Staging: sep: first pass after indent
[linux-2.6/mini2440.git] / mm / page_alloc.c
bloba0de15f46987f65249bd60d4cad45e129fbddf29
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 #include "internal.h"
57 * Array of node states.
59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62 #ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64 #ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66 #endif
67 [N_CPU] = { { [0] = 1UL } },
68 #endif /* NUMA */
70 EXPORT_SYMBOL(node_states);
72 unsigned long totalram_pages __read_mostly;
73 unsigned long totalreserve_pages __read_mostly;
74 unsigned long highest_memmap_pfn __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
82 static void __free_pages_ok(struct page *page, unsigned int order);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
104 #endif
108 EXPORT_SYMBOL(totalram_pages);
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
124 int min_free_kbytes = 1024;
126 unsigned long __meminitdata nr_kernel_pages;
127 unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
171 int page_group_by_mobility_disabled __read_mostly;
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
183 bool oom_killer_disabled __read_mostly;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
200 return ret;
203 static int page_is_consistent(struct zone *zone, struct page *page)
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
210 return 1;
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone *zone, struct page *page)
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
222 return 0;
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
227 return 0;
229 #endif
231 static void bad_page(struct page *page)
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
246 if (nr_unshown) {
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
249 nr_unshown);
250 nr_unshown = 0;
252 nr_shown = 0;
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
258 current->comm, page_to_pfn(page));
259 printk(KERN_ALERT
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
264 dump_stack();
265 out:
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
268 add_taint(TAINT_BAD_PAGE);
272 * Higher-order pages are called "compound pages". They are structured thusly:
274 * The first PAGE_SIZE page is called the "head page".
276 * The remaining PAGE_SIZE pages are called "tail pages".
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
286 static void free_compound_page(struct page *page)
288 __free_pages_ok(page, compound_order(page));
291 void prep_compound_page(struct page *page, unsigned long order)
293 int i;
294 int nr_pages = 1 << order;
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
302 __SetPageTail(p);
303 p->first_page = page;
307 static int destroy_compound_page(struct page *page, unsigned long order)
309 int i;
310 int nr_pages = 1 << order;
311 int bad = 0;
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
315 bad_page(page);
316 bad++;
319 __ClearPageHead(page);
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
325 bad_page(page);
326 bad++;
328 __ClearPageTail(p);
331 return bad;
334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
336 int i;
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
347 static inline void set_page_order(struct page *page, int order)
349 set_page_private(page, order);
350 __SetPageBuddy(page);
353 static inline void rmv_page_order(struct page *page)
355 __ClearPageBuddy(page);
356 set_page_private(page, 0);
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
379 unsigned long buddy_idx = page_idx ^ (1 << order);
381 return page + (buddy_idx - page_idx);
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
387 return (page_idx & ~(1 << order));
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
401 * For recording page's order, we use page_private(page).
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
406 if (!pfn_valid_within(page_to_pfn(buddy)))
407 return 0;
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
413 VM_BUG_ON(page_count(buddy) != 0);
414 return 1;
416 return 0;
420 * Freeing function for a buddy system allocator.
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
440 * -- wli
443 static inline void __free_one_page(struct page *page,
444 struct zone *zone, unsigned int order,
445 int migratetype)
447 unsigned long page_idx;
449 if (unlikely(PageCompound(page)))
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
453 VM_BUG_ON(migratetype == -1);
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
457 VM_BUG_ON(page_idx & ((1 << order) - 1));
458 VM_BUG_ON(bad_range(zone, page));
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
462 struct page *buddy;
464 buddy = __page_find_buddy(page, page_idx, order);
465 if (!page_is_buddy(page, buddy, order))
466 break;
468 /* Our buddy is free, merge with it and move up one order. */
469 list_del(&buddy->lru);
470 zone->free_area[order].nr_free--;
471 rmv_page_order(buddy);
472 combined_idx = __find_combined_index(page_idx, order);
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
477 set_page_order(page, order);
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
480 zone->free_area[order].nr_free++;
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
489 static inline void free_page_mlock(struct page *page)
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
494 #else
495 static void free_page_mlock(struct page *page) { }
496 #endif
498 static inline int free_pages_check(struct page *page)
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
502 (atomic_read(&page->_count) != 0) |
503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504 bad_page(page);
505 return 1;
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
523 static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
526 spin_lock(&zone->lock);
527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
528 zone->pages_scanned = 0;
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
531 while (count--) {
532 struct page *page;
534 VM_BUG_ON(list_empty(list));
535 page = list_entry(list->prev, struct page, lru);
536 /* have to delete it as __free_one_page list manipulates */
537 list_del(&page->lru);
538 __free_one_page(page, zone, order, page_private(page));
540 spin_unlock(&zone->lock);
543 static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
546 spin_lock(&zone->lock);
547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
548 zone->pages_scanned = 0;
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
551 __free_one_page(page, zone, order, migratetype);
552 spin_unlock(&zone->lock);
555 static void __free_pages_ok(struct page *page, unsigned int order)
557 unsigned long flags;
558 int i;
559 int bad = 0;
560 int wasMlocked = TestClearPageMlocked(page);
562 kmemcheck_free_shadow(page, order);
564 for (i = 0 ; i < (1 << order) ; ++i)
565 bad += free_pages_check(page + i);
566 if (bad)
567 return;
569 if (!PageHighMem(page)) {
570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
574 arch_free_page(page, order);
575 kernel_map_pages(page, 1 << order, 0);
577 local_irq_save(flags);
578 if (unlikely(wasMlocked))
579 free_page_mlock(page);
580 __count_vm_events(PGFREE, 1 << order);
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
583 local_irq_restore(flags);
587 * permit the bootmem allocator to evade page validation on high-order frees
589 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
594 set_page_refcounted(page);
595 __free_page(page);
596 } else {
597 int loop;
599 prefetchw(page);
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
609 set_page_refcounted(page);
610 __free_pages(page, order);
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
627 * -- wli
629 static inline void expand(struct zone *zone, struct page *page,
630 int low, int high, struct free_area *area,
631 int migratetype)
633 unsigned long size = 1 << high;
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
639 VM_BUG_ON(bad_range(zone, &page[size]));
640 list_add(&page[size].lru, &area->free_list[migratetype]);
641 area->nr_free++;
642 set_page_order(&page[size], high);
647 * This page is about to be returned from the page allocator
649 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
653 (atomic_read(&page->_count) != 0) |
654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
655 bad_page(page);
656 return 1;
659 set_page_private(page, 0);
660 set_page_refcounted(page);
662 arch_alloc_page(page, order);
663 kernel_map_pages(page, 1 << order, 1);
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
671 return 0;
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
678 static inline
679 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
680 int migratetype)
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
701 return NULL;
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
709 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
717 * Move the free pages in a range to the free lists of the requested type.
718 * Note that start_page and end_pages are not aligned on a pageblock
719 * boundary. If alignment is required, use move_freepages_block()
721 static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
725 struct page *page;
726 unsigned long order;
727 int pages_moved = 0;
729 #ifndef CONFIG_HOLES_IN_ZONE
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
735 * grouping pages by mobility
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738 #endif
740 for (page = start_page; page <= end_page;) {
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
759 pages_moved += 1 << order;
762 return pages_moved;
765 static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
771 start_pfn = page_to_pfn(page);
772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
773 start_page = pfn_to_page(start_pfn);
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
783 return move_freepages(zone, start_page, end_page, migratetype);
786 /* Remove an element from the buddy allocator from the fallback list */
787 static inline struct page *
788 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
790 struct free_area * area;
791 int current_order;
792 struct page *page;
793 int migratetype, i;
795 /* Find the largest possible block of pages in the other list */
796 for (current_order = MAX_ORDER-1; current_order >= order;
797 --current_order) {
798 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799 migratetype = fallbacks[start_migratetype][i];
801 /* MIGRATE_RESERVE handled later if necessary */
802 if (migratetype == MIGRATE_RESERVE)
803 continue;
805 area = &(zone->free_area[current_order]);
806 if (list_empty(&area->free_list[migratetype]))
807 continue;
809 page = list_entry(area->free_list[migratetype].next,
810 struct page, lru);
811 area->nr_free--;
814 * If breaking a large block of pages, move all free
815 * pages to the preferred allocation list. If falling
816 * back for a reclaimable kernel allocation, be more
817 * agressive about taking ownership of free pages
819 if (unlikely(current_order >= (pageblock_order >> 1)) ||
820 start_migratetype == MIGRATE_RECLAIMABLE ||
821 page_group_by_mobility_disabled) {
822 unsigned long pages;
823 pages = move_freepages_block(zone, page,
824 start_migratetype);
826 /* Claim the whole block if over half of it is free */
827 if (pages >= (1 << (pageblock_order-1)) ||
828 page_group_by_mobility_disabled)
829 set_pageblock_migratetype(page,
830 start_migratetype);
832 migratetype = start_migratetype;
835 /* Remove the page from the freelists */
836 list_del(&page->lru);
837 rmv_page_order(page);
839 if (current_order == pageblock_order)
840 set_pageblock_migratetype(page,
841 start_migratetype);
843 expand(zone, page, order, current_order, area, migratetype);
844 return page;
848 return NULL;
852 * Do the hard work of removing an element from the buddy allocator.
853 * Call me with the zone->lock already held.
855 static struct page *__rmqueue(struct zone *zone, unsigned int order,
856 int migratetype)
858 struct page *page;
860 retry_reserve:
861 page = __rmqueue_smallest(zone, order, migratetype);
863 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
864 page = __rmqueue_fallback(zone, order, migratetype);
867 * Use MIGRATE_RESERVE rather than fail an allocation. goto
868 * is used because __rmqueue_smallest is an inline function
869 * and we want just one call site
871 if (!page) {
872 migratetype = MIGRATE_RESERVE;
873 goto retry_reserve;
877 return page;
881 * Obtain a specified number of elements from the buddy allocator, all under
882 * a single hold of the lock, for efficiency. Add them to the supplied list.
883 * Returns the number of new pages which were placed at *list.
885 static int rmqueue_bulk(struct zone *zone, unsigned int order,
886 unsigned long count, struct list_head *list,
887 int migratetype, int cold)
889 int i;
891 spin_lock(&zone->lock);
892 for (i = 0; i < count; ++i) {
893 struct page *page = __rmqueue(zone, order, migratetype);
894 if (unlikely(page == NULL))
895 break;
898 * Split buddy pages returned by expand() are received here
899 * in physical page order. The page is added to the callers and
900 * list and the list head then moves forward. From the callers
901 * perspective, the linked list is ordered by page number in
902 * some conditions. This is useful for IO devices that can
903 * merge IO requests if the physical pages are ordered
904 * properly.
906 if (likely(cold == 0))
907 list_add(&page->lru, list);
908 else
909 list_add_tail(&page->lru, list);
910 set_page_private(page, migratetype);
911 list = &page->lru;
913 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
914 spin_unlock(&zone->lock);
915 return i;
918 #ifdef CONFIG_NUMA
920 * Called from the vmstat counter updater to drain pagesets of this
921 * currently executing processor on remote nodes after they have
922 * expired.
924 * Note that this function must be called with the thread pinned to
925 * a single processor.
927 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
929 unsigned long flags;
930 int to_drain;
932 local_irq_save(flags);
933 if (pcp->count >= pcp->batch)
934 to_drain = pcp->batch;
935 else
936 to_drain = pcp->count;
937 free_pages_bulk(zone, to_drain, &pcp->list, 0);
938 pcp->count -= to_drain;
939 local_irq_restore(flags);
941 #endif
944 * Drain pages of the indicated processor.
946 * The processor must either be the current processor and the
947 * thread pinned to the current processor or a processor that
948 * is not online.
950 static void drain_pages(unsigned int cpu)
952 unsigned long flags;
953 struct zone *zone;
955 for_each_populated_zone(zone) {
956 struct per_cpu_pageset *pset;
957 struct per_cpu_pages *pcp;
959 pset = zone_pcp(zone, cpu);
961 pcp = &pset->pcp;
962 local_irq_save(flags);
963 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
964 pcp->count = 0;
965 local_irq_restore(flags);
970 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
972 void drain_local_pages(void *arg)
974 drain_pages(smp_processor_id());
978 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
980 void drain_all_pages(void)
982 on_each_cpu(drain_local_pages, NULL, 1);
985 #ifdef CONFIG_HIBERNATION
987 void mark_free_pages(struct zone *zone)
989 unsigned long pfn, max_zone_pfn;
990 unsigned long flags;
991 int order, t;
992 struct list_head *curr;
994 if (!zone->spanned_pages)
995 return;
997 spin_lock_irqsave(&zone->lock, flags);
999 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1000 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1001 if (pfn_valid(pfn)) {
1002 struct page *page = pfn_to_page(pfn);
1004 if (!swsusp_page_is_forbidden(page))
1005 swsusp_unset_page_free(page);
1008 for_each_migratetype_order(order, t) {
1009 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1010 unsigned long i;
1012 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1013 for (i = 0; i < (1UL << order); i++)
1014 swsusp_set_page_free(pfn_to_page(pfn + i));
1017 spin_unlock_irqrestore(&zone->lock, flags);
1019 #endif /* CONFIG_PM */
1022 * Free a 0-order page
1024 static void free_hot_cold_page(struct page *page, int cold)
1026 struct zone *zone = page_zone(page);
1027 struct per_cpu_pages *pcp;
1028 unsigned long flags;
1029 int wasMlocked = TestClearPageMlocked(page);
1031 kmemcheck_free_shadow(page, 0);
1033 if (PageAnon(page))
1034 page->mapping = NULL;
1035 if (free_pages_check(page))
1036 return;
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1040 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1042 arch_free_page(page, 0);
1043 kernel_map_pages(page, 1, 0);
1045 pcp = &zone_pcp(zone, get_cpu())->pcp;
1046 set_page_private(page, get_pageblock_migratetype(page));
1047 local_irq_save(flags);
1048 if (unlikely(wasMlocked))
1049 free_page_mlock(page);
1050 __count_vm_event(PGFREE);
1052 if (cold)
1053 list_add_tail(&page->lru, &pcp->list);
1054 else
1055 list_add(&page->lru, &pcp->list);
1056 pcp->count++;
1057 if (pcp->count >= pcp->high) {
1058 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1059 pcp->count -= pcp->batch;
1061 local_irq_restore(flags);
1062 put_cpu();
1065 void free_hot_page(struct page *page)
1067 free_hot_cold_page(page, 0);
1070 void free_cold_page(struct page *page)
1072 free_hot_cold_page(page, 1);
1076 * split_page takes a non-compound higher-order page, and splits it into
1077 * n (1<<order) sub-pages: page[0..n]
1078 * Each sub-page must be freed individually.
1080 * Note: this is probably too low level an operation for use in drivers.
1081 * Please consult with lkml before using this in your driver.
1083 void split_page(struct page *page, unsigned int order)
1085 int i;
1087 VM_BUG_ON(PageCompound(page));
1088 VM_BUG_ON(!page_count(page));
1090 #ifdef CONFIG_KMEMCHECK
1092 * Split shadow pages too, because free(page[0]) would
1093 * otherwise free the whole shadow.
1095 if (kmemcheck_page_is_tracked(page))
1096 split_page(virt_to_page(page[0].shadow), order);
1097 #endif
1099 for (i = 1; i < (1 << order); i++)
1100 set_page_refcounted(page + i);
1104 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1105 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1106 * or two.
1108 static inline
1109 struct page *buffered_rmqueue(struct zone *preferred_zone,
1110 struct zone *zone, int order, gfp_t gfp_flags,
1111 int migratetype)
1113 unsigned long flags;
1114 struct page *page;
1115 int cold = !!(gfp_flags & __GFP_COLD);
1116 int cpu;
1118 again:
1119 cpu = get_cpu();
1120 if (likely(order == 0)) {
1121 struct per_cpu_pages *pcp;
1123 pcp = &zone_pcp(zone, cpu)->pcp;
1124 local_irq_save(flags);
1125 if (!pcp->count) {
1126 pcp->count = rmqueue_bulk(zone, 0,
1127 pcp->batch, &pcp->list,
1128 migratetype, cold);
1129 if (unlikely(!pcp->count))
1130 goto failed;
1133 /* Find a page of the appropriate migrate type */
1134 if (cold) {
1135 list_for_each_entry_reverse(page, &pcp->list, lru)
1136 if (page_private(page) == migratetype)
1137 break;
1138 } else {
1139 list_for_each_entry(page, &pcp->list, lru)
1140 if (page_private(page) == migratetype)
1141 break;
1144 /* Allocate more to the pcp list if necessary */
1145 if (unlikely(&page->lru == &pcp->list)) {
1146 pcp->count += rmqueue_bulk(zone, 0,
1147 pcp->batch, &pcp->list,
1148 migratetype, cold);
1149 page = list_entry(pcp->list.next, struct page, lru);
1152 list_del(&page->lru);
1153 pcp->count--;
1154 } else {
1155 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1157 * __GFP_NOFAIL is not to be used in new code.
1159 * All __GFP_NOFAIL callers should be fixed so that they
1160 * properly detect and handle allocation failures.
1162 * We most definitely don't want callers attempting to
1163 * allocate greater than order-1 page units with
1164 * __GFP_NOFAIL.
1166 WARN_ON_ONCE(order > 1);
1168 spin_lock_irqsave(&zone->lock, flags);
1169 page = __rmqueue(zone, order, migratetype);
1170 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1171 spin_unlock(&zone->lock);
1172 if (!page)
1173 goto failed;
1176 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1177 zone_statistics(preferred_zone, zone);
1178 local_irq_restore(flags);
1179 put_cpu();
1181 VM_BUG_ON(bad_range(zone, page));
1182 if (prep_new_page(page, order, gfp_flags))
1183 goto again;
1184 return page;
1186 failed:
1187 local_irq_restore(flags);
1188 put_cpu();
1189 return NULL;
1192 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1193 #define ALLOC_WMARK_MIN WMARK_MIN
1194 #define ALLOC_WMARK_LOW WMARK_LOW
1195 #define ALLOC_WMARK_HIGH WMARK_HIGH
1196 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1198 /* Mask to get the watermark bits */
1199 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1201 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1202 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1203 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1205 #ifdef CONFIG_FAIL_PAGE_ALLOC
1207 static struct fail_page_alloc_attr {
1208 struct fault_attr attr;
1210 u32 ignore_gfp_highmem;
1211 u32 ignore_gfp_wait;
1212 u32 min_order;
1214 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1216 struct dentry *ignore_gfp_highmem_file;
1217 struct dentry *ignore_gfp_wait_file;
1218 struct dentry *min_order_file;
1220 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1222 } fail_page_alloc = {
1223 .attr = FAULT_ATTR_INITIALIZER,
1224 .ignore_gfp_wait = 1,
1225 .ignore_gfp_highmem = 1,
1226 .min_order = 1,
1229 static int __init setup_fail_page_alloc(char *str)
1231 return setup_fault_attr(&fail_page_alloc.attr, str);
1233 __setup("fail_page_alloc=", setup_fail_page_alloc);
1235 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1237 if (order < fail_page_alloc.min_order)
1238 return 0;
1239 if (gfp_mask & __GFP_NOFAIL)
1240 return 0;
1241 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1242 return 0;
1243 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1244 return 0;
1246 return should_fail(&fail_page_alloc.attr, 1 << order);
1249 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1251 static int __init fail_page_alloc_debugfs(void)
1253 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1254 struct dentry *dir;
1255 int err;
1257 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1258 "fail_page_alloc");
1259 if (err)
1260 return err;
1261 dir = fail_page_alloc.attr.dentries.dir;
1263 fail_page_alloc.ignore_gfp_wait_file =
1264 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1265 &fail_page_alloc.ignore_gfp_wait);
1267 fail_page_alloc.ignore_gfp_highmem_file =
1268 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1269 &fail_page_alloc.ignore_gfp_highmem);
1270 fail_page_alloc.min_order_file =
1271 debugfs_create_u32("min-order", mode, dir,
1272 &fail_page_alloc.min_order);
1274 if (!fail_page_alloc.ignore_gfp_wait_file ||
1275 !fail_page_alloc.ignore_gfp_highmem_file ||
1276 !fail_page_alloc.min_order_file) {
1277 err = -ENOMEM;
1278 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1279 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1280 debugfs_remove(fail_page_alloc.min_order_file);
1281 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1284 return err;
1287 late_initcall(fail_page_alloc_debugfs);
1289 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1291 #else /* CONFIG_FAIL_PAGE_ALLOC */
1293 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1295 return 0;
1298 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1301 * Return 1 if free pages are above 'mark'. This takes into account the order
1302 * of the allocation.
1304 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1305 int classzone_idx, int alloc_flags)
1307 /* free_pages my go negative - that's OK */
1308 long min = mark;
1309 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1310 int o;
1312 if (alloc_flags & ALLOC_HIGH)
1313 min -= min / 2;
1314 if (alloc_flags & ALLOC_HARDER)
1315 min -= min / 4;
1317 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1318 return 0;
1319 for (o = 0; o < order; o++) {
1320 /* At the next order, this order's pages become unavailable */
1321 free_pages -= z->free_area[o].nr_free << o;
1323 /* Require fewer higher order pages to be free */
1324 min >>= 1;
1326 if (free_pages <= min)
1327 return 0;
1329 return 1;
1332 #ifdef CONFIG_NUMA
1334 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1335 * skip over zones that are not allowed by the cpuset, or that have
1336 * been recently (in last second) found to be nearly full. See further
1337 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1338 * that have to skip over a lot of full or unallowed zones.
1340 * If the zonelist cache is present in the passed in zonelist, then
1341 * returns a pointer to the allowed node mask (either the current
1342 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1344 * If the zonelist cache is not available for this zonelist, does
1345 * nothing and returns NULL.
1347 * If the fullzones BITMAP in the zonelist cache is stale (more than
1348 * a second since last zap'd) then we zap it out (clear its bits.)
1350 * We hold off even calling zlc_setup, until after we've checked the
1351 * first zone in the zonelist, on the theory that most allocations will
1352 * be satisfied from that first zone, so best to examine that zone as
1353 * quickly as we can.
1355 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1357 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1358 nodemask_t *allowednodes; /* zonelist_cache approximation */
1360 zlc = zonelist->zlcache_ptr;
1361 if (!zlc)
1362 return NULL;
1364 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1365 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1366 zlc->last_full_zap = jiffies;
1369 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1370 &cpuset_current_mems_allowed :
1371 &node_states[N_HIGH_MEMORY];
1372 return allowednodes;
1376 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1377 * if it is worth looking at further for free memory:
1378 * 1) Check that the zone isn't thought to be full (doesn't have its
1379 * bit set in the zonelist_cache fullzones BITMAP).
1380 * 2) Check that the zones node (obtained from the zonelist_cache
1381 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1382 * Return true (non-zero) if zone is worth looking at further, or
1383 * else return false (zero) if it is not.
1385 * This check -ignores- the distinction between various watermarks,
1386 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1387 * found to be full for any variation of these watermarks, it will
1388 * be considered full for up to one second by all requests, unless
1389 * we are so low on memory on all allowed nodes that we are forced
1390 * into the second scan of the zonelist.
1392 * In the second scan we ignore this zonelist cache and exactly
1393 * apply the watermarks to all zones, even it is slower to do so.
1394 * We are low on memory in the second scan, and should leave no stone
1395 * unturned looking for a free page.
1397 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1398 nodemask_t *allowednodes)
1400 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1401 int i; /* index of *z in zonelist zones */
1402 int n; /* node that zone *z is on */
1404 zlc = zonelist->zlcache_ptr;
1405 if (!zlc)
1406 return 1;
1408 i = z - zonelist->_zonerefs;
1409 n = zlc->z_to_n[i];
1411 /* This zone is worth trying if it is allowed but not full */
1412 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1416 * Given 'z' scanning a zonelist, set the corresponding bit in
1417 * zlc->fullzones, so that subsequent attempts to allocate a page
1418 * from that zone don't waste time re-examining it.
1420 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1422 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1423 int i; /* index of *z in zonelist zones */
1425 zlc = zonelist->zlcache_ptr;
1426 if (!zlc)
1427 return;
1429 i = z - zonelist->_zonerefs;
1431 set_bit(i, zlc->fullzones);
1434 #else /* CONFIG_NUMA */
1436 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1438 return NULL;
1441 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1442 nodemask_t *allowednodes)
1444 return 1;
1447 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1450 #endif /* CONFIG_NUMA */
1453 * get_page_from_freelist goes through the zonelist trying to allocate
1454 * a page.
1456 static struct page *
1457 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1458 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1459 struct zone *preferred_zone, int migratetype)
1461 struct zoneref *z;
1462 struct page *page = NULL;
1463 int classzone_idx;
1464 struct zone *zone;
1465 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1466 int zlc_active = 0; /* set if using zonelist_cache */
1467 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1469 classzone_idx = zone_idx(preferred_zone);
1470 zonelist_scan:
1472 * Scan zonelist, looking for a zone with enough free.
1473 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1475 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1476 high_zoneidx, nodemask) {
1477 if (NUMA_BUILD && zlc_active &&
1478 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1479 continue;
1480 if ((alloc_flags & ALLOC_CPUSET) &&
1481 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1482 goto try_next_zone;
1484 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1485 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1486 unsigned long mark;
1487 int ret;
1489 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1490 if (zone_watermark_ok(zone, order, mark,
1491 classzone_idx, alloc_flags))
1492 goto try_this_zone;
1494 if (zone_reclaim_mode == 0)
1495 goto this_zone_full;
1497 ret = zone_reclaim(zone, gfp_mask, order);
1498 switch (ret) {
1499 case ZONE_RECLAIM_NOSCAN:
1500 /* did not scan */
1501 goto try_next_zone;
1502 case ZONE_RECLAIM_FULL:
1503 /* scanned but unreclaimable */
1504 goto this_zone_full;
1505 default:
1506 /* did we reclaim enough */
1507 if (!zone_watermark_ok(zone, order, mark,
1508 classzone_idx, alloc_flags))
1509 goto this_zone_full;
1513 try_this_zone:
1514 page = buffered_rmqueue(preferred_zone, zone, order,
1515 gfp_mask, migratetype);
1516 if (page)
1517 break;
1518 this_zone_full:
1519 if (NUMA_BUILD)
1520 zlc_mark_zone_full(zonelist, z);
1521 try_next_zone:
1522 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1524 * we do zlc_setup after the first zone is tried but only
1525 * if there are multiple nodes make it worthwhile
1527 allowednodes = zlc_setup(zonelist, alloc_flags);
1528 zlc_active = 1;
1529 did_zlc_setup = 1;
1533 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1534 /* Disable zlc cache for second zonelist scan */
1535 zlc_active = 0;
1536 goto zonelist_scan;
1538 return page;
1541 static inline int
1542 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1543 unsigned long pages_reclaimed)
1545 /* Do not loop if specifically requested */
1546 if (gfp_mask & __GFP_NORETRY)
1547 return 0;
1550 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1551 * means __GFP_NOFAIL, but that may not be true in other
1552 * implementations.
1554 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1555 return 1;
1558 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1559 * specified, then we retry until we no longer reclaim any pages
1560 * (above), or we've reclaimed an order of pages at least as
1561 * large as the allocation's order. In both cases, if the
1562 * allocation still fails, we stop retrying.
1564 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1565 return 1;
1568 * Don't let big-order allocations loop unless the caller
1569 * explicitly requests that.
1571 if (gfp_mask & __GFP_NOFAIL)
1572 return 1;
1574 return 0;
1577 static inline struct page *
1578 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1579 struct zonelist *zonelist, enum zone_type high_zoneidx,
1580 nodemask_t *nodemask, struct zone *preferred_zone,
1581 int migratetype)
1583 struct page *page;
1585 /* Acquire the OOM killer lock for the zones in zonelist */
1586 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1587 schedule_timeout_uninterruptible(1);
1588 return NULL;
1592 * Go through the zonelist yet one more time, keep very high watermark
1593 * here, this is only to catch a parallel oom killing, we must fail if
1594 * we're still under heavy pressure.
1596 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1597 order, zonelist, high_zoneidx,
1598 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1599 preferred_zone, migratetype);
1600 if (page)
1601 goto out;
1603 /* The OOM killer will not help higher order allocs */
1604 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1605 goto out;
1607 /* Exhausted what can be done so it's blamo time */
1608 out_of_memory(zonelist, gfp_mask, order);
1610 out:
1611 clear_zonelist_oom(zonelist, gfp_mask);
1612 return page;
1615 /* The really slow allocator path where we enter direct reclaim */
1616 static inline struct page *
1617 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1618 struct zonelist *zonelist, enum zone_type high_zoneidx,
1619 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1620 int migratetype, unsigned long *did_some_progress)
1622 struct page *page = NULL;
1623 struct reclaim_state reclaim_state;
1624 struct task_struct *p = current;
1626 cond_resched();
1628 /* We now go into synchronous reclaim */
1629 cpuset_memory_pressure_bump();
1632 * The task's cpuset might have expanded its set of allowable nodes
1634 p->flags |= PF_MEMALLOC;
1635 lockdep_set_current_reclaim_state(gfp_mask);
1636 reclaim_state.reclaimed_slab = 0;
1637 p->reclaim_state = &reclaim_state;
1639 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1641 p->reclaim_state = NULL;
1642 lockdep_clear_current_reclaim_state();
1643 p->flags &= ~PF_MEMALLOC;
1645 cond_resched();
1647 if (order != 0)
1648 drain_all_pages();
1650 if (likely(*did_some_progress))
1651 page = get_page_from_freelist(gfp_mask, nodemask, order,
1652 zonelist, high_zoneidx,
1653 alloc_flags, preferred_zone,
1654 migratetype);
1655 return page;
1659 * This is called in the allocator slow-path if the allocation request is of
1660 * sufficient urgency to ignore watermarks and take other desperate measures
1662 static inline struct page *
1663 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1664 struct zonelist *zonelist, enum zone_type high_zoneidx,
1665 nodemask_t *nodemask, struct zone *preferred_zone,
1666 int migratetype)
1668 struct page *page;
1670 do {
1671 page = get_page_from_freelist(gfp_mask, nodemask, order,
1672 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1673 preferred_zone, migratetype);
1675 if (!page && gfp_mask & __GFP_NOFAIL)
1676 congestion_wait(BLK_RW_ASYNC, HZ/50);
1677 } while (!page && (gfp_mask & __GFP_NOFAIL));
1679 return page;
1682 static inline
1683 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1684 enum zone_type high_zoneidx)
1686 struct zoneref *z;
1687 struct zone *zone;
1689 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1690 wakeup_kswapd(zone, order);
1693 static inline int
1694 gfp_to_alloc_flags(gfp_t gfp_mask)
1696 struct task_struct *p = current;
1697 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1698 const gfp_t wait = gfp_mask & __GFP_WAIT;
1700 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1701 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1704 * The caller may dip into page reserves a bit more if the caller
1705 * cannot run direct reclaim, or if the caller has realtime scheduling
1706 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1707 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1709 alloc_flags |= (gfp_mask & __GFP_HIGH);
1711 if (!wait) {
1712 alloc_flags |= ALLOC_HARDER;
1714 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1715 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1717 alloc_flags &= ~ALLOC_CPUSET;
1718 } else if (unlikely(rt_task(p)))
1719 alloc_flags |= ALLOC_HARDER;
1721 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1722 if (!in_interrupt() &&
1723 ((p->flags & PF_MEMALLOC) ||
1724 unlikely(test_thread_flag(TIF_MEMDIE))))
1725 alloc_flags |= ALLOC_NO_WATERMARKS;
1728 return alloc_flags;
1731 static inline struct page *
1732 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1733 struct zonelist *zonelist, enum zone_type high_zoneidx,
1734 nodemask_t *nodemask, struct zone *preferred_zone,
1735 int migratetype)
1737 const gfp_t wait = gfp_mask & __GFP_WAIT;
1738 struct page *page = NULL;
1739 int alloc_flags;
1740 unsigned long pages_reclaimed = 0;
1741 unsigned long did_some_progress;
1742 struct task_struct *p = current;
1745 * In the slowpath, we sanity check order to avoid ever trying to
1746 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1747 * be using allocators in order of preference for an area that is
1748 * too large.
1750 if (order >= MAX_ORDER) {
1751 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1752 return NULL;
1756 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1757 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1758 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1759 * using a larger set of nodes after it has established that the
1760 * allowed per node queues are empty and that nodes are
1761 * over allocated.
1763 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1764 goto nopage;
1766 wake_all_kswapd(order, zonelist, high_zoneidx);
1769 * OK, we're below the kswapd watermark and have kicked background
1770 * reclaim. Now things get more complex, so set up alloc_flags according
1771 * to how we want to proceed.
1773 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1775 restart:
1776 /* This is the last chance, in general, before the goto nopage. */
1777 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1778 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1779 preferred_zone, migratetype);
1780 if (page)
1781 goto got_pg;
1783 rebalance:
1784 /* Allocate without watermarks if the context allows */
1785 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1786 page = __alloc_pages_high_priority(gfp_mask, order,
1787 zonelist, high_zoneidx, nodemask,
1788 preferred_zone, migratetype);
1789 if (page)
1790 goto got_pg;
1793 /* Atomic allocations - we can't balance anything */
1794 if (!wait)
1795 goto nopage;
1797 /* Avoid recursion of direct reclaim */
1798 if (p->flags & PF_MEMALLOC)
1799 goto nopage;
1801 /* Avoid allocations with no watermarks from looping endlessly */
1802 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1803 goto nopage;
1805 /* Try direct reclaim and then allocating */
1806 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1807 zonelist, high_zoneidx,
1808 nodemask,
1809 alloc_flags, preferred_zone,
1810 migratetype, &did_some_progress);
1811 if (page)
1812 goto got_pg;
1815 * If we failed to make any progress reclaiming, then we are
1816 * running out of options and have to consider going OOM
1818 if (!did_some_progress) {
1819 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1820 if (oom_killer_disabled)
1821 goto nopage;
1822 page = __alloc_pages_may_oom(gfp_mask, order,
1823 zonelist, high_zoneidx,
1824 nodemask, preferred_zone,
1825 migratetype);
1826 if (page)
1827 goto got_pg;
1830 * The OOM killer does not trigger for high-order
1831 * ~__GFP_NOFAIL allocations so if no progress is being
1832 * made, there are no other options and retrying is
1833 * unlikely to help.
1835 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1836 !(gfp_mask & __GFP_NOFAIL))
1837 goto nopage;
1839 goto restart;
1843 /* Check if we should retry the allocation */
1844 pages_reclaimed += did_some_progress;
1845 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1846 /* Wait for some write requests to complete then retry */
1847 congestion_wait(BLK_RW_ASYNC, HZ/50);
1848 goto rebalance;
1851 nopage:
1852 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1853 printk(KERN_WARNING "%s: page allocation failure."
1854 " order:%d, mode:0x%x\n",
1855 p->comm, order, gfp_mask);
1856 dump_stack();
1857 show_mem();
1859 return page;
1860 got_pg:
1861 if (kmemcheck_enabled)
1862 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1863 return page;
1868 * This is the 'heart' of the zoned buddy allocator.
1870 struct page *
1871 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1872 struct zonelist *zonelist, nodemask_t *nodemask)
1874 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1875 struct zone *preferred_zone;
1876 struct page *page;
1877 int migratetype = allocflags_to_migratetype(gfp_mask);
1879 gfp_mask &= gfp_allowed_mask;
1881 lockdep_trace_alloc(gfp_mask);
1883 might_sleep_if(gfp_mask & __GFP_WAIT);
1885 if (should_fail_alloc_page(gfp_mask, order))
1886 return NULL;
1889 * Check the zones suitable for the gfp_mask contain at least one
1890 * valid zone. It's possible to have an empty zonelist as a result
1891 * of GFP_THISNODE and a memoryless node
1893 if (unlikely(!zonelist->_zonerefs->zone))
1894 return NULL;
1896 /* The preferred zone is used for statistics later */
1897 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1898 if (!preferred_zone)
1899 return NULL;
1901 /* First allocation attempt */
1902 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1903 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1904 preferred_zone, migratetype);
1905 if (unlikely(!page))
1906 page = __alloc_pages_slowpath(gfp_mask, order,
1907 zonelist, high_zoneidx, nodemask,
1908 preferred_zone, migratetype);
1910 return page;
1912 EXPORT_SYMBOL(__alloc_pages_nodemask);
1915 * Common helper functions.
1917 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1919 struct page * page;
1920 page = alloc_pages(gfp_mask, order);
1921 if (!page)
1922 return 0;
1923 return (unsigned long) page_address(page);
1926 EXPORT_SYMBOL(__get_free_pages);
1928 unsigned long get_zeroed_page(gfp_t gfp_mask)
1930 struct page * page;
1933 * get_zeroed_page() returns a 32-bit address, which cannot represent
1934 * a highmem page
1936 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1938 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1939 if (page)
1940 return (unsigned long) page_address(page);
1941 return 0;
1944 EXPORT_SYMBOL(get_zeroed_page);
1946 void __pagevec_free(struct pagevec *pvec)
1948 int i = pagevec_count(pvec);
1950 while (--i >= 0)
1951 free_hot_cold_page(pvec->pages[i], pvec->cold);
1954 void __free_pages(struct page *page, unsigned int order)
1956 if (put_page_testzero(page)) {
1957 if (order == 0)
1958 free_hot_page(page);
1959 else
1960 __free_pages_ok(page, order);
1964 EXPORT_SYMBOL(__free_pages);
1966 void free_pages(unsigned long addr, unsigned int order)
1968 if (addr != 0) {
1969 VM_BUG_ON(!virt_addr_valid((void *)addr));
1970 __free_pages(virt_to_page((void *)addr), order);
1974 EXPORT_SYMBOL(free_pages);
1977 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1978 * @size: the number of bytes to allocate
1979 * @gfp_mask: GFP flags for the allocation
1981 * This function is similar to alloc_pages(), except that it allocates the
1982 * minimum number of pages to satisfy the request. alloc_pages() can only
1983 * allocate memory in power-of-two pages.
1985 * This function is also limited by MAX_ORDER.
1987 * Memory allocated by this function must be released by free_pages_exact().
1989 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1991 unsigned int order = get_order(size);
1992 unsigned long addr;
1994 addr = __get_free_pages(gfp_mask, order);
1995 if (addr) {
1996 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1997 unsigned long used = addr + PAGE_ALIGN(size);
1999 split_page(virt_to_page((void *)addr), order);
2000 while (used < alloc_end) {
2001 free_page(used);
2002 used += PAGE_SIZE;
2006 return (void *)addr;
2008 EXPORT_SYMBOL(alloc_pages_exact);
2011 * free_pages_exact - release memory allocated via alloc_pages_exact()
2012 * @virt: the value returned by alloc_pages_exact.
2013 * @size: size of allocation, same value as passed to alloc_pages_exact().
2015 * Release the memory allocated by a previous call to alloc_pages_exact.
2017 void free_pages_exact(void *virt, size_t size)
2019 unsigned long addr = (unsigned long)virt;
2020 unsigned long end = addr + PAGE_ALIGN(size);
2022 while (addr < end) {
2023 free_page(addr);
2024 addr += PAGE_SIZE;
2027 EXPORT_SYMBOL(free_pages_exact);
2029 static unsigned int nr_free_zone_pages(int offset)
2031 struct zoneref *z;
2032 struct zone *zone;
2034 /* Just pick one node, since fallback list is circular */
2035 unsigned int sum = 0;
2037 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2039 for_each_zone_zonelist(zone, z, zonelist, offset) {
2040 unsigned long size = zone->present_pages;
2041 unsigned long high = high_wmark_pages(zone);
2042 if (size > high)
2043 sum += size - high;
2046 return sum;
2050 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2052 unsigned int nr_free_buffer_pages(void)
2054 return nr_free_zone_pages(gfp_zone(GFP_USER));
2056 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2059 * Amount of free RAM allocatable within all zones
2061 unsigned int nr_free_pagecache_pages(void)
2063 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2066 static inline void show_node(struct zone *zone)
2068 if (NUMA_BUILD)
2069 printk("Node %d ", zone_to_nid(zone));
2072 void si_meminfo(struct sysinfo *val)
2074 val->totalram = totalram_pages;
2075 val->sharedram = 0;
2076 val->freeram = global_page_state(NR_FREE_PAGES);
2077 val->bufferram = nr_blockdev_pages();
2078 val->totalhigh = totalhigh_pages;
2079 val->freehigh = nr_free_highpages();
2080 val->mem_unit = PAGE_SIZE;
2083 EXPORT_SYMBOL(si_meminfo);
2085 #ifdef CONFIG_NUMA
2086 void si_meminfo_node(struct sysinfo *val, int nid)
2088 pg_data_t *pgdat = NODE_DATA(nid);
2090 val->totalram = pgdat->node_present_pages;
2091 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2092 #ifdef CONFIG_HIGHMEM
2093 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2094 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2095 NR_FREE_PAGES);
2096 #else
2097 val->totalhigh = 0;
2098 val->freehigh = 0;
2099 #endif
2100 val->mem_unit = PAGE_SIZE;
2102 #endif
2104 #define K(x) ((x) << (PAGE_SHIFT-10))
2107 * Show free area list (used inside shift_scroll-lock stuff)
2108 * We also calculate the percentage fragmentation. We do this by counting the
2109 * memory on each free list with the exception of the first item on the list.
2111 void show_free_areas(void)
2113 int cpu;
2114 struct zone *zone;
2116 for_each_populated_zone(zone) {
2117 show_node(zone);
2118 printk("%s per-cpu:\n", zone->name);
2120 for_each_online_cpu(cpu) {
2121 struct per_cpu_pageset *pageset;
2123 pageset = zone_pcp(zone, cpu);
2125 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2126 cpu, pageset->pcp.high,
2127 pageset->pcp.batch, pageset->pcp.count);
2131 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2132 " inactive_file:%lu"
2133 " unevictable:%lu"
2134 " dirty:%lu writeback:%lu unstable:%lu\n"
2135 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2136 global_page_state(NR_ACTIVE_ANON),
2137 global_page_state(NR_ACTIVE_FILE),
2138 global_page_state(NR_INACTIVE_ANON),
2139 global_page_state(NR_INACTIVE_FILE),
2140 global_page_state(NR_UNEVICTABLE),
2141 global_page_state(NR_FILE_DIRTY),
2142 global_page_state(NR_WRITEBACK),
2143 global_page_state(NR_UNSTABLE_NFS),
2144 global_page_state(NR_FREE_PAGES),
2145 global_page_state(NR_SLAB_RECLAIMABLE) +
2146 global_page_state(NR_SLAB_UNRECLAIMABLE),
2147 global_page_state(NR_FILE_MAPPED),
2148 global_page_state(NR_PAGETABLE),
2149 global_page_state(NR_BOUNCE));
2151 for_each_populated_zone(zone) {
2152 int i;
2154 show_node(zone);
2155 printk("%s"
2156 " free:%lukB"
2157 " min:%lukB"
2158 " low:%lukB"
2159 " high:%lukB"
2160 " active_anon:%lukB"
2161 " inactive_anon:%lukB"
2162 " active_file:%lukB"
2163 " inactive_file:%lukB"
2164 " unevictable:%lukB"
2165 " present:%lukB"
2166 " pages_scanned:%lu"
2167 " all_unreclaimable? %s"
2168 "\n",
2169 zone->name,
2170 K(zone_page_state(zone, NR_FREE_PAGES)),
2171 K(min_wmark_pages(zone)),
2172 K(low_wmark_pages(zone)),
2173 K(high_wmark_pages(zone)),
2174 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2175 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2176 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2177 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2178 K(zone_page_state(zone, NR_UNEVICTABLE)),
2179 K(zone->present_pages),
2180 zone->pages_scanned,
2181 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2183 printk("lowmem_reserve[]:");
2184 for (i = 0; i < MAX_NR_ZONES; i++)
2185 printk(" %lu", zone->lowmem_reserve[i]);
2186 printk("\n");
2189 for_each_populated_zone(zone) {
2190 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2192 show_node(zone);
2193 printk("%s: ", zone->name);
2195 spin_lock_irqsave(&zone->lock, flags);
2196 for (order = 0; order < MAX_ORDER; order++) {
2197 nr[order] = zone->free_area[order].nr_free;
2198 total += nr[order] << order;
2200 spin_unlock_irqrestore(&zone->lock, flags);
2201 for (order = 0; order < MAX_ORDER; order++)
2202 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2203 printk("= %lukB\n", K(total));
2206 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2208 show_swap_cache_info();
2211 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2213 zoneref->zone = zone;
2214 zoneref->zone_idx = zone_idx(zone);
2218 * Builds allocation fallback zone lists.
2220 * Add all populated zones of a node to the zonelist.
2222 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2223 int nr_zones, enum zone_type zone_type)
2225 struct zone *zone;
2227 BUG_ON(zone_type >= MAX_NR_ZONES);
2228 zone_type++;
2230 do {
2231 zone_type--;
2232 zone = pgdat->node_zones + zone_type;
2233 if (populated_zone(zone)) {
2234 zoneref_set_zone(zone,
2235 &zonelist->_zonerefs[nr_zones++]);
2236 check_highest_zone(zone_type);
2239 } while (zone_type);
2240 return nr_zones;
2245 * zonelist_order:
2246 * 0 = automatic detection of better ordering.
2247 * 1 = order by ([node] distance, -zonetype)
2248 * 2 = order by (-zonetype, [node] distance)
2250 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2251 * the same zonelist. So only NUMA can configure this param.
2253 #define ZONELIST_ORDER_DEFAULT 0
2254 #define ZONELIST_ORDER_NODE 1
2255 #define ZONELIST_ORDER_ZONE 2
2257 /* zonelist order in the kernel.
2258 * set_zonelist_order() will set this to NODE or ZONE.
2260 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2261 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2264 #ifdef CONFIG_NUMA
2265 /* The value user specified ....changed by config */
2266 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2267 /* string for sysctl */
2268 #define NUMA_ZONELIST_ORDER_LEN 16
2269 char numa_zonelist_order[16] = "default";
2272 * interface for configure zonelist ordering.
2273 * command line option "numa_zonelist_order"
2274 * = "[dD]efault - default, automatic configuration.
2275 * = "[nN]ode - order by node locality, then by zone within node
2276 * = "[zZ]one - order by zone, then by locality within zone
2279 static int __parse_numa_zonelist_order(char *s)
2281 if (*s == 'd' || *s == 'D') {
2282 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2283 } else if (*s == 'n' || *s == 'N') {
2284 user_zonelist_order = ZONELIST_ORDER_NODE;
2285 } else if (*s == 'z' || *s == 'Z') {
2286 user_zonelist_order = ZONELIST_ORDER_ZONE;
2287 } else {
2288 printk(KERN_WARNING
2289 "Ignoring invalid numa_zonelist_order value: "
2290 "%s\n", s);
2291 return -EINVAL;
2293 return 0;
2296 static __init int setup_numa_zonelist_order(char *s)
2298 if (s)
2299 return __parse_numa_zonelist_order(s);
2300 return 0;
2302 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2305 * sysctl handler for numa_zonelist_order
2307 int numa_zonelist_order_handler(ctl_table *table, int write,
2308 struct file *file, void __user *buffer, size_t *length,
2309 loff_t *ppos)
2311 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2312 int ret;
2314 if (write)
2315 strncpy(saved_string, (char*)table->data,
2316 NUMA_ZONELIST_ORDER_LEN);
2317 ret = proc_dostring(table, write, file, buffer, length, ppos);
2318 if (ret)
2319 return ret;
2320 if (write) {
2321 int oldval = user_zonelist_order;
2322 if (__parse_numa_zonelist_order((char*)table->data)) {
2324 * bogus value. restore saved string
2326 strncpy((char*)table->data, saved_string,
2327 NUMA_ZONELIST_ORDER_LEN);
2328 user_zonelist_order = oldval;
2329 } else if (oldval != user_zonelist_order)
2330 build_all_zonelists();
2332 return 0;
2336 #define MAX_NODE_LOAD (nr_online_nodes)
2337 static int node_load[MAX_NUMNODES];
2340 * find_next_best_node - find the next node that should appear in a given node's fallback list
2341 * @node: node whose fallback list we're appending
2342 * @used_node_mask: nodemask_t of already used nodes
2344 * We use a number of factors to determine which is the next node that should
2345 * appear on a given node's fallback list. The node should not have appeared
2346 * already in @node's fallback list, and it should be the next closest node
2347 * according to the distance array (which contains arbitrary distance values
2348 * from each node to each node in the system), and should also prefer nodes
2349 * with no CPUs, since presumably they'll have very little allocation pressure
2350 * on them otherwise.
2351 * It returns -1 if no node is found.
2353 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2355 int n, val;
2356 int min_val = INT_MAX;
2357 int best_node = -1;
2358 const struct cpumask *tmp = cpumask_of_node(0);
2360 /* Use the local node if we haven't already */
2361 if (!node_isset(node, *used_node_mask)) {
2362 node_set(node, *used_node_mask);
2363 return node;
2366 for_each_node_state(n, N_HIGH_MEMORY) {
2368 /* Don't want a node to appear more than once */
2369 if (node_isset(n, *used_node_mask))
2370 continue;
2372 /* Use the distance array to find the distance */
2373 val = node_distance(node, n);
2375 /* Penalize nodes under us ("prefer the next node") */
2376 val += (n < node);
2378 /* Give preference to headless and unused nodes */
2379 tmp = cpumask_of_node(n);
2380 if (!cpumask_empty(tmp))
2381 val += PENALTY_FOR_NODE_WITH_CPUS;
2383 /* Slight preference for less loaded node */
2384 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2385 val += node_load[n];
2387 if (val < min_val) {
2388 min_val = val;
2389 best_node = n;
2393 if (best_node >= 0)
2394 node_set(best_node, *used_node_mask);
2396 return best_node;
2401 * Build zonelists ordered by node and zones within node.
2402 * This results in maximum locality--normal zone overflows into local
2403 * DMA zone, if any--but risks exhausting DMA zone.
2405 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2407 int j;
2408 struct zonelist *zonelist;
2410 zonelist = &pgdat->node_zonelists[0];
2411 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2413 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2414 MAX_NR_ZONES - 1);
2415 zonelist->_zonerefs[j].zone = NULL;
2416 zonelist->_zonerefs[j].zone_idx = 0;
2420 * Build gfp_thisnode zonelists
2422 static void build_thisnode_zonelists(pg_data_t *pgdat)
2424 int j;
2425 struct zonelist *zonelist;
2427 zonelist = &pgdat->node_zonelists[1];
2428 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2429 zonelist->_zonerefs[j].zone = NULL;
2430 zonelist->_zonerefs[j].zone_idx = 0;
2434 * Build zonelists ordered by zone and nodes within zones.
2435 * This results in conserving DMA zone[s] until all Normal memory is
2436 * exhausted, but results in overflowing to remote node while memory
2437 * may still exist in local DMA zone.
2439 static int node_order[MAX_NUMNODES];
2441 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2443 int pos, j, node;
2444 int zone_type; /* needs to be signed */
2445 struct zone *z;
2446 struct zonelist *zonelist;
2448 zonelist = &pgdat->node_zonelists[0];
2449 pos = 0;
2450 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2451 for (j = 0; j < nr_nodes; j++) {
2452 node = node_order[j];
2453 z = &NODE_DATA(node)->node_zones[zone_type];
2454 if (populated_zone(z)) {
2455 zoneref_set_zone(z,
2456 &zonelist->_zonerefs[pos++]);
2457 check_highest_zone(zone_type);
2461 zonelist->_zonerefs[pos].zone = NULL;
2462 zonelist->_zonerefs[pos].zone_idx = 0;
2465 static int default_zonelist_order(void)
2467 int nid, zone_type;
2468 unsigned long low_kmem_size,total_size;
2469 struct zone *z;
2470 int average_size;
2472 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2473 * If they are really small and used heavily, the system can fall
2474 * into OOM very easily.
2475 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2477 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2478 low_kmem_size = 0;
2479 total_size = 0;
2480 for_each_online_node(nid) {
2481 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2482 z = &NODE_DATA(nid)->node_zones[zone_type];
2483 if (populated_zone(z)) {
2484 if (zone_type < ZONE_NORMAL)
2485 low_kmem_size += z->present_pages;
2486 total_size += z->present_pages;
2490 if (!low_kmem_size || /* there are no DMA area. */
2491 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2492 return ZONELIST_ORDER_NODE;
2494 * look into each node's config.
2495 * If there is a node whose DMA/DMA32 memory is very big area on
2496 * local memory, NODE_ORDER may be suitable.
2498 average_size = total_size /
2499 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2500 for_each_online_node(nid) {
2501 low_kmem_size = 0;
2502 total_size = 0;
2503 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2504 z = &NODE_DATA(nid)->node_zones[zone_type];
2505 if (populated_zone(z)) {
2506 if (zone_type < ZONE_NORMAL)
2507 low_kmem_size += z->present_pages;
2508 total_size += z->present_pages;
2511 if (low_kmem_size &&
2512 total_size > average_size && /* ignore small node */
2513 low_kmem_size > total_size * 70/100)
2514 return ZONELIST_ORDER_NODE;
2516 return ZONELIST_ORDER_ZONE;
2519 static void set_zonelist_order(void)
2521 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2522 current_zonelist_order = default_zonelist_order();
2523 else
2524 current_zonelist_order = user_zonelist_order;
2527 static void build_zonelists(pg_data_t *pgdat)
2529 int j, node, load;
2530 enum zone_type i;
2531 nodemask_t used_mask;
2532 int local_node, prev_node;
2533 struct zonelist *zonelist;
2534 int order = current_zonelist_order;
2536 /* initialize zonelists */
2537 for (i = 0; i < MAX_ZONELISTS; i++) {
2538 zonelist = pgdat->node_zonelists + i;
2539 zonelist->_zonerefs[0].zone = NULL;
2540 zonelist->_zonerefs[0].zone_idx = 0;
2543 /* NUMA-aware ordering of nodes */
2544 local_node = pgdat->node_id;
2545 load = nr_online_nodes;
2546 prev_node = local_node;
2547 nodes_clear(used_mask);
2549 memset(node_order, 0, sizeof(node_order));
2550 j = 0;
2552 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2553 int distance = node_distance(local_node, node);
2556 * If another node is sufficiently far away then it is better
2557 * to reclaim pages in a zone before going off node.
2559 if (distance > RECLAIM_DISTANCE)
2560 zone_reclaim_mode = 1;
2563 * We don't want to pressure a particular node.
2564 * So adding penalty to the first node in same
2565 * distance group to make it round-robin.
2567 if (distance != node_distance(local_node, prev_node))
2568 node_load[node] = load;
2570 prev_node = node;
2571 load--;
2572 if (order == ZONELIST_ORDER_NODE)
2573 build_zonelists_in_node_order(pgdat, node);
2574 else
2575 node_order[j++] = node; /* remember order */
2578 if (order == ZONELIST_ORDER_ZONE) {
2579 /* calculate node order -- i.e., DMA last! */
2580 build_zonelists_in_zone_order(pgdat, j);
2583 build_thisnode_zonelists(pgdat);
2586 /* Construct the zonelist performance cache - see further mmzone.h */
2587 static void build_zonelist_cache(pg_data_t *pgdat)
2589 struct zonelist *zonelist;
2590 struct zonelist_cache *zlc;
2591 struct zoneref *z;
2593 zonelist = &pgdat->node_zonelists[0];
2594 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2595 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2596 for (z = zonelist->_zonerefs; z->zone; z++)
2597 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2601 #else /* CONFIG_NUMA */
2603 static void set_zonelist_order(void)
2605 current_zonelist_order = ZONELIST_ORDER_ZONE;
2608 static void build_zonelists(pg_data_t *pgdat)
2610 int node, local_node;
2611 enum zone_type j;
2612 struct zonelist *zonelist;
2614 local_node = pgdat->node_id;
2616 zonelist = &pgdat->node_zonelists[0];
2617 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2620 * Now we build the zonelist so that it contains the zones
2621 * of all the other nodes.
2622 * We don't want to pressure a particular node, so when
2623 * building the zones for node N, we make sure that the
2624 * zones coming right after the local ones are those from
2625 * node N+1 (modulo N)
2627 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2628 if (!node_online(node))
2629 continue;
2630 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2631 MAX_NR_ZONES - 1);
2633 for (node = 0; node < local_node; node++) {
2634 if (!node_online(node))
2635 continue;
2636 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2637 MAX_NR_ZONES - 1);
2640 zonelist->_zonerefs[j].zone = NULL;
2641 zonelist->_zonerefs[j].zone_idx = 0;
2644 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2645 static void build_zonelist_cache(pg_data_t *pgdat)
2647 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2650 #endif /* CONFIG_NUMA */
2652 /* return values int ....just for stop_machine() */
2653 static int __build_all_zonelists(void *dummy)
2655 int nid;
2657 #ifdef CONFIG_NUMA
2658 memset(node_load, 0, sizeof(node_load));
2659 #endif
2660 for_each_online_node(nid) {
2661 pg_data_t *pgdat = NODE_DATA(nid);
2663 build_zonelists(pgdat);
2664 build_zonelist_cache(pgdat);
2666 return 0;
2669 void build_all_zonelists(void)
2671 set_zonelist_order();
2673 if (system_state == SYSTEM_BOOTING) {
2674 __build_all_zonelists(NULL);
2675 mminit_verify_zonelist();
2676 cpuset_init_current_mems_allowed();
2677 } else {
2678 /* we have to stop all cpus to guarantee there is no user
2679 of zonelist */
2680 stop_machine(__build_all_zonelists, NULL, NULL);
2681 /* cpuset refresh routine should be here */
2683 vm_total_pages = nr_free_pagecache_pages();
2685 * Disable grouping by mobility if the number of pages in the
2686 * system is too low to allow the mechanism to work. It would be
2687 * more accurate, but expensive to check per-zone. This check is
2688 * made on memory-hotadd so a system can start with mobility
2689 * disabled and enable it later
2691 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2692 page_group_by_mobility_disabled = 1;
2693 else
2694 page_group_by_mobility_disabled = 0;
2696 printk("Built %i zonelists in %s order, mobility grouping %s. "
2697 "Total pages: %ld\n",
2698 nr_online_nodes,
2699 zonelist_order_name[current_zonelist_order],
2700 page_group_by_mobility_disabled ? "off" : "on",
2701 vm_total_pages);
2702 #ifdef CONFIG_NUMA
2703 printk("Policy zone: %s\n", zone_names[policy_zone]);
2704 #endif
2708 * Helper functions to size the waitqueue hash table.
2709 * Essentially these want to choose hash table sizes sufficiently
2710 * large so that collisions trying to wait on pages are rare.
2711 * But in fact, the number of active page waitqueues on typical
2712 * systems is ridiculously low, less than 200. So this is even
2713 * conservative, even though it seems large.
2715 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2716 * waitqueues, i.e. the size of the waitq table given the number of pages.
2718 #define PAGES_PER_WAITQUEUE 256
2720 #ifndef CONFIG_MEMORY_HOTPLUG
2721 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2723 unsigned long size = 1;
2725 pages /= PAGES_PER_WAITQUEUE;
2727 while (size < pages)
2728 size <<= 1;
2731 * Once we have dozens or even hundreds of threads sleeping
2732 * on IO we've got bigger problems than wait queue collision.
2733 * Limit the size of the wait table to a reasonable size.
2735 size = min(size, 4096UL);
2737 return max(size, 4UL);
2739 #else
2741 * A zone's size might be changed by hot-add, so it is not possible to determine
2742 * a suitable size for its wait_table. So we use the maximum size now.
2744 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2746 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2747 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2748 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2750 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2751 * or more by the traditional way. (See above). It equals:
2753 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2754 * ia64(16K page size) : = ( 8G + 4M)byte.
2755 * powerpc (64K page size) : = (32G +16M)byte.
2757 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2759 return 4096UL;
2761 #endif
2764 * This is an integer logarithm so that shifts can be used later
2765 * to extract the more random high bits from the multiplicative
2766 * hash function before the remainder is taken.
2768 static inline unsigned long wait_table_bits(unsigned long size)
2770 return ffz(~size);
2773 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2776 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2777 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2778 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2779 * higher will lead to a bigger reserve which will get freed as contiguous
2780 * blocks as reclaim kicks in
2782 static void setup_zone_migrate_reserve(struct zone *zone)
2784 unsigned long start_pfn, pfn, end_pfn;
2785 struct page *page;
2786 unsigned long reserve, block_migratetype;
2788 /* Get the start pfn, end pfn and the number of blocks to reserve */
2789 start_pfn = zone->zone_start_pfn;
2790 end_pfn = start_pfn + zone->spanned_pages;
2791 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2792 pageblock_order;
2794 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2795 if (!pfn_valid(pfn))
2796 continue;
2797 page = pfn_to_page(pfn);
2799 /* Watch out for overlapping nodes */
2800 if (page_to_nid(page) != zone_to_nid(zone))
2801 continue;
2803 /* Blocks with reserved pages will never free, skip them. */
2804 if (PageReserved(page))
2805 continue;
2807 block_migratetype = get_pageblock_migratetype(page);
2809 /* If this block is reserved, account for it */
2810 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2811 reserve--;
2812 continue;
2815 /* Suitable for reserving if this block is movable */
2816 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2817 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2818 move_freepages_block(zone, page, MIGRATE_RESERVE);
2819 reserve--;
2820 continue;
2824 * If the reserve is met and this is a previous reserved block,
2825 * take it back
2827 if (block_migratetype == MIGRATE_RESERVE) {
2828 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2829 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2835 * Initially all pages are reserved - free ones are freed
2836 * up by free_all_bootmem() once the early boot process is
2837 * done. Non-atomic initialization, single-pass.
2839 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2840 unsigned long start_pfn, enum memmap_context context)
2842 struct page *page;
2843 unsigned long end_pfn = start_pfn + size;
2844 unsigned long pfn;
2845 struct zone *z;
2847 if (highest_memmap_pfn < end_pfn - 1)
2848 highest_memmap_pfn = end_pfn - 1;
2850 z = &NODE_DATA(nid)->node_zones[zone];
2851 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2853 * There can be holes in boot-time mem_map[]s
2854 * handed to this function. They do not
2855 * exist on hotplugged memory.
2857 if (context == MEMMAP_EARLY) {
2858 if (!early_pfn_valid(pfn))
2859 continue;
2860 if (!early_pfn_in_nid(pfn, nid))
2861 continue;
2863 page = pfn_to_page(pfn);
2864 set_page_links(page, zone, nid, pfn);
2865 mminit_verify_page_links(page, zone, nid, pfn);
2866 init_page_count(page);
2867 reset_page_mapcount(page);
2868 SetPageReserved(page);
2870 * Mark the block movable so that blocks are reserved for
2871 * movable at startup. This will force kernel allocations
2872 * to reserve their blocks rather than leaking throughout
2873 * the address space during boot when many long-lived
2874 * kernel allocations are made. Later some blocks near
2875 * the start are marked MIGRATE_RESERVE by
2876 * setup_zone_migrate_reserve()
2878 * bitmap is created for zone's valid pfn range. but memmap
2879 * can be created for invalid pages (for alignment)
2880 * check here not to call set_pageblock_migratetype() against
2881 * pfn out of zone.
2883 if ((z->zone_start_pfn <= pfn)
2884 && (pfn < z->zone_start_pfn + z->spanned_pages)
2885 && !(pfn & (pageblock_nr_pages - 1)))
2886 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2888 INIT_LIST_HEAD(&page->lru);
2889 #ifdef WANT_PAGE_VIRTUAL
2890 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2891 if (!is_highmem_idx(zone))
2892 set_page_address(page, __va(pfn << PAGE_SHIFT));
2893 #endif
2897 static void __meminit zone_init_free_lists(struct zone *zone)
2899 int order, t;
2900 for_each_migratetype_order(order, t) {
2901 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2902 zone->free_area[order].nr_free = 0;
2906 #ifndef __HAVE_ARCH_MEMMAP_INIT
2907 #define memmap_init(size, nid, zone, start_pfn) \
2908 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2909 #endif
2911 static int zone_batchsize(struct zone *zone)
2913 #ifdef CONFIG_MMU
2914 int batch;
2917 * The per-cpu-pages pools are set to around 1000th of the
2918 * size of the zone. But no more than 1/2 of a meg.
2920 * OK, so we don't know how big the cache is. So guess.
2922 batch = zone->present_pages / 1024;
2923 if (batch * PAGE_SIZE > 512 * 1024)
2924 batch = (512 * 1024) / PAGE_SIZE;
2925 batch /= 4; /* We effectively *= 4 below */
2926 if (batch < 1)
2927 batch = 1;
2930 * Clamp the batch to a 2^n - 1 value. Having a power
2931 * of 2 value was found to be more likely to have
2932 * suboptimal cache aliasing properties in some cases.
2934 * For example if 2 tasks are alternately allocating
2935 * batches of pages, one task can end up with a lot
2936 * of pages of one half of the possible page colors
2937 * and the other with pages of the other colors.
2939 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2941 return batch;
2943 #else
2944 /* The deferral and batching of frees should be suppressed under NOMMU
2945 * conditions.
2947 * The problem is that NOMMU needs to be able to allocate large chunks
2948 * of contiguous memory as there's no hardware page translation to
2949 * assemble apparent contiguous memory from discontiguous pages.
2951 * Queueing large contiguous runs of pages for batching, however,
2952 * causes the pages to actually be freed in smaller chunks. As there
2953 * can be a significant delay between the individual batches being
2954 * recycled, this leads to the once large chunks of space being
2955 * fragmented and becoming unavailable for high-order allocations.
2957 return 0;
2958 #endif
2961 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2963 struct per_cpu_pages *pcp;
2965 memset(p, 0, sizeof(*p));
2967 pcp = &p->pcp;
2968 pcp->count = 0;
2969 pcp->high = 6 * batch;
2970 pcp->batch = max(1UL, 1 * batch);
2971 INIT_LIST_HEAD(&pcp->list);
2975 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2976 * to the value high for the pageset p.
2979 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2980 unsigned long high)
2982 struct per_cpu_pages *pcp;
2984 pcp = &p->pcp;
2985 pcp->high = high;
2986 pcp->batch = max(1UL, high/4);
2987 if ((high/4) > (PAGE_SHIFT * 8))
2988 pcp->batch = PAGE_SHIFT * 8;
2992 #ifdef CONFIG_NUMA
2994 * Boot pageset table. One per cpu which is going to be used for all
2995 * zones and all nodes. The parameters will be set in such a way
2996 * that an item put on a list will immediately be handed over to
2997 * the buddy list. This is safe since pageset manipulation is done
2998 * with interrupts disabled.
3000 * Some NUMA counter updates may also be caught by the boot pagesets.
3002 * The boot_pagesets must be kept even after bootup is complete for
3003 * unused processors and/or zones. They do play a role for bootstrapping
3004 * hotplugged processors.
3006 * zoneinfo_show() and maybe other functions do
3007 * not check if the processor is online before following the pageset pointer.
3008 * Other parts of the kernel may not check if the zone is available.
3010 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3013 * Dynamically allocate memory for the
3014 * per cpu pageset array in struct zone.
3016 static int __cpuinit process_zones(int cpu)
3018 struct zone *zone, *dzone;
3019 int node = cpu_to_node(cpu);
3021 node_set_state(node, N_CPU); /* this node has a cpu */
3023 for_each_populated_zone(zone) {
3024 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3025 GFP_KERNEL, node);
3026 if (!zone_pcp(zone, cpu))
3027 goto bad;
3029 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3031 if (percpu_pagelist_fraction)
3032 setup_pagelist_highmark(zone_pcp(zone, cpu),
3033 (zone->present_pages / percpu_pagelist_fraction));
3036 return 0;
3037 bad:
3038 for_each_zone(dzone) {
3039 if (!populated_zone(dzone))
3040 continue;
3041 if (dzone == zone)
3042 break;
3043 kfree(zone_pcp(dzone, cpu));
3044 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3046 return -ENOMEM;
3049 static inline void free_zone_pagesets(int cpu)
3051 struct zone *zone;
3053 for_each_zone(zone) {
3054 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3056 /* Free per_cpu_pageset if it is slab allocated */
3057 if (pset != &boot_pageset[cpu])
3058 kfree(pset);
3059 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3063 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3064 unsigned long action,
3065 void *hcpu)
3067 int cpu = (long)hcpu;
3068 int ret = NOTIFY_OK;
3070 switch (action) {
3071 case CPU_UP_PREPARE:
3072 case CPU_UP_PREPARE_FROZEN:
3073 if (process_zones(cpu))
3074 ret = NOTIFY_BAD;
3075 break;
3076 case CPU_UP_CANCELED:
3077 case CPU_UP_CANCELED_FROZEN:
3078 case CPU_DEAD:
3079 case CPU_DEAD_FROZEN:
3080 free_zone_pagesets(cpu);
3081 break;
3082 default:
3083 break;
3085 return ret;
3088 static struct notifier_block __cpuinitdata pageset_notifier =
3089 { &pageset_cpuup_callback, NULL, 0 };
3091 void __init setup_per_cpu_pageset(void)
3093 int err;
3095 /* Initialize per_cpu_pageset for cpu 0.
3096 * A cpuup callback will do this for every cpu
3097 * as it comes online
3099 err = process_zones(smp_processor_id());
3100 BUG_ON(err);
3101 register_cpu_notifier(&pageset_notifier);
3104 #endif
3106 static noinline __init_refok
3107 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3109 int i;
3110 struct pglist_data *pgdat = zone->zone_pgdat;
3111 size_t alloc_size;
3114 * The per-page waitqueue mechanism uses hashed waitqueues
3115 * per zone.
3117 zone->wait_table_hash_nr_entries =
3118 wait_table_hash_nr_entries(zone_size_pages);
3119 zone->wait_table_bits =
3120 wait_table_bits(zone->wait_table_hash_nr_entries);
3121 alloc_size = zone->wait_table_hash_nr_entries
3122 * sizeof(wait_queue_head_t);
3124 if (!slab_is_available()) {
3125 zone->wait_table = (wait_queue_head_t *)
3126 alloc_bootmem_node(pgdat, alloc_size);
3127 } else {
3129 * This case means that a zone whose size was 0 gets new memory
3130 * via memory hot-add.
3131 * But it may be the case that a new node was hot-added. In
3132 * this case vmalloc() will not be able to use this new node's
3133 * memory - this wait_table must be initialized to use this new
3134 * node itself as well.
3135 * To use this new node's memory, further consideration will be
3136 * necessary.
3138 zone->wait_table = vmalloc(alloc_size);
3140 if (!zone->wait_table)
3141 return -ENOMEM;
3143 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3144 init_waitqueue_head(zone->wait_table + i);
3146 return 0;
3149 static __meminit void zone_pcp_init(struct zone *zone)
3151 int cpu;
3152 unsigned long batch = zone_batchsize(zone);
3154 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3155 #ifdef CONFIG_NUMA
3156 /* Early boot. Slab allocator not functional yet */
3157 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3158 setup_pageset(&boot_pageset[cpu],0);
3159 #else
3160 setup_pageset(zone_pcp(zone,cpu), batch);
3161 #endif
3163 if (zone->present_pages)
3164 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3165 zone->name, zone->present_pages, batch);
3168 __meminit int init_currently_empty_zone(struct zone *zone,
3169 unsigned long zone_start_pfn,
3170 unsigned long size,
3171 enum memmap_context context)
3173 struct pglist_data *pgdat = zone->zone_pgdat;
3174 int ret;
3175 ret = zone_wait_table_init(zone, size);
3176 if (ret)
3177 return ret;
3178 pgdat->nr_zones = zone_idx(zone) + 1;
3180 zone->zone_start_pfn = zone_start_pfn;
3182 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3183 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3184 pgdat->node_id,
3185 (unsigned long)zone_idx(zone),
3186 zone_start_pfn, (zone_start_pfn + size));
3188 zone_init_free_lists(zone);
3190 return 0;
3193 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3195 * Basic iterator support. Return the first range of PFNs for a node
3196 * Note: nid == MAX_NUMNODES returns first region regardless of node
3198 static int __meminit first_active_region_index_in_nid(int nid)
3200 int i;
3202 for (i = 0; i < nr_nodemap_entries; i++)
3203 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3204 return i;
3206 return -1;
3210 * Basic iterator support. Return the next active range of PFNs for a node
3211 * Note: nid == MAX_NUMNODES returns next region regardless of node
3213 static int __meminit next_active_region_index_in_nid(int index, int nid)
3215 for (index = index + 1; index < nr_nodemap_entries; index++)
3216 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3217 return index;
3219 return -1;
3222 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3224 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3225 * Architectures may implement their own version but if add_active_range()
3226 * was used and there are no special requirements, this is a convenient
3227 * alternative
3229 int __meminit __early_pfn_to_nid(unsigned long pfn)
3231 int i;
3233 for (i = 0; i < nr_nodemap_entries; i++) {
3234 unsigned long start_pfn = early_node_map[i].start_pfn;
3235 unsigned long end_pfn = early_node_map[i].end_pfn;
3237 if (start_pfn <= pfn && pfn < end_pfn)
3238 return early_node_map[i].nid;
3240 /* This is a memory hole */
3241 return -1;
3243 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3245 int __meminit early_pfn_to_nid(unsigned long pfn)
3247 int nid;
3249 nid = __early_pfn_to_nid(pfn);
3250 if (nid >= 0)
3251 return nid;
3252 /* just returns 0 */
3253 return 0;
3256 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3257 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3259 int nid;
3261 nid = __early_pfn_to_nid(pfn);
3262 if (nid >= 0 && nid != node)
3263 return false;
3264 return true;
3266 #endif
3268 /* Basic iterator support to walk early_node_map[] */
3269 #define for_each_active_range_index_in_nid(i, nid) \
3270 for (i = first_active_region_index_in_nid(nid); i != -1; \
3271 i = next_active_region_index_in_nid(i, nid))
3274 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3275 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3276 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3278 * If an architecture guarantees that all ranges registered with
3279 * add_active_ranges() contain no holes and may be freed, this
3280 * this function may be used instead of calling free_bootmem() manually.
3282 void __init free_bootmem_with_active_regions(int nid,
3283 unsigned long max_low_pfn)
3285 int i;
3287 for_each_active_range_index_in_nid(i, nid) {
3288 unsigned long size_pages = 0;
3289 unsigned long end_pfn = early_node_map[i].end_pfn;
3291 if (early_node_map[i].start_pfn >= max_low_pfn)
3292 continue;
3294 if (end_pfn > max_low_pfn)
3295 end_pfn = max_low_pfn;
3297 size_pages = end_pfn - early_node_map[i].start_pfn;
3298 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3299 PFN_PHYS(early_node_map[i].start_pfn),
3300 size_pages << PAGE_SHIFT);
3304 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3306 int i;
3307 int ret;
3309 for_each_active_range_index_in_nid(i, nid) {
3310 ret = work_fn(early_node_map[i].start_pfn,
3311 early_node_map[i].end_pfn, data);
3312 if (ret)
3313 break;
3317 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3318 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3320 * If an architecture guarantees that all ranges registered with
3321 * add_active_ranges() contain no holes and may be freed, this
3322 * function may be used instead of calling memory_present() manually.
3324 void __init sparse_memory_present_with_active_regions(int nid)
3326 int i;
3328 for_each_active_range_index_in_nid(i, nid)
3329 memory_present(early_node_map[i].nid,
3330 early_node_map[i].start_pfn,
3331 early_node_map[i].end_pfn);
3335 * get_pfn_range_for_nid - Return the start and end page frames for a node
3336 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3337 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3338 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3340 * It returns the start and end page frame of a node based on information
3341 * provided by an arch calling add_active_range(). If called for a node
3342 * with no available memory, a warning is printed and the start and end
3343 * PFNs will be 0.
3345 void __meminit get_pfn_range_for_nid(unsigned int nid,
3346 unsigned long *start_pfn, unsigned long *end_pfn)
3348 int i;
3349 *start_pfn = -1UL;
3350 *end_pfn = 0;
3352 for_each_active_range_index_in_nid(i, nid) {
3353 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3354 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3357 if (*start_pfn == -1UL)
3358 *start_pfn = 0;
3362 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3363 * assumption is made that zones within a node are ordered in monotonic
3364 * increasing memory addresses so that the "highest" populated zone is used
3366 static void __init find_usable_zone_for_movable(void)
3368 int zone_index;
3369 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3370 if (zone_index == ZONE_MOVABLE)
3371 continue;
3373 if (arch_zone_highest_possible_pfn[zone_index] >
3374 arch_zone_lowest_possible_pfn[zone_index])
3375 break;
3378 VM_BUG_ON(zone_index == -1);
3379 movable_zone = zone_index;
3383 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3384 * because it is sized independant of architecture. Unlike the other zones,
3385 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3386 * in each node depending on the size of each node and how evenly kernelcore
3387 * is distributed. This helper function adjusts the zone ranges
3388 * provided by the architecture for a given node by using the end of the
3389 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3390 * zones within a node are in order of monotonic increases memory addresses
3392 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3393 unsigned long zone_type,
3394 unsigned long node_start_pfn,
3395 unsigned long node_end_pfn,
3396 unsigned long *zone_start_pfn,
3397 unsigned long *zone_end_pfn)
3399 /* Only adjust if ZONE_MOVABLE is on this node */
3400 if (zone_movable_pfn[nid]) {
3401 /* Size ZONE_MOVABLE */
3402 if (zone_type == ZONE_MOVABLE) {
3403 *zone_start_pfn = zone_movable_pfn[nid];
3404 *zone_end_pfn = min(node_end_pfn,
3405 arch_zone_highest_possible_pfn[movable_zone]);
3407 /* Adjust for ZONE_MOVABLE starting within this range */
3408 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3409 *zone_end_pfn > zone_movable_pfn[nid]) {
3410 *zone_end_pfn = zone_movable_pfn[nid];
3412 /* Check if this whole range is within ZONE_MOVABLE */
3413 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3414 *zone_start_pfn = *zone_end_pfn;
3419 * Return the number of pages a zone spans in a node, including holes
3420 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3422 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3423 unsigned long zone_type,
3424 unsigned long *ignored)
3426 unsigned long node_start_pfn, node_end_pfn;
3427 unsigned long zone_start_pfn, zone_end_pfn;
3429 /* Get the start and end of the node and zone */
3430 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3431 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3432 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3433 adjust_zone_range_for_zone_movable(nid, zone_type,
3434 node_start_pfn, node_end_pfn,
3435 &zone_start_pfn, &zone_end_pfn);
3437 /* Check that this node has pages within the zone's required range */
3438 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3439 return 0;
3441 /* Move the zone boundaries inside the node if necessary */
3442 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3443 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3445 /* Return the spanned pages */
3446 return zone_end_pfn - zone_start_pfn;
3450 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3451 * then all holes in the requested range will be accounted for.
3453 static unsigned long __meminit __absent_pages_in_range(int nid,
3454 unsigned long range_start_pfn,
3455 unsigned long range_end_pfn)
3457 int i = 0;
3458 unsigned long prev_end_pfn = 0, hole_pages = 0;
3459 unsigned long start_pfn;
3461 /* Find the end_pfn of the first active range of pfns in the node */
3462 i = first_active_region_index_in_nid(nid);
3463 if (i == -1)
3464 return 0;
3466 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3468 /* Account for ranges before physical memory on this node */
3469 if (early_node_map[i].start_pfn > range_start_pfn)
3470 hole_pages = prev_end_pfn - range_start_pfn;
3472 /* Find all holes for the zone within the node */
3473 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3475 /* No need to continue if prev_end_pfn is outside the zone */
3476 if (prev_end_pfn >= range_end_pfn)
3477 break;
3479 /* Make sure the end of the zone is not within the hole */
3480 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3481 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3483 /* Update the hole size cound and move on */
3484 if (start_pfn > range_start_pfn) {
3485 BUG_ON(prev_end_pfn > start_pfn);
3486 hole_pages += start_pfn - prev_end_pfn;
3488 prev_end_pfn = early_node_map[i].end_pfn;
3491 /* Account for ranges past physical memory on this node */
3492 if (range_end_pfn > prev_end_pfn)
3493 hole_pages += range_end_pfn -
3494 max(range_start_pfn, prev_end_pfn);
3496 return hole_pages;
3500 * absent_pages_in_range - Return number of page frames in holes within a range
3501 * @start_pfn: The start PFN to start searching for holes
3502 * @end_pfn: The end PFN to stop searching for holes
3504 * It returns the number of pages frames in memory holes within a range.
3506 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3507 unsigned long end_pfn)
3509 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3512 /* Return the number of page frames in holes in a zone on a node */
3513 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3514 unsigned long zone_type,
3515 unsigned long *ignored)
3517 unsigned long node_start_pfn, node_end_pfn;
3518 unsigned long zone_start_pfn, zone_end_pfn;
3520 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3521 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3522 node_start_pfn);
3523 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3524 node_end_pfn);
3526 adjust_zone_range_for_zone_movable(nid, zone_type,
3527 node_start_pfn, node_end_pfn,
3528 &zone_start_pfn, &zone_end_pfn);
3529 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3532 #else
3533 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3534 unsigned long zone_type,
3535 unsigned long *zones_size)
3537 return zones_size[zone_type];
3540 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3541 unsigned long zone_type,
3542 unsigned long *zholes_size)
3544 if (!zholes_size)
3545 return 0;
3547 return zholes_size[zone_type];
3550 #endif
3552 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3553 unsigned long *zones_size, unsigned long *zholes_size)
3555 unsigned long realtotalpages, totalpages = 0;
3556 enum zone_type i;
3558 for (i = 0; i < MAX_NR_ZONES; i++)
3559 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3560 zones_size);
3561 pgdat->node_spanned_pages = totalpages;
3563 realtotalpages = totalpages;
3564 for (i = 0; i < MAX_NR_ZONES; i++)
3565 realtotalpages -=
3566 zone_absent_pages_in_node(pgdat->node_id, i,
3567 zholes_size);
3568 pgdat->node_present_pages = realtotalpages;
3569 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3570 realtotalpages);
3573 #ifndef CONFIG_SPARSEMEM
3575 * Calculate the size of the zone->blockflags rounded to an unsigned long
3576 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3577 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3578 * round what is now in bits to nearest long in bits, then return it in
3579 * bytes.
3581 static unsigned long __init usemap_size(unsigned long zonesize)
3583 unsigned long usemapsize;
3585 usemapsize = roundup(zonesize, pageblock_nr_pages);
3586 usemapsize = usemapsize >> pageblock_order;
3587 usemapsize *= NR_PAGEBLOCK_BITS;
3588 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3590 return usemapsize / 8;
3593 static void __init setup_usemap(struct pglist_data *pgdat,
3594 struct zone *zone, unsigned long zonesize)
3596 unsigned long usemapsize = usemap_size(zonesize);
3597 zone->pageblock_flags = NULL;
3598 if (usemapsize)
3599 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3601 #else
3602 static void inline setup_usemap(struct pglist_data *pgdat,
3603 struct zone *zone, unsigned long zonesize) {}
3604 #endif /* CONFIG_SPARSEMEM */
3606 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3608 /* Return a sensible default order for the pageblock size. */
3609 static inline int pageblock_default_order(void)
3611 if (HPAGE_SHIFT > PAGE_SHIFT)
3612 return HUGETLB_PAGE_ORDER;
3614 return MAX_ORDER-1;
3617 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3618 static inline void __init set_pageblock_order(unsigned int order)
3620 /* Check that pageblock_nr_pages has not already been setup */
3621 if (pageblock_order)
3622 return;
3625 * Assume the largest contiguous order of interest is a huge page.
3626 * This value may be variable depending on boot parameters on IA64
3628 pageblock_order = order;
3630 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3633 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3634 * and pageblock_default_order() are unused as pageblock_order is set
3635 * at compile-time. See include/linux/pageblock-flags.h for the values of
3636 * pageblock_order based on the kernel config
3638 static inline int pageblock_default_order(unsigned int order)
3640 return MAX_ORDER-1;
3642 #define set_pageblock_order(x) do {} while (0)
3644 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3647 * Set up the zone data structures:
3648 * - mark all pages reserved
3649 * - mark all memory queues empty
3650 * - clear the memory bitmaps
3652 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3653 unsigned long *zones_size, unsigned long *zholes_size)
3655 enum zone_type j;
3656 int nid = pgdat->node_id;
3657 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3658 int ret;
3660 pgdat_resize_init(pgdat);
3661 pgdat->nr_zones = 0;
3662 init_waitqueue_head(&pgdat->kswapd_wait);
3663 pgdat->kswapd_max_order = 0;
3664 pgdat_page_cgroup_init(pgdat);
3666 for (j = 0; j < MAX_NR_ZONES; j++) {
3667 struct zone *zone = pgdat->node_zones + j;
3668 unsigned long size, realsize, memmap_pages;
3669 enum lru_list l;
3671 size = zone_spanned_pages_in_node(nid, j, zones_size);
3672 realsize = size - zone_absent_pages_in_node(nid, j,
3673 zholes_size);
3676 * Adjust realsize so that it accounts for how much memory
3677 * is used by this zone for memmap. This affects the watermark
3678 * and per-cpu initialisations
3680 memmap_pages =
3681 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3682 if (realsize >= memmap_pages) {
3683 realsize -= memmap_pages;
3684 if (memmap_pages)
3685 printk(KERN_DEBUG
3686 " %s zone: %lu pages used for memmap\n",
3687 zone_names[j], memmap_pages);
3688 } else
3689 printk(KERN_WARNING
3690 " %s zone: %lu pages exceeds realsize %lu\n",
3691 zone_names[j], memmap_pages, realsize);
3693 /* Account for reserved pages */
3694 if (j == 0 && realsize > dma_reserve) {
3695 realsize -= dma_reserve;
3696 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3697 zone_names[0], dma_reserve);
3700 if (!is_highmem_idx(j))
3701 nr_kernel_pages += realsize;
3702 nr_all_pages += realsize;
3704 zone->spanned_pages = size;
3705 zone->present_pages = realsize;
3706 #ifdef CONFIG_NUMA
3707 zone->node = nid;
3708 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3709 / 100;
3710 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3711 #endif
3712 zone->name = zone_names[j];
3713 spin_lock_init(&zone->lock);
3714 spin_lock_init(&zone->lru_lock);
3715 zone_seqlock_init(zone);
3716 zone->zone_pgdat = pgdat;
3718 zone->prev_priority = DEF_PRIORITY;
3720 zone_pcp_init(zone);
3721 for_each_lru(l) {
3722 INIT_LIST_HEAD(&zone->lru[l].list);
3723 zone->lru[l].nr_saved_scan = 0;
3725 zone->reclaim_stat.recent_rotated[0] = 0;
3726 zone->reclaim_stat.recent_rotated[1] = 0;
3727 zone->reclaim_stat.recent_scanned[0] = 0;
3728 zone->reclaim_stat.recent_scanned[1] = 0;
3729 zap_zone_vm_stats(zone);
3730 zone->flags = 0;
3731 if (!size)
3732 continue;
3734 set_pageblock_order(pageblock_default_order());
3735 setup_usemap(pgdat, zone, size);
3736 ret = init_currently_empty_zone(zone, zone_start_pfn,
3737 size, MEMMAP_EARLY);
3738 BUG_ON(ret);
3739 memmap_init(size, nid, j, zone_start_pfn);
3740 zone_start_pfn += size;
3744 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3746 /* Skip empty nodes */
3747 if (!pgdat->node_spanned_pages)
3748 return;
3750 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3751 /* ia64 gets its own node_mem_map, before this, without bootmem */
3752 if (!pgdat->node_mem_map) {
3753 unsigned long size, start, end;
3754 struct page *map;
3757 * The zone's endpoints aren't required to be MAX_ORDER
3758 * aligned but the node_mem_map endpoints must be in order
3759 * for the buddy allocator to function correctly.
3761 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3762 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3763 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3764 size = (end - start) * sizeof(struct page);
3765 map = alloc_remap(pgdat->node_id, size);
3766 if (!map)
3767 map = alloc_bootmem_node(pgdat, size);
3768 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3770 #ifndef CONFIG_NEED_MULTIPLE_NODES
3772 * With no DISCONTIG, the global mem_map is just set as node 0's
3774 if (pgdat == NODE_DATA(0)) {
3775 mem_map = NODE_DATA(0)->node_mem_map;
3776 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3777 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3778 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3779 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3781 #endif
3782 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3785 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3786 unsigned long node_start_pfn, unsigned long *zholes_size)
3788 pg_data_t *pgdat = NODE_DATA(nid);
3790 pgdat->node_id = nid;
3791 pgdat->node_start_pfn = node_start_pfn;
3792 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3794 alloc_node_mem_map(pgdat);
3795 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3796 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3797 nid, (unsigned long)pgdat,
3798 (unsigned long)pgdat->node_mem_map);
3799 #endif
3801 free_area_init_core(pgdat, zones_size, zholes_size);
3804 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3806 #if MAX_NUMNODES > 1
3808 * Figure out the number of possible node ids.
3810 static void __init setup_nr_node_ids(void)
3812 unsigned int node;
3813 unsigned int highest = 0;
3815 for_each_node_mask(node, node_possible_map)
3816 highest = node;
3817 nr_node_ids = highest + 1;
3819 #else
3820 static inline void setup_nr_node_ids(void)
3823 #endif
3826 * add_active_range - Register a range of PFNs backed by physical memory
3827 * @nid: The node ID the range resides on
3828 * @start_pfn: The start PFN of the available physical memory
3829 * @end_pfn: The end PFN of the available physical memory
3831 * These ranges are stored in an early_node_map[] and later used by
3832 * free_area_init_nodes() to calculate zone sizes and holes. If the
3833 * range spans a memory hole, it is up to the architecture to ensure
3834 * the memory is not freed by the bootmem allocator. If possible
3835 * the range being registered will be merged with existing ranges.
3837 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3838 unsigned long end_pfn)
3840 int i;
3842 mminit_dprintk(MMINIT_TRACE, "memory_register",
3843 "Entering add_active_range(%d, %#lx, %#lx) "
3844 "%d entries of %d used\n",
3845 nid, start_pfn, end_pfn,
3846 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3848 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3850 /* Merge with existing active regions if possible */
3851 for (i = 0; i < nr_nodemap_entries; i++) {
3852 if (early_node_map[i].nid != nid)
3853 continue;
3855 /* Skip if an existing region covers this new one */
3856 if (start_pfn >= early_node_map[i].start_pfn &&
3857 end_pfn <= early_node_map[i].end_pfn)
3858 return;
3860 /* Merge forward if suitable */
3861 if (start_pfn <= early_node_map[i].end_pfn &&
3862 end_pfn > early_node_map[i].end_pfn) {
3863 early_node_map[i].end_pfn = end_pfn;
3864 return;
3867 /* Merge backward if suitable */
3868 if (start_pfn < early_node_map[i].end_pfn &&
3869 end_pfn >= early_node_map[i].start_pfn) {
3870 early_node_map[i].start_pfn = start_pfn;
3871 return;
3875 /* Check that early_node_map is large enough */
3876 if (i >= MAX_ACTIVE_REGIONS) {
3877 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3878 MAX_ACTIVE_REGIONS);
3879 return;
3882 early_node_map[i].nid = nid;
3883 early_node_map[i].start_pfn = start_pfn;
3884 early_node_map[i].end_pfn = end_pfn;
3885 nr_nodemap_entries = i + 1;
3889 * remove_active_range - Shrink an existing registered range of PFNs
3890 * @nid: The node id the range is on that should be shrunk
3891 * @start_pfn: The new PFN of the range
3892 * @end_pfn: The new PFN of the range
3894 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3895 * The map is kept near the end physical page range that has already been
3896 * registered. This function allows an arch to shrink an existing registered
3897 * range.
3899 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3900 unsigned long end_pfn)
3902 int i, j;
3903 int removed = 0;
3905 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3906 nid, start_pfn, end_pfn);
3908 /* Find the old active region end and shrink */
3909 for_each_active_range_index_in_nid(i, nid) {
3910 if (early_node_map[i].start_pfn >= start_pfn &&
3911 early_node_map[i].end_pfn <= end_pfn) {
3912 /* clear it */
3913 early_node_map[i].start_pfn = 0;
3914 early_node_map[i].end_pfn = 0;
3915 removed = 1;
3916 continue;
3918 if (early_node_map[i].start_pfn < start_pfn &&
3919 early_node_map[i].end_pfn > start_pfn) {
3920 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3921 early_node_map[i].end_pfn = start_pfn;
3922 if (temp_end_pfn > end_pfn)
3923 add_active_range(nid, end_pfn, temp_end_pfn);
3924 continue;
3926 if (early_node_map[i].start_pfn >= start_pfn &&
3927 early_node_map[i].end_pfn > end_pfn &&
3928 early_node_map[i].start_pfn < end_pfn) {
3929 early_node_map[i].start_pfn = end_pfn;
3930 continue;
3934 if (!removed)
3935 return;
3937 /* remove the blank ones */
3938 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3939 if (early_node_map[i].nid != nid)
3940 continue;
3941 if (early_node_map[i].end_pfn)
3942 continue;
3943 /* we found it, get rid of it */
3944 for (j = i; j < nr_nodemap_entries - 1; j++)
3945 memcpy(&early_node_map[j], &early_node_map[j+1],
3946 sizeof(early_node_map[j]));
3947 j = nr_nodemap_entries - 1;
3948 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3949 nr_nodemap_entries--;
3954 * remove_all_active_ranges - Remove all currently registered regions
3956 * During discovery, it may be found that a table like SRAT is invalid
3957 * and an alternative discovery method must be used. This function removes
3958 * all currently registered regions.
3960 void __init remove_all_active_ranges(void)
3962 memset(early_node_map, 0, sizeof(early_node_map));
3963 nr_nodemap_entries = 0;
3966 /* Compare two active node_active_regions */
3967 static int __init cmp_node_active_region(const void *a, const void *b)
3969 struct node_active_region *arange = (struct node_active_region *)a;
3970 struct node_active_region *brange = (struct node_active_region *)b;
3972 /* Done this way to avoid overflows */
3973 if (arange->start_pfn > brange->start_pfn)
3974 return 1;
3975 if (arange->start_pfn < brange->start_pfn)
3976 return -1;
3978 return 0;
3981 /* sort the node_map by start_pfn */
3982 static void __init sort_node_map(void)
3984 sort(early_node_map, (size_t)nr_nodemap_entries,
3985 sizeof(struct node_active_region),
3986 cmp_node_active_region, NULL);
3989 /* Find the lowest pfn for a node */
3990 static unsigned long __init find_min_pfn_for_node(int nid)
3992 int i;
3993 unsigned long min_pfn = ULONG_MAX;
3995 /* Assuming a sorted map, the first range found has the starting pfn */
3996 for_each_active_range_index_in_nid(i, nid)
3997 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3999 if (min_pfn == ULONG_MAX) {
4000 printk(KERN_WARNING
4001 "Could not find start_pfn for node %d\n", nid);
4002 return 0;
4005 return min_pfn;
4009 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4011 * It returns the minimum PFN based on information provided via
4012 * add_active_range().
4014 unsigned long __init find_min_pfn_with_active_regions(void)
4016 return find_min_pfn_for_node(MAX_NUMNODES);
4020 * early_calculate_totalpages()
4021 * Sum pages in active regions for movable zone.
4022 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4024 static unsigned long __init early_calculate_totalpages(void)
4026 int i;
4027 unsigned long totalpages = 0;
4029 for (i = 0; i < nr_nodemap_entries; i++) {
4030 unsigned long pages = early_node_map[i].end_pfn -
4031 early_node_map[i].start_pfn;
4032 totalpages += pages;
4033 if (pages)
4034 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4036 return totalpages;
4040 * Find the PFN the Movable zone begins in each node. Kernel memory
4041 * is spread evenly between nodes as long as the nodes have enough
4042 * memory. When they don't, some nodes will have more kernelcore than
4043 * others
4045 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4047 int i, nid;
4048 unsigned long usable_startpfn;
4049 unsigned long kernelcore_node, kernelcore_remaining;
4050 /* save the state before borrow the nodemask */
4051 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4052 unsigned long totalpages = early_calculate_totalpages();
4053 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4056 * If movablecore was specified, calculate what size of
4057 * kernelcore that corresponds so that memory usable for
4058 * any allocation type is evenly spread. If both kernelcore
4059 * and movablecore are specified, then the value of kernelcore
4060 * will be used for required_kernelcore if it's greater than
4061 * what movablecore would have allowed.
4063 if (required_movablecore) {
4064 unsigned long corepages;
4067 * Round-up so that ZONE_MOVABLE is at least as large as what
4068 * was requested by the user
4070 required_movablecore =
4071 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4072 corepages = totalpages - required_movablecore;
4074 required_kernelcore = max(required_kernelcore, corepages);
4077 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4078 if (!required_kernelcore)
4079 goto out;
4081 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4082 find_usable_zone_for_movable();
4083 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4085 restart:
4086 /* Spread kernelcore memory as evenly as possible throughout nodes */
4087 kernelcore_node = required_kernelcore / usable_nodes;
4088 for_each_node_state(nid, N_HIGH_MEMORY) {
4090 * Recalculate kernelcore_node if the division per node
4091 * now exceeds what is necessary to satisfy the requested
4092 * amount of memory for the kernel
4094 if (required_kernelcore < kernelcore_node)
4095 kernelcore_node = required_kernelcore / usable_nodes;
4098 * As the map is walked, we track how much memory is usable
4099 * by the kernel using kernelcore_remaining. When it is
4100 * 0, the rest of the node is usable by ZONE_MOVABLE
4102 kernelcore_remaining = kernelcore_node;
4104 /* Go through each range of PFNs within this node */
4105 for_each_active_range_index_in_nid(i, nid) {
4106 unsigned long start_pfn, end_pfn;
4107 unsigned long size_pages;
4109 start_pfn = max(early_node_map[i].start_pfn,
4110 zone_movable_pfn[nid]);
4111 end_pfn = early_node_map[i].end_pfn;
4112 if (start_pfn >= end_pfn)
4113 continue;
4115 /* Account for what is only usable for kernelcore */
4116 if (start_pfn < usable_startpfn) {
4117 unsigned long kernel_pages;
4118 kernel_pages = min(end_pfn, usable_startpfn)
4119 - start_pfn;
4121 kernelcore_remaining -= min(kernel_pages,
4122 kernelcore_remaining);
4123 required_kernelcore -= min(kernel_pages,
4124 required_kernelcore);
4126 /* Continue if range is now fully accounted */
4127 if (end_pfn <= usable_startpfn) {
4130 * Push zone_movable_pfn to the end so
4131 * that if we have to rebalance
4132 * kernelcore across nodes, we will
4133 * not double account here
4135 zone_movable_pfn[nid] = end_pfn;
4136 continue;
4138 start_pfn = usable_startpfn;
4142 * The usable PFN range for ZONE_MOVABLE is from
4143 * start_pfn->end_pfn. Calculate size_pages as the
4144 * number of pages used as kernelcore
4146 size_pages = end_pfn - start_pfn;
4147 if (size_pages > kernelcore_remaining)
4148 size_pages = kernelcore_remaining;
4149 zone_movable_pfn[nid] = start_pfn + size_pages;
4152 * Some kernelcore has been met, update counts and
4153 * break if the kernelcore for this node has been
4154 * satisified
4156 required_kernelcore -= min(required_kernelcore,
4157 size_pages);
4158 kernelcore_remaining -= size_pages;
4159 if (!kernelcore_remaining)
4160 break;
4165 * If there is still required_kernelcore, we do another pass with one
4166 * less node in the count. This will push zone_movable_pfn[nid] further
4167 * along on the nodes that still have memory until kernelcore is
4168 * satisified
4170 usable_nodes--;
4171 if (usable_nodes && required_kernelcore > usable_nodes)
4172 goto restart;
4174 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4175 for (nid = 0; nid < MAX_NUMNODES; nid++)
4176 zone_movable_pfn[nid] =
4177 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4179 out:
4180 /* restore the node_state */
4181 node_states[N_HIGH_MEMORY] = saved_node_state;
4184 /* Any regular memory on that node ? */
4185 static void check_for_regular_memory(pg_data_t *pgdat)
4187 #ifdef CONFIG_HIGHMEM
4188 enum zone_type zone_type;
4190 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4191 struct zone *zone = &pgdat->node_zones[zone_type];
4192 if (zone->present_pages)
4193 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4195 #endif
4199 * free_area_init_nodes - Initialise all pg_data_t and zone data
4200 * @max_zone_pfn: an array of max PFNs for each zone
4202 * This will call free_area_init_node() for each active node in the system.
4203 * Using the page ranges provided by add_active_range(), the size of each
4204 * zone in each node and their holes is calculated. If the maximum PFN
4205 * between two adjacent zones match, it is assumed that the zone is empty.
4206 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4207 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4208 * starts where the previous one ended. For example, ZONE_DMA32 starts
4209 * at arch_max_dma_pfn.
4211 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4213 unsigned long nid;
4214 int i;
4216 /* Sort early_node_map as initialisation assumes it is sorted */
4217 sort_node_map();
4219 /* Record where the zone boundaries are */
4220 memset(arch_zone_lowest_possible_pfn, 0,
4221 sizeof(arch_zone_lowest_possible_pfn));
4222 memset(arch_zone_highest_possible_pfn, 0,
4223 sizeof(arch_zone_highest_possible_pfn));
4224 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4225 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4226 for (i = 1; i < MAX_NR_ZONES; i++) {
4227 if (i == ZONE_MOVABLE)
4228 continue;
4229 arch_zone_lowest_possible_pfn[i] =
4230 arch_zone_highest_possible_pfn[i-1];
4231 arch_zone_highest_possible_pfn[i] =
4232 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4234 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4235 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4237 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4238 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4239 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4241 /* Print out the zone ranges */
4242 printk("Zone PFN ranges:\n");
4243 for (i = 0; i < MAX_NR_ZONES; i++) {
4244 if (i == ZONE_MOVABLE)
4245 continue;
4246 printk(" %-8s %0#10lx -> %0#10lx\n",
4247 zone_names[i],
4248 arch_zone_lowest_possible_pfn[i],
4249 arch_zone_highest_possible_pfn[i]);
4252 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4253 printk("Movable zone start PFN for each node\n");
4254 for (i = 0; i < MAX_NUMNODES; i++) {
4255 if (zone_movable_pfn[i])
4256 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4259 /* Print out the early_node_map[] */
4260 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4261 for (i = 0; i < nr_nodemap_entries; i++)
4262 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4263 early_node_map[i].start_pfn,
4264 early_node_map[i].end_pfn);
4266 /* Initialise every node */
4267 mminit_verify_pageflags_layout();
4268 setup_nr_node_ids();
4269 for_each_online_node(nid) {
4270 pg_data_t *pgdat = NODE_DATA(nid);
4271 free_area_init_node(nid, NULL,
4272 find_min_pfn_for_node(nid), NULL);
4274 /* Any memory on that node */
4275 if (pgdat->node_present_pages)
4276 node_set_state(nid, N_HIGH_MEMORY);
4277 check_for_regular_memory(pgdat);
4281 static int __init cmdline_parse_core(char *p, unsigned long *core)
4283 unsigned long long coremem;
4284 if (!p)
4285 return -EINVAL;
4287 coremem = memparse(p, &p);
4288 *core = coremem >> PAGE_SHIFT;
4290 /* Paranoid check that UL is enough for the coremem value */
4291 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4293 return 0;
4297 * kernelcore=size sets the amount of memory for use for allocations that
4298 * cannot be reclaimed or migrated.
4300 static int __init cmdline_parse_kernelcore(char *p)
4302 return cmdline_parse_core(p, &required_kernelcore);
4306 * movablecore=size sets the amount of memory for use for allocations that
4307 * can be reclaimed or migrated.
4309 static int __init cmdline_parse_movablecore(char *p)
4311 return cmdline_parse_core(p, &required_movablecore);
4314 early_param("kernelcore", cmdline_parse_kernelcore);
4315 early_param("movablecore", cmdline_parse_movablecore);
4317 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4320 * set_dma_reserve - set the specified number of pages reserved in the first zone
4321 * @new_dma_reserve: The number of pages to mark reserved
4323 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4324 * In the DMA zone, a significant percentage may be consumed by kernel image
4325 * and other unfreeable allocations which can skew the watermarks badly. This
4326 * function may optionally be used to account for unfreeable pages in the
4327 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4328 * smaller per-cpu batchsize.
4330 void __init set_dma_reserve(unsigned long new_dma_reserve)
4332 dma_reserve = new_dma_reserve;
4335 #ifndef CONFIG_NEED_MULTIPLE_NODES
4336 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4337 EXPORT_SYMBOL(contig_page_data);
4338 #endif
4340 void __init free_area_init(unsigned long *zones_size)
4342 free_area_init_node(0, zones_size,
4343 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4346 static int page_alloc_cpu_notify(struct notifier_block *self,
4347 unsigned long action, void *hcpu)
4349 int cpu = (unsigned long)hcpu;
4351 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4352 drain_pages(cpu);
4355 * Spill the event counters of the dead processor
4356 * into the current processors event counters.
4357 * This artificially elevates the count of the current
4358 * processor.
4360 vm_events_fold_cpu(cpu);
4363 * Zero the differential counters of the dead processor
4364 * so that the vm statistics are consistent.
4366 * This is only okay since the processor is dead and cannot
4367 * race with what we are doing.
4369 refresh_cpu_vm_stats(cpu);
4371 return NOTIFY_OK;
4374 void __init page_alloc_init(void)
4376 hotcpu_notifier(page_alloc_cpu_notify, 0);
4380 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4381 * or min_free_kbytes changes.
4383 static void calculate_totalreserve_pages(void)
4385 struct pglist_data *pgdat;
4386 unsigned long reserve_pages = 0;
4387 enum zone_type i, j;
4389 for_each_online_pgdat(pgdat) {
4390 for (i = 0; i < MAX_NR_ZONES; i++) {
4391 struct zone *zone = pgdat->node_zones + i;
4392 unsigned long max = 0;
4394 /* Find valid and maximum lowmem_reserve in the zone */
4395 for (j = i; j < MAX_NR_ZONES; j++) {
4396 if (zone->lowmem_reserve[j] > max)
4397 max = zone->lowmem_reserve[j];
4400 /* we treat the high watermark as reserved pages. */
4401 max += high_wmark_pages(zone);
4403 if (max > zone->present_pages)
4404 max = zone->present_pages;
4405 reserve_pages += max;
4408 totalreserve_pages = reserve_pages;
4412 * setup_per_zone_lowmem_reserve - called whenever
4413 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4414 * has a correct pages reserved value, so an adequate number of
4415 * pages are left in the zone after a successful __alloc_pages().
4417 static void setup_per_zone_lowmem_reserve(void)
4419 struct pglist_data *pgdat;
4420 enum zone_type j, idx;
4422 for_each_online_pgdat(pgdat) {
4423 for (j = 0; j < MAX_NR_ZONES; j++) {
4424 struct zone *zone = pgdat->node_zones + j;
4425 unsigned long present_pages = zone->present_pages;
4427 zone->lowmem_reserve[j] = 0;
4429 idx = j;
4430 while (idx) {
4431 struct zone *lower_zone;
4433 idx--;
4435 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4436 sysctl_lowmem_reserve_ratio[idx] = 1;
4438 lower_zone = pgdat->node_zones + idx;
4439 lower_zone->lowmem_reserve[j] = present_pages /
4440 sysctl_lowmem_reserve_ratio[idx];
4441 present_pages += lower_zone->present_pages;
4446 /* update totalreserve_pages */
4447 calculate_totalreserve_pages();
4451 * setup_per_zone_wmarks - called when min_free_kbytes changes
4452 * or when memory is hot-{added|removed}
4454 * Ensures that the watermark[min,low,high] values for each zone are set
4455 * correctly with respect to min_free_kbytes.
4457 void setup_per_zone_wmarks(void)
4459 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4460 unsigned long lowmem_pages = 0;
4461 struct zone *zone;
4462 unsigned long flags;
4464 /* Calculate total number of !ZONE_HIGHMEM pages */
4465 for_each_zone(zone) {
4466 if (!is_highmem(zone))
4467 lowmem_pages += zone->present_pages;
4470 for_each_zone(zone) {
4471 u64 tmp;
4473 spin_lock_irqsave(&zone->lock, flags);
4474 tmp = (u64)pages_min * zone->present_pages;
4475 do_div(tmp, lowmem_pages);
4476 if (is_highmem(zone)) {
4478 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4479 * need highmem pages, so cap pages_min to a small
4480 * value here.
4482 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4483 * deltas controls asynch page reclaim, and so should
4484 * not be capped for highmem.
4486 int min_pages;
4488 min_pages = zone->present_pages / 1024;
4489 if (min_pages < SWAP_CLUSTER_MAX)
4490 min_pages = SWAP_CLUSTER_MAX;
4491 if (min_pages > 128)
4492 min_pages = 128;
4493 zone->watermark[WMARK_MIN] = min_pages;
4494 } else {
4496 * If it's a lowmem zone, reserve a number of pages
4497 * proportionate to the zone's size.
4499 zone->watermark[WMARK_MIN] = tmp;
4502 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4503 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4504 setup_zone_migrate_reserve(zone);
4505 spin_unlock_irqrestore(&zone->lock, flags);
4508 /* update totalreserve_pages */
4509 calculate_totalreserve_pages();
4513 * The inactive anon list should be small enough that the VM never has to
4514 * do too much work, but large enough that each inactive page has a chance
4515 * to be referenced again before it is swapped out.
4517 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4518 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4519 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4520 * the anonymous pages are kept on the inactive list.
4522 * total target max
4523 * memory ratio inactive anon
4524 * -------------------------------------
4525 * 10MB 1 5MB
4526 * 100MB 1 50MB
4527 * 1GB 3 250MB
4528 * 10GB 10 0.9GB
4529 * 100GB 31 3GB
4530 * 1TB 101 10GB
4531 * 10TB 320 32GB
4533 void calculate_zone_inactive_ratio(struct zone *zone)
4535 unsigned int gb, ratio;
4537 /* Zone size in gigabytes */
4538 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4539 if (gb)
4540 ratio = int_sqrt(10 * gb);
4541 else
4542 ratio = 1;
4544 zone->inactive_ratio = ratio;
4547 static void __init setup_per_zone_inactive_ratio(void)
4549 struct zone *zone;
4551 for_each_zone(zone)
4552 calculate_zone_inactive_ratio(zone);
4556 * Initialise min_free_kbytes.
4558 * For small machines we want it small (128k min). For large machines
4559 * we want it large (64MB max). But it is not linear, because network
4560 * bandwidth does not increase linearly with machine size. We use
4562 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4563 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4565 * which yields
4567 * 16MB: 512k
4568 * 32MB: 724k
4569 * 64MB: 1024k
4570 * 128MB: 1448k
4571 * 256MB: 2048k
4572 * 512MB: 2896k
4573 * 1024MB: 4096k
4574 * 2048MB: 5792k
4575 * 4096MB: 8192k
4576 * 8192MB: 11584k
4577 * 16384MB: 16384k
4579 static int __init init_per_zone_wmark_min(void)
4581 unsigned long lowmem_kbytes;
4583 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4585 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4586 if (min_free_kbytes < 128)
4587 min_free_kbytes = 128;
4588 if (min_free_kbytes > 65536)
4589 min_free_kbytes = 65536;
4590 setup_per_zone_wmarks();
4591 setup_per_zone_lowmem_reserve();
4592 setup_per_zone_inactive_ratio();
4593 return 0;
4595 module_init(init_per_zone_wmark_min)
4598 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4599 * that we can call two helper functions whenever min_free_kbytes
4600 * changes.
4602 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4603 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4605 proc_dointvec(table, write, file, buffer, length, ppos);
4606 if (write)
4607 setup_per_zone_wmarks();
4608 return 0;
4611 #ifdef CONFIG_NUMA
4612 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4613 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4615 struct zone *zone;
4616 int rc;
4618 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4619 if (rc)
4620 return rc;
4622 for_each_zone(zone)
4623 zone->min_unmapped_pages = (zone->present_pages *
4624 sysctl_min_unmapped_ratio) / 100;
4625 return 0;
4628 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4629 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4631 struct zone *zone;
4632 int rc;
4634 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4635 if (rc)
4636 return rc;
4638 for_each_zone(zone)
4639 zone->min_slab_pages = (zone->present_pages *
4640 sysctl_min_slab_ratio) / 100;
4641 return 0;
4643 #endif
4646 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4647 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4648 * whenever sysctl_lowmem_reserve_ratio changes.
4650 * The reserve ratio obviously has absolutely no relation with the
4651 * minimum watermarks. The lowmem reserve ratio can only make sense
4652 * if in function of the boot time zone sizes.
4654 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4655 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4657 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4658 setup_per_zone_lowmem_reserve();
4659 return 0;
4663 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4664 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4665 * can have before it gets flushed back to buddy allocator.
4668 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4669 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4671 struct zone *zone;
4672 unsigned int cpu;
4673 int ret;
4675 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4676 if (!write || (ret == -EINVAL))
4677 return ret;
4678 for_each_populated_zone(zone) {
4679 for_each_online_cpu(cpu) {
4680 unsigned long high;
4681 high = zone->present_pages / percpu_pagelist_fraction;
4682 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4685 return 0;
4688 int hashdist = HASHDIST_DEFAULT;
4690 #ifdef CONFIG_NUMA
4691 static int __init set_hashdist(char *str)
4693 if (!str)
4694 return 0;
4695 hashdist = simple_strtoul(str, &str, 0);
4696 return 1;
4698 __setup("hashdist=", set_hashdist);
4699 #endif
4702 * allocate a large system hash table from bootmem
4703 * - it is assumed that the hash table must contain an exact power-of-2
4704 * quantity of entries
4705 * - limit is the number of hash buckets, not the total allocation size
4707 void *__init alloc_large_system_hash(const char *tablename,
4708 unsigned long bucketsize,
4709 unsigned long numentries,
4710 int scale,
4711 int flags,
4712 unsigned int *_hash_shift,
4713 unsigned int *_hash_mask,
4714 unsigned long limit)
4716 unsigned long long max = limit;
4717 unsigned long log2qty, size;
4718 void *table = NULL;
4720 /* allow the kernel cmdline to have a say */
4721 if (!numentries) {
4722 /* round applicable memory size up to nearest megabyte */
4723 numentries = nr_kernel_pages;
4724 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4725 numentries >>= 20 - PAGE_SHIFT;
4726 numentries <<= 20 - PAGE_SHIFT;
4728 /* limit to 1 bucket per 2^scale bytes of low memory */
4729 if (scale > PAGE_SHIFT)
4730 numentries >>= (scale - PAGE_SHIFT);
4731 else
4732 numentries <<= (PAGE_SHIFT - scale);
4734 /* Make sure we've got at least a 0-order allocation.. */
4735 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4736 numentries = PAGE_SIZE / bucketsize;
4738 numentries = roundup_pow_of_two(numentries);
4740 /* limit allocation size to 1/16 total memory by default */
4741 if (max == 0) {
4742 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4743 do_div(max, bucketsize);
4746 if (numentries > max)
4747 numentries = max;
4749 log2qty = ilog2(numentries);
4751 do {
4752 size = bucketsize << log2qty;
4753 if (flags & HASH_EARLY)
4754 table = alloc_bootmem_nopanic(size);
4755 else if (hashdist)
4756 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4757 else {
4759 * If bucketsize is not a power-of-two, we may free
4760 * some pages at the end of hash table which
4761 * alloc_pages_exact() automatically does
4763 if (get_order(size) < MAX_ORDER) {
4764 table = alloc_pages_exact(size, GFP_ATOMIC);
4765 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4768 } while (!table && size > PAGE_SIZE && --log2qty);
4770 if (!table)
4771 panic("Failed to allocate %s hash table\n", tablename);
4773 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4774 tablename,
4775 (1U << log2qty),
4776 ilog2(size) - PAGE_SHIFT,
4777 size);
4779 if (_hash_shift)
4780 *_hash_shift = log2qty;
4781 if (_hash_mask)
4782 *_hash_mask = (1 << log2qty) - 1;
4784 return table;
4787 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4788 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4789 unsigned long pfn)
4791 #ifdef CONFIG_SPARSEMEM
4792 return __pfn_to_section(pfn)->pageblock_flags;
4793 #else
4794 return zone->pageblock_flags;
4795 #endif /* CONFIG_SPARSEMEM */
4798 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4800 #ifdef CONFIG_SPARSEMEM
4801 pfn &= (PAGES_PER_SECTION-1);
4802 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4803 #else
4804 pfn = pfn - zone->zone_start_pfn;
4805 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4806 #endif /* CONFIG_SPARSEMEM */
4810 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4811 * @page: The page within the block of interest
4812 * @start_bitidx: The first bit of interest to retrieve
4813 * @end_bitidx: The last bit of interest
4814 * returns pageblock_bits flags
4816 unsigned long get_pageblock_flags_group(struct page *page,
4817 int start_bitidx, int end_bitidx)
4819 struct zone *zone;
4820 unsigned long *bitmap;
4821 unsigned long pfn, bitidx;
4822 unsigned long flags = 0;
4823 unsigned long value = 1;
4825 zone = page_zone(page);
4826 pfn = page_to_pfn(page);
4827 bitmap = get_pageblock_bitmap(zone, pfn);
4828 bitidx = pfn_to_bitidx(zone, pfn);
4830 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4831 if (test_bit(bitidx + start_bitidx, bitmap))
4832 flags |= value;
4834 return flags;
4838 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4839 * @page: The page within the block of interest
4840 * @start_bitidx: The first bit of interest
4841 * @end_bitidx: The last bit of interest
4842 * @flags: The flags to set
4844 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4845 int start_bitidx, int end_bitidx)
4847 struct zone *zone;
4848 unsigned long *bitmap;
4849 unsigned long pfn, bitidx;
4850 unsigned long value = 1;
4852 zone = page_zone(page);
4853 pfn = page_to_pfn(page);
4854 bitmap = get_pageblock_bitmap(zone, pfn);
4855 bitidx = pfn_to_bitidx(zone, pfn);
4856 VM_BUG_ON(pfn < zone->zone_start_pfn);
4857 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4859 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4860 if (flags & value)
4861 __set_bit(bitidx + start_bitidx, bitmap);
4862 else
4863 __clear_bit(bitidx + start_bitidx, bitmap);
4867 * This is designed as sub function...plz see page_isolation.c also.
4868 * set/clear page block's type to be ISOLATE.
4869 * page allocater never alloc memory from ISOLATE block.
4872 int set_migratetype_isolate(struct page *page)
4874 struct zone *zone;
4875 unsigned long flags;
4876 int ret = -EBUSY;
4878 zone = page_zone(page);
4879 spin_lock_irqsave(&zone->lock, flags);
4881 * In future, more migrate types will be able to be isolation target.
4883 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4884 goto out;
4885 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4886 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4887 ret = 0;
4888 out:
4889 spin_unlock_irqrestore(&zone->lock, flags);
4890 if (!ret)
4891 drain_all_pages();
4892 return ret;
4895 void unset_migratetype_isolate(struct page *page)
4897 struct zone *zone;
4898 unsigned long flags;
4899 zone = page_zone(page);
4900 spin_lock_irqsave(&zone->lock, flags);
4901 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4902 goto out;
4903 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4904 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4905 out:
4906 spin_unlock_irqrestore(&zone->lock, flags);
4909 #ifdef CONFIG_MEMORY_HOTREMOVE
4911 * All pages in the range must be isolated before calling this.
4913 void
4914 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4916 struct page *page;
4917 struct zone *zone;
4918 int order, i;
4919 unsigned long pfn;
4920 unsigned long flags;
4921 /* find the first valid pfn */
4922 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4923 if (pfn_valid(pfn))
4924 break;
4925 if (pfn == end_pfn)
4926 return;
4927 zone = page_zone(pfn_to_page(pfn));
4928 spin_lock_irqsave(&zone->lock, flags);
4929 pfn = start_pfn;
4930 while (pfn < end_pfn) {
4931 if (!pfn_valid(pfn)) {
4932 pfn++;
4933 continue;
4935 page = pfn_to_page(pfn);
4936 BUG_ON(page_count(page));
4937 BUG_ON(!PageBuddy(page));
4938 order = page_order(page);
4939 #ifdef CONFIG_DEBUG_VM
4940 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4941 pfn, 1 << order, end_pfn);
4942 #endif
4943 list_del(&page->lru);
4944 rmv_page_order(page);
4945 zone->free_area[order].nr_free--;
4946 __mod_zone_page_state(zone, NR_FREE_PAGES,
4947 - (1UL << order));
4948 for (i = 0; i < (1 << order); i++)
4949 SetPageReserved((page+i));
4950 pfn += (1 << order);
4952 spin_unlock_irqrestore(&zone->lock, flags);
4954 #endif