group *tg;
433 struct sched_rt_entity *rt_se;
434 #endif
437 #ifdef CONFIG_SMP
440 * We add the notion of a root-domain which will be used to define per-domain
441 * variables. Each exclusive cpuset essentially defines an island domain by
442 * fully partitioning the member cpus from any other cpuset. Whenever a new
443 * exclusive cpuset is created, we also create and attach a new root-domain
444 * object.
447 struct root_domain {
448 atomic_t refcount;
449 cpumask_t span;
450 cpumask_t online;
453 * The "RT overload" flag: it gets set if a CPU has more than
454 * one runnable RT task.
456 cpumask_t rto_mask;
457 atomic_t rto_count;
458 #ifdef CONFIG_SMP
459 struct cpupri cpupri;
460 #endif
464 * By default the system creates a single root-domain with all cpus as
465 * members (mimicking the global state we have today).
467 static struct root_domain def_root_domain;
469 #endif
472 * This is the main, per-CPU runqueue data structure.
474 * Locking rule: those places that want to lock multiple runqueues
475 * (such as the load balancing or the thread migration code), lock
476 * acquire operations must be ordered by ascending &runqueue.
478 struct rq {
479 /* runqueue lock: */
480 spinlock_t lock;
483 * nr_running and cpu_load should be in the same cacheline because
484 * remote CPUs use both these fields when doing load calculation.
486 unsigned long nr_running;
487 #define CPU_LOAD_IDX_MAX 5
488 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
489 unsigned char idle_at_tick;
490 #ifdef CONFIG_NO_HZ
491 unsigned long last_tick_seen;
492 unsigned char in_nohz_recently;
493 #endif
494 /* capture load from *all* tasks on this cpu: */
495 struct load_weight load;
496 unsigned long nr_load_updates;
497 u64 nr_switches;
499 struct cfs_rq cfs;
500 struct rt_rq rt;
502 #ifdef CONFIG_FAIR_GROUP_SCHED
503 /* list of leaf cfs_rq on this cpu: */
504 struct list_head leaf_cfs_rq_list;
505 #endif
506 #ifdef CONFIG_RT_GROUP_SCHED
507 struct list_head leaf_rt_rq_list;
508 #endif
511 * This is part of a global counter where only the total sum
512 * over all CPUs matters. A task can increase this counter on
513 * one CPU and if it got migrated afterwards it may decrease
514 * it on another CPU. Always updated under the runqueue lock:
516 unsigned long nr_uninterruptible;
518 struct task_struct *curr, *idle;
519 unsigned long next_balance;
520 struct mm_struct *prev_mm;
522 u64 clock;
524 atomic_t nr_iowait;
526 #ifdef CONFIG_SMP
527 struct root_domain *rd;
528 struct sched_domain *sd;
530 /* For active balancing */
531 int active_balance;
532 int push_cpu;
533 /* cpu of this runqueue: */
534 int cpu;
535 int online;
537 struct task_struct *migration_thread;
538 struct list_head migration_queue;
539 #endif
541 #ifdef CONFIG_SCHED_HRTICK
542 unsigned long hrtick_flags;
543 ktime_t hrtick_expire;
544 struct hrtimer hrtick_timer;
545 #endif
547 #ifdef CONFIG_SCHEDSTATS
548 /* latency stats */
549 struct sched_info rq_sched_info;
551 /* sys_sched_yield() stats */
552 unsigned int yld_exp_empty;
553 unsigned int yld_act_empty;
554 unsigned int yld_both_empty;
555 unsigned int yld_count;
557 /* schedule() stats */
558 unsigned int sched_switch;
559 unsigned int sched_count;
560 unsigned int sched_goidle;
562 /* try_to_wake_up() stats */
563 unsigned int ttwu_count;
564 unsigned int ttwu_local;
566 /* BKL stats */
567 unsigned int bkl_count;
568 #endif
569 struct lock_class_key rq_lock_key;
572 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
574 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
576 rq->curr->sched_class->check_preempt_curr(rq, p);
579 static inline int cpu_of(struct rq *rq)
581 #ifdef CONFIG_SMP
582 return rq->cpu;
583 #else
584 return 0;
585 #endif
589 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
590 * See detach_destroy_domains: synchronize_sched for details.
592 * The domain tree of any CPU may only be accessed from within
593 * preempt-disabled sections.
595 #define for_each_domain(cpu, __sd) \
596 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
598 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
599 #define this_rq() (&__get_cpu_var(runqueues))
600 #define task_rq(p) cpu_rq(task_cpu(p))
601 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
603 static inline void update_rq_clock(struct rq *rq)
605 rq->clock = sched_clock_cpu(cpu_of(rq));
609 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
611 #ifdef CONFIG_SCHED_DEBUG
612 # define const_debug __read_mostly
613 #else
614 # define const_debug static const
615 #endif
618 * Debugging: various feature bits
621 #define SCHED_FEAT(name, enabled) \
622 __SCHED_FEAT_##name ,
624 enum {
625 #include "sched_features.h"
628 #undef SCHED_FEAT
630 #define SCHED_FEAT(name, enabled) \
631 (1UL << __SCHED_FEAT_##name) * enabled |
633 const_debug unsigned int sysctl_sched_features =
634 #include "sched_features.h"
637 #undef SCHED_FEAT
639 #ifdef CONFIG_SCHED_DEBUG
640 #define SCHED_FEAT(name, enabled) \
641 #name ,
643 static __read_mostly char *sched_feat_names[] = {
644 #include "sched_features.h"
645 NULL
648 #undef SCHED_FEAT
650 static int sched_feat_open(struct inode *inode, struct file *filp)
652 filp->private_data = inode->i_private;
653 return 0;
656 static ssize_t
657 sched_feat_read(struct file *filp, char __user *ubuf,
658 size_t cnt, loff_t *ppos)
660 char *buf;
661 int r = 0;
662 int len = 0;
663 int i;
665 for (i = 0; sched_feat_names[i]; i++) {
666 len += strlen(sched_feat_names[i]);
667 len += 4;
670 buf = kmalloc(len + 2, GFP_KERNEL);
671 if (!buf)
672 return -ENOMEM;
674 for (i = 0; sched_feat_names[i]; i++) {
675 if (sysctl_sched_features & (1UL << i))
676 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
677 else
678 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
681 r += sprintf(buf + r, "\n");
682 WARN_ON(r >= len + 2);
684 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
686 kfree(buf);
688 return r;
691 static ssize_t
692 sched_feat_write(struct file *filp, const char __user *ubuf,
693 size_t cnt, loff_t *ppos)
695 char buf[64];
696 char *cmp = buf;
697 int neg = 0;
698 int i;
700 if (cnt > 63)
701 cnt = 63;
703 if (copy_from_user(&buf, ubuf, cnt))
704 return -EFAULT;
706 buf[cnt] = 0;
708 if (strncmp(buf, "NO_", 3) == 0) {
709 neg = 1;
710 cmp += 3;
713 for (i = 0; sched_feat_names[i]; i++) {
714 int len = strlen(sched_feat_names[i]);
716 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
717 if (neg)
718 sysctl_sched_features &= ~(1UL << i);
719 else
720 sysctl_sched_features |= (1UL << i);
721 break;
725 if (!sched_feat_names[i])
726 return -EINVAL;
728 filp->f_pos += cnt;
730 return cnt;
733 static struct file_operations sched_feat_fops = {
734 .open = sched_feat_open,
735 .read = sched_feat_read,
736 .write = sched_feat_write,
739 static __init int sched_init_debug(void)
741 debugfs_create_file("sched_features", 0644, NULL, NULL,
742 &sched_feat_fops);
744 return 0;
746 late_initcall(sched_init_debug);
748 #endif
750 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
753 * Number of tasks to iterate in a single balance run.
754 * Limited because this is done with IRQs disabled.
756 const_debug unsigned int sysctl_sched_nr_migrate = 32;
759 * period over which we measure -rt task cpu usage in us.
760 * default: 1s
762 unsigned int sysctl_sched_rt_period = 1000000;
764 static __read_mostly int scheduler_running;
767 * part of the period that we allow rt tasks to run in us.
768 * default: 0.95s
770 int sysctl_sched_rt_runtime = 950000;
772 static inline u64 global_rt_period(void)
774 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
777 static inline u64 global_rt_runtime(void)
779 if (sysctl_sched_rt_period < 0)
780 return RUNTIME_INF;
782 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
785 unsigned long long time_sync_thresh = 100000;
787 static DEFINE_PER_CPU(unsigned long long, time_offset);
788 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
791 * Global lock which we take every now and then to synchronize
792 * the CPUs time. This method is not warp-safe, but it's good
793 * enough to synchronize slowly diverging time sources and thus
794 * it's good enough for tracing:
796 static DEFINE_SPINLOCK(time_sync_lock);
797 static unsigned long long prev_global_time;
799 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
802 * We want this inlined, to not get tracer function calls
803 * in this critical section:
805 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
806 __raw_spin_lock(&time_sync_lock.raw_lock);
808 if (time < prev_global_time) {
809 per_cpu(time_offset, cpu) += prev_global_time - time;
810 time = prev_global_time;
811 } else {
812 prev_global_time = time;
815 __raw_spin_unlock(&time_sync_lock.raw_lock);
816 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
818 return time;
821 static unsigned long long __cpu_clock(int cpu)
823 unsigned long long now;
826 * Only call sched_clock() if the scheduler has already been
827 * initialized (some code might call cpu_clock() very early):
829 if (unlikely(!scheduler_running))
830 return 0;
832 now = sched_clock_cpu(cpu);
834 return now;
838 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
839 * clock constructed from sched_clock():
841 unsigned long long cpu_clock(int cpu)
843 unsigned long long prev_cpu_time, time, delta_time;
844 unsigned long flags;
846 local_irq_save(flags);
847 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
848 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
849 delta_time = time-prev_cpu_time;
851 if (unlikely(delta_time > time_sync_thresh)) {
852 time = __sync_cpu_clock(time, cpu);
853 per_cpu(prev_cpu_time, cpu) = time;
855 local_irq_restore(flags);
857 return time;
859 EXPORT_SYMBOL_GPL(cpu_clock);
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
868 static inline int task_current(struct rq *rq, struct task_struct *p)
870 return rq->curr == p;
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
876 return task_current(rq, p);
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
896 spin_unlock_irq(&rq->lock);
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 #ifdef CONFIG_SMP
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921 #else
922 spin_unlock(&rq->lock);
923 #endif
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
928 #ifdef CONFIG_SMP
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 spin_unlock(&rq->lock);
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
967 struct rq *rq;
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 spin_unlock_irqrestore(&rq->lock, *flags);
979 static void __task_rq_unlock(struct rq *rq)
980 __releases(rq->lock)
982 spin_unlock(&rq->lock);
985 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
986 __releases(rq->lock)
988 spin_unlock_irqrestore(&rq->lock, *flags);
992 * this_rq_lock - lock this runqueue and disable interrupts.
994 static struct rq *this_rq_lock(void)
995 __acquires(rq->lock)
997 struct rq *rq;
999 local_irq_disable();
1000 rq = this_rq();
1001 spin_lock(&rq->lock);
1003 return rq;
1006 static void __resched_task(struct task_struct *p, int tif_bit);
1008 static inline void resched_task(struct task_struct *p)
1010 __resched_task(p, TIF_NEED_RESCHED);
1013 #ifdef CONFIG_SCHED_HRTICK
1015 * Use HR-timers to deliver accurate preemption points.
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1024 static inline void resched_hrt(struct task_struct *p)
1026 __resched_task(p, TIF_HRTICK_RESCHED);
1029 static inline void resched_rq(struct rq *rq)
1031 unsigned long flags;
1033 spin_lock_irqsave(&rq->lock, flags);
1034 resched_task(rq->curr);
1035 spin_unlock_irqrestore(&rq->lock, flags);
1038 enum {
1039 HRTICK_SET, /* re-programm hrtick_timer */
1040 HRTICK_RESET, /* not a new slice */
1041 HRTICK_BLOCK, /* stop hrtick operations */
1045 * Use hrtick when:
1046 * - enabled by features
1047 * - hrtimer is actually high res
1049 static inline int hrtick_enabled(struct rq *rq)
1051 if (!sched_feat(HRTICK))
1052 return 0;
1053 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1054 return 0;
1055 return hrtimer_is_hres_active(&rq->hrtick_timer);
1059 * Called to set the hrtick timer state.
1061 * called with rq->lock held and irqs disabled
1063 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1065 assert_spin_locked(&rq->lock);
1068 * preempt at: now + delay
1070 rq->hrtick_expire =
1071 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1073 * indicate we need to program the timer
1075 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1076 if (reset)
1077 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1080 * New slices are called from the schedule path and don't need a
1081 * forced reschedule.
1083 if (reset)
1084 resched_hrt(rq->curr);
1087 static void hrtick_clear(struct rq *rq)
1089 if (hrtimer_active(&rq->hrtick_timer))
1090 hrtimer_cancel(&rq->hrtick_timer);
1094 * Update the timer from the possible pending state.
1096 static void hrtick_set(struct rq *rq)
1098 ktime_t time;
1099 int set, reset;
1100 unsigned long flags;
1102 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1104 spin_lock_irqsave(&rq->lock, flags);
1105 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1106 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1107 time = rq->hrtick_expire;
1108 clear_thread_flag(TIF_HRTICK_RESCHED);
1109 spin_unlock_irqrestore(&rq->lock, flags);
1111 if (set) {
1112 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1113 if (reset && !hrtimer_active(&rq->hrtick_timer))
1114 resched_rq(rq);
1115 } else
1116 hrtick_clear(rq);
1120 * High-resolution timer tick.
1121 * Runs from hardirq context with interrupts disabled.
1123 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1125 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1127 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1129 spin_lock(&rq->lock);
1130 update_rq_clock(rq);
1131 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1132 spin_unlock(&rq->lock);
1134 return HRTIMER_NORESTART;
1137 #ifdef CONFIG_SMP
1138 static void hotplug_hrtick_disable(int cpu)
1140 struct rq *rq = cpu_rq(cpu);
1141 unsigned long flags;
1143 spin_lock_irqsave(&rq->lock, flags);
1144 rq->hrtick_flags = 0;
1145 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1146 spin_unlock_irqrestore(&rq->lock, flags);
1148 hrtick_clear(rq);
1151 static void hotplug_hrtick_enable(int cpu)
1153 struct rq *rq = cpu_rq(cpu);
1154 unsigned long flags;
1156 spin_lock_irqsave(&rq->lock, flags);
1157 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1158 spin_unlock_irqrestore(&rq->lock, flags);
1161 static int
1162 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1164 int cpu = (int)(long)hcpu;
1166 switch (action) {
1167 case CPU_UP_CANCELED:
1168 case CPU_UP_CANCELED_FROZEN:
1169 case CPU_DOWN_PREPARE:
1170 case CPU_DOWN_PREPARE_FROZEN:
1171 case CPU_DEAD:
1172 case CPU_DEAD_FROZEN:
1173 hotplug_hrtick_disable(cpu);
1174 return NOTIFY_OK;
1176 case CPU_UP_PREPARE:
1177 case CPU_UP_PREPARE_FROZEN:
1178 case CPU_DOWN_FAILED:
1179 case CPU_DOWN_FAILED_FROZEN:
1180 case CPU_ONLINE:
1181 case CPU_ONLINE_FROZEN:
1182 hotplug_hrtick_enable(cpu);
1183 return NOTIFY_OK;
1186 return NOTIFY_DONE;
1189 static void init_hrtick(void)
1191 hotcpu_notifier(hotplug_hrtick, 0);
1193 #endif /* CONFIG_SMP */
1195 static void init_rq_hrtick(struct rq *rq)
1197 rq->hrtick_flags = 0;
1198 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1199 rq->hrtick_timer.function = hrtick;
1200 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1203 void hrtick_resched(void)
1205 struct rq *rq;
1206 unsigned long flags;
1208 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1209 return;
1211 local_irq_save(flags);
1212 rq = cpu_rq(smp_processor_id());
1213 hrtick_set(rq);
1214 local_irq_restore(flags);
1216 #else
1217 static inline void hrtick_clear(struct rq *rq)
1221 static inline void hrtick_set(struct rq *rq)
1225 static inline void init_rq_hrtick(struct rq *rq)
1229 void hrtick_resched(void)
1233 static inline void init_hrtick(void)
1236 #endif
1239 * resched_task - mark a task 'to be rescheduled now'.
1241 * On UP this means the setting of the need_resched flag, on SMP it
1242 * might also involve a cross-CPU call to trigger the scheduler on
1243 * the target CPU.
1245 #ifdef CONFIG_SMP
1247 #ifndef tsk_is_polling
1248 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1249 #endif
1251 static void __resched_task(struct task_struct *p, int tif_bit)
1253 int cpu;
1255 assert_spin_locked(&task_rq(p)->lock);
1257 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1258 return;
1260 set_tsk_thread_flag(p, tif_bit);
1262 cpu = task_cpu(p);
1263 if (cpu == smp_processor_id())
1264 return;
1266 /* NEED_RESCHED must be visible before we test polling */
1267 smp_mb();
1268 if (!tsk_is_polling(p))
1269 smp_send_reschedule(cpu);
1272 static void resched_cpu(int cpu)
1274 struct rq *rq = cpu_rq(cpu);
1275 unsigned long flags;
1277 if (!spin_trylock_irqsave(&rq->lock, flags))
1278 return;
1279 resched_task(cpu_curr(cpu));
1280 spin_unlock_irqrestore(&rq->lock, flags);
1283 #ifdef CONFIG_NO_HZ
1285 * When add_timer_on() enqueues a timer into the timer wheel of an
1286 * idle CPU then this timer might expire before the next timer event
1287 * which is scheduled to wake up that CPU. In case of a completely
1288 * idle system the next event might even be infinite time into the
1289 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1290 * leaves the inner idle loop so the newly added timer is taken into
1291 * account when the CPU goes back to idle and evaluates the timer
1292 * wheel for the next timer event.
1294 void wake_up_idle_cpu(int cpu)
1296 struct rq *rq = cpu_rq(cpu);
1298 if (cpu == smp_processor_id())
1299 return;
1302 * This is safe, as this function is called with the timer
1303 * wheel base lock of (cpu) held. When the CPU is on the way
1304 * to idle and has not yet set rq->curr to idle then it will
1305 * be serialized on the timer wheel base lock and take the new
1306 * timer into account automatically.
1308 if (rq->curr != rq->idle)
1309 return;
1312 * We can set TIF_RESCHED on the idle task of the other CPU
1313 * lockless. The worst case is that the other CPU runs the
1314 * idle task through an additional NOOP schedule()
1316 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1318 /* NEED_RESCHED must be visible before we test polling */
1319 smp_mb();
1320 if (!tsk_is_polling(rq->idle))
1321 smp_send_reschedule(cpu);
1323 #endif /* CONFIG_NO_HZ */
1325 #else /* !CONFIG_SMP */
1326 static void __resched_task(struct task_struct *p, int tif_bit)
1328 assert_spin_locked(&task_rq(p)->lock);
1329 set_tsk_thread_flag(p, tif_bit);
1331 #endif /* CONFIG_SMP */
1333 #if BITS_PER_LONG == 32
1334 # define WMULT_CONST (~0UL)
1335 #else
1336 # define WMULT_CONST (1UL << 32)
1337 #endif
1339 #define WMULT_SHIFT 32
1342 * Shift right and round:
1344 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1346 static unsigned long
1347 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1348 struct load_weight *lw)
1350 u64 tmp;
1352 if (!lw->inv_weight) {
1353 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1354 lw->inv_weight = 1;
1355 else
1356 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1357 / (lw->weight+1);
1360 tmp = (u64)delta_exec * weight;
1362 * Check whether we'd overflow the 64-bit multiplication:
1364 if (unlikely(tmp > WMULT_CONST))
1365 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1366 WMULT_SHIFT/2);
1367 else
1368 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1370 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1373 static inline unsigned long
1374 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1376 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1379 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1381 lw->weight += inc;
1382 lw->inv_weight = 0;
1385 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1387 lw->weight -= dec;
1388 lw->inv_weight = 0;
1392 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1393 * of tasks with abnormal "nice" values across CPUs the contribution that
1394 * each task makes to its run queue's load is weighted according to its
1395 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1396 * scaled version of the new time slice allocation that they receive on time
1397 * slice expiry etc.
1400 #define WEIGHT_IDLEPRIO 2
1401 #define WMULT_IDLEPRIO (1 << 31)
1404 * Nice levels are multiplicative, with a gentle 10% change for every
1405 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1406 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1407 * that remained on nice 0.
1409 * The "10% effect" is relative and cumulative: from _any_ nice level,
1410 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1411 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1412 * If a task goes up by ~10% and another task goes down by ~10% then
1413 * the relative distance between them is ~25%.)
1415 static const int prio_to_weight[40] = {
1416 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1417 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1418 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1419 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1420 /* 0 */ 1024, 820, 655, 526, 423,
1421 /* 5 */ 335, 272, 215, 172, 137,
1422 /* 10 */ 110, 87, 70, 56, 45,
1423 /* 15 */ 36, 29, 23, 18, 15,
1427 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1429 * In cases where the weight does not change often, we can use the
1430 * precalculated inverse to speed up arithmetics by turning divisions
1431 * into multiplications:
1433 static const u32 prio_to_wmult[40] = {
1434 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1435 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1436 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1437 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1438 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1439 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1440 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1441 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1444 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1447 * runqueue iterator, to support SMP load-balancing between different
1448 * scheduling classes, without having to expose their internal data
1449 * structures to the load-balancing proper:
1451 struct rq_iterator {
1452 void *arg;
1453 struct task_struct *(*start)(void *);
1454 struct task_struct *(*next)(void *);
1457 #ifdef CONFIG_SMP
1458 static unsigned long
1459 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1460 unsigned long max_load_move, struct sched_domain *sd,
1461 enum cpu_idle_type idle, int *all_pinned,
1462 int *this_best_prio, struct rq_iterator *iterator);
1464 static int
1465 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1466 struct sched_domain *sd, enum cpu_idle_type idle,
1467 struct rq_iterator *iterator);
1468 #endif
1470 #ifdef CONFIG_CGROUP_CPUACCT
1471 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1472 #else
1473 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1474 #endif
1476 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1478 update_load_add(&rq->load, load);
1481 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1483 update_load_sub(&rq->load, load);
1486 #ifdef CONFIG_SMP
1487 static unsigned long source_load(int cpu, int type);
1488 static unsigned long target_load(int cpu, int type);
1489 static unsigned long cpu_avg_load_per_task(int cpu);
1490 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1491 #endif
1493 #include "sched_stats.h"
1494 #include "sched_idletask.c"
1495 #include "sched_fair.c"
1496 #include "sched_rt.c"
1497 #ifdef CONFIG_SCHED_DEBUG
1498 # include "sched_debug.c"
1499 #endif
1501 #define sched_class_highest (&rt_sched_class)
1502 #define for_each_class(class) \
1503 for (class = sched_class_highest; class; class = class->next)
1505 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1507 update_load_add(&rq->load, p->se.load.weight);
1510 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1512 update_load_sub(&rq->load, p->se.load.weight);
1515 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1517 rq->nr_running++;
1518 inc_load(rq, p);
1521 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1523 rq->nr_running--;
1524 dec_load(rq, p);
1527 static void set_load_weight(struct task_struct *p)
1529 if (task_has_rt_policy(p)) {
1530 p->se.load.weight = prio_to_weight[0] * 2;
1531 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1532 return;
1536 * SCHED_IDLE tasks get minimal weight:
1538 if (p->policy == SCHED_IDLE) {
1539 p->se.load.weight = WEIGHT_IDLEPRIO;
1540 p->se.load.inv_weight = WMULT_IDLEPRIO;
1541 return;
1544 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1545 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1548 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1550 sched_info_queued(p);
1551 p->sched_class->enqueue_task(rq, p, wakeup);
1552 p->se.on_rq = 1;
1555 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1557 p->sched_class->dequeue_task(rq, p, sleep);
1558 p->se.on_rq = 0;
1562 * __normal_prio - return the priority that is based on the static prio
1564 static inline int __normal_prio(struct task_struct *p)
1566 return p->static_prio;
1570 * Calculate the expected normal priority: i.e. priority
1571 * without taking RT-inheritance into account. Might be
1572 * boosted by interactivity modifiers. Changes upon fork,
1573 * setprio syscalls, and whenever the interactivity
1574 * estimator recalculates.
1576 static inline int normal_prio(struct task_struct *p)
1578 int prio;
1580 if (task_has_rt_policy(p))
1581 prio = MAX_RT_PRIO-1 - p->rt_priority;
1582 else
1583 prio = __normal_prio(p);
1584 return prio;
1588 * Calculate the current priority, i.e. the priority
1589 * taken into account by the scheduler. This value might
1590 * be boosted by RT tasks, or might be boosted by
1591 * interactivity modifiers. Will be RT if the task got
1592 * RT-boosted. If not then it returns p->normal_prio.
1594 static int effective_prio(struct task_struct *p)
1596 p->normal_prio = normal_prio(p);
1598 * If we are RT tasks or we were boosted to RT priority,
1599 * keep the priority unchanged. Otherwise, update priority
1600 * to the normal priority:
1602 if (!rt_prio(p->prio))
1603 return p->normal_prio;
1604 return p->prio;
1608 * activate_task - move a task to the runqueue.
1610 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1612 if (task_contributes_to_load(p))
1613 rq->nr_uninterruptible--;
1615 enqueue_task(rq, p, wakeup);
1616 inc_nr_running(p, rq);
1620 * deactivate_task - remove a task from the runqueue.
1622 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1624 if (task_contributes_to_load(p))
1625 rq->nr_uninterruptible++;
1627 dequeue_task(rq, p, sleep);
1628 dec_nr_running(p, rq);
1632 * task_curr - is this task currently executing on a CPU?
1633 * @p: the task in question.
1635 inline int task_curr(const struct task_struct *p)
1637 return cpu_curr(task_cpu(p)) == p;
1640 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1642 set_task_rq(p, cpu);
1643 #ifdef CONFIG_SMP
1645 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1646 * successfuly executed on another CPU. We must ensure that updates of
1647 * per-task data have been completed by this moment.
1649 smp_wmb();
1650 task_thread_info(p)->cpu = cpu;
1651 #endif
1654 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1655 const struct sched_class *prev_class,
1656 int oldprio, int running)
1658 if (prev_class != p->sched_class) {
1659 if (prev_class->switched_from)
1660 prev_class->switched_from(rq, p, running);
1661 p->sched_class->switched_to(rq, p, running);
1662 } else
1663 p->sched_class->prio_changed(rq, p, oldprio, running);
1666 #ifdef CONFIG_SMP
1668 /* Used instead of source_load when we know the type == 0 */
1669 static unsigned long weighted_cpuload(const int cpu)
1671 return cpu_rq(cpu)->load.weight;
1675 * Is this task likely cache-hot:
1677 static int
1678 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1680 s64 delta;
1683 * Buddy candidates are cache hot:
1685 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1686 return 1;
1688 if (p->sched_class != &fair_sched_class)
1689 return 0;
1691 if (sysctl_sched_migration_cost == -1)
1692 return 1;
1693 if (sysctl_sched_migration_cost == 0)
1694 return 0;
1696 delta = now - p->se.exec_start;
1698 return delta < (s64)sysctl_sched_migration_cost;
1702 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1704 int old_cpu = task_cpu(p);
1705 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1706 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1707 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1708 u64 clock_offset;
1710 clock_offset = old_rq->clock - new_rq->clock;
1712 #ifdef CONFIG_SCHEDSTATS
1713 if (p->se.wait_start)
1714 p->se.wait_start -= clock_offset;
1715 if (p->se.sleep_start)
1716 p->se.sleep_start -= clock_offset;
1717 if (p->se.block_start)
1718 p->se.block_start -= clock_offset;
1719 if (old_cpu != new_cpu) {
1720 schedstat_inc(p, se.nr_migrations);
1721 if (task_hot(p, old_rq->clock, NULL))
1722 schedstat_inc(p, se.nr_forced2_migrations);
1724 #endif
1725 p->se.vruntime -= old_cfsrq->min_vruntime -
1726 new_cfsrq->min_vruntime;
1728 __set_task_cpu(p, new_cpu);
1731 struct migration_req {
1732 struct list_head list;
1734 struct task_struct *task;
1735 int dest_cpu;
1737 struct completion done;
1741 * The task's runqueue lock must be held.
1742 * Returns true if you have to wait for migration thread.
1744 static int
1745 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1747 struct rq *rq = task_rq(p);
1750 * If the task is not on a runqueue (and not running), then
1751 * it is sufficient to simply update the task's cpu field.
1753 if (!p->se.on_rq && !task_running(rq, p)) {
1754 set_task_cpu(p, dest_cpu);
1755 return 0;
1758 init_completion(&req->done);
1759 req->task = p;
1760 req->dest_cpu = dest_cpu;
1761 list_add(&req->list, &rq->migration_queue);
1763 return 1;
1767 * wait_task_inactive - wait for a thread to unschedule.
1769 * The caller must ensure that the task *will* unschedule sometime soon,
1770 * else this function might spin for a *long* time. This function can't
1771 * be called with interrupts off, or it may introduce deadlock with
1772 * smp_call_function() if an IPI is sent by the same process we are
1773 * waiting to become inactive.
1775 void wait_task_inactive(struct task_struct *p)
1777 unsigned long flags;
1778 int running, on_rq;
1779 struct rq *rq;
1781 for (;;) {
1783 * We do the initial early heuristics without holding
1784 * any task-queue locks at all. We'll only try to get
1785 * the runqueue lock when things look like they will
1786 * work out!
1788 rq = task_rq(p);
1791 * If the task is actively running on another CPU
1792 * still, just relax and busy-wait without holding
1793 * any locks.
1795 * NOTE! Since we don't hold any locks, it's not
1796 * even sure that "rq" stays as the right runqueue!
1797 * But we don't care, since "task_running()" will
1798 * return false if the runqueue has changed and p
1799 * is actually now running somewhere else!
1801 while (task_running(rq, p))
1802 cpu_relax();
1805 * Ok, time to look more closely! We need the rq
1806 * lock now, to be *sure*. If we're wrong, we'll
1807 * just go back and repeat.
1809 rq = task_rq_lock(p, &flags);
1810 running = task_running(rq, p);
1811 on_rq = p->se.on_rq;
1812 task_rq_unlock(rq, &flags);
1815 * Was it really running after all now that we
1816 * checked with the proper locks actually held?
1818 * Oops. Go back and try again..
1820 if (unlikely(running)) {
1821 cpu_relax();
1822 continue;
1826 * It's not enough that it's not actively running,
1827 * it must be off the runqueue _entirely_, and not
1828 * preempted!
1830 * So if it wa still runnable (but just not actively
1831 * running right now), it's preempted, and we should
1832 * yield - it could be a while.
1834 if (unlikely(on_rq)) {
1835 schedule_timeout_uninterruptible(1);
1836 continue;
1840 * Ahh, all good. It wasn't running, and it wasn't
1841 * runnable, which means that it will never become
1842 * running in the future either. We're all done!
1844 break;
1848 /***
1849 * kick_process - kick a running thread to enter/exit the kernel
1850 * @p: the to-be-kicked thread
1852 * Cause a process which is running on another CPU to enter
1853 * kernel-mode, without any delay. (to get signals handled.)
1855 * NOTE: this function doesnt have to take the runqueue lock,
1856 * because all it wants to ensure is that the remote task enters
1857 * the kernel. If the IPI races and the task has been migrated
1858 * to another CPU then no harm is done and the purpose has been
1859 * achieved as well.
1861 void kick_process(struct task_struct *p)
1863 int cpu;
1865 preempt_disable();
1866 cpu = task_cpu(p);
1867 if ((cpu != smp_processor_id()) && task_curr(p))
1868 smp_send_reschedule(cpu);
1869 preempt_enable();
1873 * Return a low guess at the load of a migration-source cpu weighted
1874 * according to the scheduling class and "nice" value.
1876 * We want to under-estimate the load of migration sources, to
1877 * balance conservatively.
1879 static unsigned long source_load(int cpu, int type)
1881 struct rq *rq = cpu_rq(cpu);
1882 unsigned long total = weighted_cpuload(cpu);
1884 if (type == 0)
1885 return total;
1887 return min(rq->cpu_load[type-1], total);
1891 * Return a high guess at the load of a migration-target cpu weighted
1892 * according to the scheduling class and "nice" value.
1894 static unsigned long target_load(int cpu, int type)
1896 struct rq *rq = cpu_rq(cpu);
1897 unsigned long total = weighted_cpuload(cpu);
1899 if (type == 0)
1900 return total;
1902 return max(rq->cpu_load[type-1], total);
1906 * Return the average load per task on the cpu's run queue
1908 static unsigned long cpu_avg_load_per_task(int cpu)
1910 struct rq *rq = cpu_rq(cpu);
1911 unsigned long total = weighted_cpuload(cpu);
1912 unsigned long n = rq->nr_running;
1914 return n ? total / n : SCHED_LOAD_SCALE;
1918 * find_idlest_group finds and returns the least busy CPU group within the
1919 * domain.
1921 static struct sched_group *
1922 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1924 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1925 unsigned long min_load = ULONG_MAX, this_load = 0;
1926 int load_idx = sd->forkexec_idx;
1927 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1929 do {
1930 unsigned long load, avg_load;
1931 int local_group;
1932 int i;
1934 /* Skip over this group if it has no CPUs allowed */
1935 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1936 continue;
1938 local_group = cpu_isset(this_cpu, group->cpumask);
1940 /* Tally up the load of all CPUs in the group */
1941 avg_load = 0;
1943 for_each_cpu_mask(i, group->cpumask) {
1944 /* Bias balancing toward cpus of our domain */
1945 if (local_group)
1946 load = source_load(i, load_idx);
1947 else
1948 load = target_load(i, load_idx);
1950 avg_load += load;
1953 /* Adjust by relative CPU power of the group */
1954 avg_load = sg_div_cpu_power(group,
1955 avg_load * SCHED_LOAD_SCALE);
1957 if (local_group) {
1958 this_load = avg_load;
1959 this = group;
1960 } else if (avg_load < min_load) {
1961 min_load = avg_load;
1962 idlest = group;
1964 } while (group = group->next, group != sd->groups);
1966 if (!idlest || 100*this_load < imbalance*min_load)
1967 return NULL;
1968 return idlest;
1972 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1974 static int
1975 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1976 cpumask_t *tmp)
1978 unsigned long load, min_load = ULONG_MAX;
1979 int idlest = -1;
1980 int i;
1982 /* Traverse only the allowed CPUs */
1983 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1985 for_each_cpu_mask(i, *tmp) {
1986 load = weighted_cpuload(i);
1988 if (load < min_load || (load == min_load && i == this_cpu)) {
1989 min_load = load;
1990 idlest = i;
1994 return idlest;
1998 * sched_balance_self: balance the current task (running on cpu) in domains
1999 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2000 * SD_BALANCE_EXEC.
2002 * Balance, ie. select the least loaded group.
2004 * Returns the target CPU number, or the same CPU if no balancing is needed.
2006 * preempt must be disabled.
2008 static int sched_balance_self(int cpu, int flag)
2010 struct task_struct *t = current;
2011 struct sched_domain *tmp, *sd = NULL;
2013 for_each_domain(cpu, tmp) {
2015 * If power savings logic is enabled for a domain, stop there.
2017 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2018 break;
2019 if (tmp->flags & flag)
2020 sd = tmp;
2023 while (sd) {
2024 cpumask_t span, tmpmask;
2025 struct sched_group *group;
2026 int new_cpu, weight;
2028 if (!(sd->flags & flag)) {
2029 sd = sd->child;
2030 continue;
2033 span = sd->span;
2034 group = find_idlest_group(sd, t, cpu);
2035 if (!group) {
2036 sd = sd->child;
2037 continue;
2040 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2041 if (new_cpu == -1 || new_cpu == cpu) {
2042 /* Now try balancing at a lower domain level of cpu */
2043 sd = sd->child;
2044 continue;
2047 /* Now try balancing at a lower domain level of new_cpu */
2048 cpu = new_cpu;
2049 sd = NULL;
2050 weight = cpus_weight(span);
2051 for_each_domain(cpu, tmp) {
2052 if (weight <= cpus_weight(tmp->span))
2053 break;
2054 if (tmp->flags & flag)
2055 sd = tmp;
2057 /* while loop will break here if sd == NULL */
2060 return cpu;
2063 #endif /* CONFIG_SMP */
2065 /***
2066 * try_to_wake_up - wake up a thread
2067 * @p: the to-be-woken-up thread
2068 * @state: the mask of task states that can be woken
2069 * @sync: do a synchronous wakeup?
2071 * Put it on the run-queue if it's not already there. The "current"
2072 * thread is always on the run-queue (except when the actual
2073 * re-schedule is in progress), and as such you're allowed to do
2074 * the simpler "current->state = TASK_RUNNING" to mark yourself
2075 * runnable without the overhead of this.
2077 * returns failure only if the task is already active.
2079 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2081 int cpu, orig_cpu, this_cpu, success = 0;
2082 unsigned long flags;
2083 long old_state;
2084 struct rq *rq;
2086 if (!sched_feat(SYNC_WAKEUPS))
2087 sync = 0;
2089 smp_wmb();
2090 rq = task_rq_lock(p, &flags);
2091 old_state = p->state;
2092 if (!(old_state & state))
2093 goto out;
2095 if (p->se.on_rq)
2096 goto out_running;
2098 cpu = task_cpu(p);
2099 orig_cpu = cpu;
2100 this_cpu = smp_processor_id();
2102 #ifdef CONFIG_SMP
2103 if (unlikely(task_running(rq, p)))
2104 goto out_activate;
2106 cpu = p->sched_class->select_task_rq(p, sync);
2107 if (cpu != orig_cpu) {
2108 set_task_cpu(p, cpu);
2109 task_rq_unlock(rq, &flags);
2110 /* might preempt at this point */
2111 rq = task_rq_lock(p, &flags);
2112 old_state = p->state;
2113 if (!(old_state & state))
2114 goto out;
2115 if (p->se.on_rq)
2116 goto out_running;
2118 this_cpu = smp_processor_id();
2119 cpu = task_cpu(p);
2122 #ifdef CONFIG_SCHEDSTATS
2123 schedstat_inc(rq, ttwu_count);
2124 if (cpu == this_cpu)
2125 schedstat_inc(rq, ttwu_local);
2126 else {
2127 struct sched_domain *sd;
2128 for_each_domain(this_cpu, sd) {
2129 if (cpu_isset(cpu, sd->span)) {
2130 schedstat_inc(sd, ttwu_wake_remote);
2131 break;
2135 #endif /* CONFIG_SCHEDSTATS */
2137 out_activate:
2138 #endif /* CONFIG_SMP */
2139 schedstat_inc(p, se.nr_wakeups);
2140 if (sync)
2141 schedstat_inc(p, se.nr_wakeups_sync);
2142 if (orig_cpu != cpu)
2143 schedstat_inc(p, se.nr_wakeups_migrate);
2144 if (cpu == this_cpu)
2145 schedstat_inc(p, se.nr_wakeups_local);
2146 else
2147 schedstat_inc(p, se.nr_wakeups_remote);
2148 update_rq_clock(rq);
2149 activate_task(rq, p, 1);
2150 success = 1;
2152 out_running:
2153 check_preempt_curr(rq, p);
2155 p->state = TASK_RUNNING;
2156 #ifdef CONFIG_SMP
2157 if (p->sched_class->task_wake_up)
2158 p->sched_class->task_wake_up(rq, p);
2159 #endif
2160 out:
2161 task_rq_unlock(rq, &flags);
2163 return success;
2166 int wake_up_process(struct task_struct *p)
2168 return try_to_wake_up(p, TASK_ALL, 0);
2170 EXPORT_SYMBOL(wake_up_process);
2172 int wake_up_state(struct task_struct *p, unsigned int state)
2174 return try_to_wake_up(p, state, 0);
2178 * Perform scheduler related setup for a newly forked process p.
2179 * p is forked by current.
2181 * __sched_fork() is basic setup used by init_idle() too:
2183 static void __sched_fork(struct task_struct *p)
2185 p->se.exec_start = 0;
2186 p->se.sum_exec_runtime = 0;
2187 p->se.prev_sum_exec_runtime = 0;
2188 p->se.last_wakeup = 0;
2189 p->se.avg_overlap = 0;
2191 #ifdef CONFIG_SCHEDSTATS
2192 p->se.wait_start = 0;
2193 p->se.sum_sleep_runtime = 0;
2194 p->se.sleep_start = 0;
2195 p->se.block_start = 0;
2196 p->se.sleep_max = 0;
2197 p->se.block_max = 0;
2198 p->se.exec_max = 0;
2199 p->se.slice_max = 0;
2200 p->se.wait_max = 0;
2201 #endif
2203 INIT_LIST_HEAD(&p->rt.run_list);
2204 p->se.on_rq = 0;
2205 INIT_LIST_HEAD(&p->se.group_node);
2207 #ifdef CONFIG_PREEMPT_NOTIFIERS
2208 INIT_HLIST_HEAD(&p->preempt_notifiers);
2209 #endif
2212 * We mark the process as running here, but have not actually
2213 * inserted it onto the runqueue yet. This guarantees that
2214 * nobody will actually run it, and a signal or other external
2215 * event cannot wake it up and insert it on the runqueue either.
2217 p->state = TASK_RUNNING;
2221 * fork()/clone()-time setup:
2223 void sched_fork(struct task_struct *p, int clone_flags)
2225 int cpu = get_cpu();
2227 __sched_fork(p);
2229 #ifdef CONFIG_SMP
2230 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2231 #endif
2232 set_task_cpu(p, cpu);
2235 * Make sure we do not leak PI boosting priority to the child:
2237 p->prio = current->normal_prio;
2238 if (!rt_prio(p->prio))
2239 p->sched_class = &fair_sched_class;
2241 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2242 if (likely(sched_info_on()))
2243 memset(&p->sched_info, 0, sizeof(p->sched_info));
2244 #endif
2245 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2246 p->oncpu = 0;
2247 #endif
2248 #ifdef CONFIG_PREEMPT
2249 /* Want to start with kernel preemption disabled. */
2250 task_thread_info(p)->preempt_count = 1;
2251 #endif
2252 put_cpu();
2256 * wake_up_new_task - wake up a newly created task for the first time.
2258 * This function will do some initial scheduler statistics housekeeping
2259 * that must be done for every newly created context, then puts the task
2260 * on the runqueue and wakes it.
2262 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2264 unsigned long flags;
2265 struct rq *rq;
2267 rq = task_rq_lock(p, &flags);
2268 BUG_ON(p->state != TASK_RUNNING);
2269 update_rq_clock(rq);
2271 p->prio = effective_prio(p);
2273 if (!p->sched_class->task_new || !current->se.on_rq) {
2274 activate_task(rq, p, 0);
2275 } else {
2277 * Let the scheduling class do new task startup
2278 * management (if any):
2280 p->sched_class->task_new(rq, p);
2281 inc_nr_running(p, rq);
2283 check_preempt_curr(rq, p);
2284 #ifdef CONFIG_SMP
2285 if (p->sched_class->task_wake_up)
2286 p->sched_class->task_wake_up(rq, p);
2287 #endif
2288 task_rq_unlock(rq, &flags);
2291 #ifdef CONFIG_PREEMPT_NOTIFIERS
2294 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2295 * @notifier: notifier struct to register
2297 void preempt_notifier_register(struct preempt_notifier *notifier)
2299 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2301 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2304 * preempt_notifier_unregister - no longer interested in preemption notifications
2305 * @notifier: notifier struct to unregister
2307 * This is safe to call from within a preemption notifier.
2309 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2311 hlist_del(&notifier->link);
2313 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2315 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2317 struct preempt_notifier *notifier;
2318 struct hlist_node *node;
2320 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2321 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2324 static void
2325 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2326 struct task_struct *next)
2328 struct preempt_notifier *notifier;
2329 struct hlist_node *node;
2331 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2332 notifier->ops->sched_out(notifier, next);
2335 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2337 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2341 static void
2342 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2343 struct task_struct *next)
2347 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2350 * prepare_task_switch - prepare to switch tasks
2351 * @rq: the runqueue preparing to switch
2352 * @prev: the current task that is being switched out
2353 * @next: the task we are going to switch to.
2355 * This is called with the rq lock held and interrupts off. It must
2356 * be paired with a subsequent finish_task_switch after the context
2357 * switch.
2359 * prepare_task_switch sets up locking and calls architecture specific
2360 * hooks.
2362 static inline void
2363 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2364 struct task_struct *next)
2366 fire_sched_out_preempt_notifiers(prev, next);
2367 prepare_lock_switch(rq, next);
2368 prepare_arch_switch(next);
2372 * finish_task_switch - clean up after a task-switch
2373 * @rq: runqueue associated with task-switch
2374 * @prev: the thread we just switched away from.
2376 * finish_task_switch must be called after the context switch, paired
2377 * with a prepare_task_switch call before the context switch.
2378 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2379 * and do any other architecture-specific cleanup actions.
2381 * Note that we may have delayed dropping an mm in context_switch(). If
2382 * so, we finish that here outside of the runqueue lock. (Doing it
2383 * with the lock held can cause deadlocks; see schedule() for
2384 * details.)
2386 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2387 __releases(rq->lock)
2389 struct mm_struct *mm = rq->prev_mm;
2390 long prev_state;
2392 rq->prev_mm = NULL;
2395 * A task struct has one reference for the use as "current".
2396 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2397 * schedule one last time. The schedule call will never return, and
2398 * the scheduled task must drop that reference.
2399 * The test for TASK_DEAD must occur while the runqueue locks are
2400 * still held, otherwise prev could be scheduled on another cpu, die
2401 * there before we look at prev->state, and then the reference would
2402 * be dropped twice.
2403 * Manfred Spraul <manfred@colorfullife.com>
2405 prev_state = prev->state;
2406 finish_arch_switch(prev);
2407 finish_lock_switch(rq, prev);
2408 #ifdef CONFIG_SMP
2409 if (current->sched_class->post_schedule)
2410 current->sched_class->post_schedule(rq);
2411 #endif
2413 fire_sched_in_preempt_notifiers(current);
2414 if (mm)
2415 mmdrop(mm);
2416 if (unlikely(prev_state == TASK_DEAD)) {
2418 * Remove function-return probe instances associated with this
2419 * task and put them back on the free list.
2421 kprobe_flush_task(prev);
2422 put_task_struct(prev);
2427 * schedule_tail - first thing a freshly forked thread must call.
2428 * @prev: the thread we just switched away from.
2430 asmlinkage void schedule_tail(struct task_struct *prev)
2431 __releases(rq->lock)
2433 struct rq *rq = this_rq();
2435 finish_task_switch(rq, prev);
2436 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2437 /* In this case, finish_task_switch does not reenable preemption */
2438 preempt_enable();
2439 #endif
2440 if (current->set_child_tid)
2441 put_user(task_pid_vnr(current), current->set_child_tid);
2445 * context_switch - switch to the new MM and the new
2446 * thread's register state.
2448 static inline void
2449 context_switch(struct rq *rq, struct task_struct *prev,
2450 struct task_struct *next)
2452 struct mm_struct *mm, *oldmm;
2454 prepare_task_switch(rq, prev, next);
2455 mm = next->mm;
2456 oldmm = prev->active_mm;
2458 * For paravirt, this is coupled with an exit in switch_to to
2459 * combine the page table reload and the switch backend into
2460 * one hypercall.
2462 arch_enter_lazy_cpu_mode();
2464 if (unlikely(!mm)) {
2465 next->active_mm = oldmm;
2466 atomic_inc(&oldmm->mm_count);
2467 enter_lazy_tlb(oldmm, next);
2468 } else
2469 switch_mm(oldmm, mm, next);
2471 if (unlikely(!prev->mm)) {
2472 prev->active_mm = NULL;
2473 rq->prev_mm = oldmm;
2476 * Since the runqueue lock will be released by the next
2477 * task (which is an invalid locking op but in the case
2478 * of the scheduler it's an obvious special-case), so we
2479 * do an early lockdep release here:
2481 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2482 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2483 #endif
2485 /* Here we just switch the register state and the stack. */
2486 switch_to(prev, next, prev);
2488 barrier();
2490 * this_rq must be evaluated again because prev may have moved
2491 * CPUs since it called schedule(), thus the 'rq' on its stack
2492 * frame will be invalid.
2494 finish_task_switch(this_rq(), prev);
2498 * nr_running, nr_uninterruptible and nr_context_switches:
2500 * externally visible scheduler statistics: current number of runnable
2501 * threads, current number of uninterruptible-sleeping threads, total
2502 * number of context switches performed since bootup.
2504 unsigned long nr_running(void)
2506 unsigned long i, sum = 0;
2508 for_each_online_cpu(i)
2509 sum += cpu_rq(i)->nr_running;
2511 return sum;
2514 unsigned long nr_uninterruptible(void)
2516 unsigned long i, sum = 0;
2518 for_each_possible_cpu(i)
2519 sum += cpu_rq(i)->nr_uninterruptible;
2522 * Since we read the counters lockless, it might be slightly
2523 * inaccurate. Do not allow it to go below zero though:
2525 if (unlikely((long)sum < 0))
2526 sum = 0;
2528 return sum;
2531 unsigned long long nr_context_switches(void)
2533 int i;
2534 unsigned long long sum = 0;
2536 for_each_possible_cpu(i)
2537 sum += cpu_rq(i)->nr_switches;
2539 return sum;
2542 unsigned long nr_iowait(void)
2544 unsigned long i, sum = 0;
2546 for_each_possible_cpu(i)
2547 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2549 return sum;
2552 unsigned long nr_active(void)
2554 unsigned long i, running = 0, uninterruptible = 0;
2556 for_each_online_cpu(i) {
2557 running += cpu_rq(i)->nr_running;
2558 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2561 if (unlikely((long)uninterruptible < 0))
2562 uninterruptible = 0;
2564 return running + uninterruptible;
2568 * Update rq->cpu_load[] statistics. This function is usually called every
2569 * scheduler tick (TICK_NSEC).
2571 static void update_cpu_load(struct rq *this_rq)
2573 unsigned long this_load = this_rq->load.weight;
2574 int i, scale;
2576 this_rq->nr_load_updates++;
2578 /* Update our load: */
2579 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2580 unsigned long old_load, new_load;
2582 /* scale is effectively 1 << i now, and >> i divides by scale */
2584 old_load = this_rq->cpu_load[i];
2585 new_load = this_load;
2587 * Round up the averaging division if load is increasing. This
2588 * prevents us from getting stuck on 9 if the load is 10, for
2589 * example.
2591 if (new_load > old_load)
2592 new_load += scale-1;
2593 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2597 #ifdef CONFIG_SMP
2600 * double_rq_lock - safely lock two runqueues
2602 * Note this does not disable interrupts like task_rq_lock,
2603 * you need to do so manually before calling.
2605 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2606 __acquires(rq1->lock)
2607 __acquires(rq2->lock)
2609 BUG_ON(!irqs_disabled());
2610 if (rq1 == rq2) {
2611 spin_lock(&rq1->lock);
2612 __acquire(rq2->lock); /* Fake it out ;) */
2613 } else {
2614 if (rq1 < rq2) {
2615 spin_lock(&rq1->lock);
2616 spin_lock(&rq2->lock);
2617 } else {
2618 spin_lock(&rq2->lock);
2619 spin_lock(&rq1->lock);
2622 update_rq_clock(rq1);
2623 update_rq_clock(rq2);
2627 * double_rq_unlock - safely unlock two runqueues
2629 * Note this does not restore interrupts like task_rq_unlock,
2630 * you need to do so manually after calling.
2632 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2633 __releases(rq1->lock)
2634 __releases(rq2->lock)
2636 spin_unlock(&rq1->lock);
2637 if (rq1 != rq2)
2638 spin_unlock(&rq2->lock);
2639 else
2640 __release(rq2->lock);
2644 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2646 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2647 __releases(this_rq->lock)
2648 __acquires(busiest->lock)
2649 __acquires(this_rq->lock)
2651 int ret = 0;
2653 if (unlikely(!irqs_disabled())) {
2654 /* printk() doesn't work good under rq->lock */
2655 spin_unlock(&this_rq->lock);
2656 BUG_ON(1);
2658 if (unlikely(!spin_trylock(&busiest->lock))) {
2659 if (busiest < this_rq) {
2660 spin_unlock(&this_rq->lock);
2661 spin_lock(&busiest->lock);
2662 spin_lock(&this_rq->lock);
2663 ret = 1;
2664 } else
2665 spin_lock(&busiest->lock);
2667 return ret;
2671 * If dest_cpu is allowed for this process, migrate the task to it.
2672 * This is accomplished by forcing the cpu_allowed mask to only
2673 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2674 * the cpu_allowed mask is restored.
2676 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2678 struct migration_req req;
2679 unsigned long flags;
2680 struct rq *rq;
2682 rq = task_rq_lock(p, &flags);
2683 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2684 || unlikely(cpu_is_offline(dest_cpu)))
2685 goto out;
2687 /* force the process onto the specified CPU */
2688 if (migrate_task(p, dest_cpu, &req)) {
2689 /* Need to wait for migration thread (might exit: take ref). */
2690 struct task_struct *mt = rq->migration_thread;
2692 get_task_struct(mt);
2693 task_rq_unlock(rq, &flags);
2694 wake_up_process(mt);
2695 put_task_struct(mt);
2696 wait_for_completion(&req.done);
2698 return;
2700 out:
2701 task_rq_unlock(rq, &flags);
2705 * sched_exec - execve() is a valuable balancing opportunity, because at
2706 * this point the task has the smallest effective memory and cache footprint.
2708 void sched_exec(void)
2710 int new_cpu, this_cpu = get_cpu();
2711 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2712 put_cpu();
2713 if (new_cpu != this_cpu)
2714 sched_migrate_task(current, new_cpu);
2718 * pull_task - move a task from a remote runqueue to the local runqueue.
2719 * Both runqueues must be locked.
2721 static void pull_task(struct rq *src_rq, struct task_struct *p,
2722 struct rq *this_rq, int this_cpu)
2724 deactivate_task(src_rq, p, 0);
2725 set_task_cpu(p, this_cpu);
2726 activate_task(this_rq, p, 0);
2728 * Note that idle threads have a prio of MAX_PRIO, for this test
2729 * to be always true for them.
2731 check_preempt_curr(this_rq, p);
2735 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2737 static
2738 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2739 struct sched_domain *sd, enum cpu_idle_type idle,
2740 int *all_pinned)
2743 * We do not migrate tasks that are:
2744 * 1) running (obviously), or
2745 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2746 * 3) are cache-hot on their current CPU.
2748 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2749 schedstat_inc(p, se.nr_failed_migrations_affine);
2750 return 0;
2752 *all_pinned = 0;
2754 if (task_running(rq, p)) {
2755 schedstat_inc(p, se.nr_failed_migrations_running);
2756 return 0;
2760 * Aggressive migration if:
2761 * 1) task is cache cold, or
2762 * 2) too many balance attempts have failed.
2765 if (!task_hot(p, rq->clock, sd) ||
2766 sd->nr_balance_failed > sd->cache_nice_tries) {
2767 #ifdef CONFIG_SCHEDSTATS
2768 if (task_hot(p, rq->clock, sd)) {
2769 schedstat_inc(sd, lb_hot_gained[idle]);
2770 schedstat_inc(p, se.nr_forced_migrations);
2772 #endif
2773 return 1;
2776 if (task_hot(p, rq->clock, sd)) {
2777 schedstat_inc(p, se.nr_failed_migrations_hot);
2778 return 0;
2780 return 1;
2783 static unsigned long
2784 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2785 unsigned long max_load_move, struct sched_domain *sd,
2786 enum cpu_idle_type idle, int *all_pinned,
2787 int *this_best_prio, struct rq_iterator *iterator)
2789 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2790 struct task_struct *p;
2791 long rem_load_move = max_load_move;
2793 if (max_load_move == 0)
2794 goto out;
2796 pinned = 1;
2799 * Start the load-balancing iterator:
2801 p = iterator->start(iterator->arg);
2802 next:
2803 if (!p || loops++ > sysctl_sched_nr_migrate)
2804 goto out;
2806 * To help distribute high priority tasks across CPUs we don't
2807 * skip a task if it will be the highest priority task (i.e. smallest
2808 * prio value) on its new queue regardless of its load weight
2810 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2811 SCHED_LOAD_SCALE_FUZZ;
2812 if ((skip_for_load && p->prio >= *this_best_prio) ||
2813 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2814 p = iterator->next(iterator->arg);
2815 goto next;
2818 pull_task(busiest, p, this_rq, this_cpu);
2819 pulled++;
2820 rem_load_move -= p->se.load.weight;
2823 * We only want to steal up to the prescribed amount of weighted load.
2825 if (rem_load_move > 0) {
2826 if (p->prio < *this_best_prio)
2827 *this_best_prio = p->prio;
2828 p = iterator->next(iterator->arg);
2829 goto next;
2831 out:
2833 * Right now, this is one of only two places pull_task() is called,
2834 * so we can safely collect pull_task() stats here rather than
2835 * inside pull_task().
2837 schedstat_add(sd, lb_gained[idle], pulled);
2839 if (all_pinned)
2840 *all_pinned = pinned;
2842 return max_load_move - rem_load_move;
2846 * move_tasks tries to move up to max_load_move weighted load from busiest to
2847 * this_rq, as part of a balancing operation within domain "sd".
2848 * Returns 1 if successful and 0 otherwise.
2850 * Called with both runqueues locked.
2852 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2853 unsigned long max_load_move,
2854 struct sched_domain *sd, enum cpu_idle_type idle,
2855 int *all_pinned)
2857 const struct sched_class *class = sched_class_highest;
2858 unsigned long total_load_moved = 0;
2859 int this_best_prio = this_rq->curr->prio;
2861 do {
2862 total_load_moved +=
2863 class->load_balance(this_rq, this_cpu, busiest,
2864 max_load_move - total_load_moved,
2865 sd, idle, all_pinned, &this_best_prio);
2866 class = class->next;
2867 } while (class && max_load_move > total_load_moved);
2869 return total_load_moved > 0;
2872 static int
2873 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2874 struct sched_domain *sd, enum cpu_idle_type idle,
2875 struct rq_iterator *iterator)
2877 struct task_struct *p = iterator->start(iterator->arg);
2878 int pinned = 0;
2880 while (p) {
2881 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2882 pull_task(busiest, p, this_rq, this_cpu);
2884 * Right now, this is only the second place pull_task()
2885 * is called, so we can safely collect pull_task()
2886 * stats here rather than inside pull_task().
2888 schedstat_inc(sd, lb_gained[idle]);
2890 return 1;
2892 p = iterator->next(iterator->arg);
2895 return 0;
2899 * move_one_task tries to move exactly one task from busiest to this_rq, as
2900 * part of active balancing operations within "domain".
2901 * Returns 1 if successful and 0 otherwise.
2903 * Called with both runqueues locked.
2905 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2906 struct sched_domain *sd, enum cpu_idle_type idle)
2908 const struct sched_class *class;
2910 for (class = sched_class_highest; class; class = class->next)
2911 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2912 return 1;
2914 return 0;
2918 * find_busiest_group finds and returns the busiest CPU group within the
2919 * domain. It calculates and returns the amount of weighted load which
2920 * should be moved to restore balance via the imbalance parameter.
2922 static struct sched_group *
2923 find_busiest_group(struct sched_domain *sd, int this_cpu,
2924 unsigned long *imbalance, enum cpu_idle_type idle,
2925 int *sd_idle, const cpumask_t *cpus, int *balance)
2927 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2928 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2929 unsigned long max_pull;
2930 unsigned long busiest_load_per_task, busiest_nr_running;
2931 unsigned long this_load_per_task, this_nr_running;
2932 int load_idx, group_imb = 0;
2933 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2934 int power_savings_balance = 1;
2935 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2936 unsigned long min_nr_running = ULONG_MAX;
2937 struct sched_group *group_min = NULL, *group_leader = NULL;
2938 #endif
2940 max_load = this_load = total_load = total_pwr = 0;
2941 busiest_load_per_task = busiest_nr_running = 0;
2942 this_load_per_task = this_nr_running = 0;
2943 if (idle == CPU_NOT_IDLE)
2944 load_idx = sd->busy_idx;
2945 else if (idle == CPU_NEWLY_IDLE)
2946 load_idx = sd->newidle_idx;
2947 else
2948 load_idx = sd->idle_idx;
2950 do {
2951 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2952 int local_group;
2953 int i;
2954 int __group_imb = 0;
2955 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2956 unsigned long sum_nr_running, sum_weighted_load;
2958 local_group = cpu_isset(this_cpu, group->cpumask);
2960 if (local_group)
2961 balance_cpu = first_cpu(group->cpumask);
2963 /* Tally up the load of all CPUs in the group */
2964 sum_weighted_load = sum_nr_running = avg_load = 0;
2965 max_cpu_load = 0;
2966 min_cpu_load = ~0UL;
2968 for_each_cpu_mask(i, group->cpumask) {
2969 struct rq *rq;
2971 if (!cpu_isset(i, *cpus))
2972 continue;
2974 rq = cpu_rq(i);
2976 if (*sd_idle && rq->nr_running)
2977 *sd_idle = 0;
2979 /* Bias balancing toward cpus of our domain */
2980 if (local_group) {
2981 if (idle_cpu(i) && !first_idle_cpu) {
2982 first_idle_cpu = 1;
2983 balance_cpu = i;
2986 load = target_load(i, load_idx);
2987 } else {
2988 load = source_load(i, load_idx);
2989 if (load > max_cpu_load)
2990 max_cpu_load = load;
2991 if (min_cpu_load > load)
2992 min_cpu_load = load;
2995 avg_load += load;
2996 sum_nr_running += rq->nr_running;
2997 sum_weighted_load += weighted_cpuload(i);
3001 * First idle cpu or the first cpu(busiest) in this sched group
3002 * is eligible for doing load balancing at this and above
3003 * domains. In the newly idle case, we will allow all the cpu's
3004 * to do the newly idle load balance.
3006 if (idle != CPU_NEWLY_IDLE && local_group &&
3007 balance_cpu != this_cpu && balance) {
3008 *balance = 0;
3009 goto ret;
3012 total_load += avg_load;
3013 total_pwr += group->__cpu_power;
3015 /* Adjust by relative CPU power of the group */
3016 avg_load = sg_div_cpu_power(group,
3017 avg_load * SCHED_LOAD_SCALE);
3019 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3020 __group_imb = 1;
3022 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3024 if (local_group) {
3025 this_load = avg_load;
3026 this = group;
3027 this_nr_running = sum_nr_running;
3028 this_load_per_task = sum_weighted_load;
3029 } else if (avg_load > max_load &&
3030 (sum_nr_running > group_capacity || __group_imb)) {
3031 max_load = avg_load;
3032 busiest = group;
3033 busiest_nr_running = sum_nr_running;
3034 busiest_load_per_task = sum_weighted_load;
3035 group_imb = __group_imb;
3038 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3040 * Busy processors will not participate in power savings
3041 * balance.
3043 if (idle == CPU_NOT_IDLE ||
3044 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3045 goto group_next;
3048 * If the local group is idle or completely loaded
3049 * no need to do power savings balance at this domain
3051 if (local_group && (this_nr_running >= group_capacity ||
3052 !this_nr_running))
3053 power_savings_balance = 0;
3056 * If a group is already running at full capacity or idle,
3057 * don't include that group in power savings calculations
3059 if (!power_savings_balance || sum_nr_running >= group_capacity
3060 || !sum_nr_running)
3061 goto group_next;
3064 * Calculate the group which has the least non-idle load.
3065 * This is the group from where we need to pick up the load
3066 * for saving power
3068 if ((sum_nr_running < min_nr_running) ||
3069 (sum_nr_running == min_nr_running &&
3070 first_cpu(group->cpumask) <
3071 first_cpu(group_min->cpumask))) {
3072 group_min = group;
3073 min_nr_running = sum_nr_running;
3074 min_load_per_task = sum_weighted_load /
3075 sum_nr_running;
3079 * Calculate the group which is almost near its
3080 * capacity but still has some space to pick up some load
3081 * from other group and save more power
3083 if (sum_nr_running <= group_capacity - 1) {
3084 if (sum_nr_running > leader_nr_running ||
3085 (sum_nr_running == leader_nr_running &&
3086 first_cpu(group->cpumask) >
3087 first_cpu(group_leader->cpumask))) {
3088 group_leader = group;
3089 leader_nr_running = sum_nr_running;
3092 group_next:
3093 #endif
3094 group = group->next;
3095 } while (group != sd->groups);
3097 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3098 goto out_balanced;
3100 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3102 if (this_load >= avg_load ||
3103 100*max_load <= sd->imbalance_pct*this_load)
3104 goto out_balanced;
3106 busiest_load_per_task /= busiest_nr_running;
3107 if (group_imb)
3108 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3111 * We're trying to get all the cpus to the average_load, so we don't
3112 * want to push ourselves above the average load, nor do we wish to
3113 * reduce the max loaded cpu below the average load, as either of these
3114 * actions would just result in more rebalancing later, and ping-pong
3115 * tasks around. Thus we look for the minimum possible imbalance.
3116 * Negative imbalances (*we* are more loaded than anyone else) will
3117 * be counted as no imbalance for these purposes -- we can't fix that
3118 * by pulling tasks to us. Be careful of negative numbers as they'll
3119 * appear as very large values with unsigned longs.
3121 if (max_load <= busiest_load_per_task)
3122 goto out_balanced;
3125 * In the presence of smp nice balancing, certain scenarios can have
3126 * max load less than avg load(as we skip the groups at or below
3127 * its cpu_power, while calculating max_load..)
3129 if (max_load < avg_load) {
3130 *imbalance = 0;
3131 goto small_imbalance;
3134 /* Don't want to pull so many tasks that a group would go idle */
3135 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3137 /* How much load to actually move to equalise the imbalance */
3138 *imbalance = min(max_pull * busiest->__cpu_power,
3139 (avg_load - this_load) * this->__cpu_power)
3140 / SCHED_LOAD_SCALE;
3143 * if *imbalance is less than the average load per runnable task
3144 * there is no gaurantee that any tasks will be moved so we'll have
3145 * a think about bumping its value to force at least one task to be
3146 * moved
3148 if (*imbalance < busiest_load_per_task) {
3149 unsigned long tmp, pwr_now, pwr_move;
3150 unsigned int imbn;
3152 small_imbalance:
3153 pwr_move = pwr_now = 0;
3154 imbn = 2;
3155 if (this_nr_running) {
3156 this_load_per_task /= this_nr_running;
3157 if (busiest_load_per_task > this_load_per_task)
3158 imbn = 1;
3159 } else
3160 this_load_per_task = SCHED_LOAD_SCALE;
3162 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3163 busiest_load_per_task * imbn) {
3164 *imbalance = busiest_load_per_task;
3165 return busiest;
3169 * OK, we don't have enough imbalance to justify moving tasks,
3170 * however we may be able to increase total CPU power used by
3171 * moving them.
3174 pwr_now += busiest->__cpu_power *
3175 min(busiest_load_per_task, max_load);
3176 pwr_now += this->__cpu_power *
3177 min(this_load_per_task, this_load);
3178 pwr_now /= SCHED_LOAD_SCALE;
3180 /* Amount of load we'd subtract */
3181 tmp = sg_div_cpu_power(busiest,
3182 busiest_load_per_task * SCHED_LOAD_SCALE);
3183 if (max_load > tmp)
3184 pwr_move += busiest->__cpu_power *
3185 min(busiest_load_per_task, max_load - tmp);
3187 /* Amount of load we'd add */
3188 if (max_load * busiest->__cpu_power <
3189 busiest_load_per_task * SCHED_LOAD_SCALE)
3190 tmp = sg_div_cpu_power(this,
3191 max_load * busiest->__cpu_power);
3192 else
3193 tmp = sg_div_cpu_power(this,
3194 busiest_load_per_task * SCHED_LOAD_SCALE);
3195 pwr_move += this->__cpu_power *
3196 min(this_load_per_task, this_load + tmp);
3197 pwr_move /= SCHED_LOAD_SCALE;
3199 /* Move if we gain throughput */
3200 if (pwr_move > pwr_now)
3201 *imbalance = busiest_load_per_task;
3204 return busiest;
3206 out_balanced:
3207 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3208 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3209 goto ret;
3211 if (this == group_leader && group_leader != group_min) {
3212 *imbalance = min_load_per_task;
3213 return group_min;
3215 #endif
3216 ret:
3217 *imbalance = 0;
3218 return NULL;
3222 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3224 static struct rq *
3225 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3226 unsigned long imbalance, const cpumask_t *cpus)
3228 struct rq *busiest = NULL, *rq;
3229 unsigned long max_load = 0;
3230 int i;
3232 for_each_cpu_mask(i, group->cpumask) {
3233 unsigned long wl;
3235 if (!cpu_isset(i, *cpus))
3236 continue;
3238 rq = cpu_rq(i);
3239 wl = weighted_cpuload(i);
3241 if (rq->nr_running == 1 && wl > imbalance)
3242 continue;
3244 if (wl > max_load) {
3245 max_load = wl;
3246 busiest = rq;
3250 return busiest;
3254 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3255 * so long as it is large enough.
3257 #define MAX_PINNED_INTERVAL 512
3260 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3261 * tasks if there is an imbalance.
3263 static int load_balance(int this_cpu, struct rq *this_rq,
3264 struct sched_domain *sd, enum cpu_idle_type idle,
3265 int *balance, cpumask_t *cpus)
3267 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3268 struct sched_group *group;
3269 unsigned long imbalance;
3270 struct rq *busiest;
3271 unsigned long flags;
3273 cpus_setall(*cpus);
3276 * When power savings policy is enabled for the parent domain, idle
3277 * sibling can pick up load irrespective of busy siblings. In this case,
3278 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3279 * portraying it as CPU_NOT_IDLE.
3281 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3282 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3283 sd_idle = 1;
3285 schedstat_inc(sd, lb_count[idle]);
3287 redo:
3288 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3289 cpus, balance);
3291 if (*balance == 0)
3292 goto out_balanced;
3294 if (!group) {
3295 schedstat_inc(sd, lb_nobusyg[idle]);
3296 goto out_balanced;
3299 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3300 if (!busiest) {
3301 schedstat_inc(sd, lb_nobusyq[idle]);
3302 goto out_balanced;
3305 BUG_ON(busiest == this_rq);
3307 schedstat_add(sd, lb_imbalance[idle], imbalance);
3309 ld_moved = 0;
3310 if (busiest->nr_running > 1) {
3312 * Attempt to move tasks. If find_busiest_group has found
3313 * an imbalance but busiest->nr_running <= 1, the group is
3314 * still unbalanced. ld_moved simply stays zero, so it is
3315 * correctly treated as an imbalance.
3317 local_irq_save(flags);
3318 double_rq_lock(this_rq, busiest);
3319 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3320 imbalance, sd, idle, &all_pinned);
3321 double_rq_unlock(this_rq, busiest);
3322 local_irq_restore(flags);
3325 * some other cpu did the load balance for us.
3327 if (ld_moved && this_cpu != smp_processor_id())
3328 resched_cpu(this_cpu);
3330 /* All tasks on this runqueue were pinned by CPU affinity */
3331 if (unlikely(all_pinned)) {
3332 cpu_clear(cpu_of(busiest), *cpus);
3333 if (!cpus_empty(*cpus))
3334 goto redo;
3335 goto out_balanced;
3339 if (!ld_moved) {
3340 schedstat_inc(sd, lb_failed[idle]);
3341 sd->nr_balance_failed++;
3343 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3345 spin_lock_irqsave(&busiest->lock, flags);
3347 /* don't kick the migration_thread, if the curr
3348 * task on busiest cpu can't be moved to this_cpu
3350 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3351 spin_unlock_irqrestore(&busiest->lock, flags);
3352 all_pinned = 1;
3353 goto out_one_pinned;
3356 if (!busiest->active_balance) {
3357 busiest->active_balance = 1;
3358 busiest->push_cpu = this_cpu;
3359 active_balance = 1;
3361 spin_unlock_irqrestore(&busiest->lock, flags);
3362 if (active_balance)
3363 wake_up_process(busiest->migration_thread);
3366 * We've kicked active balancing, reset the failure
3367 * counter.
3369 sd->nr_balance_failed = sd->cache_nice_tries+1;
3371 } else
3372 sd->nr_balance_failed = 0;
3374 if (likely(!active_balance)) {
3375 /* We were unbalanced, so reset the balancing interval */
3376 sd->balance_interval = sd->min_interval;
3377 } else {
3379 * If we've begun active balancing, start to back off. This
3380 * case may not be covered by the all_pinned logic if there
3381 * is only 1 task on the busy runqueue (because we don't call
3382 * move_tasks).
3384 if (sd->balance_interval < sd->max_interval)
3385 sd->balance_interval *= 2;
3388 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3389 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3390 return -1;
3391 return ld_moved;
3393 out_balanced:
3394 schedstat_inc(sd, lb_balanced[idle]);
3396 sd->nr_balance_failed = 0;
3398 out_one_pinned:
3399 /* tune up the balancing interval */
3400 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3401 (sd->balance_interval < sd->max_interval))
3402 sd->balance_interval *= 2;
3404 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3405 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3406 return -1;
3407 return 0;
3411 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3412 * tasks if there is an imbalance.
3414 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3415 * this_rq is locked.
3417 static int
3418 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3419 cpumask_t *cpus)
3421 struct sched_group *group;
3422 struct rq *busiest = NULL;
3423 unsigned long imbalance;
3424 int ld_moved = 0;
3425 int sd_idle = 0;
3426 int all_pinned = 0;
3428 cpus_setall(*cpus);
3431 * When power savings policy is enabled for the parent domain, idle
3432 * sibling can pick up load irrespective of busy siblings. In this case,
3433 * let the state of idle sibling percolate up as IDLE, instead of
3434 * portraying it as CPU_NOT_IDLE.
3436 if (sd->flags & SD_SHARE_CPUPOWER &&
3437 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3438 sd_idle = 1;
3440 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3441 redo:
3442 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3443 &sd_idle, cpus, NULL);
3444 if (!group) {
3445 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3446 goto out_balanced;
3449 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3450 if (!busiest) {
3451 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3452 goto out_balanced;
3455 BUG_ON(busiest == this_rq);
3457 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3459 ld_moved = 0;
3460 if (busiest->nr_running > 1) {
3461 /* Attempt to move tasks */
3462 double_lock_balance(this_rq, busiest);
3463 /* this_rq->clock is already updated */
3464 update_rq_clock(busiest);
3465 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3466 imbalance, sd, CPU_NEWLY_IDLE,
3467 &all_pinned);
3468 spin_unlock(&busiest->lock);
3470 if (unlikely(all_pinned)) {
3471 cpu_clear(cpu_of(busiest), *cpus);
3472 if (!cpus_empty(*cpus))
3473 goto redo;
3477 if (!ld_moved) {
3478 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3479 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3480 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3481 return -1;
3482 } else
3483 sd->nr_balance_failed = 0;
3485 return ld_moved;
3487 out_balanced:
3488 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3489 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3490 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3491 return -1;
3492 sd->nr_balance_failed = 0;
3494 return 0;
3498 * idle_balance is called by schedule() if this_cpu is about to become
3499 * idle. Attempts to pull tasks from other CPUs.
3501 static void idle_balance(int this_cpu, struct rq *this_rq)
3503 struct sched_domain *sd;
3504 int pulled_task = -1;
3505 unsigned long next_balance = jiffies + HZ;
3506 cpumask_t tmpmask;
3508 for_each_domain(this_cpu, sd) {
3509 unsigned long interval;
3511 if (!(sd->flags & SD_LOAD_BALANCE))
3512 continue;
3514 if (sd->flags & SD_BALANCE_NEWIDLE)
3515 /* If we've pulled tasks over stop searching: */
3516 pulled_task = load_balance_newidle(this_cpu, this_rq,
3517 sd, &tmpmask);
3519 interval = msecs_to_jiffies(sd->balance_interval);
3520 if (time_after(next_balance, sd->last_balance + interval))
3521 next_balance = sd->last_balance + interval;
3522 if (pulled_task)
3523 break;
3525 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3527 * We are going idle. next_balance may be set based on
3528 * a busy processor. So reset next_balance.
3530 this_rq->next_balance = next_balance;
3535 * active_load_balance is run by migration threads. It pushes running tasks
3536 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3537 * running on each physical CPU where possible, and avoids physical /
3538 * logical imbalances.
3540 * Called with busiest_rq locked.
3542 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3544 int target_cpu = busiest_rq->push_cpu;
3545 struct sched_domain *sd;
3546 struct rq *target_rq;
3548 /* Is there any task to move? */
3549 if (busiest_rq->nr_running <= 1)
3550 return;
3552 target_rq = cpu_rq(target_cpu);
3555 * This condition is "impossible", if it occurs
3556 * we need to fix it. Originally reported by
3557 * Bjorn Helgaas on a 128-cpu setup.
3559 BUG_ON(busiest_rq == target_rq);
3561 /* move a task from busiest_rq to target_rq */
3562 double_lock_balance(busiest_rq, target_rq);
3563 update_rq_clock(busiest_rq);
3564 update_rq_clock(target_rq);
3566 /* Search for an sd spanning us and the target CPU. */
3567 for_each_domain(target_cpu, sd) {
3568 if ((sd->flags & SD_LOAD_BALANCE) &&
3569 cpu_isset(busiest_cpu, sd->span))
3570 break;
3573 if (likely(sd)) {
3574 schedstat_inc(sd, alb_count);
3576 if (move_one_task(target_rq, target_cpu, busiest_rq,
3577 sd, CPU_IDLE))
3578 schedstat_inc(sd, alb_pushed);
3579 else
3580 schedstat_inc(sd, alb_failed);
3582 spin_unlock(&target_rq->lock);
3585 #ifdef CONFIG_NO_HZ
3586 static struct {
3587 atomic_t load_balancer;
3588 cpumask_t cpu_mask;
3589 } nohz ____cacheline_aligned = {
3590 .load_balancer = ATOMIC_INIT(-1),
3591 .cpu_mask = CPU_MASK_NONE,
3595 * This routine will try to nominate the ilb (idle load balancing)
3596 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3597 * load balancing on behalf of all those cpus. If all the cpus in the system
3598 * go into this tickless mode, then there will be no ilb owner (as there is
3599 * no need for one) and all the cpus will sleep till the next wakeup event
3600 * arrives...
3602 * For the ilb owner, tick is not stopped. And this tick will be used
3603 * for idle load balancing. ilb owner will still be part of
3604 * nohz.cpu_mask..
3606 * While stopping the tick, this cpu will become the ilb owner if there
3607 * is no other owner. And will be the owner till that cpu becomes busy
3608 * or if all cpus in the system stop their ticks at which point
3609 * there is no need for ilb owner.
3611 * When the ilb owner becomes busy, it nominates another owner, during the
3612 * next busy scheduler_tick()
3614 int select_nohz_load_balancer(int stop_tick)
3616 int cpu = smp_processor_id();
3618 if (stop_tick) {
3619 cpu_set(cpu, nohz.cpu_mask);
3620 cpu_rq(cpu)->in_nohz_recently = 1;
3623 * If we are going offline and still the leader, give up!
3625 if (cpu_is_offline(cpu) &&
3626 atomic_read(&nohz.load_balancer) == cpu) {
3627 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3628 BUG();
3629 return 0;
3632 /* time for ilb owner also to sleep */
3633 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3634 if (atomic_read(&nohz.load_balancer) == cpu)
3635 atomic_set(&nohz.load_balancer, -1);
3636 return 0;
3639 if (atomic_read(&nohz.load_balancer) == -1) {
3640 /* make me the ilb owner */
3641 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3642 return 1;
3643 } else if (atomic_read(&nohz.load_balancer) == cpu)
3644 return 1;
3645 } else {
3646 if (!cpu_isset(cpu, nohz.cpu_mask))
3647 return 0;
3649 cpu_clear(cpu, nohz.cpu_mask);
3651 if (atomic_read(&nohz.load_balancer) == cpu)
3652 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3653 BUG();
3655 return 0;
3657 #endif
3659 static DEFINE_SPINLOCK(balancing);
3662 * It checks each scheduling domain to see if it is due to be balanced,
3663 * and initiates a balancing operation if so.
3665 * Balancing parameters are set up in arch_init_sched_domains.
3667 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3669 int balance = 1;
3670 struct rq *rq = cpu_rq(cpu);
3671 unsigned long interval;
3672 struct sched_domain *sd;
3673 /* Earliest time when we have to do rebalance again */
3674 unsigned long next_balance = jiffies + 60*HZ;
3675 int update_next_balance = 0;
3676 int need_serialize;
3677 cpumask_t tmp;
3679 for_each_domain(cpu, sd) {
3680 if (!(sd->flags & SD_LOAD_BALANCE))
3681 continue;
3683 interval = sd->balance_interval;
3684 if (idle != CPU_IDLE)
3685 interval *= sd->busy_factor;
3687 /* scale ms to jiffies */
3688 interval = msecs_to_jiffies(interval);
3689 if (unlikely(!interval))
3690 interval = 1;
3691 if (interval > HZ*NR_CPUS/10)
3692 interval = HZ*NR_CPUS/10;
3694 need_serialize = sd->flags & SD_SERIALIZE;
3696 if (need_serialize) {
3697 if (!spin_trylock(&balancing))
3698 goto out;
3701 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3702 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3704 * We've pulled tasks over so either we're no
3705 * longer idle, or one of our SMT siblings is
3706 * not idle.
3708 idle = CPU_NOT_IDLE;
3710 sd->last_balance = jiffies;
3712 if (need_serialize)
3713 spin_unlock(&balancing);
3714 out:
3715 if (time_after(next_balance, sd->last_balance + interval)) {
3716 next_balance = sd->last_balance + interval;
3717 update_next_balance = 1;
3721 * Stop the load balance at this level. There is another
3722 * CPU in our sched group which is doing load balancing more
3723 * actively.
3725 if (!balance)
3726 break;
3730 * next_balance will be updated only when there is a need.
3731 * When the cpu is attached to null domain for ex, it will not be
3732 * updated.
3734 if (likely(update_next_balance))
3735 rq->next_balance = next_balance;
3739 * run_rebalance_domains is triggered when needed from the scheduler tick.
3740 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3741 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3743 static void run_rebalance_domains(struct softirq_action *h)
3745 int this_cpu = smp_processor_id();
3746 struct rq *this_rq = cpu_rq(this_cpu);
3747 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3748 CPU_IDLE : CPU_NOT_IDLE;
3750 rebalance_domains(this_cpu, idle);
3752 #ifdef CONFIG_NO_HZ
3754 * If this cpu is the owner for idle load balancing, then do the
3755 * balancing on behalf of the other idle cpus whose ticks are
3756 * stopped.
3758 if (this_rq->idle_at_tick &&
3759 atomic_read(&nohz.load_balancer) == this_cpu) {
3760 cpumask_t cpus = nohz.cpu_mask;
3761 struct rq *rq;
3762 int balance_cpu;
3764 cpu_clear(this_cpu, cpus);
3765 for_each_cpu_mask(balance_cpu, cpus) {
3767 * If this cpu gets work to do, stop the load balancing
3768 * work being done for other cpus. Next load
3769 * balancing owner will pick it up.
3771 if (need_resched())
3772 break;
3774 rebalance_domains(balance_cpu, CPU_IDLE);
3776 rq = cpu_rq(balance_cpu);
3777 if (time_after(this_rq->next_balance, rq->next_balance))
3778 this_rq->next_balance = rq->next_balance;
3781 #endif
3785 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3787 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3788 * idle load balancing owner or decide to stop the periodic load balancing,
3789 * if the whole system is idle.
3791 static inline void trigger_load_balance(struct rq *rq, int cpu)
3793 #ifdef CONFIG_NO_HZ
3795 * If we were in the nohz mode recently and busy at the current
3796 * scheduler tick, then check if we need to nominate new idle
3797 * load balancer.
3799 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3800 rq->in_nohz_recently = 0;
3802 if (atomic_read(&nohz.load_balancer) == cpu) {
3803 cpu_clear(cpu, nohz.cpu_mask);
3804 atomic_set(&nohz.load_balancer, -1);
3807 if (atomic_read(&nohz.load_balancer) == -1) {
3809 * simple selection for now: Nominate the
3810 * first cpu in the nohz list to be the next
3811 * ilb owner.
3813 * TBD: Traverse the sched domains and nominate
3814 * the nearest cpu in the nohz.cpu_mask.
3816 int ilb = first_cpu(nohz.cpu_mask);
3818 if (ilb < nr_cpu_ids)
3819 resched_cpu(ilb);
3824 * If this cpu is idle and doing idle load balancing for all the
3825 * cpus with ticks stopped, is it time for that to stop?
3827 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3828 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3829 resched_cpu(cpu);
3830 return;
3834 * If this cpu is idle and the idle load balancing is done by
3835 * someone else, then no need raise the SCHED_SOFTIRQ
3837 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3838 cpu_isset(cpu, nohz.cpu_mask))
3839 return;
3840 #endif
3841 if (time_after_eq(jiffies, rq->next_balance))
3842 raise_softirq(SCHED_SOFTIRQ);
3845 #else /* CONFIG_SMP */
3848 * on UP we do not need to balance between CPUs:
3850 static inline void idle_balance(int cpu, struct rq *rq)
3854 #endif
3856 DEFINE_PER_CPU(struct kernel_stat, kstat);
3858 EXPORT_PER_CPU_SYMBOL(kstat);
3861 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3862 * that have not yet been banked in case the task is currently running.
3864 unsigned long long task_sched_runtime(struct task_struct *p)
3866 unsigned long flags;
3867 u64 ns, delta_exec;
3868 struct rq *rq;
3870 rq = task_rq_lock(p, &flags);
3871 ns = p->se.sum_exec_runtime;
3872 if (task_current(rq, p)) {
3873 update_rq_clock(rq);
3874 delta_exec = rq->clock - p->se.exec_start;
3875 if ((s64)delta_exec > 0)
3876 ns += delta_exec;
3878 task_rq_unlock(rq, &flags);
3880 return ns;
3884 * Account user cpu time to a process.
3885 * @p: the process that the cpu time gets accounted to
3886 * @cputime: the cpu time spent in user space since the last update
3888 void account_user_time(struct task_struct *p, cputime_t cputime)
3890 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3891 cputime64_t tmp;
3893 p->utime = cputime_add(p->utime, cputime);
3895 /* Add user time to cpustat. */
3896 tmp = cputime_to_cputime64(cputime);
3897 if (TASK_NICE(p) > 0)
3898 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3899 else
3900 cpustat->user = cputime64_add(cpustat->user, tmp);
3904 * Account guest cpu time to a process.
3905 * @p: the process that the cpu time gets accounted to
3906 * @cputime: the cpu time spent in virtual machine since the last update
3908 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3910 cputime64_t tmp;
3911 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3913 tmp = cputime_to_cputime64(cputime);
3915 p->utime = cputime_add(p->utime, cputime);
3916 p->gtime = cputime_add(p->gtime, cputime);
3918 cpustat->user = cputime64_add(cpustat->user, tmp);
3919 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3923 * Account scaled user cpu time to a process.
3924 * @p: the process that the cpu time gets accounted to
3925 * @cputime: the cpu time spent in user space since the last update
3927 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3929 p->utimescaled = cputime_add(p->utimescaled, cputime);
3933 * Account system cpu time to a process.
3934 * @p: the process that the cpu time gets accounted to
3935 * @hardirq_offset: the offset to subtract from hardirq_count()
3936 * @cputime: the cpu time spent in kernel space since the last update
3938 void account_system_time(struct task_struct *p, int hardirq_offset,
3939 cputime_t cputime)
3941 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3942 struct rq *rq = this_rq();
3943 cputime64_t tmp;
3945 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3946 account_guest_time(p, cputime);
3947 return;
3950 p->stime = cputime_add(p->stime, cputime);
3952 /* Add system time to cpustat. */
3953 tmp = cputime_to_cputime64(cputime);
3954 if (hardirq_count() - hardirq_offset)
3955 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3956 else if (softirq_count())
3957 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3958 else if (p != rq->idle)
3959 cpustat->system = cputime64_add(cpustat->system, tmp);
3960 else if (atomic_read(&rq->nr_iowait) > 0)
3961 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3962 else
3963 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3964 /* Account for system time used */
3965 acct_update_integrals(p);
3969 * Account scaled system cpu time to a process.
3970 * @p: the process that the cpu time gets accounted to
3971 * @hardirq_offset: the offset to subtract from hardirq_count()
3972 * @cputime: the cpu time spent in kernel space since the last update
3974 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3976 p->stimescaled = cputime_add(p->stimescaled, cputime);
3980 * Account for involuntary wait time.
3981 * @p: the process from which the cpu time has been stolen
3982 * @steal: the cpu time spent in involuntary wait
3984 void account_steal_time(struct task_struct *p, cputime_t steal)
3986 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3987 cputime64_t tmp = cputime_to_cputime64(steal);
3988 struct rq *rq = this_rq();
3990 if (p == rq->idle) {
3991 p->stime = cputime_add(p->stime, steal);
3992 if (atomic_read(&rq->nr_iowait) > 0)
3993 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3994 else
3995 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3996 } else
3997 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4001 * This function gets called by the timer code, with HZ frequency.
4002 * We call it with interrupts disabled.
4004 * It also gets called by the fork code, when changing the parent's
4005 * timeslices.
4007 void scheduler_tick(void)
4009 int cpu = smp_processor_id();
4010 struct rq *rq = cpu_rq(cpu);
4011 struct task_struct *curr = rq->curr;
4013 sched_clock_tick();
4015 spin_lock(&rq->lock);
4016 update_rq_clock(rq);
4017 update_cpu_load(rq);
4018 curr->sched_class->task_tick(rq, curr, 0);
4019 spin_unlock(&rq->lock);
4021 #ifdef CONFIG_SMP
4022 rq->idle_at_tick = idle_cpu(cpu);
4023 trigger_load_balance(rq, cpu);
4024 #endif
4027 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4029 void __kprobes add_preempt_count(int val)
4032 * Underflow?
4034 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4035 return;
4036 preempt_count() += val;
4038 * Spinlock count overflowing soon?
4040 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4041 PREEMPT_MASK - 10);
4043 EXPORT_SYMBOL(add_preempt_count);
4045 void __kprobes sub_preempt_count(int val)
4048 * Underflow?
4050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4051 return;
4053 * Is the spinlock portion underflowing?
4055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4056 !(preempt_count() & PREEMPT_MASK)))
4057 return;
4059 preempt_count() -= val;
4061 EXPORT_SYMBOL(sub_preempt_count);
4063 #endif
4066 * Print scheduling while atomic bug:
4068 static noinline void __schedule_bug(struct task_struct *prev)
4070 struct pt_regs *regs = get_irq_regs();
4072 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4073 prev->comm, prev->pid, preempt_count());
4075 debug_show_held_locks(prev);
4076 print_modules();
4077 if (irqs_disabled())
4078 print_irqtrace_events(prev);
4080 if (regs)
4081 show_regs(regs);
4082 else
4083 dump_stack();
4087 * Various schedule()-time debugging checks and statistics:
4089 static inline void schedule_debug(struct task_struct *prev)
4092 * Test if we are atomic. Since do_exit() needs to call into
4093 * schedule() atomically, we ignore that path for now.
4094 * Otherwise, whine if we are scheduling when we should not be.
4096 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4097 __schedule_bug(prev);
4099 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4101 schedstat_inc(this_rq(), sched_count);
4102 #ifdef CONFIG_SCHEDSTATS
4103 if (unlikely(prev->lock_depth >= 0)) {
4104 schedstat_inc(this_rq(), bkl_count);
4105 schedstat_inc(prev, sched_info.bkl_count);
4107 #endif
4111 * Pick up the highest-prio task:
4113 static inline struct task_struct *
4114 pick_next_task(struct rq *rq, struct task_struct *prev)
4116 const struct sched_class *class;
4117 struct task_struct *p;
4120 * Optimization: we know that if all tasks are in
4121 * the fair class we can call that function directly:
4123 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4124 p = fair_sched_class.pick_next_task(rq);
4125 if (likely(p))
4126 return p;
4129 class = sched_class_highest;
4130 for ( ; ; ) {
4131 p = class->pick_next_task(rq);
4132 if (p)
4133 return p;
4135 * Will never be NULL as the idle class always
4136 * returns a non-NULL p:
4138 class = class->next;
4143 * schedule() is the main scheduler function.
4145 asmlinkage void __sched schedule(void)
4147 struct task_struct *prev, *next;
4148 unsigned long *switch_count;
4149 struct rq *rq;
4150 int cpu, hrtick = sched_feat(HRTICK);
4152 need_resched:
4153 preempt_disable();
4154 cpu = smp_processor_id();
4155 rq = cpu_rq(cpu);
4156 rcu_qsctr_inc(cpu);
4157 prev = rq->curr;
4158 switch_count = &prev->nivcsw;
4160 release_kernel_lock(prev);
4161 need_resched_nonpreemptible:
4163 schedule_debug(prev);
4165 if (hrtick)
4166 hrtick_clear(rq);
4169 * Do the rq-clock update outside the rq lock:
4171 local_irq_disable();
4172 update_rq_clock(rq);
4173 spin_lock(&rq->lock);
4174 clear_tsk_need_resched(prev);
4176 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4177 if (unlikely(signal_pending_state(prev->state, prev)))
4178 prev->state = TASK_RUNNING;
4179 else
4180 deactivate_task(rq, prev, 1);
4181 switch_count = &prev->nvcsw;
4184 #ifdef CONFIG_SMP
4185 if (prev->sched_class->pre_schedule)
4186 prev->sched_class->pre_schedule(rq, prev);
4187 #endif
4189 if (unlikely(!rq->nr_running))
4190 idle_balance(cpu, rq);
4192 prev->sched_class->put_prev_task(rq, prev);
4193 next = pick_next_task(rq, prev);
4195 if (likely(prev != next)) {
4196 sched_info_switch(prev, next);
4198 rq->nr_switches++;
4199 rq->curr = next;
4200 ++*switch_count;
4202 context_switch(rq, prev, next); /* unlocks the rq */
4204 * the context switch might have flipped the stack from under
4205 * us, hence refresh the local variables.
4207 cpu = smp_processor_id();
4208 rq = cpu_rq(cpu);
4209 } else
4210 spin_unlock_irq(&rq->lock);
4212 if (hrtick)
4213 hrtick_set(rq);
4215 if (unlikely(reacquire_kernel_lock(current) < 0))
4216 goto need_resched_nonpreemptible;
4218 preempt_enable_no_resched();
4219 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4220 goto need_resched;
4222 EXPORT_SYMBOL(schedule);
4224 #ifdef CONFIG_PREEMPT
4226 * this is the entry point to schedule() from in-kernel preemption
4227 * off of preempt_enable. Kernel preemptions off return from interrupt
4228 * occur there and call schedule directly.
4230 asmlinkage void __sched preempt_schedule(void)
4232 struct thread_info *ti = current_thread_info();
4235 * If there is a non-zero preempt_count or interrupts are disabled,
4236 * we do not want to preempt the current task. Just return..
4238 if (likely(ti->preempt_count || irqs_disabled()))
4239 return;
4241 do {
4242 add_preempt_count(PREEMPT_ACTIVE);
4243 schedule();
4244 sub_preempt_count(PREEMPT_ACTIVE);
4247 * Check again in case we missed a preemption opportunity
4248 * between schedule and now.
4250 barrier();
4251 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4253 EXPORT_SYMBOL(preempt_schedule);
4256 * this is the entry point to schedule() from kernel preemption
4257 * off of irq context.
4258 * Note, that this is called and return with irqs disabled. This will
4259 * protect us against recursive calling from irq.
4261 asmlinkage void __sched preempt_schedule_irq(void)
4263 struct thread_info *ti = current_thread_info();
4265 /* Catch callers which need to be fixed */
4266 BUG_ON(ti->preempt_count || !irqs_disabled());
4268 do {
4269 add_preempt_count(PREEMPT_ACTIVE);
4270 local_irq_enable();
4271 schedule();
4272 local_irq_disable();
4273 sub_preempt_count(PREEMPT_ACTIVE);
4276 * Check again in case we missed a preemption opportunity
4277 * between schedule and now.
4279 barrier();
4280 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4283 #endif /* CONFIG_PREEMPT */
4285 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4286 void *key)
4288 return try_to_wake_up(curr->private, mode, sync);
4290 EXPORT_SYMBOL(default_wake_function);
4293 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4294 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4295 * number) then we wake all the non-exclusive tasks and one exclusive task.
4297 * There are circumstances in which we can try to wake a task which has already
4298 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4299 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4301 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4302 int nr_exclusive, int sync, void *key)
4304 wait_queue_t *curr, *next;
4306 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4307 unsigned flags = curr->flags;
4309 if (curr->func(curr, mode, sync, key) &&
4310 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4311 break;
4316 * __wake_up - wake up threads blocked on a waitqueue.
4317 * @q: the waitqueue
4318 * @mode: which threads
4319 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4320 * @key: is directly passed to the wakeup function
4322 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4323 int nr_exclusive, void *key)
4325 unsigned long flags;
4327 spin_lock_irqsave(&q->lock, flags);
4328 __wake_up_common(q, mode, nr_exclusive, 0, key);
4329 spin_unlock_irqrestore(&q->lock, flags);
4331 EXPORT_SYMBOL(__wake_up);
4334 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4336 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4338 __wake_up_common(q, mode, 1, 0, NULL);
4342 * __wake_up_sync - wake up threads blocked on a waitqueue.
4343 * @q: the waitqueue
4344 * @mode: which threads
4345 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4347 * The sync wakeup differs that the waker knows that it will schedule
4348 * away soon, so while the target thread will be woken up, it will not
4349 * be migrated to another CPU - ie. the two threads are 'synchronized'
4350 * with each other. This can prevent needless bouncing between CPUs.
4352 * On UP it can prevent extra preemption.
4354 void
4355 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4357 unsigned long flags;
4358 int sync = 1;
4360 if (unlikely(!q))
4361 return;
4363 if (unlikely(!nr_exclusive))
4364 sync = 0;
4366 spin_lock_irqsave(&q->lock, flags);
4367 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4368 spin_unlock_irqrestore(&q->lock, flags);
4370 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4372 void complete(struct completion *x)
4374 unsigned long flags;
4376 spin_lock_irqsave(&x->wait.lock, flags);
4377 x->done++;
4378 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4379 spin_unlock_irqrestore(&x->wait.lock, flags);
4381 EXPORT_SYMBOL(complete);
4383 void complete_all(struct completion *x)
4385 unsigned long flags;
4387 spin_lock_irqsave(&x->wait.lock, flags);
4388 x->done += UINT_MAX/2;
4389 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4390 spin_unlock_irqrestore(&x->wait.lock, flags);
4392 EXPORT_SYMBOL(complete_all);
4394 static inline long __sched
4395 do_wait_for_common(struct completion *x, long timeout, int state)
4397 if (!x->done) {
4398 DECLARE_WAITQUEUE(wait, current);
4400 wait.flags |= WQ_FLAG_EXCLUSIVE;
4401 __add_wait_queue_tail(&x->wait, &wait);
4402 do {
4403 if ((state == TASK_INTERRUPTIBLE &&
4404 signal_pending(current)) ||
4405 (state == TASK_KILLABLE &&
4406 fatal_signal_pending(current))) {
4407 __remove_wait_queue(&x->wait, &wait);
4408 return -ERESTARTSYS;
4410 __set_current_state(state);
4411 spin_unlock_irq(&x->wait.lock);
4412 timeout = schedule_timeout(timeout);
4413 spin_lock_irq(&x->wait.lock);
4414 if (!timeout) {
4415 __remove_wait_queue(&x->wait, &wait);
4416 return timeout;
4418 } while (!x->done);
4419 __remove_wait_queue(&x->wait, &wait);
4421 x->done--;
4422 return timeout;
4425 static long __sched
4426 wait_for_common(struct completion *x, long timeout, int state)
4428 might_sleep();
4430 spin_lock_irq(&x->wait.lock);
4431 timeout = do_wait_for_common(x, timeout, state);
4432 spin_unlock_irq(&x->wait.lock);
4433 return timeout;
4436 void __sched wait_for_completion(struct completion *x)
4438 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4440 EXPORT_SYMBOL(wait_for_completion);
4442 unsigned long __sched
4443 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4445 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4447 EXPORT_SYMBOL(wait_for_completion_timeout);
4449 int __sched wait_for_completion_interruptible(struct completion *x)
4451 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4452 if (t == -ERESTARTSYS)
4453 return t;
4454 return 0;
4456 EXPORT_SYMBOL(wait_for_completion_interruptible);
4458 unsigned long __sched
4459 wait_for_completion_interruptible_timeout(struct completion *x,
4460 unsigned long timeout)
4462 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4464 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4466 int __sched wait_for_completion_killable(struct completion *x)
4468 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4469 if (t == -ERESTARTSYS)
4470 return t;
4471 return 0;
4473 EXPORT_SYMBOL(wait_for_completion_killable);
4475 static long __sched
4476 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4478 unsigned long flags;
4479 wait_queue_t wait;
4481 init_waitqueue_entry(&wait, current);
4483 __set_current_state(state);
4485 spin_lock_irqsave(&q->lock, flags);
4486 __add_wait_queue(q, &wait);
4487 spin_unlock(&q->lock);
4488 timeout = schedule_timeout(timeout);
4489 spin_lock_irq(&q->lock);
4490 __remove_wait_queue(q, &wait);
4491 spin_unlock_irqrestore(&q->lock, flags);
4493 return timeout;
4496 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4498 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4500 EXPORT_SYMBOL(interruptible_sleep_on);
4502 long __sched
4503 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4505 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4507 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4509 void __sched sleep_on(wait_queue_head_t *q)
4511 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4513 EXPORT_SYMBOL(sleep_on);
4515 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4517 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4519 EXPORT_SYMBOL(sleep_on_timeout);
4521 #ifdef CONFIG_RT_MUTEXES
4524 * rt_mutex_setprio - set the current priority of a task
4525 * @p: task
4526 * @prio: prio value (kernel-internal form)
4528 * This function changes the 'effective' priority of a task. It does
4529 * not touch ->normal_prio like __setscheduler().
4531 * Used by the rt_mutex code to implement priority inheritance logic.
4533 void rt_mutex_setprio(struct task_struct *p, int prio)
4535 unsigned long flags;
4536 int oldprio, on_rq, running;
4537 struct rq *rq;
4538 const struct sched_class *prev_class = p->sched_class;
4540 BUG_ON(prio < 0 || prio > MAX_PRIO);
4542 rq = task_rq_lock(p, &flags);
4543 update_rq_clock(rq);
4545 oldprio = p->prio;
4546 on_rq = p->se.on_rq;
4547 running = task_current(rq, p);
4548 if (on_rq)
4549 dequeue_task(rq, p, 0);
4550 if (running)
4551 p->sched_class->put_prev_task(rq, p);
4553 if (rt_prio(prio))
4554 p->sched_class = &rt_sched_class;
4555 else
4556 p->sched_class = &fair_sched_class;
4558 p->prio = prio;
4560 if (running)
4561 p->sched_class->set_curr_task(rq);
4562 if (on_rq) {
4563 enqueue_task(rq, p, 0);
4565 check_class_changed(rq, p, prev_class, oldprio, running);
4567 task_rq_unlock(rq, &flags);
4570 #endif
4572 void set_user_nice(struct task_struct *p, long nice)
4574 int old_prio, delta, on_rq;
4575 unsigned long flags;
4576 struct rq *rq;
4578 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4579 return;
4581 * We have to be careful, if called from sys_setpriority(),
4582 * the task might be in the middle of scheduling on another CPU.
4584 rq = task_rq_lock(p, &flags);
4585 update_rq_clock(rq);
4587 * The RT priorities are set via sched_setscheduler(), but we still
4588 * allow the 'normal' nice value to be set - but as expected
4589 * it wont have any effect on scheduling until the task is
4590 * SCHED_FIFO/SCHED_RR:
4592 if (task_has_rt_policy(p)) {
4593 p->static_prio = NICE_TO_PRIO(nice);
4594 goto out_unlock;
4596 on_rq = p->se.on_rq;
4597 if (on_rq) {
4598 dequeue_task(rq, p, 0);
4599 dec_load(rq, p);
4602 p->static_prio = NICE_TO_PRIO(nice);
4603 set_load_weight(p);
4604 old_prio = p->prio;
4605 p->prio = effective_prio(p);
4606 delta = p->prio - old_prio;
4608 if (on_rq) {
4609 enqueue_task(rq, p, 0);
4610 inc_load(rq, p);
4612 * If the task increased its priority or is running and
4613 * lowered its priority, then reschedule its CPU:
4615 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4616 resched_task(rq->curr);
4618 out_unlock:
4619 task_rq_unlock(rq, &flags);
4621 EXPORT_SYMBOL(set_user_nice);
4624 * can_nice - check if a task can reduce its nice value
4625 * @p: task
4626 * @nice: nice value
4628 int can_nice(const struct task_struct *p, const int nice)
4630 /* convert nice value [19,-20] to rlimit style value [1,40] */
4631 int nice_rlim = 20 - nice;
4633 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4634 capable(CAP_SYS_NICE));
4637 #ifdef __ARCH_WANT_SYS_NICE
4640 * sys_nice - change the priority of the current process.
4641 * @increment: priority increment
4643 * sys_setpriority is a more generic, but much slower function that
4644 * does similar things.
4646 asmlinkage long sys_nice(int increment)
4648 long nice, retval;
4651 * Setpriority might change our priority at the same moment.
4652 * We don't have to worry. Conceptually one call occurs first
4653 * and we have a single winner.
4655 if (increment < -40)
4656 increment = -40;
4657 if (increment > 40)
4658 increment = 40;
4660 nice = PRIO_TO_NICE(current->static_prio) + increment;
4661 if (nice < -20)
4662 nice = -20;
4663 if (nice > 19)
4664 nice = 19;
4666 if (increment < 0 && !can_nice(current, nice))
4667 return -EPERM;
4669 retval = security_task_setnice(current, nice);
4670 if (retval)
4671 return retval;
4673 set_user_nice(current, nice);
4674 return 0;
4677 #endif
4680 * task_prio - return the priority value of a given task.
4681 * @p: the task in question.
4683 * This is the priority value as seen by users in /proc.
4684 * RT tasks are offset by -200. Normal tasks are centered
4685 * around 0, value goes from -16 to +15.
4687 int task_prio(const struct task_struct *p)
4689 return p->prio - MAX_RT_PRIO;
4693 * task_nice - return the nice value of a given task.
4694 * @p: the task in question.
4696 int task_nice(const struct task_struct *p)
4698 return TASK_NICE(p);
4700 EXPORT_SYMBOL(task_nice);
4703 * idle_cpu - is a given cpu idle currently?
4704 * @cpu: the processor in question.
4706 int idle_cpu(int cpu)
4708 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4712 * idle_task - return the idle task for a given cpu.
4713 * @cpu: the processor in question.
4715 struct task_struct *idle_task(int cpu)
4717 return cpu_rq(cpu)->idle;
4721 * find_process_by_pid - find a process with a matching PID value.
4722 * @pid: the pid in question.
4724 static struct task_struct *find_process_by_pid(pid_t pid)
4726 return pid ? find_task_by_vpid(pid) : current;
4729 /* Actually do priority change: must hold rq lock. */
4730 static void
4731 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4733 BUG_ON(p->se.on_rq);
4735 p->policy = policy;
4736 switch (p->policy) {
4737 case SCHED_NORMAL:
4738 case SCHED_BATCH:
4739 case SCHED_IDLE:
4740 p->sched_class = &fair_sched_class;
4741 break;
4742 case SCHED_FIFO:
4743 case SCHED_RR:
4744 p->sched_class = &rt_sched_class;
4745 break;
4748 p->rt_priority = prio;
4749 p->normal_prio = normal_prio(p);
4750 /* we are holding p->pi_lock already */
4751 p->prio = rt_mutex_getprio(p);
4752 set_load_weight(p);
4756 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4757 * @p: the task in question.
4758 * @policy: new policy.
4759 * @param: structure containing the new RT priority.
4761 * NOTE that the task may be already dead.
4763 int sched_setscheduler(struct task_struct *p, int policy,
4764 struct sched_param *param)
4766 int retval, oldprio, oldpolicy = -1, on_rq, running;
4767 unsigned long flags;
4768 const struct sched_class *prev_class = p->sched_class;
4769 struct rq *rq;
4771 /* may grab non-irq protected spin_locks */
4772 BUG_ON(in_interrupt());
4773 recheck:
4774 /* double check policy once rq lock held */
4775 if (policy < 0)
4776 policy = oldpolicy = p->policy;
4777 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4778 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4779 policy != SCHED_IDLE)
4780 return -EINVAL;
4782 * Valid priorities for SCHED_FIFO and SCHED_RR are
4783 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4784 * SCHED_BATCH and SCHED_IDLE is 0.
4786 if (param->sched_priority < 0 ||
4787 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4788 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4789 return -EINVAL;
4790 if (rt_policy(policy) != (param->sched_priority != 0))
4791 return -EINVAL;
4794 * Allow unprivileged RT tasks to decrease priority:
4796 if (!capable(CAP_SYS_NICE)) {
4797 if (rt_policy(policy)) {
4798 unsigned long rlim_rtprio;
4800 if (!lock_task_sighand(p, &flags))
4801 return -ESRCH;
4802 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4803 unlock_task_sighand(p, &flags);
4805 /* can't set/change the rt policy */
4806 if (policy != p->policy && !rlim_rtprio)
4807 return -EPERM;
4809 /* can't increase priority */
4810 if (param->sched_priority > p->rt_priority &&
4811 param->sched_priority > rlim_rtprio)
4812 return -EPERM;
4815 * Like positive nice levels, dont allow tasks to
4816 * move out of SCHED_IDLE either:
4818 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4819 return -EPERM;
4821 /* can't change other user's priorities */
4822 if ((current->euid != p->euid) &&
4823 (current->euid != p->uid))
4824 return -EPERM;
4827 #ifdef CONFIG_RT_GROUP_SCHED
4829 * Do not allow realtime tasks into groups that have no runtime
4830 * assigned.
4832 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4833 return -EPERM;
4834 #endif
4836 retval = security_task_setscheduler(p, policy, param);
4837 if (retval)
4838 return retval;
4840 * make sure no PI-waiters arrive (or leave) while we are
4841 * changing the priority of the task:
4843 spin_lock_irqsave(&p->pi_lock, flags);
4845 * To be able to change p->policy safely, the apropriate
4846 * runqueue lock must be held.
4848 rq = __task_rq_lock(p);
4849 /* recheck policy now with rq lock held */
4850 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4851 policy = oldpolicy = -1;
4852 __task_rq_unlock(rq);
4853 spin_unlock_irqrestore(&p->pi_lock, flags);
4854 goto recheck;
4856 update_rq_clock(rq);
4857 on_rq = p->se.on_rq;
4858 running = task_current(rq, p);
4859 if (on_rq)
4860 deactivate_task(rq, p, 0);
4861 if (running)
4862 p->sched_class->put_prev_task(rq, p);
4864 oldprio = p->prio;
4865 __setscheduler(rq, p, policy, param->sched_priority);
4867 if (running)
4868 p->sched_class->set_curr_task(rq);
4869 if (on_rq) {
4870 activate_task(rq, p, 0);
4872 check_class_changed(rq, p, prev_class, oldprio, running);
4874 __task_rq_unlock(rq);
4875 spin_unlock_irqrestore(&p->pi_lock, flags);
4877 rt_mutex_adjust_pi(p);
4879 return 0;
4881 EXPORT_SYMBOL_GPL(sched_setscheduler);
4883 static int
4884 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4886 struct sched_param lparam;
4887 struct task_struct *p;
4888 int retval;
4890 if (!param || pid < 0)
4891 return -EINVAL;
4892 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4893 return -EFAULT;
4895 rcu_read_lock();
4896 retval = -ESRCH;
4897 p = find_process_by_pid(pid);
4898 if (p != NULL)
4899 retval = sched_setscheduler(p, policy, &lparam);
4900 rcu_read_unlock();
4902 return retval;
4906 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4907 * @pid: the pid in question.
4908 * @policy: new policy.
4909 * @param: structure containing the new RT priority.
4911 asmlinkage long
4912 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4914 /* negative values for policy are not valid */
4915 if (policy < 0)
4916 return -EINVAL;
4918 return do_sched_setscheduler(pid, policy, param);
4922 * sys_sched_setparam - set/change the RT priority of a thread
4923 * @pid: the pid in question.
4924 * @param: structure containing the new RT priority.
4926 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4928 return do_sched_setscheduler(pid, -1, param);
4932 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4933 * @pid: the pid in question.
4935 asmlinkage long sys_sched_getscheduler(pid_t pid)
4937 struct task_struct *p;
4938 int retval;
4940 if (pid < 0)
4941 return -EINVAL;
4943 retval = -ESRCH;
4944 read_lock(&tasklist_lock);
4945 p = find_process_by_pid(pid);
4946 if (p) {
4947 retval = security_task_getscheduler(p);
4948 if (!retval)
4949 retval = p->policy;
4951 read_unlock(&tasklist_lock);
4952 return retval;
4956 * sys_sched_getscheduler - get the RT priority of a thread
4957 * @pid: the pid in question.
4958 * @param: structure containing the RT priority.
4960 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4962 struct sched_param lp;
4963 struct task_struct *p;
4964 int retval;
4966 if (!param || pid < 0)
4967 return -EINVAL;
4969 read_lock(&tasklist_lock);
4970 p = find_process_by_pid(pid);
4971 retval = -ESRCH;
4972 if (!p)
4973 goto out_unlock;
4975 retval = security_task_getscheduler(p);
4976 if (retval)
4977 goto out_unlock;
4979 lp.sched_priority = p->rt_priority;
4980 read_unlock(&tasklist_lock);
4983 * This one might sleep, we cannot do it with a spinlock held ...
4985 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4987 return retval;
4989 out_unlock:
4990 read_unlock(&tasklist_lock);
4991 return retval;
4994 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
4996 cpumask_t cpus_allowed;
4997 cpumask_t new_mask = *in_mask;
4998 struct task_struct *p;
4999 int retval;
5001 get_online_cpus();
5002 read_lock(&tasklist_lock);
5004 p = find_process_by_pid(pid);
5005 if (!p) {
5006 read_unlock(&tasklist_lock);
5007 put_online_cpus();
5008 return -ESRCH;
5012 * It is not safe to call set_cpus_allowed with the
5013 * tasklist_lock held. We will bump the task_struct's
5014 * usage count and then drop tasklist_lock.
5016 get_task_struct(p);
5017 read_unlock(&tasklist_lock);
5019 retval = -EPERM;
5020 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5021 !capable(CAP_SYS_NICE))
5022 goto out_unlock;
5024 retval = security_task_setscheduler(p, 0, NULL);
5025 if (retval)
5026 goto out_unlock;
5028 cpuset_cpus_allowed(p, &cpus_allowed);
5029 cpus_and(new_mask, new_mask, cpus_allowed);
5030 again:
5031 retval = set_cpus_allowed_ptr(p, &new_mask);
5033 if (!retval) {
5034 cpuset_cpus_allowed(p, &cpus_allowed);
5035 if (!cpus_subset(new_mask, cpus_allowed)) {
5037 * We must have raced with a concurrent cpuset
5038 * update. Just reset the cpus_allowed to the
5039 * cpuset's cpus_allowed
5041 new_mask = cpus_allowed;
5042 goto again;
5045 out_unlock:
5046 put_task_struct(p);
5047 put_online_cpus();
5048 return retval;
5051 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5052 cpumask_t *new_mask)
5054 if (len < sizeof(cpumask_t)) {
5055 memset(new_mask, 0, sizeof(cpumask_t));
5056 } else if (len > sizeof(cpumask_t)) {
5057 len = sizeof(cpumask_t);
5059 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5063 * sys_sched_setaffinity - set the cpu affinity of a process
5064 * @pid: pid of the process
5065 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5066 * @user_mask_ptr: user-space pointer to the new cpu mask
5068 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5069 unsigned long __user *user_mask_ptr)
5071 cpumask_t new_mask;
5072 int retval;
5074 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5075 if (retval)
5076 return retval;
5078 return sched_setaffinity(pid, &new_mask);
5081 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5083 struct task_struct *p;
5084 int retval;
5086 get_online_cpus();
5087 read_lock(&tasklist_lock);
5089 retval = -ESRCH;
5090 p = find_process_by_pid(pid);
5091 if (!p)
5092 goto out_unlock;
5094 retval = security_task_getscheduler(p);
5095 if (retval)
5096 goto out_unlock;
5098 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5100 out_unlock:
5101 read_unlock(&tasklist_lock);
5102 put_online_cpus();
5104 return retval;
5108 * sys_sched_getaffinity - get the cpu affinity of a process
5109 * @pid: pid of the process
5110 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5111 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5113 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5114 unsigned long __user *user_mask_ptr)
5116 int ret;
5117 cpumask_t mask;
5119 if (len < sizeof(cpumask_t))
5120 return -EINVAL;
5122 ret = sched_getaffinity(pid, &mask);
5123 if (ret < 0)
5124 return ret;
5126 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5127 return -EFAULT;
5129 return sizeof(cpumask_t);
5133 * sys_sched_yield - yield the current processor to other threads.
5135 * This function yields the current CPU to other tasks. If there are no
5136 * other threads running on this CPU then this function will return.
5138 asmlinkage long sys_sched_yield(void)
5140 struct rq *rq = this_rq_lock();
5142 schedstat_inc(rq, yld_count);
5143 current->sched_class->yield_task(rq);
5146 * Since we are going to call schedule() anyway, there's
5147 * no need to preempt or enable interrupts:
5149 __release(rq->lock);
5150 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5151 _raw_spin_unlock(&rq->lock);
5152 preempt_enable_no_resched();
5154 schedule();
5156 return 0;
5159 static void __cond_resched(void)
5161 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5162 __might_sleep(__FILE__, __LINE__);
5163 #endif
5165 * The BKS might be reacquired before we have dropped
5166 * PREEMPT_ACTIVE, which could trigger a second
5167 * cond_resched() call.
5169 do {
5170 add_preempt_count(PREEMPT_ACTIVE);
5171 schedule();
5172 sub_preempt_count(PREEMPT_ACTIVE);
5173 } while (need_resched());
5176 int __sched _cond_resched(void)
5178 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5179 system_state == SYSTEM_RUNNING) {
5180 __cond_resched();
5181 return 1;
5183 return 0;
5185 EXPORT_SYMBOL(_cond_resched);
5188 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5189 * call schedule, and on return reacquire the lock.
5191 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5192 * operations here to prevent schedule() from being called twice (once via
5193 * spin_unlock(), once by hand).
5195 int cond_resched_lock(spinlock_t *lock)
5197 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5198 int ret = 0;
5200 if (spin_needbreak(lock) || resched) {
5201 spin_unlock(lock);
5202 if (resched && need_resched())
5203 __cond_resched();
5204 else
5205 cpu_relax();
5206 ret = 1;
5207 spin_lock(lock);
5209 return ret;
5211 EXPORT_SYMBOL(cond_resched_lock);
5213 int __sched cond_resched_softirq(void)
5215 BUG_ON(!in_softirq());
5217 if (need_resched() && system_state == SYSTEM_RUNNING) {
5218 local_bh_enable();
5219 __cond_resched();
5220 local_bh_disable();
5221 return 1;
5223 return 0;
5225 EXPORT_SYMBOL(cond_resched_softirq);
5228 * yield - yield the current processor to other threads.
5230 * This is a shortcut for kernel-space yielding - it marks the
5231 * thread runnable and calls sys_sched_yield().
5233 void __sched yield(void)
5235 set_current_state(TASK_RUNNING);
5236 sys_sched_yield();
5238 EXPORT_SYMBOL(yield);
5241 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5242 * that process accounting knows that this is a task in IO wait state.
5244 * But don't do that if it is a deliberate, throttling IO wait (this task
5245 * has set its backing_dev_info: the queue against which it should throttle)
5247 void __sched io_schedule(void)
5249 struct rq *rq = &__raw_get_cpu_var(runqueues);
5251 delayacct_blkio_start();
5252 atomic_inc(&rq->nr_iowait);
5253 schedule();
5254 atomic_dec(&rq->nr_iowait);
5255 delayacct_blkio_end();
5257 EXPORT_SYMBOL(io_schedule);
5259 long __sched io_schedule_timeout(long timeout)
5261 struct rq *rq = &__raw_get_cpu_var(runqueues);
5262 long ret;
5264 delayacct_blkio_start();
5265 atomic_inc(&rq->nr_iowait);
5266 ret = schedule_timeout(timeout);
5267 atomic_dec(&rq->nr_iowait);
5268 delayacct_blkio_end();
5269 return ret;
5273 * sys_sched_get_priority_max - return maximum RT priority.
5274 * @policy: scheduling class.
5276 * this syscall returns the maximum rt_priority that can be used
5277 * by a given scheduling class.
5279 asmlinkage long sys_sched_get_priority_max(int policy)
5281 int ret = -EINVAL;
5283 switch (policy) {
5284 case SCHED_FIFO:
5285 case SCHED_RR:
5286 ret = MAX_USER_RT_PRIO-1;
5287 break;
5288 case SCHED_NORMAL:
5289 case SCHED_BATCH:
5290 case SCHED_IDLE:
5291 ret = 0;
5292 break;
5294 return ret;
5298 * sys_sched_get_priority_min - return minimum RT priority.
5299 * @policy: scheduling class.
5301 * this syscall returns the minimum rt_priority that can be used
5302 * by a given scheduling class.
5304 asmlinkage long sys_sched_get_priority_min(int policy)
5306 int ret = -EINVAL;
5308 switch (policy) {
5309 case SCHED_FIFO:
5310 case SCHED_RR:
5311 ret = 1;
5312 break;
5313 case SCHED_NORMAL:
5314 case SCHED_BATCH:
5315 case SCHED_IDLE:
5316 ret = 0;
5318 return ret;
5322 * sys_sched_rr_get_interval - return the default timeslice of a process.
5323 * @pid: pid of the process.
5324 * @interval: userspace pointer to the timeslice value.
5326 * this syscall writes the default timeslice value of a given process
5327 * into the user-space timespec buffer. A value of '0' means infinity.
5329 asmlinkage
5330 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5332 struct task_struct *p;
5333 unsigned int time_slice;
5334 int retval;
5335 struct timespec t;
5337 if (pid < 0)
5338 return -EINVAL;
5340 retval = -ESRCH;
5341 read_lock(&tasklist_lock);
5342 p = find_process_by_pid(pid);
5343 if (!p)
5344 goto out_unlock;
5346 retval = security_task_getscheduler(p);
5347 if (retval)
5348 goto out_unlock;
5351 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5352 * tasks that are on an otherwise idle runqueue:
5354 time_slice = 0;
5355 if (p->policy == SCHED_RR) {
5356 time_slice = DEF_TIMESLICE;
5357 } else if (p->policy != SCHED_FIFO) {
5358 struct sched_entity *se = &p->se;
5359 unsigned long flags;
5360 struct rq *rq;
5362 rq = task_rq_lock(p, &flags);
5363 if (rq->cfs.load.weight)
5364 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5365 task_rq_unlock(rq, &flags);
5367 read_unlock(&tasklist_lock);
5368 jiffies_to_timespec(time_slice, &t);
5369 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5370 return retval;
5372 out_unlock:
5373 read_unlock(&tasklist_lock);
5374 return retval;
5377 static const char stat_nam[] = "RSDTtZX";
5379 void sched_show_task(struct task_struct *p)
5381 unsigned long free = 0;
5382 unsigned state;
5384 state = p->state ? __ffs(p->state) + 1 : 0;
5385 printk(KERN_INFO "%-13.13s %c", p->comm,
5386 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5387 #if BITS_PER_LONG == 32
5388 if (state == TASK_RUNNING)
5389 printk(KERN_CONT " running ");
5390 else
5391 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5392 #else
5393 if (state == TASK_RUNNING)
5394 printk(KERN_CONT " running task ");
5395 else
5396 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5397 #endif
5398 #ifdef CONFIG_DEBUG_STACK_USAGE
5400 unsigned long *n = end_of_stack(p);
5401 while (!*n)
5402 n++;
5403 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5405 #endif
5406 printk(KERN_CONT "%5lu %5d %6d\n", free,
5407 task_pid_nr(p), task_pid_nr(p->real_parent));
5409 show_stack(p, NULL);
5412 void show_state_filter(unsigned long state_filter)
5414 struct task_struct *g, *p;
5416 #if BITS_PER_LONG == 32
5417 printk(KERN_INFO
5418 " task PC stack pid father\n");
5419 #else
5420 printk(KERN_INFO
5421 " task PC stack pid father\n");
5422 #endif
5423 read_lock(&tasklist_lock);
5424 do_each_thread(g, p) {
5426 * reset the NMI-timeout, listing all files on a slow
5427 * console might take alot of time:
5429 touch_nmi_watchdog();
5430 if (!state_filter || (p->state & state_filter))
5431 sched_show_task(p);
5432 } while_each_thread(g, p);
5434 touch_all_softlockup_watchdogs();
5436 #ifdef CONFIG_SCHED_DEBUG
5437 sysrq_sched_debug_show();
5438 #endif
5439 read_unlock(&tasklist_lock);
5441 * Only show locks if all tasks are dumped:
5443 if (state_filter == -1)
5444 debug_show_all_locks();
5447 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5449 idle->sched_class = &idle_sched_class;
5453 * init_idle - set up an idle thread for a given CPU
5454 * @idle: task in question
5455 * @cpu: cpu the idle task belongs to
5457 * NOTE: this function does not set the idle thread's NEED_RESCHED
5458 * flag, to make booting more robust.
5460 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5462 struct rq *rq = cpu_rq(cpu);
5463 unsigned long flags;
5465 __sched_fork(idle);
5466 idle->se.exec_start = sched_clock();
5468 idle->prio = idle->normal_prio = MAX_PRIO;
5469 idle->cpus_allowed = cpumask_of_cpu(cpu);
5470 __set_task_cpu(idle, cpu);
5472 spin_lock_irqsave(&rq->lock, flags);
5473 rq->curr = rq->idle = idle;
5474 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5475 idle->oncpu = 1;
5476 #endif
5477 spin_unlock_irqrestore(&rq->lock, flags);
5479 /* Set the preempt count _outside_ the spinlocks! */
5480 #if defined(CONFIG_PREEMPT)
5481 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5482 #else
5483 task_thread_info(idle)->preempt_count = 0;
5484 #endif
5486 * The idle tasks have their own, simple scheduling class:
5488 idle->sched_class = &idle_sched_class;
5492 * In a system that switches off the HZ timer nohz_cpu_mask
5493 * indicates which cpus entered this state. This is used
5494 * in the rcu update to wait only for active cpus. For system
5495 * which do not switch off the HZ timer nohz_cpu_mask should
5496 * always be CPU_MASK_NONE.
5498 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5501 * Increase the granularity value when there are more CPUs,
5502 * because with more CPUs the 'effective latency' as visible
5503 * to users decreases. But the relationship is not linear,
5504 * so pick a second-best guess by going with the log2 of the
5505 * number of CPUs.
5507 * This idea comes from the SD scheduler of Con Kolivas:
5509 static inline void sched_init_granularity(void)
5511 unsigned int factor = 1 + ilog2(num_online_cpus());
5512 const unsigned long limit = 200000000;
5514 sysctl_sched_min_granularity *= factor;
5515 if (sysctl_sched_min_granularity > limit)
5516 sysctl_sched_min_granularity = limit;
5518 sysctl_sched_latency *= factor;
5519 if (sysctl_sched_latency > limit)
5520 sysctl_sched_latency = limit;
5522 sysctl_sched_wakeup_granularity *= factor;
5525 #ifdef CONFIG_SMP
5527 * This is how migration works:
5529 * 1) we queue a struct migration_req structure in the source CPU's
5530 * runqueue and wake up that CPU's migration thread.
5531 * 2) we down() the locked semaphore => thread blocks.
5532 * 3) migration thread wakes up (implicitly it forces the migrated
5533 * thread off the CPU)
5534 * 4) it gets the migration request and checks whether the migrated
5535 * task is still in the wrong runqueue.
5536 * 5) if it's in the wrong runqueue then the migration thread removes
5537 * it and puts it into the right queue.
5538 * 6) migration thread up()s the semaphore.
5539 * 7) we wake up and the migration is done.
5543 * Change a given task's CPU affinity. Migrate the thread to a
5544 * proper CPU and schedule it away if the CPU it's executing on
5545 * is removed from the allowed bitmask.
5547 * NOTE: the caller must have a valid reference to the task, the
5548 * task must not exit() & deallocate itself prematurely. The
5549 * call is not atomic; no spinlocks may be held.
5551 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5553 struct migration_req req;
5554 unsigned long flags;
5555 struct rq *rq;
5556 int ret = 0;
5558 rq = task_rq_lock(p, &flags);
5559 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5560 ret = -EINVAL;
5561 goto out;
5564 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5565 !cpus_equal(p->cpus_allowed, *new_mask))) {
5566 ret = -EINVAL;
5567 goto out;
5570 if (p->sched_class->set_cpus_allowed)
5571 p->sched_class->set_cpus_allowed(p, new_mask);
5572 else {
5573 p->cpus_allowed = *new_mask;
5574 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5577 /* Can the task run on the task's current CPU? If so, we're done */
5578 if (cpu_isset(task_cpu(p), *new_mask))
5579 goto out;
5581 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5582 /* Need help from migration thread: drop lock and wait. */
5583 task_rq_unlock(rq, &flags);
5584 wake_up_process(rq->migration_thread);
5585 wait_for_completion(&req.done);
5586 tlb_migrate_finish(p->mm);
5587 return 0;
5589 out:
5590 task_rq_unlock(rq, &flags);
5592 return ret;
5594 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5597 * Move (not current) task off this cpu, onto dest cpu. We're doing
5598 * this because either it can't run here any more (set_cpus_allowed()
5599 * away from this CPU, or CPU going down), or because we're
5600 * attempting to rebalance this task on exec (sched_exec).
5602 * So we race with normal scheduler movements, but that's OK, as long
5603 * as the task is no longer on this CPU.
5605 * Returns non-zero if task was successfully migrated.
5607 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5609 struct rq *rq_dest, *rq_src;
5610 int ret = 0, on_rq;
5612 if (unlikely(cpu_is_offline(dest_cpu)))
5613 return ret;
5615 rq_src = cpu_rq(src_cpu);
5616 rq_dest = cpu_rq(dest_cpu);
5618 double_rq_lock(rq_src, rq_dest);
5619 /* Already moved. */
5620 if (task_cpu(p) != src_cpu)
5621 goto out;
5622 /* Affinity changed (again). */
5623 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5624 goto out;
5626 on_rq = p->se.on_rq;
5627 if (on_rq)
5628 deactivate_task(rq_src, p, 0);
5630 set_task_cpu(p, dest_cpu);
5631 if (on_rq) {
5632 activate_task(rq_dest, p, 0);
5633 check_preempt_curr(rq_dest, p);
5635 ret = 1;
5636 out:
5637 double_rq_unlock(rq_src, rq_dest);
5638 return ret;
5642 * migration_thread - this is a highprio system thread that performs
5643 * thread migration by bumping thread off CPU then 'pushing' onto
5644 * another runqueue.
5646 static int migration_thread(void *data)
5648 int cpu = (long)data;
5649 struct rq *rq;
5651 rq = cpu_rq(cpu);
5652 BUG_ON(rq->migration_thread != current);
5654 set_current_state(TASK_INTERRUPTIBLE);
5655 while (!kthread_should_stop()) {
5656 struct migration_req *req;
5657 struct list_head *head;
5659 spin_lock_irq(&rq->lock);
5661 if (cpu_is_offline(cpu)) {
5662 spin_unlock_irq(&rq->lock);
5663 goto wait_to_die;
5666 if (rq->active_balance) {
5667 active_load_balance(rq, cpu);
5668 rq->active_balance = 0;
5671 head = &rq->migration_queue;
5673 if (list_empty(head)) {
5674 spin_unlock_irq(&rq->lock);
5675 schedule();
5676 set_current_state(TASK_INTERRUPTIBLE);
5677 continue;
5679 req = list_entry(head->next, struct migration_req, list);
5680 list_del_init(head->next);
5682 spin_unlock(&rq->lock);
5683 __migrate_task(req->task, cpu, req->dest_cpu);
5684 local_irq_enable();
5686 complete(&req->done);
5688 __set_current_state(TASK_RUNNING);
5689 return 0;
5691 wait_to_die:
5692 /* Wait for kthread_stop */
5693 set_current_state(TASK_INTERRUPTIBLE);
5694 while (!kthread_should_stop()) {
5695 schedule();
5696 set_current_state(TASK_INTERRUPTIBLE);
5698 __set_current_state(TASK_RUNNING);
5699 return 0;
5702 #ifdef CONFIG_HOTPLUG_CPU
5704 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5706 int ret;
5708 local_irq_disable();
5709 ret = __migrate_task(p, src_cpu, dest_cpu);
5710 local_irq_enable();
5711 return ret;
5715 * Figure out where task on dead CPU should go, use force if necessary.
5716 * NOTE: interrupts should be disabled by the caller
5718 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5720 unsigned long flags;
5721 cpumask_t mask;
5722 struct rq *rq;
5723 int dest_cpu;
5725 do {
5726 /* On same node? */
5727 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5728 cpus_and(mask, mask, p->cpus_allowed);
5729 dest_cpu = any_online_cpu(mask);
5731 /* On any allowed CPU? */
5732 if (dest_cpu >= nr_cpu_ids)
5733 dest_cpu = any_online_cpu(p->cpus_allowed);
5735 /* No more Mr. Nice Guy. */
5736 if (dest_cpu >= nr_cpu_ids) {
5737 cpumask_t cpus_allowed;
5739 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5741 * Try to stay on the same cpuset, where the
5742 * current cpuset may be a subset of all cpus.
5743 * The cpuset_cpus_allowed_locked() variant of
5744 * cpuset_cpus_allowed() will not block. It must be
5745 * called within calls to cpuset_lock/cpuset_unlock.
5747 rq = task_rq_lock(p, &flags);
5748 p->cpus_allowed = cpus_allowed;
5749 dest_cpu = any_online_cpu(p->cpus_allowed);
5750 task_rq_unlock(rq, &flags);
5753 * Don't tell them about moving exiting tasks or
5754 * kernel threads (both mm NULL), since they never
5755 * leave kernel.
5757 if (p->mm && printk_ratelimit()) {
5758 printk(KERN_INFO "process %d (%s) no "
5759 "longer affine to cpu%d\n",
5760 task_pid_nr(p), p->comm, dead_cpu);
5763 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5767 * While a dead CPU has no uninterruptible tasks queued at this point,
5768 * it might still have a nonzero ->nr_uninterruptible counter, because
5769 * for performance reasons the counter is not stricly tracking tasks to
5770 * their home CPUs. So we just add the counter to another CPU's counter,
5771 * to keep the global sum constant after CPU-down:
5773 static void migrate_nr_uninterruptible(struct rq *rq_src)
5775 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5776 unsigned long flags;
5778 local_irq_save(flags);
5779 double_rq_lock(rq_src, rq_dest);
5780 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5781 rq_src->nr_uninterruptible = 0;
5782 double_rq_unlock(rq_src, rq_dest);
5783 local_irq_restore(flags);
5786 /* Run through task list and migrate tasks from the dead cpu. */
5787 static void migrate_live_tasks(int src_cpu)
5789 struct task_struct *p, *t;
5791 read_lock(&tasklist_lock);
5793 do_each_thread(t, p) {
5794 if (p == current)
5795 continue;
5797 if (task_cpu(p) == src_cpu)
5798 move_task_off_dead_cpu(src_cpu, p);
5799 } while_each_thread(t, p);
5801 read_unlock(&tasklist_lock);
5805 * Schedules idle task to be the next runnable task on current CPU.
5806 * It does so by boosting its priority to highest possible.
5807 * Used by CPU offline code.
5809 void sched_idle_next(void)
5811 int this_cpu = smp_processor_id();
5812 struct rq *rq = cpu_rq(this_cpu);
5813 struct task_struct *p = rq->idle;
5814 unsigned long flags;
5816 /* cpu has to be offline */
5817 BUG_ON(cpu_online(this_cpu));
5820 * Strictly not necessary since rest of the CPUs are stopped by now
5821 * and interrupts disabled on the current cpu.
5823 spin_lock_irqsave(&rq->lock, flags);
5825 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5827 update_rq_clock(rq);
5828 activate_task(rq, p, 0);
5830 spin_unlock_irqrestore(&rq->lock, flags);
5834 * Ensures that the idle task is using init_mm right before its cpu goes
5835 * offline.
5837 void idle_task_exit(void)
5839 struct mm_struct *mm = current->active_mm;
5841 BUG_ON(cpu_online(smp_processor_id()));
5843 if (mm != &init_mm)
5844 switch_mm(mm, &init_mm, current);
5845 mmdrop(mm);
5848 /* called under rq->lock with disabled interrupts */
5849 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5851 struct rq *rq = cpu_rq(dead_cpu);
5853 /* Must be exiting, otherwise would be on tasklist. */
5854 BUG_ON(!p->exit_state);
5856 /* Cannot have done final schedule yet: would have vanished. */
5857 BUG_ON(p->state == TASK_DEAD);
5859 get_task_struct(p);
5862 * Drop lock around migration; if someone else moves it,
5863 * that's OK. No task can be added to this CPU, so iteration is
5864 * fine.
5866 spin_unlock_irq(&rq->lock);
5867 move_task_off_dead_cpu(dead_cpu, p);
5868 spin_lock_irq(&rq->lock);
5870 put_task_struct(p);
5873 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5874 static void migrate_dead_tasks(unsigned int dead_cpu)
5876 struct rq *rq = cpu_rq(dead_cpu);
5877 struct task_struct *next;
5879 for ( ; ; ) {
5880 if (!rq->nr_running)
5881 break;
5882 update_rq_clock(rq);
5883 next = pick_next_task(rq, rq->curr);
5884 if (!next)
5885 break;
5886 migrate_dead(dead_cpu, next);
5890 #endif /* CONFIG_HOTPLUG_CPU */
5892 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5894 static struct ctl_table sd_ctl_dir[] = {
5896 .procname = "sched_domain",
5897 .mode = 0555,
5899 {0, },
5902 static struct ctl_table sd_ctl_root[] = {
5904 .ctl_name = CTL_KERN,
5905 .procname = "kernel",
5906 .mode = 0555,
5907 .child = sd_ctl_dir,
5909 {0, },
5912 static struct ctl_table *sd_alloc_ctl_entry(int n)
5914 struct ctl_table *entry =
5915 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5917 return entry;
5920 static void sd_free_ctl_entry(struct ctl_table **tablep)
5922 struct ctl_table *entry;
5925 * In the intermediate directories, both the child directory and
5926 * procname are dynamically allocated and could fail but the mode
5927 * will always be set. In the lowest directory the names are
5928 * static strings and all have proc handlers.
5930 for (entry = *tablep; entry->mode; entry++) {
5931 if (entry->child)
5932 sd_free_ctl_entry(&entry->child);
5933 if (entry->proc_handler == NULL)
5934 kfree(entry->procname);
5937 kfree(*tablep);
5938 *tablep = NULL;
5941 static void
5942 set_table_entry(struct ctl_table *entry,
5943 const char *procname, void *data, int maxlen,
5944 mode_t mode, proc_handler *proc_handler)
5946 entry->procname = procname;
5947 entry->data = data;
5948 entry->maxlen = maxlen;
5949 entry->mode = mode;
5950 entry->proc_handler = proc_handler;
5953 static struct ctl_table *
5954 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5956 struct ctl_table *table = sd_alloc_ctl_entry(12);
5958 if (table == NULL)
5959 return NULL;
5961 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5962 sizeof(long), 0644, proc_doulongvec_minmax);
5963 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5964 sizeof(long), 0644, proc_doulongvec_minmax);
5965 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5966 sizeof(int), 0644, proc_dointvec_minmax);
5967 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5968 sizeof(int), 0644, proc_dointvec_minmax);
5969 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5970 sizeof(int), 0644, proc_dointvec_minmax);
5971 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5972 sizeof(int), 0644, proc_dointvec_minmax);
5973 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5974 sizeof(int), 0644, proc_dointvec_minmax);
5975 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5976 sizeof(int), 0644, proc_dointvec_minmax);
5977 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5978 sizeof(int), 0644, proc_dointvec_minmax);
5979 set_table_entry(&table[9], "cache_nice_tries",
5980 &sd->cache_nice_tries,
5981 sizeof(int), 0644, proc_dointvec_minmax);
5982 set_table_entry(&table[10], "flags", &sd->flags,
5983 sizeof(int), 0644, proc_dointvec_minmax);
5984 /* &table[11] is terminator */
5986 return table;
5989 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5991 struct ctl_table *entry, *table;
5992 struct sched_domain *sd;
5993 int domain_num = 0, i;
5994 char buf[32];
5996 for_each_domain(cpu, sd)
5997 domain_num++;
5998 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5999 if (table == NULL)
6000 return NULL;
6002 i = 0;
6003 for_each_domain(cpu, sd) {
6004 snprintf(buf, 32, "domain%d", i);
6005 entry->procname = kstrdup(buf, GFP_KERNEL);
6006 entry->mode = 0555;
6007 entry->child = sd_alloc_ctl_domain_table(sd);
6008 entry++;
6009 i++;
6011 return table;
6014 static struct ctl_table_header *sd_sysctl_header;
6015 static void register_sched_domain_sysctl(void)
6017 int i, cpu_num = num_online_cpus();
6018 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6019 char buf[32];
6021 WARN_ON(sd_ctl_dir[0].child);
6022 sd_ctl_dir[0].child = entry;
6024 if (entry == NULL)
6025 return;
6027 for_each_online_cpu(i) {
6028 snprintf(buf, 32, "cpu%d", i);
6029 entry->procname = kstrdup(buf, GFP_KERNEL);
6030 entry->mode = 0555;
6031 entry->child = sd_alloc_ctl_cpu_table(i);
6032 entry++;
6035 WARN_ON(sd_sysctl_header);
6036 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6039 /* may be called multiple times per register */
6040 static void unregister_sched_domain_sysctl(void)
6042 if (sd_sysctl_header)
6043 unregister_sysctl_table(sd_sysctl_header);
6044 sd_sysctl_header = NULL;
6045 if (sd_ctl_dir[0].child)
6046 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6048 #else
6049 static void register_sched_domain_sysctl(void)
6052 static void unregister_sched_domain_sysctl(void)
6055 #endif
6057 static void set_rq_online(struct rq *rq)
6059 if (!rq->online) {
6060 const struct sched_class *class;
6062 cpu_set(rq->cpu, rq->rd->online);
6063 rq->online = 1;
6065 for_each_class(class) {
6066 if (class->rq_online)
6067 class->rq_online(rq);
6072 static void set_rq_offline(struct rq *rq)
6074 if (rq->online) {
6075 const struct sched_class *class;
6077 for_each_class(class) {
6078 if (class->rq_offline)
6079 class->rq_offline(rq);
6082 cpu_clear(rq->cpu, rq->rd->online);
6083 rq->online = 0;
6088 * migration_call - callback that gets triggered when a CPU is added.
6089 * Here we can start up the necessary migration thread for the new CPU.
6091 static int __cpuinit
6092 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6094 struct task_struct *p;
6095 int cpu = (long)hcpu;
6096 unsigned long flags;
6097 struct rq *rq;
6099 switch (action) {
6101 case CPU_UP_PREPARE:
6102 case CPU_UP_PREPARE_FROZEN:
6103 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6104 if (IS_ERR(p))
6105 return NOTIFY_BAD;
6106 kthread_bind(p, cpu);
6107 /* Must be high prio: stop_machine expects to yield to it. */
6108 rq = task_rq_lock(p, &flags);
6109 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6110 task_rq_unlock(rq, &flags);
6111 cpu_rq(cpu)->migration_thread = p;
6112 break;
6114 case CPU_ONLINE:
6115 case CPU_ONLINE_FROZEN:
6116 /* Strictly unnecessary, as first user will wake it. */
6117 wake_up_process(cpu_rq(cpu)->migration_thread);
6119 /* Update our root-domain */
6120 rq = cpu_rq(cpu);
6121 spin_lock_irqsave(&rq->lock, flags);
6122 if (rq->rd) {
6123 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6125 set_rq_online(rq);
6127 spin_unlock_irqrestore(&rq->lock, flags);
6128 break;
6130 #ifdef CONFIG_HOTPLUG_CPU
6131 case CPU_UP_CANCELED:
6132 case CPU_UP_CANCELED_FROZEN:
6133 if (!cpu_rq(cpu)->migration_thread)
6134 break;
6135 /* Unbind it from offline cpu so it can run. Fall thru. */
6136 kthread_bind(cpu_rq(cpu)->migration_thread,
6137 any_online_cpu(cpu_online_map));
6138 kthread_stop(cpu_rq(cpu)->migration_thread);
6139 cpu_rq(cpu)->migration_thread = NULL;
6140 break;
6142 case CPU_DEAD:
6143 case CPU_DEAD_FROZEN:
6144 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6145 migrate_live_tasks(cpu);
6146 rq = cpu_rq(cpu);
6147 kthread_stop(rq->migration_thread);
6148 rq->migration_thread = NULL;
6149 /* Idle task back to normal (off runqueue, low prio) */
6150 spin_lock_irq(&rq->lock);
6151 update_rq_clock(rq);
6152 deactivate_task(rq, rq->idle, 0);
6153 rq->idle->static_prio = MAX_PRIO;
6154 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6155 rq->idle->sched_class = &idle_sched_class;
6156 migrate_dead_tasks(cpu);
6157 spin_unlock_irq(&rq->lock);
6158 cpuset_unlock();
6159 migrate_nr_uninterruptible(rq);
6160 BUG_ON(rq->nr_running != 0);
6163 * No need to migrate the tasks: it was best-effort if
6164 * they didn't take sched_hotcpu_mutex. Just wake up
6165 * the requestors.
6167 spin_lock_irq(&rq->lock);
6168 while (!list_empty(&rq->migration_queue)) {
6169 struct migration_req *req;
6171 req = list_entry(rq->migration_queue.next,
6172 struct migration_req, list);
6173 list_del_init(&req->list);
6174 complete(&req->done);
6176 spin_unlock_irq(&rq->lock);
6177 break;
6179 case CPU_DYING:
6180 case CPU_DYING_FROZEN:
6181 /* Update our root-domain */
6182 rq = cpu_rq(cpu);
6183 spin_lock_irqsave(&rq->lock, flags);
6184 if (rq->rd) {
6185 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6186 set_rq_offline(rq);
6188 spin_unlock_irqrestore(&rq->lock, flags);
6189 break;
6190 #endif
6192 return NOTIFY_OK;
6195 /* Register at highest priority so that task migration (migrate_all_tasks)
6196 * happens before everything else.
6198 static struct notifier_block __cpuinitdata migration_notifier = {
6199 .notifier_call = migration_call,
6200 .priority = 10
6203 void __init migration_init(void)
6205 void *cpu = (void *)(long)smp_processor_id();
6206 int err;
6208 /* Start one for the boot CPU: */
6209 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6210 BUG_ON(err == NOTIFY_BAD);
6211 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6212 register_cpu_notifier(&migration_notifier);
6214 #endif
6216 #ifdef CONFIG_SMP
6218 #ifdef CONFIG_SCHED_DEBUG
6220 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6222 switch (lvl) {
6223 case SD_LV_NONE:
6224 return "NONE";
6225 case SD_LV_SIBLING:
6226 return "SIBLING";
6227 case SD_LV_MC:
6228 return "MC";
6229 case SD_LV_CPU:
6230 return "CPU";
6231 case SD_LV_NODE:
6232 return "NODE";
6233 case SD_LV_ALLNODES:
6234 return "ALLNODES";
6235 case SD_LV_MAX:
6236 return "MAX";
6239 return "MAX";
6242 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6243 cpumask_t *groupmask)
6245 struct sched_group *group = sd->groups;
6246 char str[256];
6248 cpulist_scnprintf(str, sizeof(str), sd->span);
6249 cpus_clear(*groupmask);
6251 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6253 if (!(sd->flags & SD_LOAD_BALANCE)) {
6254 printk("does not load-balance\n");
6255 if (sd->parent)
6256 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6257 " has parent");
6258 return -1;
6261 printk(KERN_CONT "span %s level %s\n",
6262 str, sd_level_to_string(sd->level));
6264 if (!cpu_isset(cpu, sd->span)) {
6265 printk(KERN_ERR "ERROR: domain->span does not contain "
6266 "CPU%d\n", cpu);
6268 if (!cpu_isset(cpu, group->cpumask)) {
6269 printk(KERN_ERR "ERROR: domain->groups does not contain"
6270 " CPU%d\n", cpu);
6273 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6274 do {
6275 if (!group) {
6276 printk("\n");
6277 printk(KERN_ERR "ERROR: group is NULL\n");
6278 break;
6281 if (!group->__cpu_power) {
6282 printk(KERN_CONT "\n");
6283 printk(KERN_ERR "ERROR: domain->cpu_power not "
6284 "set\n");
6285 break;
6288 if (!cpus_weight(group->cpumask)) {
6289 printk(KERN_CONT "\n");
6290 printk(KERN_ERR "ERROR: empty group\n");
6291 break;
6294 if (cpus_intersects(*groupmask, group->cpumask)) {
6295 printk(KERN_CONT "\n");
6296 printk(KERN_ERR "ERROR: repeated CPUs\n");
6297 break;
6300 cpus_or(*groupmask, *groupmask, group->cpumask);
6302 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6303 printk(KERN_CONT " %s", str);
6305 group = group->next;
6306 } while (group != sd->groups);
6307 printk(KERN_CONT "\n");
6309 if (!cpus_equal(sd->span, *groupmask))
6310 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6312 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6313 printk(KERN_ERR "ERROR: parent span is not a superset "
6314 "of domain->span\n");
6315 return 0;
6318 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6320 cpumask_t *groupmask;
6321 int level = 0;
6323 if (!sd) {
6324 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6325 return;
6328 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6330 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6331 if (!groupmask) {
6332 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6333 return;
6336 for (;;) {
6337 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6338 break;
6339 level++;
6340 sd = sd->parent;
6341 if (!sd)
6342 break;
6344 kfree(groupmask);
6346 #else /* !CONFIG_SCHED_DEBUG */
6347 # define sched_domain_debug(sd, cpu) do { } while (0)
6348 #endif /* CONFIG_SCHED_DEBUG */
6350 static int sd_degenerate(struct sched_domain *sd)
6352 if (cpus_weight(sd->span) == 1)
6353 return 1;
6355 /* Following flags need at least 2 groups */
6356 if (sd->flags & (SD_LOAD_BALANCE |
6357 SD_BALANCE_NEWIDLE |
6358 SD_BALANCE_FORK |
6359 SD_BALANCE_EXEC |
6360 SD_SHARE_CPUPOWER |
6361 SD_SHARE_PKG_RESOURCES)) {
6362 if (sd->groups != sd->groups->next)
6363 return 0;
6366 /* Following flags don't use groups */
6367 if (sd->flags & (SD_WAKE_IDLE |
6368 SD_WAKE_AFFINE |
6369 SD_WAKE_BALANCE))
6370 return 0;
6372 return 1;
6375 static int
6376 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6378 unsigned long cflags = sd->flags, pflags = parent->flags;
6380 if (sd_degenerate(parent))
6381 return 1;
6383 if (!cpus_equal(sd->span, parent->span))
6384 return 0;
6386 /* Does parent contain flags not in child? */
6387 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6388 if (cflags & SD_WAKE_AFFINE)
6389 pflags &= ~SD_WAKE_BALANCE;
6390 /* Flags needing groups don't count if only 1 group in parent */
6391 if (parent->groups == parent->groups->next) {
6392 pflags &= ~(SD_LOAD_BALANCE |
6393 SD_BALANCE_NEWIDLE |
6394 SD_BALANCE_FORK |
6395 SD_BALANCE_EXEC |
6396 SD_SHARE_CPUPOWER |
6397 SD_SHARE_PKG_RESOURCES);
6399 if (~cflags & pflags)
6400 return 0;
6402 return 1;
6405 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6407 unsigned long flags;
6409 spin_lock_irqsave(&rq->lock, flags);
6411 if (rq->rd) {
6412 struct root_domain *old_rd = rq->rd;
6414 if (cpu_isset(rq->cpu, old_rd->online))
6415 set_rq_offline(rq);
6417 cpu_clear(rq->cpu, old_rd->span);
6419 if (atomic_dec_and_test(&old_rd->refcount))
6420 kfree(old_rd);
6423 atomic_inc(&rd->refcount);
6424 rq->rd = rd;
6426 cpu_set(rq->cpu, rd->span);
6427 if (cpu_isset(rq->cpu, cpu_online_map))
6428 set_rq_online(rq);
6430 spin_unlock_irqrestore(&rq->lock, flags);
6433 static void init_rootdomain(struct root_domain *rd)
6435 memset(rd, 0, sizeof(*rd));
6437 cpus_clear(rd->span);
6438 cpus_clear(rd->online);
6440 cpupri_init(&rd->cpupri);
6443 static void init_defrootdomain(void)
6445 init_rootdomain(&def_root_domain);
6446 atomic_set(&def_root_domain.refcount, 1);
6449 static struct root_domain *alloc_rootdomain(void)
6451 struct root_domain *rd;
6453 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6454 if (!rd)
6455 return NULL;
6457 init_rootdomain(rd);
6459 return rd;
6463 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6464 * hold the hotplug lock.
6466 static void
6467 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6469 struct rq *rq = cpu_rq(cpu);
6470 struct sched_domain *tmp;
6472 /* Remove the sched domains which do not contribute to scheduling. */
6473 for (tmp = sd; tmp; tmp = tmp->parent) {
6474 struct sched_domain *parent = tmp->parent;
6475 if (!parent)
6476 break;
6477 if (sd_parent_degenerate(tmp, parent)) {
6478 tmp->parent = parent->parent;
6479 if (parent->parent)
6480 parent->parent->child = tmp;
6484 if (sd && sd_degenerate(sd)) {
6485 sd = sd->parent;
6486 if (sd)
6487 sd->child = NULL;
6490 sched_domain_debug(sd, cpu);
6492 rq_attach_root(rq, rd);
6493 rcu_assign_pointer(rq->sd, sd);
6496 /* cpus with isolated domains */
6497 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6499 /* Setup the mask of cpus configured for isolated domains */
6500 static int __init isolated_cpu_setup(char *str)
6502 int ints[NR_CPUS], i;
6504 str = get_options(str, ARRAY_SIZE(ints), ints);
6505 cpus_clear(cpu_isolated_map);
6506 for (i = 1; i <= ints[0]; i++)
6507 if (ints[i] < NR_CPUS)
6508 cpu_set(ints[i], cpu_isolated_map);
6509 return 1;
6512 __setup("isolcpus=", isolated_cpu_setup);
6515 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6516 * to a function which identifies what group(along with sched group) a CPU
6517 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6518 * (due to the fact that we keep track of groups covered with a cpumask_t).
6520 * init_sched_build_groups will build a circular linked list of the groups
6521 * covered by the given span, and will set each group's ->cpumask correctly,
6522 * and ->cpu_power to 0.
6524 static void
6525 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6526 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6527 struct sched_group **sg,
6528 cpumask_t *tmpmask),
6529 cpumask_t *covered, cpumask_t *tmpmask)
6531 struct sched_group *first = NULL, *last = NULL;
6532 int i;
6534 cpus_clear(*covered);
6536 for_each_cpu_mask(i, *span) {
6537 struct sched_group *sg;
6538 int group = group_fn(i, cpu_map, &sg, tmpmask);
6539 int j;
6541 if (cpu_isset(i, *covered))
6542 continue;
6544 cpus_clear(sg->cpumask);
6545 sg->__cpu_power = 0;
6547 for_each_cpu_mask(j, *span) {
6548 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6549 continue;
6551 cpu_set(j, *covered);
6552 cpu_set(j, sg->cpumask);
6554 if (!first)
6555 first = sg;
6556 if (last)
6557 last->next = sg;
6558 last = sg;
6560 last->next = first;
6563 #define SD_NODES_PER_DOMAIN 16
6565 #ifdef CONFIG_NUMA
6568 * find_next_best_node - find the next node to include in a sched_domain
6569 * @node: node whose sched_domain we're building
6570 * @used_nodes: nodes already in the sched_domain
6572 * Find the next node to include in a given scheduling domain. Simply
6573 * finds the closest node not already in the @used_nodes map.
6575 * Should use nodemask_t.
6577 static int find_next_best_node(int node, nodemask_t *used_nodes)
6579 int i, n, val, min_val, best_node = 0;
6581 min_val = INT_MAX;
6583 for (i = 0; i < MAX_NUMNODES; i++) {
6584 /* Start at @node */
6585 n = (node + i) % MAX_NUMNODES;
6587 if (!nr_cpus_node(n))
6588 continue;
6590 /* Skip already used nodes */
6591 if (node_isset(n, *used_nodes))
6592 continue;
6594 /* Simple min distance search */
6595 val = node_distance(node, n);
6597 if (val < min_val) {
6598 min_val = val;
6599 best_node = n;
6603 node_set(best_node, *used_nodes);
6604 return best_node;
6608 * sched_domain_node_span - get a cpumask for a node's sched_domain
6609 * @node: node whose cpumask we're constructing
6610 * @span: resulting cpumask
6612 * Given a node, construct a good cpumask for its sched_domain to span. It
6613 * should be one that prevents unnecessary balancing, but also spreads tasks
6614 * out optimally.
6616 static void sched_domain_node_span(int node, cpumask_t *span)
6618 nodemask_t used_nodes;
6619 node_to_cpumask_ptr(nodemask, node);
6620 int i;
6622 cpus_clear(*span);
6623 nodes_clear(used_nodes);
6625 cpus_or(*span, *span, *nodemask);
6626 node_set(node, used_nodes);
6628 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6629 int next_node = find_next_best_node(node, &used_nodes);
6631 node_to_cpumask_ptr_next(nodemask, next_node);
6632 cpus_or(*span, *span, *nodemask);
6635 #endif /* CONFIG_NUMA */
6637 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6640 * SMT sched-domains:
6642 #ifdef CONFIG_SCHED_SMT
6643 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6644 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6646 static int
6647 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6648 cpumask_t *unused)
6650 if (sg)
6651 *sg = &per_cpu(sched_group_cpus, cpu);
6652 return cpu;
6654 #endif /* CONFIG_SCHED_SMT */
6657 * multi-core sched-domains:
6659 #ifdef CONFIG_SCHED_MC
6660 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6661 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6662 #endif /* CONFIG_SCHED_MC */
6664 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6665 static int
6666 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6667 cpumask_t *mask)
6669 int group;
6671 *mask = per_cpu(cpu_sibling_map, cpu);
6672 cpus_and(*mask, *mask, *cpu_map);
6673 group = first_cpu(*mask);
6674 if (sg)
6675 *sg = &per_cpu(sched_group_core, group);
6676 return group;
6678 #elif defined(CONFIG_SCHED_MC)
6679 static int
6680 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6681 cpumask_t *unused)
6683 if (sg)
6684 *sg = &per_cpu(sched_group_core, cpu);
6685 return cpu;
6687 #endif
6689 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6690 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6692 static int
6693 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6694 cpumask_t *mask)
6696 int group;
6697 #ifdef CONFIG_SCHED_MC
6698 *mask = cpu_coregroup_map(cpu);
6699 cpus_and(*mask, *mask, *cpu_map);
6700 group = first_cpu(*mask);
6701 #elif defined(CONFIG_SCHED_SMT)
6702 *mask = per_cpu(cpu_sibling_map, cpu);
6703 cpus_and(*mask, *mask, *cpu_map);
6704 group = first_cpu(*mask);
6705 #else
6706 group = cpu;
6707 #endif
6708 if (sg)
6709 *sg = &per_cpu(sched_group_phys, group);
6710 return group;
6713 #ifdef CONFIG_NUMA
6715 * The init_sched_build_groups can't handle what we want to do with node
6716 * groups, so roll our own. Now each node has its own list of groups which
6717 * gets dynamically allocated.
6719 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6720 static struct sched_group ***sched_group_nodes_bycpu;
6722 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6723 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6725 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6726 struct sched_group **sg, cpumask_t *nodemask)
6728 int group;
6730 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6731 cpus_and(*nodemask, *nodemask, *cpu_map);
6732 group = first_cpu(*nodemask);
6734 if (sg)
6735 *sg = &per_cpu(sched_group_allnodes, group);
6736 return group;
6739 static void init_numa_sched_groups_power(struct sched_group *group_head)
6741 struct sched_group *sg = group_head;
6742 int j;
6744 if (!sg)
6745 return;
6746 do {
6747 for_each_cpu_mask(j, sg->cpumask) {
6748 struct sched_domain *sd;
6750 sd = &per_cpu(phys_domains, j);
6751 if (j != first_cpu(sd->groups->cpumask)) {
6753 * Only add "power" once for each
6754 * physical package.
6756 continue;
6759 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6761 sg = sg->next;
6762 } while (sg != group_head);
6764 #endif /* CONFIG_NUMA */
6766 #ifdef CONFIG_NUMA
6767 /* Free memory allocated for various sched_group structures */
6768 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6770 int cpu, i;
6772 for_each_cpu_mask(cpu, *cpu_map) {
6773 struct sched_group **sched_group_nodes
6774 = sched_group_nodes_bycpu[cpu];
6776 if (!sched_group_nodes)
6777 continue;
6779 for (i = 0; i < MAX_NUMNODES; i++) {
6780 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6782 *nodemask = node_to_cpumask(i);
6783 cpus_and(*nodemask, *nodemask, *cpu_map);
6784 if (cpus_empty(*nodemask))
6785 continue;
6787 if (sg == NULL)
6788 continue;
6789 sg = sg->next;
6790 next_sg:
6791 oldsg = sg;
6792 sg = sg->next;
6793 kfree(oldsg);
6794 if (oldsg != sched_group_nodes[i])
6795 goto next_sg;
6797 kfree(sched_group_nodes);
6798 sched_group_nodes_bycpu[cpu] = NULL;
6801 #else /* !CONFIG_NUMA */
6802 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6805 #endif /* CONFIG_NUMA */
6808 * Initialize sched groups cpu_power.
6810 * cpu_power indicates the capacity of sched group, which is used while
6811 * distributing the load between different sched groups in a sched domain.
6812 * Typically cpu_power for all the groups in a sched domain will be same unless
6813 * there are asymmetries in the topology. If there are asymmetries, group
6814 * having more cpu_power will pickup more load compared to the group having
6815 * less cpu_power.
6817 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6818 * the maximum number of tasks a group can handle in the presence of other idle
6819 * or lightly loaded groups in the same sched domain.
6821 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6823 struct sched_domain *child;
6824 struct sched_group *group;
6826 WARN_ON(!sd || !sd->groups);
6828 if (cpu != first_cpu(sd->groups->cpumask))
6829 return;
6831 child = sd->child;
6833 sd->groups->__cpu_power = 0;
6836 * For perf policy, if the groups in child domain share resources
6837 * (for example cores sharing some portions of the cache hierarchy
6838 * or SMT), then set this domain groups cpu_power such that each group
6839 * can handle only one task, when there are other idle groups in the
6840 * same sched domain.
6842 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6843 (child->flags &
6844 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6845 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6846 return;
6850 * add cpu_power of each child group to this groups cpu_power
6852 group = child->groups;
6853 do {
6854 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6855 group = group->next;
6856 } while (group != child->groups);
6860 * Initializers for schedule domains
6861 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6864 #define SD_INIT(sd, type) sd_init_##type(sd)
6865 #define SD_INIT_FUNC(type) \
6866 static noinline void sd_init_##type(struct sched_domain *sd) \
6868 memset(sd, 0, sizeof(*sd)); \
6869 *sd = SD_##type##_INIT; \
6870 sd->level = SD_LV_##type; \
6873 SD_INIT_FUNC(CPU)
6874 #ifdef CONFIG_NUMA
6875 SD_INIT_FUNC(ALLNODES)
6876 SD_INIT_FUNC(NODE)
6877 #endif
6878 #ifdef CONFIG_SCHED_SMT
6879 SD_INIT_FUNC(SIBLING)
6880 #endif
6881 #ifdef CONFIG_SCHED_MC
6882 SD_INIT_FUNC(MC)
6883 #endif
6886 * To minimize stack usage kmalloc room for cpumasks and share the
6887 * space as the usage in build_sched_domains() dictates. Used only
6888 * if the amount of space is significant.
6890 struct allmasks {
6891 cpumask_t tmpmask; /* make this one first */
6892 union {
6893 cpumask_t nodemask;
6894 cpumask_t this_sibling_map;
6895 cpumask_t this_core_map;
6897 cpumask_t send_covered;
6899 #ifdef CONFIG_NUMA
6900 cpumask_t domainspan;
6901 cpumask_t covered;
6902 cpumask_t notcovered;
6903 #endif
6906 #if NR_CPUS > 128
6907 #define SCHED_CPUMASK_ALLOC 1
6908 #define SCHED_CPUMASK_FREE(v) kfree(v)
6909 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6910 #else
6911 #define SCHED_CPUMASK_ALLOC 0
6912 #define SCHED_CPUMASK_FREE(v)
6913 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6914 #endif
6916 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6917 ((unsigned long)(a) + offsetof(struct allmasks, v))
6919 static int default_relax_domain_level = -1;
6921 static int __init setup_relax_domain_level(char *str)
6923 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6924 return 1;
6926 __setup("relax_domain_level=", setup_relax_domain_level);
6928 static void set_domain_attribute(struct sched_domain *sd,
6929 struct sched_domain_attr *attr)
6931 int request;
6933 if (!attr || attr->relax_domain_level < 0) {
6934 if (default_relax_domain_level < 0)
6935 return;
6936 else
6937 request = default_relax_domain_level;
6938 } else
6939 request = attr->relax_domain_level;
6940 if (request < sd->level) {
6941 /* turn off idle balance on this domain */
6942 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6943 } else {
6944 /* turn on idle balance on this domain */
6945 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6950 * Build sched domains for a given set of cpus and attach the sched domains
6951 * to the individual cpus
6953 static int __build_sched_domains(const cpumask_t *cpu_map,
6954 struct sched_domain_attr *attr)
6956 int i;
6957 struct root_domain *rd;
6958 SCHED_CPUMASK_DECLARE(allmasks);
6959 cpumask_t *tmpmask;
6960 #ifdef CONFIG_NUMA
6961 struct sched_group **sched_group_nodes = NULL;
6962 int sd_allnodes = 0;
6965 * Allocate the per-node list of sched groups
6967 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6968 GFP_KERNEL);
6969 if (!sched_group_nodes) {
6970 printk(KERN_WARNING "Can not alloc sched group node list\n");
6971 return -ENOMEM;
6973 #endif
6975 rd = alloc_rootdomain();
6976 if (!rd) {
6977 printk(KERN_WARNING "Cannot alloc root domain\n");
6978 #ifdef CONFIG_NUMA
6979 kfree(sched_group_nodes);
6980 #endif
6981 return -ENOMEM;
6984 #if SCHED_CPUMASK_ALLOC
6985 /* get space for all scratch cpumask variables */
6986 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6987 if (!allmasks) {
6988 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6989 kfree(rd);
6990 #ifdef CONFIG_NUMA
6991 kfree(sched_group_nodes);
6992 #endif
6993 return -ENOMEM;
6995 #endif
6996 tmpmask = (cpumask_t *)allmasks;
6999 #ifdef CONFIG_NUMA
7000 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7001 #endif
7004 * Set up domains for cpus specified by the cpu_map.
7006 for_each_cpu_mask(i, *cpu_map) {
7007 struct sched_domain *sd = NULL, *p;
7008 SCHED_CPUMASK_VAR(nodemask, allmasks);
7010 *nodemask = node_to_cpumask(cpu_to_node(i));
7011 cpus_and(*nodemask, *nodemask, *cpu_map);
7013 #ifdef CONFIG_NUMA
7014 if (cpus_weight(*cpu_map) >
7015 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7016 sd = &per_cpu(allnodes_domains, i);
7017 SD_INIT(sd, ALLNODES);
7018 set_domain_attribute(sd, attr);
7019 sd->span = *cpu_map;
7020 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7021 p = sd;
7022 sd_allnodes = 1;
7023 } else
7024 p = NULL;
7026 sd = &per_cpu(node_domains, i);
7027 SD_INIT(sd, NODE);
7028 set_domain_attribute(sd, attr);
7029 sched_domain_node_span(cpu_to_node(i), &sd->span);
7030 sd->parent = p;
7031 if (p)
7032 p->child = sd;
7033 cpus_and(sd->span, sd->span, *cpu_map);
7034 #endif
7036 p = sd;
7037 sd = &per_cpu(phys_domains, i);
7038 SD_INIT(sd, CPU);
7039 set_domain_attribute(sd, attr);
7040 sd->span = *nodemask;
7041 sd->parent = p;
7042 if (p)
7043 p->child = sd;
7044 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7046 #ifdef CONFIG_SCHED_MC
7047 p = sd;
7048 sd = &per_cpu(core_domains, i);
7049 SD_INIT(sd, MC);
7050 set_domain_attribute(sd, attr);
7051 sd->span = cpu_coregroup_map(i);
7052 cpus_and(sd->span, sd->span, *cpu_map);
7053 sd->parent = p;
7054 p->child = sd;
7055 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7056 #endif
7058 #ifdef CONFIG_SCHED_SMT
7059 p = sd;
7060 sd = &per_cpu(cpu_domains, i);
7061 SD_INIT(sd, SIBLING);
7062 set_domain_attribute(sd, attr);
7063 sd->span = per_cpu(cpu_sibling_map, i);
7064 cpus_and(sd->span, sd->span, *cpu_map);
7065 sd->parent = p;
7066 p->child = sd;
7067 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7068 #endif
7071 #ifdef CONFIG_SCHED_SMT
7072 /* Set up CPU (sibling) groups */
7073 for_each_cpu_mask(i, *cpu_map) {
7074 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7075 SCHED_CPUMASK_VAR(send_covered, allmasks);
7077 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7078 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7079 if (i != first_cpu(*this_sibling_map))
7080 continue;
7082 init_sched_build_groups(this_sibling_map, cpu_map,
7083 &cpu_to_cpu_group,
7084 send_covered, tmpmask);
7086 #endif
7088 #ifdef CONFIG_SCHED_MC
7089 /* Set up multi-core groups */
7090 for_each_cpu_mask(i, *cpu_map) {
7091 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7092 SCHED_CPUMASK_VAR(send_covered, allmasks);
7094 *this_core_map = cpu_coregroup_map(i);
7095 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7096 if (i != first_cpu(*this_core_map))
7097 continue;
7099 init_sched_build_groups(this_core_map, cpu_map,
7100 &cpu_to_core_group,
7101 send_covered, tmpmask);
7103 #endif
7105 /* Set up physical groups */
7106 for (i = 0; i < MAX_NUMNODES; i++) {
7107 SCHED_CPUMASK_VAR(nodemask, allmasks);
7108 SCHED_CPUMASK_VAR(send_covered, allmasks);
7110 *nodemask = node_to_cpumask(i);
7111 cpus_and(*nodemask, *nodemask, *cpu_map);
7112 if (cpus_empty(*nodemask))
7113 continue;
7115 init_sched_build_groups(nodemask, cpu_map,
7116 &cpu_to_phys_group,
7117 send_covered, tmpmask);
7120 #ifdef CONFIG_NUMA
7121 /* Set up node groups */
7122 if (sd_allnodes) {
7123 SCHED_CPUMASK_VAR(send_covered, allmasks);
7125 init_sched_build_groups(cpu_map, cpu_map,
7126 &cpu_to_allnodes_group,
7127 send_covered, tmpmask);
7130 for (i = 0; i < MAX_NUMNODES; i++) {
7131 /* Set up node groups */
7132 struct sched_group *sg, *prev;
7133 SCHED_CPUMASK_VAR(nodemask, allmasks);
7134 SCHED_CPUMASK_VAR(domainspan, allmasks);
7135 SCHED_CPUMASK_VAR(covered, allmasks);
7136 int j;
7138 *nodemask = node_to_cpumask(i);
7139 cpus_clear(*covered);
7141 cpus_and(*nodemask, *nodemask, *cpu_map);
7142 if (cpus_empty(*nodemask)) {
7143 sched_group_nodes[i] = NULL;
7144 continue;
7147 sched_domain_node_span(i, domainspan);
7148 cpus_and(*domainspan, *domainspan, *cpu_map);
7150 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7151 if (!sg) {
7152 printk(KERN_WARNING "Can not alloc domain group for "
7153 "node %d\n", i);
7154 goto error;
7156 sched_group_nodes[i] = sg;
7157 for_each_cpu_mask(j, *nodemask) {
7158 struct sched_domain *sd;
7160 sd = &per_cpu(node_domains, j);
7161 sd->groups = sg;
7163 sg->__cpu_power = 0;
7164 sg->cpumask = *nodemask;
7165 sg->next = sg;
7166 cpus_or(*covered, *covered, *nodemask);
7167 prev = sg;
7169 for (j = 0; j < MAX_NUMNODES; j++) {
7170 SCHED_CPUMASK_VAR(notcovered, allmasks);
7171 int n = (i + j) % MAX_NUMNODES;
7172 node_to_cpumask_ptr(pnodemask, n);
7174 cpus_complement(*notcovered, *covered);
7175 cpus_and(*tmpmask, *notcovered, *cpu_map);
7176 cpus_and(*tmpmask, *tmpmask, *domainspan);
7177 if (cpus_empty(*tmpmask))
7178 break;
7180 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7181 if (cpus_empty(*tmpmask))
7182 continue;
7184 sg = kmalloc_node(sizeof(struct sched_group),
7185 GFP_KERNEL, i);
7186 if (!sg) {
7187 printk(KERN_WARNING
7188 "Can not alloc domain group for node %d\n", j);
7189 goto error;
7191 sg->__cpu_power = 0;
7192 sg->cpumask = *tmpmask;
7193 sg->next = prev->next;
7194 cpus_or(*covered, *covered, *tmpmask);
7195 prev->next = sg;
7196 prev = sg;
7199 #endif
7201 /* Calculate CPU power for physical packages and nodes */
7202 #ifdef CONFIG_SCHED_SMT
7203 for_each_cpu_mask(i, *cpu_map) {
7204 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7206 init_sched_groups_power(i, sd);
7208 #endif
7209 #ifdef CONFIG_SCHED_MC
7210 for_each_cpu_mask(i, *cpu_map) {
7211 struct sched_domain *sd = &per_cpu(core_domains, i);
7213 init_sched_groups_power(i, sd);
7215 #endif
7217 for_each_cpu_mask(i, *cpu_map) {
7218 struct sched_domain *sd = &per_cpu(phys_domains, i);
7220 init_sched_groups_power(i, sd);
7223 #ifdef CONFIG_NUMA
7224 for (i = 0; i < MAX_NUMNODES; i++)
7225 init_numa_sched_groups_power(sched_group_nodes[i]);
7227 if (sd_allnodes) {
7228 struct sched_group *sg;
7230 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7231 tmpmask);
7232 init_numa_sched_groups_power(sg);
7234 #endif
7236 /* Attach the domains */
7237 for_each_cpu_mask(i, *cpu_map) {
7238 struct sched_domain *sd;
7239 #ifdef CONFIG_SCHED_SMT
7240 sd = &per_cpu(cpu_domains, i);
7241 #elif defined(CONFIG_SCHED_MC)
7242 sd = &per_cpu(core_domains, i);
7243 #else
7244 sd = &per_cpu(phys_domains, i);
7245 #endif
7246 cpu_attach_domain(sd, rd, i);
7249 SCHED_CPUMASK_FREE((void *)allmasks);
7250 return 0;
7252 #ifdef CONFIG_NUMA
7253 error:
7254 free_sched_groups(cpu_map, tmpmask);
7255 SCHED_CPUMASK_FREE((void *)allmasks);
7256 return -ENOMEM;
7257 #endif
7260 static int build_sched_domains(const cpumask_t *cpu_map)
7262 return __build_sched_domains(cpu_map, NULL);
7265 static cpumask_t *doms_cur; /* current sched domains */
7266 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7267 static struct sched_domain_attr *dattr_cur;
7268 /* attribues of custom domains in 'doms_cur' */
7271 * Special case: If a kmalloc of a doms_cur partition (array of
7272 * cpumask_t) fails, then fallback to a single sched domain,
7273 * as determined by the single cpumask_t fallback_doms.
7275 static cpumask_t fallback_doms;
7277 void __attribute__((weak)) arch_update_cpu_topology(void)
7282 * Free current domain masks.
7283 * Called after all cpus are attached to NULL domain.
7285 static void free_sched_domains(void)
7287 ndoms_cur = 0;
7288 if (doms_cur != &fallback_doms)
7289 kfree(doms_cur);
7290 doms_cur = &fallback_doms;
7294 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7295 * For now this just excludes isolated cpus, but could be used to
7296 * exclude other special cases in the future.
7298 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7300 int err;
7302 arch_update_cpu_topology();
7303 ndoms_cur = 1;
7304 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7305 if (!doms_cur)
7306 doms_cur = &fallback_doms;
7307 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7308 dattr_cur = NULL;
7309 err = build_sched_domains(doms_cur);
7310 register_sched_domain_sysctl();
7312 return err;
7315 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7316 cpumask_t *tmpmask)
7318 free_sched_groups(cpu_map, tmpmask);
7322 * Detach sched domains from a group of cpus specified in cpu_map
7323 * These cpus will now be attached to the NULL domain
7325 static void detach_destroy_domains(const cpumask_t *cpu_map)
7327 cpumask_t tmpmask;
7328 int i;
7330 unregister_sched_domain_sysctl();
7332 for_each_cpu_mask(i, *cpu_map)
7333 cpu_attach_domain(NULL, &def_root_domain, i);
7334 synchronize_sched();
7335 arch_destroy_sched_domains(cpu_map, &tmpmask);
7338 /* handle null as "default" */
7339 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7340 struct sched_domain_attr *new, int idx_new)
7342 struct sched_domain_attr tmp;
7344 /* fast path */
7345 if (!new && !cur)
7346 return 1;
7348 tmp = SD_ATTR_INIT;
7349 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7350 new ? (new + idx_new) : &tmp,
7351 sizeof(struct sched_domain_attr));
7355 * Partition sched domains as specified by the 'ndoms_new'
7356 * cpumasks in the array doms_new[] of cpumasks. This compares
7357 * doms_new[] to the current sched domain partitioning, doms_cur[].
7358 * It destroys each deleted domain and builds each new domain.
7360 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7361 * The masks don't intersect (don't overlap.) We should setup one
7362 * sched domain for each mask. CPUs not in any of the cpumasks will
7363 * not be load balanced. If the same cpumask appears both in the
7364 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7365 * it as it is.
7367 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7368 * ownership of it and will kfree it when done with it. If the caller
7369 * failed the kmalloc call, then it can pass in doms_new == NULL,
7370 * and partition_sched_domains() will fallback to the single partition
7371 * 'fallback_doms'.
7373 * Call with hotplug lock held
7375 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7376 struct sched_domain_attr *dattr_new)
7378 int i, j;
7380 mutex_lock(&sched_domains_mutex);
7382 /* always unregister in case we don't destroy any domains */
7383 unregister_sched_domain_sysctl();
7385 if (doms_new == NULL) {
7386 ndoms_new = 1;
7387 doms_new = &fallback_doms;
7388 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7389 dattr_new = NULL;
7392 /* Destroy deleted domains */
7393 for (i = 0; i < ndoms_cur; i++) {
7394 for (j = 0; j < ndoms_new; j++) {
7395 if (cpus_equal(doms_cur[i], doms_new[j])
7396 && dattrs_equal(dattr_cur, i, dattr_new, j))
7397 goto match1;
7399 /* no match - a current sched domain not in new doms_new[] */
7400 detach_destroy_domains(doms_cur + i);
7401 match1:
7405 /* Build new domains */
7406 for (i = 0; i < ndoms_new; i++) {
7407 for (j = 0; j < ndoms_cur; j++) {
7408 if (cpus_equal(doms_new[i], doms_cur[j])
7409 && dattrs_equal(dattr_new, i, dattr_cur, j))
7410 goto match2;
7412 /* no match - add a new doms_new */
7413 __build_sched_domains(doms_new + i,
7414 dattr_new ? dattr_new + i : NULL);
7415 match2:
7419 /* Remember the new sched domains */
7420 if (doms_cur != &fallback_doms)
7421 kfree(doms_cur);
7422 kfree(dattr_cur); /* kfree(NULL) is safe */
7423 doms_cur = doms_new;
7424 dattr_cur = dattr_new;
7425 ndoms_cur = ndoms_new;
7427 register_sched_domain_sysctl();
7429 mutex_unlock(&sched_domains_mutex);
7432 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7433 int arch_reinit_sched_domains(void)
7435 int err;
7437 get_online_cpus();
7438 mutex_lock(&sched_domains_mutex);
7439 detach_destroy_domains(&cpu_online_map);
7440 free_sched_domains();
7441 err = arch_init_sched_domains(&cpu_online_map);
7442 mutex_unlock(&sched_domains_mutex);
7443 put_online_cpus();
7445 return err;
7448 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7450 int ret;
7452 if (buf[0] != '0' && buf[0] != '1')
7453 return -EINVAL;
7455 if (smt)
7456 sched_smt_power_savings = (buf[0] == '1');
7457 else
7458 sched_mc_power_savings = (buf[0] == '1');
7460 ret = arch_reinit_sched_domains();
7462 return ret ? ret : count;
7465 #ifdef CONFIG_SCHED_MC
7466 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7468 return sprintf(page, "%u\n", sched_mc_power_savings);
7470 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7471 const char *buf, size_t count)
7473 return sched_power_savings_store(buf, count, 0);
7475 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7476 sched_mc_power_savings_store);
7477 #endif
7479 #ifdef CONFIG_SCHED_SMT
7480 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7482 return sprintf(page, "%u\n", sched_smt_power_savings);
7484 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7485 const char *buf, size_t count)
7487 return sched_power_savings_store(buf, count, 1);
7489 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7490 sched_smt_power_savings_store);
7491 #endif
7493 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7495 int err = 0;
7497 #ifdef CONFIG_SCHED_SMT
7498 if (smt_capable())
7499 err = sysfs_create_file(&cls->kset.kobj,
7500 &attr_sched_smt_power_savings.attr);
7501 #endif
7502 #ifdef CONFIG_SCHED_MC
7503 if (!err && mc_capable())
7504 err = sysfs_create_file(&cls->kset.kobj,
7505 &attr_sched_mc_power_savings.attr);
7506 #endif
7507 return err;
7509 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7512 * Force a reinitialization of the sched domains hierarchy. The domains
7513 * and groups cannot be updated in place without racing with the balancing
7514 * code, so we temporarily attach all running cpus to the NULL domain
7515 * which will prevent rebalancing while the sched domains are recalculated.
7517 static int update_sched_domains(struct notifier_block *nfb,
7518 unsigned long action, void *hcpu)
7520 int cpu = (int)(long)hcpu;
7522 switch (action) {
7523 case CPU_DOWN_PREPARE:
7524 case CPU_DOWN_PREPARE_FROZEN:
7525 disable_runtime(cpu_rq(cpu));
7526 /* fall-through */
7527 case CPU_UP_PREPARE:
7528 case CPU_UP_PREPARE_FROZEN:
7529 detach_destroy_domains(&cpu_online_map);
7530 free_sched_domains();
7531 return NOTIFY_OK;
7534 case CPU_DOWN_FAILED:
7535 case CPU_DOWN_FAILED_FROZEN:
7536 case CPU_ONLINE:
7537 case CPU_ONLINE_FROZEN:
7538 enable_runtime(cpu_rq(cpu));
7539 /* fall-through */
7540 case CPU_UP_CANCELED:
7541 case CPU_UP_CANCELED_FROZEN:
7542 case CPU_DEAD:
7543 case CPU_DEAD_FROZEN:
7545 * Fall through and re-initialise the domains.
7547 break;
7548 default:
7549 return NOTIFY_DONE;
7552 #ifndef CONFIG_CPUSETS
7554 * Create default domain partitioning if cpusets are disabled.
7555 * Otherwise we let cpusets rebuild the domains based on the
7556 * current setup.
7559 /* The hotplug lock is already held by cpu_up/cpu_down */
7560 arch_init_sched_domains(&cpu_online_map);
7561 #endif
7563 return NOTIFY_OK;
7566 void __init sched_init_smp(void)
7568 cpumask_t non_isolated_cpus;
7570 #if defined(CONFIG_NUMA)
7571 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7572 GFP_KERNEL);
7573 BUG_ON(sched_group_nodes_bycpu == NULL);
7574 #endif
7575 get_online_cpus();
7576 mutex_lock(&sched_domains_mutex);
7577 arch_init_sched_domains(&cpu_online_map);
7578 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7579 if (cpus_empty(non_isolated_cpus))
7580 cpu_set(smp_processor_id(), non_isolated_cpus);
7581 mutex_unlock(&sched_domains_mutex);
7582 put_online_cpus();
7583 /* XXX: Theoretical race here - CPU may be hotplugged now */
7584 hotcpu_notifier(update_sched_domains, 0);
7585 init_hrtick();
7587 /* Move init over to a non-isolated CPU */
7588 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7589 BUG();
7590 sched_init_granularity();
7592 #else
7593 void __init sched_init_smp(void)
7595 sched_init_granularity();
7597 #endif /* CONFIG_SMP */
7599 int in_sched_functions(unsigned long addr)
7601 return in_lock_functions(addr) ||
7602 (addr >= (unsigned long)__sched_text_start
7603 && addr < (unsigned long)__sched_text_end);
7606 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7608 cfs_rq->tasks_timeline = RB_ROOT;
7609 INIT_LIST_HEAD(&cfs_rq->tasks);
7610 #ifdef CONFIG_FAIR_GROUP_SCHED
7611 cfs_rq->rq = rq;
7612 #endif
7613 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7616 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7618 struct rt_prio_array *array;
7619 int i;
7621 array = &rt_rq->active;
7622 for (i = 0; i < MAX_RT_PRIO; i++) {
7623 INIT_LIST_HEAD(array->xqueue + i);
7624 INIT_LIST_HEAD(array->squeue + i);
7625 __clear_bit(i, array->bitmap);
7627 /* delimiter for bitsearch: */
7628 __set_bit(MAX_RT_PRIO, array->bitmap);
7630 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7631 rt_rq->highest_prio = MAX_RT_PRIO;
7632 #endif
7633 #ifdef CONFIG_SMP
7634 rt_rq->rt_nr_migratory = 0;
7635 rt_rq->overloaded = 0;
7636 #endif
7638 rt_rq->rt_time = 0;
7639 rt_rq->rt_throttled = 0;
7640 rt_rq->rt_runtime = 0;
7641 spin_lock_init(&rt_rq->rt_runtime_lock);
7643 #ifdef CONFIG_RT_GROUP_SCHED
7644 rt_rq->rt_nr_boosted = 0;
7645 rt_rq->rq = rq;
7646 #endif
7649 #ifdef CONFIG_FAIR_GROUP_SCHED
7650 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7651 struct sched_entity *se, int cpu, int add,
7652 struct sched_entity *parent)
7654 struct rq *rq = cpu_rq(cpu);
7655 tg->cfs_rq[cpu] = cfs_rq;
7656 init_cfs_rq(cfs_rq, rq);
7657 cfs_rq->tg = tg;
7658 if (add)
7659 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7661 tg->se[cpu] = se;
7662 /* se could be NULL for init_task_group */
7663 if (!se)
7664 return;
7666 if (!parent)
7667 se->cfs_rq = &rq->cfs;
7668 else
7669 se->cfs_rq = parent->my_q;
7671 se->my_q = cfs_rq;
7672 se->load.weight = tg->shares;
7673 se->load.inv_weight = 0;
7674 se->parent = parent;
7676 #endif
7678 #ifdef CONFIG_RT_GROUP_SCHED
7679 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7680 struct sched_rt_entity *rt_se, int cpu, int add,
7681 struct sched_rt_entity *parent)
7683 struct rq *rq = cpu_rq(cpu);
7685 tg->rt_rq[cpu] = rt_rq;
7686 init_rt_rq(rt_rq, rq);
7687 rt_rq->tg = tg;
7688 rt_rq->rt_se = rt_se;
7689 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7690 if (add)
7691 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7693 tg->rt_se[cpu] = rt_se;
7694 if (!rt_se)
7695 return;
7697 if (!parent)
7698 rt_se->rt_rq = &rq->rt;
7699 else
7700 rt_se->rt_rq = parent->my_q;
7702 rt_se->rt_rq = &rq->rt;
7703 rt_se->my_q = rt_rq;
7704 rt_se->parent = parent;
7705 INIT_LIST_HEAD(&rt_se->run_list);
7707 #endif
7709 void __init sched_init(void)
7711 int i, j;
7712 unsigned long alloc_size = 0, ptr;
7714 #ifdef CONFIG_FAIR_GROUP_SCHED
7715 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7716 #endif
7717 #ifdef CONFIG_RT_GROUP_SCHED
7718 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7719 #endif
7720 #ifdef CONFIG_USER_SCHED
7721 alloc_size *= 2;
7722 #endif
7724 * As sched_init() is called before page_alloc is setup,
7725 * we use alloc_bootmem().
7727 if (alloc_size) {
7728 ptr = (unsigned long)alloc_bootmem(alloc_size);
7730 #ifdef CONFIG_FAIR_GROUP_SCHED
7731 init_task_group.se = (struct sched_entity **)ptr;
7732 ptr += nr_cpu_ids * sizeof(void **);
7734 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7735 ptr += nr_cpu_ids * sizeof(void **);
7737 #ifdef CONFIG_USER_SCHED
7738 root_task_group.se = (struct sched_entity **)ptr;
7739 ptr += nr_cpu_ids * sizeof(void **);
7741 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7742 ptr += nr_cpu_ids * sizeof(void **);
7743 #endif /* CONFIG_USER_SCHED */
7744 #endif /* CONFIG_FAIR_GROUP_SCHED */
7745 #ifdef CONFIG_RT_GROUP_SCHED
7746 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7747 ptr += nr_cpu_ids * sizeof(void **);
7749 init_task_group.rt_rq = (struct rt_rq **)ptr;
7750 ptr += nr_cpu_ids * sizeof(void **);
7752 #ifdef CONFIG_USER_SCHED
7753 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7754 ptr += nr_cpu_ids * sizeof(void **);
7756 root_task_group.rt_rq = (struct rt_rq **)ptr;
7757 ptr += nr_cpu_ids * sizeof(void **);
7758 #endif /* CONFIG_USER_SCHED */
7759 #endif /* CONFIG_RT_GROUP_SCHED */
7762 #ifdef CONFIG_SMP
7763 init_defrootdomain();
7764 #endif
7766 init_rt_bandwidth(&def_rt_bandwidth,
7767 global_rt_period(), global_rt_runtime());
7769 #ifdef CONFIG_RT_GROUP_SCHED
7770 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7771 global_rt_period(), global_rt_runtime());
7772 #ifdef CONFIG_USER_SCHED
7773 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7774 global_rt_period(), RUNTIME_INF);
7775 #endif /* CONFIG_USER_SCHED */
7776 #endif /* CONFIG_RT_GROUP_SCHED */
7778 #ifdef CONFIG_GROUP_SCHED
7779 list_add(&init_task_group.list, &task_groups);
7780 INIT_LIST_HEAD(&init_task_group.children);
7782 #ifdef CONFIG_USER_SCHED
7783 INIT_LIST_HEAD(&root_task_group.children);
7784 init_task_group.parent = &root_task_group;
7785 list_add(&init_task_group.siblings, &root_task_group.children);
7786 #endif /* CONFIG_USER_SCHED */
7787 #endif /* CONFIG_GROUP_SCHED */
7789 for_each_possible_cpu(i) {
7790 struct rq *rq;
7792 rq = cpu_rq(i);
7793 spin_lock_init(&rq->lock);
7794 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7795 rq->nr_running = 0;
7796 init_cfs_rq(&rq->cfs, rq);
7797 init_rt_rq(&rq->rt, rq);
7798 #ifdef CONFIG_FAIR_GROUP_SCHED
7799 init_task_group.shares = init_task_group_load;
7800 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7801 #ifdef CONFIG_CGROUP_SCHED
7803 * How much cpu bandwidth does init_task_group get?
7805 * In case of task-groups formed thr' the cgroup filesystem, it
7806 * gets 100% of the cpu resources in the system. This overall
7807 * system cpu resource is divided among the tasks of
7808 * init_task_group and its child task-groups in a fair manner,
7809 * based on each entity's (task or task-group's) weight
7810 * (se->load.weight).
7812 * In other words, if init_task_group has 10 tasks of weight
7813 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7814 * then A0's share of the cpu resource is:
7816 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7818 * We achieve this by letting init_task_group's tasks sit
7819 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7821 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7822 #elif defined CONFIG_USER_SCHED
7823 root_task_group.shares = NICE_0_LOAD;
7824 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7826 * In case of task-groups formed thr' the user id of tasks,
7827 * init_task_group represents tasks belonging to root user.
7828 * Hence it forms a sibling of all subsequent groups formed.
7829 * In this case, init_task_group gets only a fraction of overall
7830 * system cpu resource, based on the weight assigned to root
7831 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7832 * by letting tasks of init_task_group sit in a separate cfs_rq
7833 * (init_cfs_rq) and having one entity represent this group of
7834 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7836 init_tg_cfs_entry(&init_task_group,
7837 &per_cpu(init_cfs_rq, i),
7838 &per_cpu(init_sched_entity, i), i, 1,
7839 root_task_group.se[i]);
7841 #endif
7842 #endif /* CONFIG_FAIR_GROUP_SCHED */
7844 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7845 #ifdef CONFIG_RT_GROUP_SCHED
7846 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7847 #ifdef CONFIG_CGROUP_SCHED
7848 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7849 #elif defined CONFIG_USER_SCHED
7850 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7851 init_tg_rt_entry(&init_task_group,
7852 &per_cpu(init_rt_rq, i),
7853 &per_cpu(init_sched_rt_entity, i), i, 1,
7854 root_task_group.rt_se[i]);
7855 #endif
7856 #endif
7858 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7859 rq->cpu_load[j] = 0;
7860 #ifdef CONFIG_SMP
7861 rq->sd = NULL;
7862 rq->rd = NULL;
7863 rq->active_balance = 0;
7864 rq->next_balance = jiffies;
7865 rq->push_cpu = 0;
7866 rq->cpu = i;
7867 rq->online = 0;
7868 rq->migration_thread = NULL;
7869 INIT_LIST_HEAD(&rq->migration_queue);
7870 rq_attach_root(rq, &def_root_domain);
7871 #endif
7872 init_rq_hrtick(rq);
7873 atomic_set(&rq->nr_iowait, 0);
7876 set_load_weight(&init_task);
7878 #ifdef CONFIG_PREEMPT_NOTIFIERS
7879 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7880 #endif
7882 #ifdef CONFIG_SMP
7883 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7884 #endif
7886 #ifdef CONFIG_RT_MUTEXES
7887 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7888 #endif
7891 * The boot idle thread does lazy MMU switching as well:
7893 atomic_inc(&init_mm.mm_count);
7894 enter_lazy_tlb(&init_mm, current);
7897 * Make us the idle thread. Technically, schedule() should not be
7898 * called from this thread, however somewhere below it might be,
7899 * but because we are the idle thread, we just pick up running again
7900 * when this runqueue becomes "idle".
7902 init_idle(current, smp_processor_id());
7904 * During early bootup we pretend to be a normal task:
7906 current->sched_class = &fair_sched_class;
7908 scheduler_running = 1;
7911 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7912 void __might_sleep(char *file, int line)
7914 #ifdef in_atomic
7915 static unsigned long prev_jiffy; /* ratelimiting */
7917 if ((in_atomic() || irqs_disabled()) &&
7918 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7919 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7920 return;
7921 prev_jiffy = jiffies;
7922 printk(KERN_ERR "BUG: sleeping function called from invalid"
7923 " context at %s:%d\n", file, line);
7924 printk("in_atomic():%d, irqs_disabled():%d\n",
7925 in_atomic(), irqs_disabled());
7926 debug_show_held_locks(current);
7927 if (irqs_disabled())
7928 print_irqtrace_events(current);
7929 dump_stack();
7931 #endif
7933 EXPORT_SYMBOL(__might_sleep);
7934 #endif
7936 #ifdef CONFIG_MAGIC_SYSRQ
7937 static void normalize_task(struct rq *rq, struct task_struct *p)
7939 int on_rq;
7941 update_rq_clock(rq);
7942 on_rq = p->se.on_rq;
7943 if (on_rq)
7944 deactivate_task(rq, p, 0);
7945 __setscheduler(rq, p, SCHED_NORMAL, 0);
7946 if (on_rq) {
7947 activate_task(rq, p, 0);
7948 resched_task(rq->curr);
7952 void normalize_rt_tasks(void)
7954 struct task_struct *g, *p;
7955 unsigned long flags;
7956 struct rq *rq;
7958 read_lock_irqsave(&tasklist_lock, flags);
7959 do_each_thread(g, p) {
7961 * Only normalize user tasks:
7963 if (!p->mm)
7964 continue;
7966 p->se.exec_start = 0;
7967 #ifdef CONFIG_SCHEDSTATS
7968 p->se.wait_start = 0;
7969 p->se.sleep_start = 0;
7970 p->se.block_start = 0;
7971 #endif
7973 if (!rt_task(p)) {
7975 * Renice negative nice level userspace
7976 * tasks back to 0:
7978 if (TASK_NICE(p) < 0 && p->mm)
7979 set_user_nice(p, 0);
7980 continue;
7983 spin_lock(&p->pi_lock);
7984 rq = __task_rq_lock(p);
7986 normalize_task(rq, p);
7988 __task_rq_unlock(rq);
7989 spin_unlock(&p->pi_lock);
7990 } while_each_thread(g, p);
7992 read_unlock_irqrestore(&tasklist_lock, flags);
7995 #endif /* CONFIG_MAGIC_SYSRQ */
7997 #ifdef CONFIG_IA64
7999 * These functions are only useful for the IA64 MCA handling.
8001 * They can only be called when the whole system has been
8002 * stopped - every CPU needs to be quiescent, and no scheduling
8003 * activity can take place. Using them for anything else would
8004 * be a serious bug, and as a result, they aren't even visible
8005 * under any other configuration.
8009 * curr_task - return the current task for a given cpu.
8010 * @cpu: the processor in question.
8012 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8014 struct task_struct *curr_task(int cpu)
8016 return cpu_curr(cpu);
8020 * set_curr_task - set the current task for a given cpu.
8021 * @cpu: the processor in question.
8022 * @p: the task pointer to set.
8024 * Description: This function must only be used when non-maskable interrupts
8025 * are serviced on a separate stack. It allows the architecture to switch the
8026 * notion of the current task on a cpu in a non-blocking manner. This function
8027 * must be called with all CPU's synchronized, and interrupts disabled, the
8028 * and caller must save the original value of the current task (see
8029 * curr_task() above) and restore that value before reenabling interrupts and
8030 * re-starting the system.
8032 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8034 void set_curr_task(int cpu, struct task_struct *p)
8036 cpu_curr(cpu) = p;
8039 #endif
8041 #ifdef CONFIG_FAIR_GROUP_SCHED
8042 static void free_fair_sched_group(struct task_group *tg)
8044 int i;
8046 for_each_possible_cpu(i) {
8047 if (tg->cfs_rq)
8048 kfree(tg->cfs_rq[i]);
8049 if (tg->se)
8050 kfree(tg->se[i]);
8053 kfree(tg->cfs_rq);
8054 kfree(tg->se);
8057 static
8058 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8060 struct cfs_rq *cfs_rq;
8061 struct sched_entity *se, *parent_se;
8062 struct rq *rq;
8063 int i;
8065 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8066 if (!tg->cfs_rq)
8067 goto err;
8068 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8069 if (!tg->se)
8070 goto err;
8072 tg->shares = NICE_0_LOAD;
8074 for_each_possible_cpu(i) {
8075 rq = cpu_rq(i);
8077 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8078 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8079 if (!cfs_rq)
8080 goto err;
8082 se = kmalloc_node(sizeof(struct sched_entity),
8083 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8084 if (!se)
8085 goto err;
8087 parent_se = parent ? parent->se[i] : NULL;
8088 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8091 return 1;
8093 err:
8094 return 0;
8097 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8099 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8100 &cpu_rq(cpu)->leaf_cfs_rq_list);
8103 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8105 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8107 #else /* !CONFG_FAIR_GROUP_SCHED */
8108 static inline void free_fair_sched_group(struct task_group *tg)
8112 static inline
8113 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8115 return 1;
8118 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8122 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8125 #endif /* CONFIG_FAIR_GROUP_SCHED */
8127 #ifdef CONFIG_RT_GROUP_SCHED
8128 static void free_rt_sched_group(struct task_group *tg)
8130 int i;
8132 destroy_rt_bandwidth(&tg->rt_bandwidth);
8134 for_each_possible_cpu(i) {
8135 if (tg->rt_rq)
8136 kfree(tg->rt_rq[i]);
8137 if (tg->rt_se)
8138 kfree(tg->rt_se[i]);
8141 kfree(tg->rt_rq);
8142 kfree(tg->rt_se);
8145 static
8146 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8148 struct rt_rq *rt_rq;
8149 struct sched_rt_entity *rt_se, *parent_se;
8150 struct rq *rq;
8151 int i;
8153 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8154 if (!tg->rt_rq)
8155 goto err;
8156 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8157 if (!tg->rt_se)
8158 goto err;
8160 init_rt_bandwidth(&tg->rt_bandwidth,
8161 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8163 for_each_possible_cpu(i) {
8164 rq = cpu_rq(i);
8166 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8167 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8168 if (!rt_rq)
8169 goto err;
8171 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8172 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8173 if (!rt_se)
8174 goto err;
8176 parent_se = parent ? parent->rt_se[i] : NULL;
8177 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8180 return 1;
8182 err:
8183 return 0;
8186 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8188 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8189 &cpu_rq(cpu)->leaf_rt_rq_list);
8192 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8194 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8196 #else /* !CONFIG_RT_GROUP_SCHED */
8197 static inline void free_rt_sched_group(struct task_group *tg)
8201 static inline
8202 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8204 return 1;
8207 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8211 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8214 #endif /* CONFIG_RT_GROUP_SCHED */
8216 #ifdef CONFIG_GROUP_SCHED
8217 static void free_sched_group(struct task_group *tg)
8219 free_fair_sched_group(tg);
8220 free_rt_sched_group(tg);
8221 kfree(tg);
8224 /* allocate runqueue etc for a new task group */
8225 struct task_group *sched_create_group(struct task_group *parent)
8227 struct task_group *tg;
8228 unsigned long flags;
8229 int i;
8231 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8232 if (!tg)
8233 return ERR_PTR(-ENOMEM);
8235 if (!alloc_fair_sched_group(tg, parent))
8236 goto err;
8238 if (!alloc_rt_sched_group(tg, parent))
8239 goto err;
8241 spin_lock_irqsave(&task_group_lock, flags);
8242 for_each_possible_cpu(i) {
8243 register_fair_sched_group(tg, i);
8244 register_rt_sched_group(tg, i);
8246 list_add_rcu(&tg->list, &task_groups);
8248 WARN_ON(!parent); /* root should already exist */
8250 tg->parent = parent;
8251 list_add_rcu(&tg->siblings, &parent->children);
8252 INIT_LIST_HEAD(&tg->children);
8253 spin_unlock_irqrestore(&task_group_lock, flags);
8255 return tg;
8257 err:
8258 free_sched_group(tg);
8259 return ERR_PTR(-ENOMEM);
8262 /* rcu callback to free various structures associated with a task group */
8263 static void free_sched_group_rcu(struct rcu_head *rhp)
8265 /* now it should be safe to free those cfs_rqs */
8266 free_sched_group(container_of(rhp, struct task_group, rcu));
8269 /* Destroy runqueue etc associated with a task group */
8270 void sched_destroy_group(struct task_group *tg)
8272 unsigned long flags;
8273 int i;
8275 spin_lock_irqsave(&task_group_lock, flags);
8276 for_each_possible_cpu(i) {
8277 unregister_fair_sched_group(tg, i);
8278 unregister_rt_sched_group(tg, i);
8280 list_del_rcu(&tg->list);
8281 list_del_rcu(&tg->siblings);
8282 spin_unlock_irqrestore(&task_group_lock, flags);
8284 /* wait for possible concurrent references to cfs_rqs complete */
8285 call_rcu(&tg->rcu, free_sched_group_rcu);
8288 /* change task's runqueue when it moves between groups.
8289 * The caller of this function should have put the task in its new group
8290 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8291 * reflect its new group.
8293 void sched_move_task(struct task_struct *tsk)
8295 int on_rq, running;
8296 unsigned long flags;
8297 struct rq *rq;
8299 rq = task_rq_lock(tsk, &flags);
8301 update_rq_clock(rq);
8303 running = task_current(rq, tsk);
8304 on_rq = tsk->se.on_rq;
8306 if (on_rq)
8307 dequeue_task(rq, tsk, 0);
8308 if (unlikely(running))
8309 tsk->sched_class->put_prev_task(rq, tsk);
8311 set_task_rq(tsk, task_cpu(tsk));
8313 #ifdef CONFIG_FAIR_GROUP_SCHED
8314 if (tsk->sched_class->moved_group)
8315 tsk->sched_class->moved_group(tsk);
8316 #endif
8318 if (unlikely(running))
8319 tsk->sched_class->set_curr_task(rq);
8320 if (on_rq)
8321 enqueue_task(rq, tsk, 0);
8323 task_rq_unlock(rq, &flags);
8325 #endif /* CONFIG_GROUP_SCHED */
8327 #ifdef CONFIG_FAIR_GROUP_SCHED
8328 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8330 struct cfs_rq *cfs_rq = se->cfs_rq;
8331 struct rq *rq = cfs_rq->rq;
8332 int on_rq;
8334 spin_lock_irq(&rq->lock);
8336 on_rq = se->on_rq;
8337 if (on_rq)
8338 dequeue_entity(cfs_rq, se, 0);
8340 se->load.weight = shares;
8341 se->load.inv_weight = 0;
8343 if (on_rq)
8344 enqueue_entity(cfs_rq, se, 0);
8346 spin_unlock_irq(&rq->lock);
8349 static DEFINE_MUTEX(shares_mutex);
8351 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8353 int i;
8354 unsigned long flags;
8357 * We can't change the weight of the root cgroup.
8359 if (!tg->se[0])
8360 return -EINVAL;
8362 if (shares < MIN_SHARES)
8363 shares = MIN_SHARES;
8364 else if (shares > MAX_SHARES)
8365 shares = MAX_SHARES;
8367 mutex_lock(&shares_mutex);
8368 if (tg->shares == shares)
8369 goto done;
8371 spin_lock_irqsave(&task_group_lock, flags);
8372 for_each_possible_cpu(i)
8373 unregister_fair_sched_group(tg, i);
8374 list_del_rcu(&tg->siblings);
8375 spin_unlock_irqrestore(&task_group_lock, flags);
8377 /* wait for any ongoing reference to this group to finish */
8378 synchronize_sched();
8381 * Now we are free to modify the group's share on each cpu
8382 * w/o tripping rebalance_share or load_balance_fair.
8384 tg->shares = shares;
8385 for_each_possible_cpu(i)
8386 set_se_shares(tg->se[i], shares);
8389 * Enable load balance activity on this group, by inserting it back on
8390 * each cpu's rq->leaf_cfs_rq_list.
8392 spin_lock_irqsave(&task_group_lock, flags);
8393 for_each_possible_cpu(i)
8394 register_fair_sched_group(tg, i);
8395 list_add_rcu(&tg->siblings, &tg->parent->children);
8396 spin_unlock_irqrestore(&task_group_lock, flags);
8397 done:
8398 mutex_unlock(&shares_mutex);
8399 return 0;
8402 unsigned long sched_group_shares(struct task_group *tg)
8404 return tg->shares;
8406 #endif
8408 #ifdef CONFIG_RT_GROUP_SCHED
8410 * Ensure that the real time constraints are schedulable.
8412 static DEFINE_MUTEX(rt_constraints_mutex);
8414 static unsigned long to_ratio(u64 period, u64 runtime)
8416 if (runtime == RUNTIME_INF)
8417 return 1ULL << 16;
8419 return div64_u64(runtime << 16, period);
8422 #ifdef CONFIG_CGROUP_SCHED
8423 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8425 struct task_group *tgi, *parent = tg->parent;
8426 unsigned long total = 0;
8428 if (!parent) {
8429 if (global_rt_period() < period)
8430 return 0;
8432 return to_ratio(period, runtime) <
8433 to_ratio(global_rt_period(), global_rt_runtime());
8436 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8437 return 0;
8439 rcu_read_lock();
8440 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8441 if (tgi == tg)
8442 continue;
8444 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8445 tgi->rt_bandwidth.rt_runtime);
8447 rcu_read_unlock();
8449 return total + to_ratio(period, runtime) <
8450 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8451 parent->rt_bandwidth.rt_runtime);
8453 #elif defined CONFIG_USER_SCHED
8454 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8456 struct task_group *tgi;
8457 unsigned long total = 0;
8458 unsigned long global_ratio =
8459 to_ratio(global_rt_period(), global_rt_runtime());
8461 rcu_read_lock();
8462 list_for_each_entry_rcu(tgi, &task_groups, list) {
8463 if (tgi == tg)
8464 continue;
8466 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8467 tgi->rt_bandwidth.rt_runtime);
8469 rcu_read_unlock();
8471 return total + to_ratio(period, runtime) < global_ratio;
8473 #endif
8475 /* Must be called with tasklist_lock held */
8476 static inline int tg_has_rt_tasks(struct task_group *tg)
8478 struct task_struct *g, *p;
8479 do_each_thread(g, p) {
8480 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8481 return 1;
8482 } while_each_thread(g, p);
8483 return 0;
8486 static int tg_set_bandwidth(struct task_group *tg,
8487 u64 rt_period, u64 rt_runtime)
8489 int i, err = 0;
8491 mutex_lock(&rt_constraints_mutex);
8492 read_lock(&tasklist_lock);
8493 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8494 err = -EBUSY;
8495 goto unlock;
8497 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8498 err = -EINVAL;
8499 goto unlock;
8502 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8503 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8504 tg->rt_bandwidth.rt_runtime = rt_runtime;
8506 for_each_possible_cpu(i) {
8507 struct rt_rq *rt_rq = tg->rt_rq[i];
8509 spin_lock(&rt_rq->rt_runtime_lock);
8510 rt_rq->rt_runtime = rt_runtime;
8511 spin_unlock(&rt_rq->rt_runtime_lock);
8513 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8514 unlock:
8515 read_unlock(&tasklist_lock);
8516 mutex_unlock(&rt_constraints_mutex);
8518 return err;
8521 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8523 u64 rt_runtime, rt_period;
8525 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8526 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8527 if (rt_runtime_us < 0)
8528 rt_runtime = RUNTIME_INF;
8530 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8533 long sched_group_rt_runtime(struct task_group *tg)
8535 u64 rt_runtime_us;
8537 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8538 return -1;
8540 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8541 do_div(rt_runtime_us, NSEC_PER_USEC);
8542 return rt_runtime_us;
8545 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8547 u64 rt_runtime, rt_period;
8549 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8550 rt_runtime = tg->rt_bandwidth.rt_runtime;
8552 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8555 long sched_group_rt_period(struct task_group *tg)
8557 u64 rt_period_us;
8559 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8560 do_div(rt_period_us, NSEC_PER_USEC);
8561 return rt_period_us;
8564 static int sched_rt_global_constraints(void)
8566 int ret = 0;
8568 mutex_lock(&rt_constraints_mutex);
8569 if (!__rt_schedulable(NULL, 1, 0))
8570 ret = -EINVAL;
8571 mutex_unlock(&rt_constraints_mutex);
8573 return ret;
8575 #else /* !CONFIG_RT_GROUP_SCHED */
8576 static int sched_rt_global_constraints(void)
8578 unsigned long flags;
8579 int i;
8581 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8582 for_each_possible_cpu(i) {
8583 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8585 spin_lock(&rt_rq->rt_runtime_lock);
8586 rt_rq->rt_runtime = global_rt_runtime();
8587 spin_unlock(&rt_rq->rt_runtime_lock);
8589 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8591 return 0;
8593 #endif /* CONFIG_RT_GROUP_SCHED */
8595 int sched_rt_handler(struct ctl_table *table, int write,
8596 struct file *filp, void __user *buffer, size_t *lenp,
8597 loff_t *ppos)
8599 int ret;
8600 int old_period, old_runtime;
8601 static DEFINE_MUTEX(mutex);
8603 mutex_lock(&mutex);
8604 old_period = sysctl_sched_rt_period;
8605 old_runtime = sysctl_sched_rt_runtime;
8607 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8609 if (!ret && write) {
8610 ret = sched_rt_global_constraints();
8611 if (ret) {
8612 sysctl_sched_rt_period = old_period;
8613 sysctl_sched_rt_runtime = old_runtime;
8614 } else {
8615 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8616 def_rt_bandwidth.rt_period =
8617 ns_to_ktime(global_rt_period());
8620 mutex_unlock(&mutex);
8622 return ret;
8625 #ifdef CONFIG_CGROUP_SCHED
8627 /* return corresponding task_group object of a cgroup */
8628 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8630 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8631 struct task_group, css);
8634 static struct cgroup_subsys_state *
8635 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8637 struct task_group *tg, *parent;
8639 if (!cgrp->parent) {
8640 /* This is early initialization for the top cgroup */
8641 init_task_group.css.cgroup = cgrp;
8642 return &init_task_group.css;
8645 parent = cgroup_tg(cgrp->parent);
8646 tg = sched_create_group(parent);
8647 if (IS_ERR(tg))
8648 return ERR_PTR(-ENOMEM);
8650 /* Bind the cgroup to task_group object we just created */
8651 tg->css.cgroup = cgrp;
8653 return &tg->css;
8656 static void
8657 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8659 struct task_group *tg = cgroup_tg(cgrp);
8661 sched_destroy_group(tg);
8664 static int
8665 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8666 struct task_struct *tsk)
8668 #ifdef CONFIG_RT_GROUP_SCHED
8669 /* Don't accept realtime tasks when there is no way for them to run */
8670 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8671 return -EINVAL;
8672 #else
8673 /* We don't support RT-tasks being in separate groups */
8674 if (tsk->sched_class != &fair_sched_class)
8675 return -EINVAL;
8676 #endif
8678 return 0;
8681 static void
8682 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8683 struct cgroup *old_cont, struct task_struct *tsk)
8685 sched_move_task(tsk);
8688 #ifdef CONFIG_FAIR_GROUP_SCHED
8689 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8690 u64 shareval)
8692 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8695 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8697 struct task_group *tg = cgroup_tg(cgrp);
8699 return (u64) tg->shares;
8701 #endif /* CONFIG_FAIR_GROUP_SCHED */
8703 #ifdef CONFIG_RT_GROUP_SCHED
8704 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8705 s64 val)
8707 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8710 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8712 return sched_group_rt_runtime(cgroup_tg(cgrp));
8715 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8716 u64 rt_period_us)
8718 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8721 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8723 return sched_group_rt_period(cgroup_tg(cgrp));
8725 #endif /* CONFIG_RT_GROUP_SCHED */
8727 static struct cftype cpu_files[] = {
8728 #ifdef CONFIG_FAIR_GROUP_SCHED
8730 .name = "shares",
8731 .read_u64 = cpu_shares_read_u64,
8732 .write_u64 = cpu_shares_write_u64,
8734 #endif
8735 #ifdef CONFIG_RT_GROUP_SCHED
8737 .name = "rt_runtime_us",
8738 .read_s64 = cpu_rt_runtime_read,
8739 .write_s64 = cpu_rt_runtime_write,
8742 .name = "rt_period_us",
8743 .read_u64 = cpu_rt_period_read_uint,
8744 .write_u64 = cpu_rt_period_write_uint,
8746 #endif
8749 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8751 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8754 struct cgroup_subsys cpu_cgroup_subsys = {
8755 .name = "cpu",
8756 .create = cpu_cgroup_create,
8757 .destroy = cpu_cgroup_destroy,
8758 .can_attach = cpu_cgroup_can_attach,
8759 .attach = cpu_cgroup_attach,
8760 .populate = cpu_cgroup_populate,
8761 .subsys_id = cpu_cgroup_subsys_id,
8762 .early_init = 1,
8765 #endif /* CONFIG_CGROUP_SCHED */
8767 #ifdef CONFIG_CGROUP_CPUACCT
8770 * CPU accounting code for task groups.
8772 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8773 * (balbir@in.ibm.com).
8776 /* track cpu usage of a group of tasks */
8777 struct cpuacct {
8778 struct cgroup_subsys_state css;
8779 /* cpuusage holds pointer to a u64-type object on every cpu */
8780 u64 *cpuusage;
8783 struct cgroup_subsys cpuacct_subsys;
8785 /* return cpu accounting group corresponding to this container */
8786 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8788 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8789 struct cpuacct, css);
8792 /* return cpu accounting group to which this task belongs */
8793 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8795 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8796 struct cpuacct, css);
8799 /* create a new cpu accounting group */
8800 static struct cgroup_subsys_state *cpuacct_create(
8801 struct cgroup_subsys *ss, struct cgroup *cgrp)
8803 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8805 if (!ca)
8806 return ERR_PTR(-ENOMEM);
8808 ca->cpuusage = alloc_percpu(u64);
8809 if (!ca->cpuusage) {
8810 kfree(ca);
8811 return ERR_PTR(-ENOMEM);
8814 return &ca->css;
8817 /* destroy an existing cpu accounting group */
8818 static void
8819 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8821 struct cpuacct *ca = cgroup_ca(cgrp);
8823 free_percpu(ca->cpuusage);
8824 kfree(ca);
8827 /* return total cpu usage (in nanoseconds) of a group */
8828 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8830 struct cpuacct *ca = cgroup_ca(cgrp);
8831 u64 totalcpuusage = 0;
8832 int i;
8834 for_each_possible_cpu(i) {
8835 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8838 * Take rq->lock to make 64-bit addition safe on 32-bit
8839 * platforms.
8841 spin_lock_irq(&cpu_rq(i)->lock);
8842 totalcpuusage += *cpuusage;
8843 spin_unlock_irq(&cpu_rq(i)->lock);
8846 return totalcpuusage;
8849 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8850 u64 reset)
8852 struct cpuacct *ca = cgroup_ca(cgrp);
8853 int err = 0;
8854 int i;
8856 if (reset) {
8857 err = -EINVAL;
8858 goto out;
8861 for_each_possible_cpu(i) {
8862 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8864 spin_lock_irq(&cpu_rq(i)->lock);
8865 *cpuusage = 0;
8866 spin_unlock_irq(&cpu_rq(i)->lock);
8868 out:
8869 return err;
8872 static struct cftype files[] = {
8874 .name = "usage",
8875 .read_u64 = cpuusage_read,
8876 .write_u64 = cpuusage_write,
8880 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8882 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8886 * charge this task's execution time to its accounting group.
8888 * called with rq->lock held.
8890 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8892 struct cpuacct *ca;
8894 if (!cpuacct_subsys.active)
8895 return;
8897 ca = task_ca(tsk);
8898 if (ca) {
8899 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8901 *cpuusage += cputime;
8905 struct cgroup_subsys cpuacct_subsys = {
8906 .name = "cpuacct",
8907 .create = cpuacct_create,
8908 .destroy = cpuacct_destroy,
8909 .populate = cpuacct_populate,
8910 .subsys_id = cpuacct_subsys_id,
8912 #endif /* CONFIG_CGROUP_CPUACCT */