Merge branch 'mini2440-dev-extras' into mini2440-dev
[linux-2.6/mini2440.git] / arch / sh / kernel / setup.c
blob99b4fb553bf1a7cdbf99a56cd8bd9e0e007f8007
1 /*
2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
8 */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/lmb.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/elf.h>
38 #include <asm/sections.h>
39 #include <asm/irq.h>
40 #include <asm/setup.h>
41 #include <asm/clock.h>
42 #include <asm/mmu_context.h>
45 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
46 * This value will be used at the very early stage of serial setup.
47 * The bigger value means no problem.
49 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
50 [0] = {
51 .type = CPU_SH_NONE,
52 .family = CPU_FAMILY_UNKNOWN,
53 .loops_per_jiffy = 10000000,
56 EXPORT_SYMBOL(cpu_data);
59 * The machine vector. First entry in .machvec.init, or clobbered by
60 * sh_mv= on the command line, prior to .machvec.init teardown.
62 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
63 EXPORT_SYMBOL(sh_mv);
65 #ifdef CONFIG_VT
66 struct screen_info screen_info;
67 #endif
69 extern int root_mountflags;
71 #define RAMDISK_IMAGE_START_MASK 0x07FF
72 #define RAMDISK_PROMPT_FLAG 0x8000
73 #define RAMDISK_LOAD_FLAG 0x4000
75 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
77 static struct resource code_resource = {
78 .name = "Kernel code",
79 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
82 static struct resource data_resource = {
83 .name = "Kernel data",
84 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
87 static struct resource bss_resource = {
88 .name = "Kernel bss",
89 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
92 unsigned long memory_start;
93 EXPORT_SYMBOL(memory_start);
94 unsigned long memory_end = 0;
95 EXPORT_SYMBOL(memory_end);
97 static struct resource mem_resources[MAX_NUMNODES];
99 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
101 static int __init early_parse_mem(char *p)
103 unsigned long size;
105 memory_start = (unsigned long)__va(__MEMORY_START);
106 size = memparse(p, &p);
108 if (size > __MEMORY_SIZE) {
109 printk(KERN_ERR
110 "Using mem= to increase the size of kernel memory "
111 "is not allowed.\n"
112 " Recompile the kernel with the correct value for "
113 "CONFIG_MEMORY_SIZE.\n");
114 return 0;
117 memory_end = memory_start + size;
119 return 0;
121 early_param("mem", early_parse_mem);
124 * Register fully available low RAM pages with the bootmem allocator.
126 static void __init register_bootmem_low_pages(void)
128 unsigned long curr_pfn, last_pfn, pages;
131 * We are rounding up the start address of usable memory:
133 curr_pfn = PFN_UP(__MEMORY_START);
136 * ... and at the end of the usable range downwards:
138 last_pfn = PFN_DOWN(__pa(memory_end));
140 if (last_pfn > max_low_pfn)
141 last_pfn = max_low_pfn;
143 pages = last_pfn - curr_pfn;
144 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
147 #ifdef CONFIG_KEXEC
148 static void __init reserve_crashkernel(void)
150 unsigned long long free_mem;
151 unsigned long long crash_size, crash_base;
152 void *vp;
153 int ret;
155 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
157 ret = parse_crashkernel(boot_command_line, free_mem,
158 &crash_size, &crash_base);
159 if (ret == 0 && crash_size) {
160 if (crash_base <= 0) {
161 vp = alloc_bootmem_nopanic(crash_size);
162 if (!vp) {
163 printk(KERN_INFO "crashkernel allocation "
164 "failed\n");
165 return;
167 crash_base = __pa(vp);
168 } else if (reserve_bootmem(crash_base, crash_size,
169 BOOTMEM_EXCLUSIVE) < 0) {
170 printk(KERN_INFO "crashkernel reservation failed - "
171 "memory is in use\n");
172 return;
175 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
176 "for crashkernel (System RAM: %ldMB)\n",
177 (unsigned long)(crash_size >> 20),
178 (unsigned long)(crash_base >> 20),
179 (unsigned long)(free_mem >> 20));
180 crashk_res.start = crash_base;
181 crashk_res.end = crash_base + crash_size - 1;
182 insert_resource(&iomem_resource, &crashk_res);
185 #else
186 static inline void __init reserve_crashkernel(void)
188 #endif
190 void __cpuinit calibrate_delay(void)
192 struct clk *clk = clk_get(NULL, "cpu_clk");
194 if (IS_ERR(clk))
195 panic("Need a sane CPU clock definition!");
197 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
199 printk(KERN_INFO "Calibrating delay loop (skipped)... "
200 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
201 loops_per_jiffy/(500000/HZ),
202 (loops_per_jiffy/(5000/HZ)) % 100,
203 loops_per_jiffy);
206 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
207 unsigned long end_pfn)
209 struct resource *res = &mem_resources[nid];
211 WARN_ON(res->name); /* max one active range per node for now */
213 res->name = "System RAM";
214 res->start = start_pfn << PAGE_SHIFT;
215 res->end = (end_pfn << PAGE_SHIFT) - 1;
216 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
217 if (request_resource(&iomem_resource, res)) {
218 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
219 start_pfn, end_pfn);
220 return;
224 * We don't know which RAM region contains kernel data,
225 * so we try it repeatedly and let the resource manager
226 * test it.
228 request_resource(res, &code_resource);
229 request_resource(res, &data_resource);
230 request_resource(res, &bss_resource);
232 add_active_range(nid, start_pfn, end_pfn);
235 void __init setup_bootmem_allocator(unsigned long free_pfn)
237 unsigned long bootmap_size;
238 unsigned long bootmap_pages, bootmem_paddr;
239 u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
240 int i;
242 bootmap_pages = bootmem_bootmap_pages(total_pages);
244 bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
247 * Find a proper area for the bootmem bitmap. After this
248 * bootstrap step all allocations (until the page allocator
249 * is intact) must be done via bootmem_alloc().
251 bootmap_size = init_bootmem_node(NODE_DATA(0),
252 bootmem_paddr >> PAGE_SHIFT,
253 min_low_pfn, max_low_pfn);
255 /* Add active regions with valid PFNs. */
256 for (i = 0; i < lmb.memory.cnt; i++) {
257 unsigned long start_pfn, end_pfn;
258 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
259 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
260 __add_active_range(0, start_pfn, end_pfn);
264 * Add all physical memory to the bootmem map and mark each
265 * area as present.
267 register_bootmem_low_pages();
269 /* Reserve the sections we're already using. */
270 for (i = 0; i < lmb.reserved.cnt; i++)
271 reserve_bootmem(lmb.reserved.region[i].base,
272 lmb_size_bytes(&lmb.reserved, i),
273 BOOTMEM_DEFAULT);
275 node_set_online(0);
277 sparse_memory_present_with_active_regions(0);
279 #ifdef CONFIG_BLK_DEV_INITRD
280 ROOT_DEV = Root_RAM0;
282 if (LOADER_TYPE && INITRD_START) {
283 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
285 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
286 reserve_bootmem(initrd_start_phys, INITRD_SIZE,
287 BOOTMEM_DEFAULT);
288 initrd_start = (unsigned long)__va(initrd_start_phys);
289 initrd_end = initrd_start + INITRD_SIZE;
290 } else {
291 printk("initrd extends beyond end of memory "
292 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
293 initrd_start_phys + INITRD_SIZE,
294 (unsigned long)PFN_PHYS(max_low_pfn));
295 initrd_start = 0;
298 #endif
300 reserve_crashkernel();
303 #ifndef CONFIG_NEED_MULTIPLE_NODES
304 static void __init setup_memory(void)
306 unsigned long start_pfn;
307 u64 base = min_low_pfn << PAGE_SHIFT;
308 u64 size = (max_low_pfn << PAGE_SHIFT) - base;
311 * Partially used pages are not usable - thus
312 * we are rounding upwards:
314 start_pfn = PFN_UP(__pa(_end));
316 lmb_add(base, size);
319 * Reserve the kernel text and
320 * Reserve the bootmem bitmap. We do this in two steps (first step
321 * was init_bootmem()), because this catches the (definitely buggy)
322 * case of us accidentally initializing the bootmem allocator with
323 * an invalid RAM area.
325 lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
326 (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
327 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
330 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
332 if (CONFIG_ZERO_PAGE_OFFSET != 0)
333 lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
335 lmb_analyze();
336 lmb_dump_all();
338 setup_bootmem_allocator(start_pfn);
340 #else
341 extern void __init setup_memory(void);
342 #endif
345 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
346 * is_kdump_kernel() to determine if we are booting after a panic. Hence
347 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
349 #ifdef CONFIG_CRASH_DUMP
350 /* elfcorehdr= specifies the location of elf core header
351 * stored by the crashed kernel.
353 static int __init parse_elfcorehdr(char *arg)
355 if (!arg)
356 return -EINVAL;
357 elfcorehdr_addr = memparse(arg, &arg);
358 return 0;
360 early_param("elfcorehdr", parse_elfcorehdr);
361 #endif
363 void __init __attribute__ ((weak)) plat_early_device_setup(void)
367 void __init setup_arch(char **cmdline_p)
369 enable_mmu();
371 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
373 printk(KERN_NOTICE "Boot params:\n"
374 "... MOUNT_ROOT_RDONLY - %08lx\n"
375 "... RAMDISK_FLAGS - %08lx\n"
376 "... ORIG_ROOT_DEV - %08lx\n"
377 "... LOADER_TYPE - %08lx\n"
378 "... INITRD_START - %08lx\n"
379 "... INITRD_SIZE - %08lx\n",
380 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
381 ORIG_ROOT_DEV, LOADER_TYPE,
382 INITRD_START, INITRD_SIZE);
384 #ifdef CONFIG_BLK_DEV_RAM
385 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
386 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
387 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
388 #endif
390 if (!MOUNT_ROOT_RDONLY)
391 root_mountflags &= ~MS_RDONLY;
392 init_mm.start_code = (unsigned long) _text;
393 init_mm.end_code = (unsigned long) _etext;
394 init_mm.end_data = (unsigned long) _edata;
395 init_mm.brk = (unsigned long) _end;
397 code_resource.start = virt_to_phys(_text);
398 code_resource.end = virt_to_phys(_etext)-1;
399 data_resource.start = virt_to_phys(_etext);
400 data_resource.end = virt_to_phys(_edata)-1;
401 bss_resource.start = virt_to_phys(__bss_start);
402 bss_resource.end = virt_to_phys(_ebss)-1;
404 memory_start = (unsigned long)__va(__MEMORY_START);
405 if (!memory_end)
406 memory_end = memory_start + __MEMORY_SIZE;
408 #ifdef CONFIG_CMDLINE_OVERWRITE
409 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
410 #else
411 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
412 #ifdef CONFIG_CMDLINE_EXTEND
413 strlcat(command_line, " ", sizeof(command_line));
414 strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
415 #endif
416 #endif
418 /* Save unparsed command line copy for /proc/cmdline */
419 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
420 *cmdline_p = command_line;
422 parse_early_param();
424 plat_early_device_setup();
426 sh_mv_setup();
429 * Find the highest page frame number we have available
431 max_pfn = PFN_DOWN(__pa(memory_end));
434 * Determine low and high memory ranges:
436 max_low_pfn = max_pfn;
437 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
439 nodes_clear(node_online_map);
441 /* Setup bootmem with available RAM */
442 lmb_init();
443 setup_memory();
444 sparse_init();
446 #ifdef CONFIG_DUMMY_CONSOLE
447 conswitchp = &dummy_con;
448 #endif
450 /* Perform the machine specific initialisation */
451 if (likely(sh_mv.mv_setup))
452 sh_mv.mv_setup(cmdline_p);
454 paging_init();
456 #ifdef CONFIG_SMP
457 plat_smp_setup();
458 #endif
461 /* processor boot mode configuration */
462 int generic_mode_pins(void)
464 pr_warning("generic_mode_pins(): missing mode pin configuration\n");
465 return 0;
468 int test_mode_pin(int pin)
470 return sh_mv.mv_mode_pins() & pin;
473 static const char *cpu_name[] = {
474 [CPU_SH7201] = "SH7201",
475 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
476 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
477 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
478 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
479 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
480 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
481 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
482 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
483 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
484 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
485 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
486 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
487 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
488 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
489 [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757",
490 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
491 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
492 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
493 [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
494 [CPU_SH_NONE] = "Unknown"
497 const char *get_cpu_subtype(struct sh_cpuinfo *c)
499 return cpu_name[c->type];
501 EXPORT_SYMBOL(get_cpu_subtype);
503 #ifdef CONFIG_PROC_FS
504 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
505 static const char *cpu_flags[] = {
506 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
507 "ptea", "llsc", "l2", "op32", "pteaex", NULL
510 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
512 unsigned long i;
514 seq_printf(m, "cpu flags\t:");
516 if (!c->flags) {
517 seq_printf(m, " %s\n", cpu_flags[0]);
518 return;
521 for (i = 0; cpu_flags[i]; i++)
522 if ((c->flags & (1 << i)))
523 seq_printf(m, " %s", cpu_flags[i+1]);
525 seq_printf(m, "\n");
528 static void show_cacheinfo(struct seq_file *m, const char *type,
529 struct cache_info info)
531 unsigned int cache_size;
533 cache_size = info.ways * info.sets * info.linesz;
535 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
536 type, cache_size >> 10, info.ways);
540 * Get CPU information for use by the procfs.
542 static int show_cpuinfo(struct seq_file *m, void *v)
544 struct sh_cpuinfo *c = v;
545 unsigned int cpu = c - cpu_data;
547 if (!cpu_online(cpu))
548 return 0;
550 if (cpu == 0)
551 seq_printf(m, "machine\t\t: %s\n", get_system_type());
552 else
553 seq_printf(m, "\n");
555 seq_printf(m, "processor\t: %d\n", cpu);
556 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
557 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
558 if (c->cut_major == -1)
559 seq_printf(m, "cut\t\t: unknown\n");
560 else if (c->cut_minor == -1)
561 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
562 else
563 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
565 show_cpuflags(m, c);
567 seq_printf(m, "cache type\t: ");
570 * Check for what type of cache we have, we support both the
571 * unified cache on the SH-2 and SH-3, as well as the harvard
572 * style cache on the SH-4.
574 if (c->icache.flags & SH_CACHE_COMBINED) {
575 seq_printf(m, "unified\n");
576 show_cacheinfo(m, "cache", c->icache);
577 } else {
578 seq_printf(m, "split (harvard)\n");
579 show_cacheinfo(m, "icache", c->icache);
580 show_cacheinfo(m, "dcache", c->dcache);
583 /* Optional secondary cache */
584 if (c->flags & CPU_HAS_L2_CACHE)
585 show_cacheinfo(m, "scache", c->scache);
587 seq_printf(m, "bogomips\t: %lu.%02lu\n",
588 c->loops_per_jiffy/(500000/HZ),
589 (c->loops_per_jiffy/(5000/HZ)) % 100);
591 return 0;
594 static void *c_start(struct seq_file *m, loff_t *pos)
596 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
598 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
600 ++*pos;
601 return c_start(m, pos);
603 static void c_stop(struct seq_file *m, void *v)
606 const struct seq_operations cpuinfo_op = {
607 .start = c_start,
608 .next = c_next,
609 .stop = c_stop,
610 .show = show_cpuinfo,
612 #endif /* CONFIG_PROC_FS */
614 struct dentry *sh_debugfs_root;
616 static int __init sh_debugfs_init(void)
618 sh_debugfs_root = debugfs_create_dir("sh", NULL);
619 if (!sh_debugfs_root)
620 return -ENOMEM;
621 if (IS_ERR(sh_debugfs_root))
622 return PTR_ERR(sh_debugfs_root);
624 return 0;
626 arch_initcall(sh_debugfs_init);