jbd2: Fix a race between checkpointing code and journal_get_write_access()
[linux-2.6/mini2440.git] / kernel / sched.c
blob7c9098d186e6f8e398c0cb9500c1efa2120293e2
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 #ifdef CONFIG_SMP
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 #endif
147 static inline int rt_policy(int policy)
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
154 static inline int task_has_rt_policy(struct task_struct *p)
156 return rt_policy(p->policy);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
175 static struct rt_bandwidth def_rt_bandwidth;
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191 if (!overrun)
192 break;
194 idle = do_sched_rt_period_timer(rt_b, overrun);
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
206 spin_lock_init(&rt_b->rt_runtime_lock);
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
213 static inline int rt_bandwidth_enabled(void)
215 return sysctl_sched_rt_runtime >= 0;
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 ktime_t now;
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0);
245 spin_unlock(&rt_b->rt_runtime_lock);
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
251 hrtimer_cancel(&rt_b->rt_period_timer);
253 #endif
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
259 static DEFINE_MUTEX(sched_domains_mutex);
261 #ifdef CONFIG_GROUP_SCHED
263 #include <linux/cgroup.h>
265 struct cfs_rq;
267 static LIST_HEAD(task_groups);
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
291 struct rt_bandwidth rt_bandwidth;
292 #endif
294 struct rcu_head rcu;
295 struct list_head list;
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
302 #ifdef CONFIG_USER_SCHED
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
307 user->tg->uid = user->uid;
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
315 struct task_group root_task_group;
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
335 static DEFINE_SPINLOCK(task_group_lock);
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
340 return list_empty(&root_task_group.children);
342 #endif
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
368 struct task_group init_task_group;
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
373 struct task_group *tg;
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
402 #else
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
407 return 1;
409 #endif
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
414 return NULL;
417 #endif /* CONFIG_GROUP_SCHED */
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
424 u64 exec_clock;
425 u64 min_vruntime;
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
430 struct list_head tasks;
431 struct list_head *balance_iterator;
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
437 struct sched_entity *curr, *next, *last;
439 unsigned int nr_spread_over;
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
455 #ifdef CONFIG_SMP
457 * the part of load.weight contributed by tasks
459 unsigned long task_weight;
462 * h_load = weight * f(tg)
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
467 unsigned long h_load;
470 * this cpu's part of tg->shares
472 unsigned long shares;
475 * load.weight at the time we set shares
477 unsigned long rq_weight;
478 #endif
479 #endif
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 int overloaded;
497 struct plist_head pushable_tasks;
498 #endif
499 int rt_throttled;
500 u64 rt_time;
501 u64 rt_runtime;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock;
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted;
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512 #endif
515 #ifdef CONFIG_SMP
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
525 struct root_domain {
526 atomic_t refcount;
527 cpumask_var_t span;
528 cpumask_var_t online;
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
534 cpumask_var_t rto_mask;
535 atomic_t rto_count;
536 #ifdef CONFIG_SMP
537 struct cpupri cpupri;
538 #endif
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 unsigned int sched_mc_preferred_wakeup_cpu;
546 #endif
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
553 static struct root_domain def_root_domain;
555 #endif
558 * This is the main, per-CPU runqueue data structure.
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
564 struct rq {
565 /* runqueue lock: */
566 spinlock_t lock;
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
572 unsigned long nr_running;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575 #ifdef CONFIG_NO_HZ
576 unsigned long last_tick_seen;
577 unsigned char in_nohz_recently;
578 #endif
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583 u64 nr_migrations_in;
585 struct cfs_rq cfs;
586 struct rt_rq rt;
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
591 #endif
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list;
594 #endif
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
602 unsigned long nr_uninterruptible;
604 struct task_struct *curr, *idle;
605 unsigned long next_balance;
606 struct mm_struct *prev_mm;
608 u64 clock;
610 atomic_t nr_iowait;
612 #ifdef CONFIG_SMP
613 struct root_domain *rd;
614 struct sched_domain *sd;
616 unsigned char idle_at_tick;
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
620 /* cpu of this runqueue: */
621 int cpu;
622 int online;
624 unsigned long avg_load_per_task;
626 struct task_struct *migration_thread;
627 struct list_head migration_queue;
628 #endif
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638 #endif
639 struct hrtimer hrtick_timer;
640 #endif
642 #ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
648 /* sys_sched_yield() stats */
649 unsigned int yld_count;
651 /* schedule() stats */
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
660 /* BKL stats */
661 unsigned int bkl_count;
662 #endif
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
672 static inline int cpu_of(struct rq *rq)
674 #ifdef CONFIG_SMP
675 return rq->cpu;
676 #else
677 return 0;
678 #endif
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696 inline void update_rq_clock(struct rq *rq)
698 rq->clock = sched_clock_cpu(cpu_of(rq));
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
706 #else
707 # define const_debug static const
708 #endif
711 * runqueue_is_locked
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
717 int runqueue_is_locked(void)
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
729 * Debugging: various feature bits
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
735 enum {
736 #include "sched_features.h"
739 #undef SCHED_FEAT
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h"
748 #undef SCHED_FEAT
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
752 #name ,
754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h"
756 NULL
759 #undef SCHED_FEAT
761 static int sched_feat_show(struct seq_file *m, void *v)
763 int i;
765 for (i = 0; sched_feat_names[i]; i++) {
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
770 seq_puts(m, "\n");
772 return 0;
775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
784 if (cnt > 63)
785 cnt = 63;
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
790 buf[cnt] = 0;
792 if (strncmp(buf, "NO_", 3) == 0) {
793 neg = 1;
794 cmp += 3;
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
809 if (!sched_feat_names[i])
810 return -EINVAL;
812 filp->f_pos += cnt;
814 return cnt;
817 static int sched_feat_open(struct inode *inode, struct file *filp)
819 return single_open(filp, sched_feat_show, NULL);
822 static struct file_operations sched_feat_fops = {
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
830 static __init int sched_init_debug(void)
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
835 return 0;
837 late_initcall(sched_init_debug);
839 #endif
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
850 * ratelimit for updating the group shares.
851 * default: 0.25ms
853 unsigned int sysctl_sched_shares_ratelimit = 250000;
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
860 unsigned int sysctl_sched_shares_thresh = 4;
863 * period over which we measure -rt task cpu usage in us.
864 * default: 1s
866 unsigned int sysctl_sched_rt_period = 1000000;
868 static __read_mostly int scheduler_running;
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
874 int sysctl_sched_rt_runtime = 950000;
876 static inline u64 global_rt_period(void)
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
881 static inline u64 global_rt_runtime(void)
883 if (sysctl_sched_rt_runtime < 0)
884 return RUNTIME_INF;
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
891 #endif
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
894 #endif
896 static inline int task_current(struct rq *rq, struct task_struct *p)
898 return rq->curr == p;
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p)
904 return task_current(rq, p);
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916 #endif
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
924 spin_unlock_irq(&rq->lock);
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p)
930 #ifdef CONFIG_SMP
931 return p->oncpu;
932 #else
933 return task_current(rq, p);
934 #endif
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
939 #ifdef CONFIG_SMP
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
945 next->oncpu = 1;
946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949 #else
950 spin_unlock(&rq->lock);
951 #endif
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
956 #ifdef CONFIG_SMP
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
962 smp_wmb();
963 prev->oncpu = 0;
964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
967 #endif
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976 __acquires(rq->lock)
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
983 spin_unlock(&rq->lock);
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993 __acquires(rq->lock)
995 struct rq *rq;
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1003 spin_unlock_irqrestore(&rq->lock, *flags);
1007 void task_rq_unlock_wait(struct task_struct *p)
1009 struct rq *rq = task_rq(p);
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1015 static void __task_rq_unlock(struct rq *rq)
1016 __releases(rq->lock)
1018 spin_unlock(&rq->lock);
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022 __releases(rq->lock)
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1030 static struct rq *this_rq_lock(void)
1031 __acquires(rq->lock)
1033 struct rq *rq;
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1039 return rq;
1042 #ifdef CONFIG_SCHED_HRTICK
1044 * Use HR-timers to deliver accurate preemption points.
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1059 static inline int hrtick_enabled(struct rq *rq)
1061 if (!sched_feat(HRTICK))
1062 return 0;
1063 if (!cpu_active(cpu_of(rq)))
1064 return 0;
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068 static void hrtick_clear(struct rq *rq)
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1084 spin_lock(&rq->lock);
1085 update_rq_clock(rq);
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1089 return HRTIMER_NORESTART;
1092 #ifdef CONFIG_SMP
1094 * called from hardirq (IPI) context
1096 static void __hrtick_start(void *arg)
1098 struct rq *rq = arg;
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
1107 * Called to set the hrtick timer state.
1109 * called with rq->lock held and irqs disabled
1111 static void hrtick_start(struct rq *rq, u64 delay)
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1116 hrtimer_set_expires(timer, time);
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 rq->hrtick_csd_pending = 1;
1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1129 int cpu = (int)(long)hcpu;
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
1138 hrtick_clear(cpu_rq(cpu));
1139 return NOTIFY_OK;
1142 return NOTIFY_DONE;
1145 static __init void init_hrtick(void)
1147 hotcpu_notifier(hotplug_hrtick, 0);
1149 #else
1151 * Called to set the hrtick timer state.
1153 * called with rq->lock held and irqs disabled
1155 static void hrtick_start(struct rq *rq, u64 delay)
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL_PINNED, 0);
1161 static inline void init_hrtick(void)
1164 #endif /* CONFIG_SMP */
1166 static void init_rq_hrtick(struct rq *rq)
1168 #ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174 #endif
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq)
1184 static inline void init_rq_hrtick(struct rq *rq)
1188 static inline void init_hrtick(void)
1191 #endif /* CONFIG_SCHED_HRTICK */
1194 * resched_task - mark a task 'to be rescheduled now'.
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1200 #ifdef CONFIG_SMP
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif
1206 static void resched_task(struct task_struct *p)
1208 int cpu;
1210 assert_spin_locked(&task_rq(p)->lock);
1212 if (test_tsk_need_resched(p))
1213 return;
1215 set_tsk_need_resched(p);
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1227 static void resched_cpu(int cpu)
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1238 #ifdef CONFIG_NO_HZ
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1249 void wake_up_idle_cpu(int cpu)
1251 struct rq *rq = cpu_rq(cpu);
1253 if (cpu == smp_processor_id())
1254 return;
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1263 if (rq->curr != rq->idle)
1264 return;
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1271 set_tsk_need_resched(rq->idle);
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1278 #endif /* CONFIG_NO_HZ */
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p)
1283 assert_spin_locked(&task_rq(p)->lock);
1284 set_tsk_need_resched(p);
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1308 u64 tmp;
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1318 tmp = (u64)delta_exec * weight;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1427 CPUACCT_STAT_NSTATS,
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1442 update_load_add(&rq->load, load);
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1447 update_load_sub(&rq->load, load);
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1459 struct task_group *parent, *child;
1460 int ret;
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1473 continue;
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1486 return ret;
1489 static int tg_nop(struct task_group *tg, void *data)
1491 return 0;
1493 #endif
1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1500 static unsigned long cpu_avg_load_per_task(int cpu)
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 else
1508 rq->avg_load_per_task = 0;
1510 return rq->avg_load_per_task;
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1518 * Calculate and set the cpu's group shares.
1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
1524 unsigned long shares;
1525 unsigned long rq_weight;
1527 if (!tg->se[cpu])
1528 return;
1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
1546 spin_lock_irqsave(&rq->lock, flags);
1547 tg->cfs_rq[cpu]->shares = shares;
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1559 static int tg_shares_up(struct task_group *tg, void *data)
1561 unsigned long weight, rq_weight = 0;
1562 unsigned long shares = 0;
1563 struct sched_domain *sd = data;
1564 int i;
1566 for_each_cpu(i, sched_domain_span(sd)) {
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
1578 shares += tg->cfs_rq[i]->shares;
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
1587 for_each_cpu(i, sched_domain_span(sd))
1588 update_group_shares_cpu(tg, i, shares, rq_weight);
1590 return 0;
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1598 static int tg_load_down(struct task_group *tg, void *data)
1600 unsigned long load;
1601 long cpu = (long)data;
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1611 tg->cfs_rq[cpu]->h_load = load;
1613 return 0;
1616 static void update_shares(struct sched_domain *sd)
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1634 static void update_h_load(long cpu)
1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1639 #else
1641 static inline void update_shares(struct sched_domain *sd)
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649 #endif
1651 #ifdef CONFIG_PREEMPT
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1669 return 1;
1672 #else
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1685 int ret = 0;
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1696 return ret;
1699 #endif /* CONFIG_PREEMPT */
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1712 return _double_lock_balance(this_rq, busiest);
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1721 #endif
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1726 #ifdef CONFIG_SMP
1727 cfs_rq->shares = shares;
1728 #endif
1730 #endif
1732 static void calc_load_account_active(struct rq *this_rq);
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1740 #endif
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1746 static void inc_nr_running(struct rq *rq)
1748 rq->nr_running++;
1751 static void dec_nr_running(struct rq *rq)
1753 rq->nr_running--;
1756 static void set_load_weight(struct task_struct *p)
1758 if (task_has_rt_policy(p)) {
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1765 * SCHED_IDLE tasks get minimal weight:
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1777 static void update_avg(u64 *avg, u64 sample)
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1788 sched_info_queued(p);
1789 p->sched_class->enqueue_task(rq, p, wakeup);
1790 p->se.on_rq = 1;
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1806 sched_info_dequeued(p);
1807 p->sched_class->dequeue_task(rq, p, sleep);
1808 p->se.on_rq = 0;
1812 * __normal_prio - return the priority that is based on the static prio
1814 static inline int __normal_prio(struct task_struct *p)
1816 return p->static_prio;
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1826 static inline int normal_prio(struct task_struct *p)
1828 int prio;
1830 if (task_has_rt_policy(p))
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1844 static int effective_prio(struct task_struct *p)
1846 p->normal_prio = normal_prio(p);
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1858 * activate_task - move a task to the runqueue.
1860 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1862 if (task_contributes_to_load(p))
1863 rq->nr_uninterruptible--;
1865 enqueue_task(rq, p, wakeup);
1866 inc_nr_running(rq);
1870 * deactivate_task - remove a task from the runqueue.
1872 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1874 if (task_contributes_to_load(p))
1875 rq->nr_uninterruptible++;
1877 dequeue_task(rq, p, sleep);
1878 dec_nr_running(rq);
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1885 inline int task_curr(const struct task_struct *p)
1887 return cpu_curr(task_cpu(p)) == p;
1890 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1892 set_task_rq(p, cpu);
1893 #ifdef CONFIG_SMP
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1899 smp_wmb();
1900 task_thread_info(p)->cpu = cpu;
1901 #endif
1904 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1916 #ifdef CONFIG_SMP
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu)
1921 return cpu_rq(cpu)->load.weight;
1925 * Is this task likely cache-hot:
1927 static int
1928 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1930 s64 delta;
1933 * Buddy candidates are cache hot:
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
1938 return 1;
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1948 delta = now - p->se.exec_start;
1950 return delta < (s64)sysctl_sched_migration_cost;
1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960 u64 clock_offset;
1962 clock_offset = old_rq->clock - new_rq->clock;
1964 trace_sched_migrate_task(p, new_cpu);
1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
1973 #endif
1974 if (old_cpu != new_cpu) {
1975 p->se.nr_migrations++;
1976 new_rq->nr_migrations_in++;
1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 #endif
1981 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
1982 1, 1, NULL, 0);
1984 p->se.vruntime -= old_cfsrq->min_vruntime -
1985 new_cfsrq->min_vruntime;
1987 __set_task_cpu(p, new_cpu);
1990 struct migration_req {
1991 struct list_head list;
1993 struct task_struct *task;
1994 int dest_cpu;
1996 struct completion done;
2000 * The task's runqueue lock must be held.
2001 * Returns true if you have to wait for migration thread.
2003 static int
2004 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2006 struct rq *rq = task_rq(p);
2009 * If the task is not on a runqueue (and not running), then
2010 * it is sufficient to simply update the task's cpu field.
2012 if (!p->se.on_rq && !task_running(rq, p)) {
2013 set_task_cpu(p, dest_cpu);
2014 return 0;
2017 init_completion(&req->done);
2018 req->task = p;
2019 req->dest_cpu = dest_cpu;
2020 list_add(&req->list, &rq->migration_queue);
2022 return 1;
2026 * wait_task_context_switch - wait for a thread to complete at least one
2027 * context switch.
2029 * @p must not be current.
2031 void wait_task_context_switch(struct task_struct *p)
2033 unsigned long nvcsw, nivcsw, flags;
2034 int running;
2035 struct rq *rq;
2037 nvcsw = p->nvcsw;
2038 nivcsw = p->nivcsw;
2039 for (;;) {
2041 * The runqueue is assigned before the actual context
2042 * switch. We need to take the runqueue lock.
2044 * We could check initially without the lock but it is
2045 * very likely that we need to take the lock in every
2046 * iteration.
2048 rq = task_rq_lock(p, &flags);
2049 running = task_running(rq, p);
2050 task_rq_unlock(rq, &flags);
2052 if (likely(!running))
2053 break;
2055 * The switch count is incremented before the actual
2056 * context switch. We thus wait for two switches to be
2057 * sure at least one completed.
2059 if ((p->nvcsw - nvcsw) > 1)
2060 break;
2061 if ((p->nivcsw - nivcsw) > 1)
2062 break;
2064 cpu_relax();
2069 * wait_task_inactive - wait for a thread to unschedule.
2071 * If @match_state is nonzero, it's the @p->state value just checked and
2072 * not expected to change. If it changes, i.e. @p might have woken up,
2073 * then return zero. When we succeed in waiting for @p to be off its CPU,
2074 * we return a positive number (its total switch count). If a second call
2075 * a short while later returns the same number, the caller can be sure that
2076 * @p has remained unscheduled the whole time.
2078 * The caller must ensure that the task *will* unschedule sometime soon,
2079 * else this function might spin for a *long* time. This function can't
2080 * be called with interrupts off, or it may introduce deadlock with
2081 * smp_call_function() if an IPI is sent by the same process we are
2082 * waiting to become inactive.
2084 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2086 unsigned long flags;
2087 int running, on_rq;
2088 unsigned long ncsw;
2089 struct rq *rq;
2091 for (;;) {
2093 * We do the initial early heuristics without holding
2094 * any task-queue locks at all. We'll only try to get
2095 * the runqueue lock when things look like they will
2096 * work out!
2098 rq = task_rq(p);
2101 * If the task is actively running on another CPU
2102 * still, just relax and busy-wait without holding
2103 * any locks.
2105 * NOTE! Since we don't hold any locks, it's not
2106 * even sure that "rq" stays as the right runqueue!
2107 * But we don't care, since "task_running()" will
2108 * return false if the runqueue has changed and p
2109 * is actually now running somewhere else!
2111 while (task_running(rq, p)) {
2112 if (match_state && unlikely(p->state != match_state))
2113 return 0;
2114 cpu_relax();
2118 * Ok, time to look more closely! We need the rq
2119 * lock now, to be *sure*. If we're wrong, we'll
2120 * just go back and repeat.
2122 rq = task_rq_lock(p, &flags);
2123 trace_sched_wait_task(rq, p);
2124 running = task_running(rq, p);
2125 on_rq = p->se.on_rq;
2126 ncsw = 0;
2127 if (!match_state || p->state == match_state)
2128 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2129 task_rq_unlock(rq, &flags);
2132 * If it changed from the expected state, bail out now.
2134 if (unlikely(!ncsw))
2135 break;
2138 * Was it really running after all now that we
2139 * checked with the proper locks actually held?
2141 * Oops. Go back and try again..
2143 if (unlikely(running)) {
2144 cpu_relax();
2145 continue;
2149 * It's not enough that it's not actively running,
2150 * it must be off the runqueue _entirely_, and not
2151 * preempted!
2153 * So if it was still runnable (but just not actively
2154 * running right now), it's preempted, and we should
2155 * yield - it could be a while.
2157 if (unlikely(on_rq)) {
2158 schedule_timeout_uninterruptible(1);
2159 continue;
2163 * Ahh, all good. It wasn't running, and it wasn't
2164 * runnable, which means that it will never become
2165 * running in the future either. We're all done!
2167 break;
2170 return ncsw;
2173 /***
2174 * kick_process - kick a running thread to enter/exit the kernel
2175 * @p: the to-be-kicked thread
2177 * Cause a process which is running on another CPU to enter
2178 * kernel-mode, without any delay. (to get signals handled.)
2180 * NOTE: this function doesnt have to take the runqueue lock,
2181 * because all it wants to ensure is that the remote task enters
2182 * the kernel. If the IPI races and the task has been migrated
2183 * to another CPU then no harm is done and the purpose has been
2184 * achieved as well.
2186 void kick_process(struct task_struct *p)
2188 int cpu;
2190 preempt_disable();
2191 cpu = task_cpu(p);
2192 if ((cpu != smp_processor_id()) && task_curr(p))
2193 smp_send_reschedule(cpu);
2194 preempt_enable();
2196 EXPORT_SYMBOL_GPL(kick_process);
2199 * Return a low guess at the load of a migration-source cpu weighted
2200 * according to the scheduling class and "nice" value.
2202 * We want to under-estimate the load of migration sources, to
2203 * balance conservatively.
2205 static unsigned long source_load(int cpu, int type)
2207 struct rq *rq = cpu_rq(cpu);
2208 unsigned long total = weighted_cpuload(cpu);
2210 if (type == 0 || !sched_feat(LB_BIAS))
2211 return total;
2213 return min(rq->cpu_load[type-1], total);
2217 * Return a high guess at the load of a migration-target cpu weighted
2218 * according to the scheduling class and "nice" value.
2220 static unsigned long target_load(int cpu, int type)
2222 struct rq *rq = cpu_rq(cpu);
2223 unsigned long total = weighted_cpuload(cpu);
2225 if (type == 0 || !sched_feat(LB_BIAS))
2226 return total;
2228 return max(rq->cpu_load[type-1], total);
2232 * find_idlest_group finds and returns the least busy CPU group within the
2233 * domain.
2235 static struct sched_group *
2236 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2238 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2239 unsigned long min_load = ULONG_MAX, this_load = 0;
2240 int load_idx = sd->forkexec_idx;
2241 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2243 do {
2244 unsigned long load, avg_load;
2245 int local_group;
2246 int i;
2248 /* Skip over this group if it has no CPUs allowed */
2249 if (!cpumask_intersects(sched_group_cpus(group),
2250 &p->cpus_allowed))
2251 continue;
2253 local_group = cpumask_test_cpu(this_cpu,
2254 sched_group_cpus(group));
2256 /* Tally up the load of all CPUs in the group */
2257 avg_load = 0;
2259 for_each_cpu(i, sched_group_cpus(group)) {
2260 /* Bias balancing toward cpus of our domain */
2261 if (local_group)
2262 load = source_load(i, load_idx);
2263 else
2264 load = target_load(i, load_idx);
2266 avg_load += load;
2269 /* Adjust by relative CPU power of the group */
2270 avg_load = sg_div_cpu_power(group,
2271 avg_load * SCHED_LOAD_SCALE);
2273 if (local_group) {
2274 this_load = avg_load;
2275 this = group;
2276 } else if (avg_load < min_load) {
2277 min_load = avg_load;
2278 idlest = group;
2280 } while (group = group->next, group != sd->groups);
2282 if (!idlest || 100*this_load < imbalance*min_load)
2283 return NULL;
2284 return idlest;
2288 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2290 static int
2291 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2293 unsigned long load, min_load = ULONG_MAX;
2294 int idlest = -1;
2295 int i;
2297 /* Traverse only the allowed CPUs */
2298 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2299 load = weighted_cpuload(i);
2301 if (load < min_load || (load == min_load && i == this_cpu)) {
2302 min_load = load;
2303 idlest = i;
2307 return idlest;
2311 * sched_balance_self: balance the current task (running on cpu) in domains
2312 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2313 * SD_BALANCE_EXEC.
2315 * Balance, ie. select the least loaded group.
2317 * Returns the target CPU number, or the same CPU if no balancing is needed.
2319 * preempt must be disabled.
2321 static int sched_balance_self(int cpu, int flag)
2323 struct task_struct *t = current;
2324 struct sched_domain *tmp, *sd = NULL;
2326 for_each_domain(cpu, tmp) {
2328 * If power savings logic is enabled for a domain, stop there.
2330 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2331 break;
2332 if (tmp->flags & flag)
2333 sd = tmp;
2336 if (sd)
2337 update_shares(sd);
2339 while (sd) {
2340 struct sched_group *group;
2341 int new_cpu, weight;
2343 if (!(sd->flags & flag)) {
2344 sd = sd->child;
2345 continue;
2348 group = find_idlest_group(sd, t, cpu);
2349 if (!group) {
2350 sd = sd->child;
2351 continue;
2354 new_cpu = find_idlest_cpu(group, t, cpu);
2355 if (new_cpu == -1 || new_cpu == cpu) {
2356 /* Now try balancing at a lower domain level of cpu */
2357 sd = sd->child;
2358 continue;
2361 /* Now try balancing at a lower domain level of new_cpu */
2362 cpu = new_cpu;
2363 weight = cpumask_weight(sched_domain_span(sd));
2364 sd = NULL;
2365 for_each_domain(cpu, tmp) {
2366 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2367 break;
2368 if (tmp->flags & flag)
2369 sd = tmp;
2371 /* while loop will break here if sd == NULL */
2374 return cpu;
2377 #endif /* CONFIG_SMP */
2380 * task_oncpu_function_call - call a function on the cpu on which a task runs
2381 * @p: the task to evaluate
2382 * @func: the function to be called
2383 * @info: the function call argument
2385 * Calls the function @func when the task is currently running. This might
2386 * be on the current CPU, which just calls the function directly
2388 void task_oncpu_function_call(struct task_struct *p,
2389 void (*func) (void *info), void *info)
2391 int cpu;
2393 preempt_disable();
2394 cpu = task_cpu(p);
2395 if (task_curr(p))
2396 smp_call_function_single(cpu, func, info, 1);
2397 preempt_enable();
2400 /***
2401 * try_to_wake_up - wake up a thread
2402 * @p: the to-be-woken-up thread
2403 * @state: the mask of task states that can be woken
2404 * @sync: do a synchronous wakeup?
2406 * Put it on the run-queue if it's not already there. The "current"
2407 * thread is always on the run-queue (except when the actual
2408 * re-schedule is in progress), and as such you're allowed to do
2409 * the simpler "current->state = TASK_RUNNING" to mark yourself
2410 * runnable without the overhead of this.
2412 * returns failure only if the task is already active.
2414 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2416 int cpu, orig_cpu, this_cpu, success = 0;
2417 unsigned long flags;
2418 long old_state;
2419 struct rq *rq;
2421 if (!sched_feat(SYNC_WAKEUPS))
2422 sync = 0;
2424 #ifdef CONFIG_SMP
2425 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2426 struct sched_domain *sd;
2428 this_cpu = raw_smp_processor_id();
2429 cpu = task_cpu(p);
2431 for_each_domain(this_cpu, sd) {
2432 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2433 update_shares(sd);
2434 break;
2438 #endif
2440 smp_wmb();
2441 rq = task_rq_lock(p, &flags);
2442 update_rq_clock(rq);
2443 old_state = p->state;
2444 if (!(old_state & state))
2445 goto out;
2447 if (p->se.on_rq)
2448 goto out_running;
2450 cpu = task_cpu(p);
2451 orig_cpu = cpu;
2452 this_cpu = smp_processor_id();
2454 #ifdef CONFIG_SMP
2455 if (unlikely(task_running(rq, p)))
2456 goto out_activate;
2458 cpu = p->sched_class->select_task_rq(p, sync);
2459 if (cpu != orig_cpu) {
2460 set_task_cpu(p, cpu);
2461 task_rq_unlock(rq, &flags);
2462 /* might preempt at this point */
2463 rq = task_rq_lock(p, &flags);
2464 old_state = p->state;
2465 if (!(old_state & state))
2466 goto out;
2467 if (p->se.on_rq)
2468 goto out_running;
2470 this_cpu = smp_processor_id();
2471 cpu = task_cpu(p);
2474 #ifdef CONFIG_SCHEDSTATS
2475 schedstat_inc(rq, ttwu_count);
2476 if (cpu == this_cpu)
2477 schedstat_inc(rq, ttwu_local);
2478 else {
2479 struct sched_domain *sd;
2480 for_each_domain(this_cpu, sd) {
2481 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2482 schedstat_inc(sd, ttwu_wake_remote);
2483 break;
2487 #endif /* CONFIG_SCHEDSTATS */
2489 out_activate:
2490 #endif /* CONFIG_SMP */
2491 schedstat_inc(p, se.nr_wakeups);
2492 if (sync)
2493 schedstat_inc(p, se.nr_wakeups_sync);
2494 if (orig_cpu != cpu)
2495 schedstat_inc(p, se.nr_wakeups_migrate);
2496 if (cpu == this_cpu)
2497 schedstat_inc(p, se.nr_wakeups_local);
2498 else
2499 schedstat_inc(p, se.nr_wakeups_remote);
2500 activate_task(rq, p, 1);
2501 success = 1;
2504 * Only attribute actual wakeups done by this task.
2506 if (!in_interrupt()) {
2507 struct sched_entity *se = &current->se;
2508 u64 sample = se->sum_exec_runtime;
2510 if (se->last_wakeup)
2511 sample -= se->last_wakeup;
2512 else
2513 sample -= se->start_runtime;
2514 update_avg(&se->avg_wakeup, sample);
2516 se->last_wakeup = se->sum_exec_runtime;
2519 out_running:
2520 trace_sched_wakeup(rq, p, success);
2521 check_preempt_curr(rq, p, sync);
2523 p->state = TASK_RUNNING;
2524 #ifdef CONFIG_SMP
2525 if (p->sched_class->task_wake_up)
2526 p->sched_class->task_wake_up(rq, p);
2527 #endif
2528 out:
2529 task_rq_unlock(rq, &flags);
2531 return success;
2535 * wake_up_process - Wake up a specific process
2536 * @p: The process to be woken up.
2538 * Attempt to wake up the nominated process and move it to the set of runnable
2539 * processes. Returns 1 if the process was woken up, 0 if it was already
2540 * running.
2542 * It may be assumed that this function implies a write memory barrier before
2543 * changing the task state if and only if any tasks are woken up.
2545 int wake_up_process(struct task_struct *p)
2547 return try_to_wake_up(p, TASK_ALL, 0);
2549 EXPORT_SYMBOL(wake_up_process);
2551 int wake_up_state(struct task_struct *p, unsigned int state)
2553 return try_to_wake_up(p, state, 0);
2557 * Perform scheduler related setup for a newly forked process p.
2558 * p is forked by current.
2560 * __sched_fork() is basic setup used by init_idle() too:
2562 static void __sched_fork(struct task_struct *p)
2564 p->se.exec_start = 0;
2565 p->se.sum_exec_runtime = 0;
2566 p->se.prev_sum_exec_runtime = 0;
2567 p->se.nr_migrations = 0;
2568 p->se.last_wakeup = 0;
2569 p->se.avg_overlap = 0;
2570 p->se.start_runtime = 0;
2571 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2573 #ifdef CONFIG_SCHEDSTATS
2574 p->se.wait_start = 0;
2575 p->se.sum_sleep_runtime = 0;
2576 p->se.sleep_start = 0;
2577 p->se.block_start = 0;
2578 p->se.sleep_max = 0;
2579 p->se.block_max = 0;
2580 p->se.exec_max = 0;
2581 p->se.slice_max = 0;
2582 p->se.wait_max = 0;
2583 #endif
2585 INIT_LIST_HEAD(&p->rt.run_list);
2586 p->se.on_rq = 0;
2587 INIT_LIST_HEAD(&p->se.group_node);
2589 #ifdef CONFIG_PREEMPT_NOTIFIERS
2590 INIT_HLIST_HEAD(&p->preempt_notifiers);
2591 #endif
2594 * We mark the process as running here, but have not actually
2595 * inserted it onto the runqueue yet. This guarantees that
2596 * nobody will actually run it, and a signal or other external
2597 * event cannot wake it up and insert it on the runqueue either.
2599 p->state = TASK_RUNNING;
2603 * fork()/clone()-time setup:
2605 void sched_fork(struct task_struct *p, int clone_flags)
2607 int cpu = get_cpu();
2609 __sched_fork(p);
2611 #ifdef CONFIG_SMP
2612 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2613 #endif
2614 set_task_cpu(p, cpu);
2617 * Make sure we do not leak PI boosting priority to the child:
2619 p->prio = current->normal_prio;
2620 if (!rt_prio(p->prio))
2621 p->sched_class = &fair_sched_class;
2623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2624 if (likely(sched_info_on()))
2625 memset(&p->sched_info, 0, sizeof(p->sched_info));
2626 #endif
2627 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2628 p->oncpu = 0;
2629 #endif
2630 #ifdef CONFIG_PREEMPT
2631 /* Want to start with kernel preemption disabled. */
2632 task_thread_info(p)->preempt_count = 1;
2633 #endif
2634 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2636 put_cpu();
2640 * wake_up_new_task - wake up a newly created task for the first time.
2642 * This function will do some initial scheduler statistics housekeeping
2643 * that must be done for every newly created context, then puts the task
2644 * on the runqueue and wakes it.
2646 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2648 unsigned long flags;
2649 struct rq *rq;
2651 rq = task_rq_lock(p, &flags);
2652 BUG_ON(p->state != TASK_RUNNING);
2653 update_rq_clock(rq);
2655 p->prio = effective_prio(p);
2657 if (!p->sched_class->task_new || !current->se.on_rq) {
2658 activate_task(rq, p, 0);
2659 } else {
2661 * Let the scheduling class do new task startup
2662 * management (if any):
2664 p->sched_class->task_new(rq, p);
2665 inc_nr_running(rq);
2667 trace_sched_wakeup_new(rq, p, 1);
2668 check_preempt_curr(rq, p, 0);
2669 #ifdef CONFIG_SMP
2670 if (p->sched_class->task_wake_up)
2671 p->sched_class->task_wake_up(rq, p);
2672 #endif
2673 task_rq_unlock(rq, &flags);
2676 #ifdef CONFIG_PREEMPT_NOTIFIERS
2679 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2680 * @notifier: notifier struct to register
2682 void preempt_notifier_register(struct preempt_notifier *notifier)
2684 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2686 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2689 * preempt_notifier_unregister - no longer interested in preemption notifications
2690 * @notifier: notifier struct to unregister
2692 * This is safe to call from within a preemption notifier.
2694 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2696 hlist_del(&notifier->link);
2698 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2700 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2702 struct preempt_notifier *notifier;
2703 struct hlist_node *node;
2705 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2706 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2709 static void
2710 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2711 struct task_struct *next)
2713 struct preempt_notifier *notifier;
2714 struct hlist_node *node;
2716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2717 notifier->ops->sched_out(notifier, next);
2720 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2722 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2726 static void
2727 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2728 struct task_struct *next)
2732 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2735 * prepare_task_switch - prepare to switch tasks
2736 * @rq: the runqueue preparing to switch
2737 * @prev: the current task that is being switched out
2738 * @next: the task we are going to switch to.
2740 * This is called with the rq lock held and interrupts off. It must
2741 * be paired with a subsequent finish_task_switch after the context
2742 * switch.
2744 * prepare_task_switch sets up locking and calls architecture specific
2745 * hooks.
2747 static inline void
2748 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2749 struct task_struct *next)
2751 fire_sched_out_preempt_notifiers(prev, next);
2752 prepare_lock_switch(rq, next);
2753 prepare_arch_switch(next);
2757 * finish_task_switch - clean up after a task-switch
2758 * @rq: runqueue associated with task-switch
2759 * @prev: the thread we just switched away from.
2761 * finish_task_switch must be called after the context switch, paired
2762 * with a prepare_task_switch call before the context switch.
2763 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2764 * and do any other architecture-specific cleanup actions.
2766 * Note that we may have delayed dropping an mm in context_switch(). If
2767 * so, we finish that here outside of the runqueue lock. (Doing it
2768 * with the lock held can cause deadlocks; see schedule() for
2769 * details.)
2771 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2772 __releases(rq->lock)
2774 struct mm_struct *mm = rq->prev_mm;
2775 long prev_state;
2776 #ifdef CONFIG_SMP
2777 int post_schedule = 0;
2779 if (current->sched_class->needs_post_schedule)
2780 post_schedule = current->sched_class->needs_post_schedule(rq);
2781 #endif
2783 rq->prev_mm = NULL;
2786 * A task struct has one reference for the use as "current".
2787 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2788 * schedule one last time. The schedule call will never return, and
2789 * the scheduled task must drop that reference.
2790 * The test for TASK_DEAD must occur while the runqueue locks are
2791 * still held, otherwise prev could be scheduled on another cpu, die
2792 * there before we look at prev->state, and then the reference would
2793 * be dropped twice.
2794 * Manfred Spraul <manfred@colorfullife.com>
2796 prev_state = prev->state;
2797 finish_arch_switch(prev);
2798 perf_counter_task_sched_in(current, cpu_of(rq));
2799 finish_lock_switch(rq, prev);
2800 #ifdef CONFIG_SMP
2801 if (post_schedule)
2802 current->sched_class->post_schedule(rq);
2803 #endif
2805 fire_sched_in_preempt_notifiers(current);
2806 if (mm)
2807 mmdrop(mm);
2808 if (unlikely(prev_state == TASK_DEAD)) {
2810 * Remove function-return probe instances associated with this
2811 * task and put them back on the free list.
2813 kprobe_flush_task(prev);
2814 put_task_struct(prev);
2819 * schedule_tail - first thing a freshly forked thread must call.
2820 * @prev: the thread we just switched away from.
2822 asmlinkage void schedule_tail(struct task_struct *prev)
2823 __releases(rq->lock)
2825 struct rq *rq = this_rq();
2827 finish_task_switch(rq, prev);
2828 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2829 /* In this case, finish_task_switch does not reenable preemption */
2830 preempt_enable();
2831 #endif
2832 if (current->set_child_tid)
2833 put_user(task_pid_vnr(current), current->set_child_tid);
2837 * context_switch - switch to the new MM and the new
2838 * thread's register state.
2840 static inline void
2841 context_switch(struct rq *rq, struct task_struct *prev,
2842 struct task_struct *next)
2844 struct mm_struct *mm, *oldmm;
2846 prepare_task_switch(rq, prev, next);
2847 trace_sched_switch(rq, prev, next);
2848 mm = next->mm;
2849 oldmm = prev->active_mm;
2851 * For paravirt, this is coupled with an exit in switch_to to
2852 * combine the page table reload and the switch backend into
2853 * one hypercall.
2855 arch_start_context_switch(prev);
2857 if (unlikely(!mm)) {
2858 next->active_mm = oldmm;
2859 atomic_inc(&oldmm->mm_count);
2860 enter_lazy_tlb(oldmm, next);
2861 } else
2862 switch_mm(oldmm, mm, next);
2864 if (unlikely(!prev->mm)) {
2865 prev->active_mm = NULL;
2866 rq->prev_mm = oldmm;
2869 * Since the runqueue lock will be released by the next
2870 * task (which is an invalid locking op but in the case
2871 * of the scheduler it's an obvious special-case), so we
2872 * do an early lockdep release here:
2874 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2876 #endif
2878 /* Here we just switch the register state and the stack. */
2879 switch_to(prev, next, prev);
2881 barrier();
2883 * this_rq must be evaluated again because prev may have moved
2884 * CPUs since it called schedule(), thus the 'rq' on its stack
2885 * frame will be invalid.
2887 finish_task_switch(this_rq(), prev);
2891 * nr_running, nr_uninterruptible and nr_context_switches:
2893 * externally visible scheduler statistics: current number of runnable
2894 * threads, current number of uninterruptible-sleeping threads, total
2895 * number of context switches performed since bootup.
2897 unsigned long nr_running(void)
2899 unsigned long i, sum = 0;
2901 for_each_online_cpu(i)
2902 sum += cpu_rq(i)->nr_running;
2904 return sum;
2907 unsigned long nr_uninterruptible(void)
2909 unsigned long i, sum = 0;
2911 for_each_possible_cpu(i)
2912 sum += cpu_rq(i)->nr_uninterruptible;
2915 * Since we read the counters lockless, it might be slightly
2916 * inaccurate. Do not allow it to go below zero though:
2918 if (unlikely((long)sum < 0))
2919 sum = 0;
2921 return sum;
2924 unsigned long long nr_context_switches(void)
2926 int i;
2927 unsigned long long sum = 0;
2929 for_each_possible_cpu(i)
2930 sum += cpu_rq(i)->nr_switches;
2932 return sum;
2935 unsigned long nr_iowait(void)
2937 unsigned long i, sum = 0;
2939 for_each_possible_cpu(i)
2940 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2942 return sum;
2945 /* Variables and functions for calc_load */
2946 static atomic_long_t calc_load_tasks;
2947 static unsigned long calc_load_update;
2948 unsigned long avenrun[3];
2949 EXPORT_SYMBOL(avenrun);
2952 * get_avenrun - get the load average array
2953 * @loads: pointer to dest load array
2954 * @offset: offset to add
2955 * @shift: shift count to shift the result left
2957 * These values are estimates at best, so no need for locking.
2959 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2961 loads[0] = (avenrun[0] + offset) << shift;
2962 loads[1] = (avenrun[1] + offset) << shift;
2963 loads[2] = (avenrun[2] + offset) << shift;
2966 static unsigned long
2967 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2969 load *= exp;
2970 load += active * (FIXED_1 - exp);
2971 return load >> FSHIFT;
2975 * calc_load - update the avenrun load estimates 10 ticks after the
2976 * CPUs have updated calc_load_tasks.
2978 void calc_global_load(void)
2980 unsigned long upd = calc_load_update + 10;
2981 long active;
2983 if (time_before(jiffies, upd))
2984 return;
2986 active = atomic_long_read(&calc_load_tasks);
2987 active = active > 0 ? active * FIXED_1 : 0;
2989 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2990 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2991 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2993 calc_load_update += LOAD_FREQ;
2997 * Either called from update_cpu_load() or from a cpu going idle
2999 static void calc_load_account_active(struct rq *this_rq)
3001 long nr_active, delta;
3003 nr_active = this_rq->nr_running;
3004 nr_active += (long) this_rq->nr_uninterruptible;
3006 if (nr_active != this_rq->calc_load_active) {
3007 delta = nr_active - this_rq->calc_load_active;
3008 this_rq->calc_load_active = nr_active;
3009 atomic_long_add(delta, &calc_load_tasks);
3014 * Externally visible per-cpu scheduler statistics:
3015 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3017 u64 cpu_nr_migrations(int cpu)
3019 return cpu_rq(cpu)->nr_migrations_in;
3023 * Update rq->cpu_load[] statistics. This function is usually called every
3024 * scheduler tick (TICK_NSEC).
3026 static void update_cpu_load(struct rq *this_rq)
3028 unsigned long this_load = this_rq->load.weight;
3029 int i, scale;
3031 this_rq->nr_load_updates++;
3033 /* Update our load: */
3034 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3035 unsigned long old_load, new_load;
3037 /* scale is effectively 1 << i now, and >> i divides by scale */
3039 old_load = this_rq->cpu_load[i];
3040 new_load = this_load;
3042 * Round up the averaging division if load is increasing. This
3043 * prevents us from getting stuck on 9 if the load is 10, for
3044 * example.
3046 if (new_load > old_load)
3047 new_load += scale-1;
3048 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3051 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3052 this_rq->calc_load_update += LOAD_FREQ;
3053 calc_load_account_active(this_rq);
3057 #ifdef CONFIG_SMP
3060 * double_rq_lock - safely lock two runqueues
3062 * Note this does not disable interrupts like task_rq_lock,
3063 * you need to do so manually before calling.
3065 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3066 __acquires(rq1->lock)
3067 __acquires(rq2->lock)
3069 BUG_ON(!irqs_disabled());
3070 if (rq1 == rq2) {
3071 spin_lock(&rq1->lock);
3072 __acquire(rq2->lock); /* Fake it out ;) */
3073 } else {
3074 if (rq1 < rq2) {
3075 spin_lock(&rq1->lock);
3076 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3077 } else {
3078 spin_lock(&rq2->lock);
3079 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3082 update_rq_clock(rq1);
3083 update_rq_clock(rq2);
3087 * double_rq_unlock - safely unlock two runqueues
3089 * Note this does not restore interrupts like task_rq_unlock,
3090 * you need to do so manually after calling.
3092 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3093 __releases(rq1->lock)
3094 __releases(rq2->lock)
3096 spin_unlock(&rq1->lock);
3097 if (rq1 != rq2)
3098 spin_unlock(&rq2->lock);
3099 else
3100 __release(rq2->lock);
3104 * If dest_cpu is allowed for this process, migrate the task to it.
3105 * This is accomplished by forcing the cpu_allowed mask to only
3106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3107 * the cpu_allowed mask is restored.
3109 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3111 struct migration_req req;
3112 unsigned long flags;
3113 struct rq *rq;
3115 rq = task_rq_lock(p, &flags);
3116 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3117 || unlikely(!cpu_active(dest_cpu)))
3118 goto out;
3120 /* force the process onto the specified CPU */
3121 if (migrate_task(p, dest_cpu, &req)) {
3122 /* Need to wait for migration thread (might exit: take ref). */
3123 struct task_struct *mt = rq->migration_thread;
3125 get_task_struct(mt);
3126 task_rq_unlock(rq, &flags);
3127 wake_up_process(mt);
3128 put_task_struct(mt);
3129 wait_for_completion(&req.done);
3131 return;
3133 out:
3134 task_rq_unlock(rq, &flags);
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
3141 void sched_exec(void)
3143 int new_cpu, this_cpu = get_cpu();
3144 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3145 put_cpu();
3146 if (new_cpu != this_cpu)
3147 sched_migrate_task(current, new_cpu);
3151 * pull_task - move a task from a remote runqueue to the local runqueue.
3152 * Both runqueues must be locked.
3154 static void pull_task(struct rq *src_rq, struct task_struct *p,
3155 struct rq *this_rq, int this_cpu)
3157 deactivate_task(src_rq, p, 0);
3158 set_task_cpu(p, this_cpu);
3159 activate_task(this_rq, p, 0);
3161 * Note that idle threads have a prio of MAX_PRIO, for this test
3162 * to be always true for them.
3164 check_preempt_curr(this_rq, p, 0);
3168 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3170 static
3171 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3172 struct sched_domain *sd, enum cpu_idle_type idle,
3173 int *all_pinned)
3175 int tsk_cache_hot = 0;
3177 * We do not migrate tasks that are:
3178 * 1) running (obviously), or
3179 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3180 * 3) are cache-hot on their current CPU.
3182 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3183 schedstat_inc(p, se.nr_failed_migrations_affine);
3184 return 0;
3186 *all_pinned = 0;
3188 if (task_running(rq, p)) {
3189 schedstat_inc(p, se.nr_failed_migrations_running);
3190 return 0;
3194 * Aggressive migration if:
3195 * 1) task is cache cold, or
3196 * 2) too many balance attempts have failed.
3199 tsk_cache_hot = task_hot(p, rq->clock, sd);
3200 if (!tsk_cache_hot ||
3201 sd->nr_balance_failed > sd->cache_nice_tries) {
3202 #ifdef CONFIG_SCHEDSTATS
3203 if (tsk_cache_hot) {
3204 schedstat_inc(sd, lb_hot_gained[idle]);
3205 schedstat_inc(p, se.nr_forced_migrations);
3207 #endif
3208 return 1;
3211 if (tsk_cache_hot) {
3212 schedstat_inc(p, se.nr_failed_migrations_hot);
3213 return 0;
3215 return 1;
3218 static unsigned long
3219 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3220 unsigned long max_load_move, struct sched_domain *sd,
3221 enum cpu_idle_type idle, int *all_pinned,
3222 int *this_best_prio, struct rq_iterator *iterator)
3224 int loops = 0, pulled = 0, pinned = 0;
3225 struct task_struct *p;
3226 long rem_load_move = max_load_move;
3228 if (max_load_move == 0)
3229 goto out;
3231 pinned = 1;
3234 * Start the load-balancing iterator:
3236 p = iterator->start(iterator->arg);
3237 next:
3238 if (!p || loops++ > sysctl_sched_nr_migrate)
3239 goto out;
3241 if ((p->se.load.weight >> 1) > rem_load_move ||
3242 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3243 p = iterator->next(iterator->arg);
3244 goto next;
3247 pull_task(busiest, p, this_rq, this_cpu);
3248 pulled++;
3249 rem_load_move -= p->se.load.weight;
3251 #ifdef CONFIG_PREEMPT
3253 * NEWIDLE balancing is a source of latency, so preemptible kernels
3254 * will stop after the first task is pulled to minimize the critical
3255 * section.
3257 if (idle == CPU_NEWLY_IDLE)
3258 goto out;
3259 #endif
3262 * We only want to steal up to the prescribed amount of weighted load.
3264 if (rem_load_move > 0) {
3265 if (p->prio < *this_best_prio)
3266 *this_best_prio = p->prio;
3267 p = iterator->next(iterator->arg);
3268 goto next;
3270 out:
3272 * Right now, this is one of only two places pull_task() is called,
3273 * so we can safely collect pull_task() stats here rather than
3274 * inside pull_task().
3276 schedstat_add(sd, lb_gained[idle], pulled);
3278 if (all_pinned)
3279 *all_pinned = pinned;
3281 return max_load_move - rem_load_move;
3285 * move_tasks tries to move up to max_load_move weighted load from busiest to
3286 * this_rq, as part of a balancing operation within domain "sd".
3287 * Returns 1 if successful and 0 otherwise.
3289 * Called with both runqueues locked.
3291 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3292 unsigned long max_load_move,
3293 struct sched_domain *sd, enum cpu_idle_type idle,
3294 int *all_pinned)
3296 const struct sched_class *class = sched_class_highest;
3297 unsigned long total_load_moved = 0;
3298 int this_best_prio = this_rq->curr->prio;
3300 do {
3301 total_load_moved +=
3302 class->load_balance(this_rq, this_cpu, busiest,
3303 max_load_move - total_load_moved,
3304 sd, idle, all_pinned, &this_best_prio);
3305 class = class->next;
3307 #ifdef CONFIG_PREEMPT
3309 * NEWIDLE balancing is a source of latency, so preemptible
3310 * kernels will stop after the first task is pulled to minimize
3311 * the critical section.
3313 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3314 break;
3315 #endif
3316 } while (class && max_load_move > total_load_moved);
3318 return total_load_moved > 0;
3321 static int
3322 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 struct sched_domain *sd, enum cpu_idle_type idle,
3324 struct rq_iterator *iterator)
3326 struct task_struct *p = iterator->start(iterator->arg);
3327 int pinned = 0;
3329 while (p) {
3330 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3331 pull_task(busiest, p, this_rq, this_cpu);
3333 * Right now, this is only the second place pull_task()
3334 * is called, so we can safely collect pull_task()
3335 * stats here rather than inside pull_task().
3337 schedstat_inc(sd, lb_gained[idle]);
3339 return 1;
3341 p = iterator->next(iterator->arg);
3344 return 0;
3348 * move_one_task tries to move exactly one task from busiest to this_rq, as
3349 * part of active balancing operations within "domain".
3350 * Returns 1 if successful and 0 otherwise.
3352 * Called with both runqueues locked.
3354 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3355 struct sched_domain *sd, enum cpu_idle_type idle)
3357 const struct sched_class *class;
3359 for (class = sched_class_highest; class; class = class->next)
3360 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3361 return 1;
3363 return 0;
3365 /********** Helpers for find_busiest_group ************************/
3367 * sd_lb_stats - Structure to store the statistics of a sched_domain
3368 * during load balancing.
3370 struct sd_lb_stats {
3371 struct sched_group *busiest; /* Busiest group in this sd */
3372 struct sched_group *this; /* Local group in this sd */
3373 unsigned long total_load; /* Total load of all groups in sd */
3374 unsigned long total_pwr; /* Total power of all groups in sd */
3375 unsigned long avg_load; /* Average load across all groups in sd */
3377 /** Statistics of this group */
3378 unsigned long this_load;
3379 unsigned long this_load_per_task;
3380 unsigned long this_nr_running;
3382 /* Statistics of the busiest group */
3383 unsigned long max_load;
3384 unsigned long busiest_load_per_task;
3385 unsigned long busiest_nr_running;
3387 int group_imb; /* Is there imbalance in this sd */
3388 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3389 int power_savings_balance; /* Is powersave balance needed for this sd */
3390 struct sched_group *group_min; /* Least loaded group in sd */
3391 struct sched_group *group_leader; /* Group which relieves group_min */
3392 unsigned long min_load_per_task; /* load_per_task in group_min */
3393 unsigned long leader_nr_running; /* Nr running of group_leader */
3394 unsigned long min_nr_running; /* Nr running of group_min */
3395 #endif
3399 * sg_lb_stats - stats of a sched_group required for load_balancing
3401 struct sg_lb_stats {
3402 unsigned long avg_load; /*Avg load across the CPUs of the group */
3403 unsigned long group_load; /* Total load over the CPUs of the group */
3404 unsigned long sum_nr_running; /* Nr tasks running in the group */
3405 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3406 unsigned long group_capacity;
3407 int group_imb; /* Is there an imbalance in the group ? */
3411 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3412 * @group: The group whose first cpu is to be returned.
3414 static inline unsigned int group_first_cpu(struct sched_group *group)
3416 return cpumask_first(sched_group_cpus(group));
3420 * get_sd_load_idx - Obtain the load index for a given sched domain.
3421 * @sd: The sched_domain whose load_idx is to be obtained.
3422 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3424 static inline int get_sd_load_idx(struct sched_domain *sd,
3425 enum cpu_idle_type idle)
3427 int load_idx;
3429 switch (idle) {
3430 case CPU_NOT_IDLE:
3431 load_idx = sd->busy_idx;
3432 break;
3434 case CPU_NEWLY_IDLE:
3435 load_idx = sd->newidle_idx;
3436 break;
3437 default:
3438 load_idx = sd->idle_idx;
3439 break;
3442 return load_idx;
3446 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3448 * init_sd_power_savings_stats - Initialize power savings statistics for
3449 * the given sched_domain, during load balancing.
3451 * @sd: Sched domain whose power-savings statistics are to be initialized.
3452 * @sds: Variable containing the statistics for sd.
3453 * @idle: Idle status of the CPU at which we're performing load-balancing.
3455 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3456 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3459 * Busy processors will not participate in power savings
3460 * balance.
3462 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3463 sds->power_savings_balance = 0;
3464 else {
3465 sds->power_savings_balance = 1;
3466 sds->min_nr_running = ULONG_MAX;
3467 sds->leader_nr_running = 0;
3472 * update_sd_power_savings_stats - Update the power saving stats for a
3473 * sched_domain while performing load balancing.
3475 * @group: sched_group belonging to the sched_domain under consideration.
3476 * @sds: Variable containing the statistics of the sched_domain
3477 * @local_group: Does group contain the CPU for which we're performing
3478 * load balancing ?
3479 * @sgs: Variable containing the statistics of the group.
3481 static inline void update_sd_power_savings_stats(struct sched_group *group,
3482 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3485 if (!sds->power_savings_balance)
3486 return;
3489 * If the local group is idle or completely loaded
3490 * no need to do power savings balance at this domain
3492 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3493 !sds->this_nr_running))
3494 sds->power_savings_balance = 0;
3497 * If a group is already running at full capacity or idle,
3498 * don't include that group in power savings calculations
3500 if (!sds->power_savings_balance ||
3501 sgs->sum_nr_running >= sgs->group_capacity ||
3502 !sgs->sum_nr_running)
3503 return;
3506 * Calculate the group which has the least non-idle load.
3507 * This is the group from where we need to pick up the load
3508 * for saving power
3510 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3511 (sgs->sum_nr_running == sds->min_nr_running &&
3512 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3513 sds->group_min = group;
3514 sds->min_nr_running = sgs->sum_nr_running;
3515 sds->min_load_per_task = sgs->sum_weighted_load /
3516 sgs->sum_nr_running;
3520 * Calculate the group which is almost near its
3521 * capacity but still has some space to pick up some load
3522 * from other group and save more power
3524 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3525 return;
3527 if (sgs->sum_nr_running > sds->leader_nr_running ||
3528 (sgs->sum_nr_running == sds->leader_nr_running &&
3529 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3530 sds->group_leader = group;
3531 sds->leader_nr_running = sgs->sum_nr_running;
3536 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3537 * @sds: Variable containing the statistics of the sched_domain
3538 * under consideration.
3539 * @this_cpu: Cpu at which we're currently performing load-balancing.
3540 * @imbalance: Variable to store the imbalance.
3542 * Description:
3543 * Check if we have potential to perform some power-savings balance.
3544 * If yes, set the busiest group to be the least loaded group in the
3545 * sched_domain, so that it's CPUs can be put to idle.
3547 * Returns 1 if there is potential to perform power-savings balance.
3548 * Else returns 0.
3550 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3551 int this_cpu, unsigned long *imbalance)
3553 if (!sds->power_savings_balance)
3554 return 0;
3556 if (sds->this != sds->group_leader ||
3557 sds->group_leader == sds->group_min)
3558 return 0;
3560 *imbalance = sds->min_load_per_task;
3561 sds->busiest = sds->group_min;
3563 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3564 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3565 group_first_cpu(sds->group_leader);
3568 return 1;
3571 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3572 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3573 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3575 return;
3578 static inline void update_sd_power_savings_stats(struct sched_group *group,
3579 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3581 return;
3584 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3585 int this_cpu, unsigned long *imbalance)
3587 return 0;
3589 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3593 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3594 * @group: sched_group whose statistics are to be updated.
3595 * @this_cpu: Cpu for which load balance is currently performed.
3596 * @idle: Idle status of this_cpu
3597 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3598 * @sd_idle: Idle status of the sched_domain containing group.
3599 * @local_group: Does group contain this_cpu.
3600 * @cpus: Set of cpus considered for load balancing.
3601 * @balance: Should we balance.
3602 * @sgs: variable to hold the statistics for this group.
3604 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3605 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3606 int local_group, const struct cpumask *cpus,
3607 int *balance, struct sg_lb_stats *sgs)
3609 unsigned long load, max_cpu_load, min_cpu_load;
3610 int i;
3611 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3612 unsigned long sum_avg_load_per_task;
3613 unsigned long avg_load_per_task;
3615 if (local_group)
3616 balance_cpu = group_first_cpu(group);
3618 /* Tally up the load of all CPUs in the group */
3619 sum_avg_load_per_task = avg_load_per_task = 0;
3620 max_cpu_load = 0;
3621 min_cpu_load = ~0UL;
3623 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3624 struct rq *rq = cpu_rq(i);
3626 if (*sd_idle && rq->nr_running)
3627 *sd_idle = 0;
3629 /* Bias balancing toward cpus of our domain */
3630 if (local_group) {
3631 if (idle_cpu(i) && !first_idle_cpu) {
3632 first_idle_cpu = 1;
3633 balance_cpu = i;
3636 load = target_load(i, load_idx);
3637 } else {
3638 load = source_load(i, load_idx);
3639 if (load > max_cpu_load)
3640 max_cpu_load = load;
3641 if (min_cpu_load > load)
3642 min_cpu_load = load;
3645 sgs->group_load += load;
3646 sgs->sum_nr_running += rq->nr_running;
3647 sgs->sum_weighted_load += weighted_cpuload(i);
3649 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3653 * First idle cpu or the first cpu(busiest) in this sched group
3654 * is eligible for doing load balancing at this and above
3655 * domains. In the newly idle case, we will allow all the cpu's
3656 * to do the newly idle load balance.
3658 if (idle != CPU_NEWLY_IDLE && local_group &&
3659 balance_cpu != this_cpu && balance) {
3660 *balance = 0;
3661 return;
3664 /* Adjust by relative CPU power of the group */
3665 sgs->avg_load = sg_div_cpu_power(group,
3666 sgs->group_load * SCHED_LOAD_SCALE);
3670 * Consider the group unbalanced when the imbalance is larger
3671 * than the average weight of two tasks.
3673 * APZ: with cgroup the avg task weight can vary wildly and
3674 * might not be a suitable number - should we keep a
3675 * normalized nr_running number somewhere that negates
3676 * the hierarchy?
3678 avg_load_per_task = sg_div_cpu_power(group,
3679 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3681 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3682 sgs->group_imb = 1;
3684 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3689 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3690 * @sd: sched_domain whose statistics are to be updated.
3691 * @this_cpu: Cpu for which load balance is currently performed.
3692 * @idle: Idle status of this_cpu
3693 * @sd_idle: Idle status of the sched_domain containing group.
3694 * @cpus: Set of cpus considered for load balancing.
3695 * @balance: Should we balance.
3696 * @sds: variable to hold the statistics for this sched_domain.
3698 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3699 enum cpu_idle_type idle, int *sd_idle,
3700 const struct cpumask *cpus, int *balance,
3701 struct sd_lb_stats *sds)
3703 struct sched_group *group = sd->groups;
3704 struct sg_lb_stats sgs;
3705 int load_idx;
3707 init_sd_power_savings_stats(sd, sds, idle);
3708 load_idx = get_sd_load_idx(sd, idle);
3710 do {
3711 int local_group;
3713 local_group = cpumask_test_cpu(this_cpu,
3714 sched_group_cpus(group));
3715 memset(&sgs, 0, sizeof(sgs));
3716 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3717 local_group, cpus, balance, &sgs);
3719 if (local_group && balance && !(*balance))
3720 return;
3722 sds->total_load += sgs.group_load;
3723 sds->total_pwr += group->__cpu_power;
3725 if (local_group) {
3726 sds->this_load = sgs.avg_load;
3727 sds->this = group;
3728 sds->this_nr_running = sgs.sum_nr_running;
3729 sds->this_load_per_task = sgs.sum_weighted_load;
3730 } else if (sgs.avg_load > sds->max_load &&
3731 (sgs.sum_nr_running > sgs.group_capacity ||
3732 sgs.group_imb)) {
3733 sds->max_load = sgs.avg_load;
3734 sds->busiest = group;
3735 sds->busiest_nr_running = sgs.sum_nr_running;
3736 sds->busiest_load_per_task = sgs.sum_weighted_load;
3737 sds->group_imb = sgs.group_imb;
3740 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3741 group = group->next;
3742 } while (group != sd->groups);
3747 * fix_small_imbalance - Calculate the minor imbalance that exists
3748 * amongst the groups of a sched_domain, during
3749 * load balancing.
3750 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3751 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3752 * @imbalance: Variable to store the imbalance.
3754 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3755 int this_cpu, unsigned long *imbalance)
3757 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3758 unsigned int imbn = 2;
3760 if (sds->this_nr_running) {
3761 sds->this_load_per_task /= sds->this_nr_running;
3762 if (sds->busiest_load_per_task >
3763 sds->this_load_per_task)
3764 imbn = 1;
3765 } else
3766 sds->this_load_per_task =
3767 cpu_avg_load_per_task(this_cpu);
3769 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3770 sds->busiest_load_per_task * imbn) {
3771 *imbalance = sds->busiest_load_per_task;
3772 return;
3776 * OK, we don't have enough imbalance to justify moving tasks,
3777 * however we may be able to increase total CPU power used by
3778 * moving them.
3781 pwr_now += sds->busiest->__cpu_power *
3782 min(sds->busiest_load_per_task, sds->max_load);
3783 pwr_now += sds->this->__cpu_power *
3784 min(sds->this_load_per_task, sds->this_load);
3785 pwr_now /= SCHED_LOAD_SCALE;
3787 /* Amount of load we'd subtract */
3788 tmp = sg_div_cpu_power(sds->busiest,
3789 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3790 if (sds->max_load > tmp)
3791 pwr_move += sds->busiest->__cpu_power *
3792 min(sds->busiest_load_per_task, sds->max_load - tmp);
3794 /* Amount of load we'd add */
3795 if (sds->max_load * sds->busiest->__cpu_power <
3796 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3797 tmp = sg_div_cpu_power(sds->this,
3798 sds->max_load * sds->busiest->__cpu_power);
3799 else
3800 tmp = sg_div_cpu_power(sds->this,
3801 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3802 pwr_move += sds->this->__cpu_power *
3803 min(sds->this_load_per_task, sds->this_load + tmp);
3804 pwr_move /= SCHED_LOAD_SCALE;
3806 /* Move if we gain throughput */
3807 if (pwr_move > pwr_now)
3808 *imbalance = sds->busiest_load_per_task;
3812 * calculate_imbalance - Calculate the amount of imbalance present within the
3813 * groups of a given sched_domain during load balance.
3814 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3815 * @this_cpu: Cpu for which currently load balance is being performed.
3816 * @imbalance: The variable to store the imbalance.
3818 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3819 unsigned long *imbalance)
3821 unsigned long max_pull;
3823 * In the presence of smp nice balancing, certain scenarios can have
3824 * max load less than avg load(as we skip the groups at or below
3825 * its cpu_power, while calculating max_load..)
3827 if (sds->max_load < sds->avg_load) {
3828 *imbalance = 0;
3829 return fix_small_imbalance(sds, this_cpu, imbalance);
3832 /* Don't want to pull so many tasks that a group would go idle */
3833 max_pull = min(sds->max_load - sds->avg_load,
3834 sds->max_load - sds->busiest_load_per_task);
3836 /* How much load to actually move to equalise the imbalance */
3837 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3838 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3839 / SCHED_LOAD_SCALE;
3842 * if *imbalance is less than the average load per runnable task
3843 * there is no gaurantee that any tasks will be moved so we'll have
3844 * a think about bumping its value to force at least one task to be
3845 * moved
3847 if (*imbalance < sds->busiest_load_per_task)
3848 return fix_small_imbalance(sds, this_cpu, imbalance);
3851 /******* find_busiest_group() helpers end here *********************/
3854 * find_busiest_group - Returns the busiest group within the sched_domain
3855 * if there is an imbalance. If there isn't an imbalance, and
3856 * the user has opted for power-savings, it returns a group whose
3857 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3858 * such a group exists.
3860 * Also calculates the amount of weighted load which should be moved
3861 * to restore balance.
3863 * @sd: The sched_domain whose busiest group is to be returned.
3864 * @this_cpu: The cpu for which load balancing is currently being performed.
3865 * @imbalance: Variable which stores amount of weighted load which should
3866 * be moved to restore balance/put a group to idle.
3867 * @idle: The idle status of this_cpu.
3868 * @sd_idle: The idleness of sd
3869 * @cpus: The set of CPUs under consideration for load-balancing.
3870 * @balance: Pointer to a variable indicating if this_cpu
3871 * is the appropriate cpu to perform load balancing at this_level.
3873 * Returns: - the busiest group if imbalance exists.
3874 * - If no imbalance and user has opted for power-savings balance,
3875 * return the least loaded group whose CPUs can be
3876 * put to idle by rebalancing its tasks onto our group.
3878 static struct sched_group *
3879 find_busiest_group(struct sched_domain *sd, int this_cpu,
3880 unsigned long *imbalance, enum cpu_idle_type idle,
3881 int *sd_idle, const struct cpumask *cpus, int *balance)
3883 struct sd_lb_stats sds;
3885 memset(&sds, 0, sizeof(sds));
3888 * Compute the various statistics relavent for load balancing at
3889 * this level.
3891 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3892 balance, &sds);
3894 /* Cases where imbalance does not exist from POV of this_cpu */
3895 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3896 * at this level.
3897 * 2) There is no busy sibling group to pull from.
3898 * 3) This group is the busiest group.
3899 * 4) This group is more busy than the avg busieness at this
3900 * sched_domain.
3901 * 5) The imbalance is within the specified limit.
3902 * 6) Any rebalance would lead to ping-pong
3904 if (balance && !(*balance))
3905 goto ret;
3907 if (!sds.busiest || sds.busiest_nr_running == 0)
3908 goto out_balanced;
3910 if (sds.this_load >= sds.max_load)
3911 goto out_balanced;
3913 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3915 if (sds.this_load >= sds.avg_load)
3916 goto out_balanced;
3918 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3919 goto out_balanced;
3921 sds.busiest_load_per_task /= sds.busiest_nr_running;
3922 if (sds.group_imb)
3923 sds.busiest_load_per_task =
3924 min(sds.busiest_load_per_task, sds.avg_load);
3927 * We're trying to get all the cpus to the average_load, so we don't
3928 * want to push ourselves above the average load, nor do we wish to
3929 * reduce the max loaded cpu below the average load, as either of these
3930 * actions would just result in more rebalancing later, and ping-pong
3931 * tasks around. Thus we look for the minimum possible imbalance.
3932 * Negative imbalances (*we* are more loaded than anyone else) will
3933 * be counted as no imbalance for these purposes -- we can't fix that
3934 * by pulling tasks to us. Be careful of negative numbers as they'll
3935 * appear as very large values with unsigned longs.
3937 if (sds.max_load <= sds.busiest_load_per_task)
3938 goto out_balanced;
3940 /* Looks like there is an imbalance. Compute it */
3941 calculate_imbalance(&sds, this_cpu, imbalance);
3942 return sds.busiest;
3944 out_balanced:
3946 * There is no obvious imbalance. But check if we can do some balancing
3947 * to save power.
3949 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3950 return sds.busiest;
3951 ret:
3952 *imbalance = 0;
3953 return NULL;
3957 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3959 static struct rq *
3960 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3961 unsigned long imbalance, const struct cpumask *cpus)
3963 struct rq *busiest = NULL, *rq;
3964 unsigned long max_load = 0;
3965 int i;
3967 for_each_cpu(i, sched_group_cpus(group)) {
3968 unsigned long wl;
3970 if (!cpumask_test_cpu(i, cpus))
3971 continue;
3973 rq = cpu_rq(i);
3974 wl = weighted_cpuload(i);
3976 if (rq->nr_running == 1 && wl > imbalance)
3977 continue;
3979 if (wl > max_load) {
3980 max_load = wl;
3981 busiest = rq;
3985 return busiest;
3989 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3990 * so long as it is large enough.
3992 #define MAX_PINNED_INTERVAL 512
3994 /* Working cpumask for load_balance and load_balance_newidle. */
3995 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3998 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3999 * tasks if there is an imbalance.
4001 static int load_balance(int this_cpu, struct rq *this_rq,
4002 struct sched_domain *sd, enum cpu_idle_type idle,
4003 int *balance)
4005 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4006 struct sched_group *group;
4007 unsigned long imbalance;
4008 struct rq *busiest;
4009 unsigned long flags;
4010 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4012 cpumask_setall(cpus);
4015 * When power savings policy is enabled for the parent domain, idle
4016 * sibling can pick up load irrespective of busy siblings. In this case,
4017 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4018 * portraying it as CPU_NOT_IDLE.
4020 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4021 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4022 sd_idle = 1;
4024 schedstat_inc(sd, lb_count[idle]);
4026 redo:
4027 update_shares(sd);
4028 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4029 cpus, balance);
4031 if (*balance == 0)
4032 goto out_balanced;
4034 if (!group) {
4035 schedstat_inc(sd, lb_nobusyg[idle]);
4036 goto out_balanced;
4039 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4040 if (!busiest) {
4041 schedstat_inc(sd, lb_nobusyq[idle]);
4042 goto out_balanced;
4045 BUG_ON(busiest == this_rq);
4047 schedstat_add(sd, lb_imbalance[idle], imbalance);
4049 ld_moved = 0;
4050 if (busiest->nr_running > 1) {
4052 * Attempt to move tasks. If find_busiest_group has found
4053 * an imbalance but busiest->nr_running <= 1, the group is
4054 * still unbalanced. ld_moved simply stays zero, so it is
4055 * correctly treated as an imbalance.
4057 local_irq_save(flags);
4058 double_rq_lock(this_rq, busiest);
4059 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4060 imbalance, sd, idle, &all_pinned);
4061 double_rq_unlock(this_rq, busiest);
4062 local_irq_restore(flags);
4065 * some other cpu did the load balance for us.
4067 if (ld_moved && this_cpu != smp_processor_id())
4068 resched_cpu(this_cpu);
4070 /* All tasks on this runqueue were pinned by CPU affinity */
4071 if (unlikely(all_pinned)) {
4072 cpumask_clear_cpu(cpu_of(busiest), cpus);
4073 if (!cpumask_empty(cpus))
4074 goto redo;
4075 goto out_balanced;
4079 if (!ld_moved) {
4080 schedstat_inc(sd, lb_failed[idle]);
4081 sd->nr_balance_failed++;
4083 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4085 spin_lock_irqsave(&busiest->lock, flags);
4087 /* don't kick the migration_thread, if the curr
4088 * task on busiest cpu can't be moved to this_cpu
4090 if (!cpumask_test_cpu(this_cpu,
4091 &busiest->curr->cpus_allowed)) {
4092 spin_unlock_irqrestore(&busiest->lock, flags);
4093 all_pinned = 1;
4094 goto out_one_pinned;
4097 if (!busiest->active_balance) {
4098 busiest->active_balance = 1;
4099 busiest->push_cpu = this_cpu;
4100 active_balance = 1;
4102 spin_unlock_irqrestore(&busiest->lock, flags);
4103 if (active_balance)
4104 wake_up_process(busiest->migration_thread);
4107 * We've kicked active balancing, reset the failure
4108 * counter.
4110 sd->nr_balance_failed = sd->cache_nice_tries+1;
4112 } else
4113 sd->nr_balance_failed = 0;
4115 if (likely(!active_balance)) {
4116 /* We were unbalanced, so reset the balancing interval */
4117 sd->balance_interval = sd->min_interval;
4118 } else {
4120 * If we've begun active balancing, start to back off. This
4121 * case may not be covered by the all_pinned logic if there
4122 * is only 1 task on the busy runqueue (because we don't call
4123 * move_tasks).
4125 if (sd->balance_interval < sd->max_interval)
4126 sd->balance_interval *= 2;
4129 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4130 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4131 ld_moved = -1;
4133 goto out;
4135 out_balanced:
4136 schedstat_inc(sd, lb_balanced[idle]);
4138 sd->nr_balance_failed = 0;
4140 out_one_pinned:
4141 /* tune up the balancing interval */
4142 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4143 (sd->balance_interval < sd->max_interval))
4144 sd->balance_interval *= 2;
4146 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4147 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4148 ld_moved = -1;
4149 else
4150 ld_moved = 0;
4151 out:
4152 if (ld_moved)
4153 update_shares(sd);
4154 return ld_moved;
4158 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4159 * tasks if there is an imbalance.
4161 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4162 * this_rq is locked.
4164 static int
4165 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4167 struct sched_group *group;
4168 struct rq *busiest = NULL;
4169 unsigned long imbalance;
4170 int ld_moved = 0;
4171 int sd_idle = 0;
4172 int all_pinned = 0;
4173 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4175 cpumask_setall(cpus);
4178 * When power savings policy is enabled for the parent domain, idle
4179 * sibling can pick up load irrespective of busy siblings. In this case,
4180 * let the state of idle sibling percolate up as IDLE, instead of
4181 * portraying it as CPU_NOT_IDLE.
4183 if (sd->flags & SD_SHARE_CPUPOWER &&
4184 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4185 sd_idle = 1;
4187 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4188 redo:
4189 update_shares_locked(this_rq, sd);
4190 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4191 &sd_idle, cpus, NULL);
4192 if (!group) {
4193 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4194 goto out_balanced;
4197 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4198 if (!busiest) {
4199 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4200 goto out_balanced;
4203 BUG_ON(busiest == this_rq);
4205 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4207 ld_moved = 0;
4208 if (busiest->nr_running > 1) {
4209 /* Attempt to move tasks */
4210 double_lock_balance(this_rq, busiest);
4211 /* this_rq->clock is already updated */
4212 update_rq_clock(busiest);
4213 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4214 imbalance, sd, CPU_NEWLY_IDLE,
4215 &all_pinned);
4216 double_unlock_balance(this_rq, busiest);
4218 if (unlikely(all_pinned)) {
4219 cpumask_clear_cpu(cpu_of(busiest), cpus);
4220 if (!cpumask_empty(cpus))
4221 goto redo;
4225 if (!ld_moved) {
4226 int active_balance = 0;
4228 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4229 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4230 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4231 return -1;
4233 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4234 return -1;
4236 if (sd->nr_balance_failed++ < 2)
4237 return -1;
4240 * The only task running in a non-idle cpu can be moved to this
4241 * cpu in an attempt to completely freeup the other CPU
4242 * package. The same method used to move task in load_balance()
4243 * have been extended for load_balance_newidle() to speedup
4244 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4246 * The package power saving logic comes from
4247 * find_busiest_group(). If there are no imbalance, then
4248 * f_b_g() will return NULL. However when sched_mc={1,2} then
4249 * f_b_g() will select a group from which a running task may be
4250 * pulled to this cpu in order to make the other package idle.
4251 * If there is no opportunity to make a package idle and if
4252 * there are no imbalance, then f_b_g() will return NULL and no
4253 * action will be taken in load_balance_newidle().
4255 * Under normal task pull operation due to imbalance, there
4256 * will be more than one task in the source run queue and
4257 * move_tasks() will succeed. ld_moved will be true and this
4258 * active balance code will not be triggered.
4261 /* Lock busiest in correct order while this_rq is held */
4262 double_lock_balance(this_rq, busiest);
4265 * don't kick the migration_thread, if the curr
4266 * task on busiest cpu can't be moved to this_cpu
4268 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4269 double_unlock_balance(this_rq, busiest);
4270 all_pinned = 1;
4271 return ld_moved;
4274 if (!busiest->active_balance) {
4275 busiest->active_balance = 1;
4276 busiest->push_cpu = this_cpu;
4277 active_balance = 1;
4280 double_unlock_balance(this_rq, busiest);
4282 * Should not call ttwu while holding a rq->lock
4284 spin_unlock(&this_rq->lock);
4285 if (active_balance)
4286 wake_up_process(busiest->migration_thread);
4287 spin_lock(&this_rq->lock);
4289 } else
4290 sd->nr_balance_failed = 0;
4292 update_shares_locked(this_rq, sd);
4293 return ld_moved;
4295 out_balanced:
4296 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4297 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4298 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4299 return -1;
4300 sd->nr_balance_failed = 0;
4302 return 0;
4306 * idle_balance is called by schedule() if this_cpu is about to become
4307 * idle. Attempts to pull tasks from other CPUs.
4309 static void idle_balance(int this_cpu, struct rq *this_rq)
4311 struct sched_domain *sd;
4312 int pulled_task = 0;
4313 unsigned long next_balance = jiffies + HZ;
4315 for_each_domain(this_cpu, sd) {
4316 unsigned long interval;
4318 if (!(sd->flags & SD_LOAD_BALANCE))
4319 continue;
4321 if (sd->flags & SD_BALANCE_NEWIDLE)
4322 /* If we've pulled tasks over stop searching: */
4323 pulled_task = load_balance_newidle(this_cpu, this_rq,
4324 sd);
4326 interval = msecs_to_jiffies(sd->balance_interval);
4327 if (time_after(next_balance, sd->last_balance + interval))
4328 next_balance = sd->last_balance + interval;
4329 if (pulled_task)
4330 break;
4332 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4334 * We are going idle. next_balance may be set based on
4335 * a busy processor. So reset next_balance.
4337 this_rq->next_balance = next_balance;
4342 * active_load_balance is run by migration threads. It pushes running tasks
4343 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4344 * running on each physical CPU where possible, and avoids physical /
4345 * logical imbalances.
4347 * Called with busiest_rq locked.
4349 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4351 int target_cpu = busiest_rq->push_cpu;
4352 struct sched_domain *sd;
4353 struct rq *target_rq;
4355 /* Is there any task to move? */
4356 if (busiest_rq->nr_running <= 1)
4357 return;
4359 target_rq = cpu_rq(target_cpu);
4362 * This condition is "impossible", if it occurs
4363 * we need to fix it. Originally reported by
4364 * Bjorn Helgaas on a 128-cpu setup.
4366 BUG_ON(busiest_rq == target_rq);
4368 /* move a task from busiest_rq to target_rq */
4369 double_lock_balance(busiest_rq, target_rq);
4370 update_rq_clock(busiest_rq);
4371 update_rq_clock(target_rq);
4373 /* Search for an sd spanning us and the target CPU. */
4374 for_each_domain(target_cpu, sd) {
4375 if ((sd->flags & SD_LOAD_BALANCE) &&
4376 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4377 break;
4380 if (likely(sd)) {
4381 schedstat_inc(sd, alb_count);
4383 if (move_one_task(target_rq, target_cpu, busiest_rq,
4384 sd, CPU_IDLE))
4385 schedstat_inc(sd, alb_pushed);
4386 else
4387 schedstat_inc(sd, alb_failed);
4389 double_unlock_balance(busiest_rq, target_rq);
4392 #ifdef CONFIG_NO_HZ
4393 static struct {
4394 atomic_t load_balancer;
4395 cpumask_var_t cpu_mask;
4396 cpumask_var_t ilb_grp_nohz_mask;
4397 } nohz ____cacheline_aligned = {
4398 .load_balancer = ATOMIC_INIT(-1),
4401 int get_nohz_load_balancer(void)
4403 return atomic_read(&nohz.load_balancer);
4406 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4408 * lowest_flag_domain - Return lowest sched_domain containing flag.
4409 * @cpu: The cpu whose lowest level of sched domain is to
4410 * be returned.
4411 * @flag: The flag to check for the lowest sched_domain
4412 * for the given cpu.
4414 * Returns the lowest sched_domain of a cpu which contains the given flag.
4416 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4418 struct sched_domain *sd;
4420 for_each_domain(cpu, sd)
4421 if (sd && (sd->flags & flag))
4422 break;
4424 return sd;
4428 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4429 * @cpu: The cpu whose domains we're iterating over.
4430 * @sd: variable holding the value of the power_savings_sd
4431 * for cpu.
4432 * @flag: The flag to filter the sched_domains to be iterated.
4434 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4435 * set, starting from the lowest sched_domain to the highest.
4437 #define for_each_flag_domain(cpu, sd, flag) \
4438 for (sd = lowest_flag_domain(cpu, flag); \
4439 (sd && (sd->flags & flag)); sd = sd->parent)
4442 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4443 * @ilb_group: group to be checked for semi-idleness
4445 * Returns: 1 if the group is semi-idle. 0 otherwise.
4447 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4448 * and atleast one non-idle CPU. This helper function checks if the given
4449 * sched_group is semi-idle or not.
4451 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4453 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4454 sched_group_cpus(ilb_group));
4457 * A sched_group is semi-idle when it has atleast one busy cpu
4458 * and atleast one idle cpu.
4460 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4461 return 0;
4463 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4464 return 0;
4466 return 1;
4469 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4470 * @cpu: The cpu which is nominating a new idle_load_balancer.
4472 * Returns: Returns the id of the idle load balancer if it exists,
4473 * Else, returns >= nr_cpu_ids.
4475 * This algorithm picks the idle load balancer such that it belongs to a
4476 * semi-idle powersavings sched_domain. The idea is to try and avoid
4477 * completely idle packages/cores just for the purpose of idle load balancing
4478 * when there are other idle cpu's which are better suited for that job.
4480 static int find_new_ilb(int cpu)
4482 struct sched_domain *sd;
4483 struct sched_group *ilb_group;
4486 * Have idle load balancer selection from semi-idle packages only
4487 * when power-aware load balancing is enabled
4489 if (!(sched_smt_power_savings || sched_mc_power_savings))
4490 goto out_done;
4493 * Optimize for the case when we have no idle CPUs or only one
4494 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4496 if (cpumask_weight(nohz.cpu_mask) < 2)
4497 goto out_done;
4499 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4500 ilb_group = sd->groups;
4502 do {
4503 if (is_semi_idle_group(ilb_group))
4504 return cpumask_first(nohz.ilb_grp_nohz_mask);
4506 ilb_group = ilb_group->next;
4508 } while (ilb_group != sd->groups);
4511 out_done:
4512 return cpumask_first(nohz.cpu_mask);
4514 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4515 static inline int find_new_ilb(int call_cpu)
4517 return cpumask_first(nohz.cpu_mask);
4519 #endif
4522 * This routine will try to nominate the ilb (idle load balancing)
4523 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4524 * load balancing on behalf of all those cpus. If all the cpus in the system
4525 * go into this tickless mode, then there will be no ilb owner (as there is
4526 * no need for one) and all the cpus will sleep till the next wakeup event
4527 * arrives...
4529 * For the ilb owner, tick is not stopped. And this tick will be used
4530 * for idle load balancing. ilb owner will still be part of
4531 * nohz.cpu_mask..
4533 * While stopping the tick, this cpu will become the ilb owner if there
4534 * is no other owner. And will be the owner till that cpu becomes busy
4535 * or if all cpus in the system stop their ticks at which point
4536 * there is no need for ilb owner.
4538 * When the ilb owner becomes busy, it nominates another owner, during the
4539 * next busy scheduler_tick()
4541 int select_nohz_load_balancer(int stop_tick)
4543 int cpu = smp_processor_id();
4545 if (stop_tick) {
4546 cpu_rq(cpu)->in_nohz_recently = 1;
4548 if (!cpu_active(cpu)) {
4549 if (atomic_read(&nohz.load_balancer) != cpu)
4550 return 0;
4553 * If we are going offline and still the leader,
4554 * give up!
4556 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4557 BUG();
4559 return 0;
4562 cpumask_set_cpu(cpu, nohz.cpu_mask);
4564 /* time for ilb owner also to sleep */
4565 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4566 if (atomic_read(&nohz.load_balancer) == cpu)
4567 atomic_set(&nohz.load_balancer, -1);
4568 return 0;
4571 if (atomic_read(&nohz.load_balancer) == -1) {
4572 /* make me the ilb owner */
4573 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4574 return 1;
4575 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4576 int new_ilb;
4578 if (!(sched_smt_power_savings ||
4579 sched_mc_power_savings))
4580 return 1;
4582 * Check to see if there is a more power-efficient
4583 * ilb.
4585 new_ilb = find_new_ilb(cpu);
4586 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4587 atomic_set(&nohz.load_balancer, -1);
4588 resched_cpu(new_ilb);
4589 return 0;
4591 return 1;
4593 } else {
4594 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4595 return 0;
4597 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4599 if (atomic_read(&nohz.load_balancer) == cpu)
4600 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4601 BUG();
4603 return 0;
4605 #endif
4607 static DEFINE_SPINLOCK(balancing);
4610 * It checks each scheduling domain to see if it is due to be balanced,
4611 * and initiates a balancing operation if so.
4613 * Balancing parameters are set up in arch_init_sched_domains.
4615 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4617 int balance = 1;
4618 struct rq *rq = cpu_rq(cpu);
4619 unsigned long interval;
4620 struct sched_domain *sd;
4621 /* Earliest time when we have to do rebalance again */
4622 unsigned long next_balance = jiffies + 60*HZ;
4623 int update_next_balance = 0;
4624 int need_serialize;
4626 for_each_domain(cpu, sd) {
4627 if (!(sd->flags & SD_LOAD_BALANCE))
4628 continue;
4630 interval = sd->balance_interval;
4631 if (idle != CPU_IDLE)
4632 interval *= sd->busy_factor;
4634 /* scale ms to jiffies */
4635 interval = msecs_to_jiffies(interval);
4636 if (unlikely(!interval))
4637 interval = 1;
4638 if (interval > HZ*NR_CPUS/10)
4639 interval = HZ*NR_CPUS/10;
4641 need_serialize = sd->flags & SD_SERIALIZE;
4643 if (need_serialize) {
4644 if (!spin_trylock(&balancing))
4645 goto out;
4648 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4649 if (load_balance(cpu, rq, sd, idle, &balance)) {
4651 * We've pulled tasks over so either we're no
4652 * longer idle, or one of our SMT siblings is
4653 * not idle.
4655 idle = CPU_NOT_IDLE;
4657 sd->last_balance = jiffies;
4659 if (need_serialize)
4660 spin_unlock(&balancing);
4661 out:
4662 if (time_after(next_balance, sd->last_balance + interval)) {
4663 next_balance = sd->last_balance + interval;
4664 update_next_balance = 1;
4668 * Stop the load balance at this level. There is another
4669 * CPU in our sched group which is doing load balancing more
4670 * actively.
4672 if (!balance)
4673 break;
4677 * next_balance will be updated only when there is a need.
4678 * When the cpu is attached to null domain for ex, it will not be
4679 * updated.
4681 if (likely(update_next_balance))
4682 rq->next_balance = next_balance;
4686 * run_rebalance_domains is triggered when needed from the scheduler tick.
4687 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4688 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4690 static void run_rebalance_domains(struct softirq_action *h)
4692 int this_cpu = smp_processor_id();
4693 struct rq *this_rq = cpu_rq(this_cpu);
4694 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4695 CPU_IDLE : CPU_NOT_IDLE;
4697 rebalance_domains(this_cpu, idle);
4699 #ifdef CONFIG_NO_HZ
4701 * If this cpu is the owner for idle load balancing, then do the
4702 * balancing on behalf of the other idle cpus whose ticks are
4703 * stopped.
4705 if (this_rq->idle_at_tick &&
4706 atomic_read(&nohz.load_balancer) == this_cpu) {
4707 struct rq *rq;
4708 int balance_cpu;
4710 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4711 if (balance_cpu == this_cpu)
4712 continue;
4715 * If this cpu gets work to do, stop the load balancing
4716 * work being done for other cpus. Next load
4717 * balancing owner will pick it up.
4719 if (need_resched())
4720 break;
4722 rebalance_domains(balance_cpu, CPU_IDLE);
4724 rq = cpu_rq(balance_cpu);
4725 if (time_after(this_rq->next_balance, rq->next_balance))
4726 this_rq->next_balance = rq->next_balance;
4729 #endif
4732 static inline int on_null_domain(int cpu)
4734 return !rcu_dereference(cpu_rq(cpu)->sd);
4738 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4740 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4741 * idle load balancing owner or decide to stop the periodic load balancing,
4742 * if the whole system is idle.
4744 static inline void trigger_load_balance(struct rq *rq, int cpu)
4746 #ifdef CONFIG_NO_HZ
4748 * If we were in the nohz mode recently and busy at the current
4749 * scheduler tick, then check if we need to nominate new idle
4750 * load balancer.
4752 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4753 rq->in_nohz_recently = 0;
4755 if (atomic_read(&nohz.load_balancer) == cpu) {
4756 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4757 atomic_set(&nohz.load_balancer, -1);
4760 if (atomic_read(&nohz.load_balancer) == -1) {
4761 int ilb = find_new_ilb(cpu);
4763 if (ilb < nr_cpu_ids)
4764 resched_cpu(ilb);
4769 * If this cpu is idle and doing idle load balancing for all the
4770 * cpus with ticks stopped, is it time for that to stop?
4772 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4773 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4774 resched_cpu(cpu);
4775 return;
4779 * If this cpu is idle and the idle load balancing is done by
4780 * someone else, then no need raise the SCHED_SOFTIRQ
4782 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4783 cpumask_test_cpu(cpu, nohz.cpu_mask))
4784 return;
4785 #endif
4786 /* Don't need to rebalance while attached to NULL domain */
4787 if (time_after_eq(jiffies, rq->next_balance) &&
4788 likely(!on_null_domain(cpu)))
4789 raise_softirq(SCHED_SOFTIRQ);
4792 #else /* CONFIG_SMP */
4795 * on UP we do not need to balance between CPUs:
4797 static inline void idle_balance(int cpu, struct rq *rq)
4801 #endif
4803 DEFINE_PER_CPU(struct kernel_stat, kstat);
4805 EXPORT_PER_CPU_SYMBOL(kstat);
4808 * Return any ns on the sched_clock that have not yet been accounted in
4809 * @p in case that task is currently running.
4811 * Called with task_rq_lock() held on @rq.
4813 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4815 u64 ns = 0;
4817 if (task_current(rq, p)) {
4818 update_rq_clock(rq);
4819 ns = rq->clock - p->se.exec_start;
4820 if ((s64)ns < 0)
4821 ns = 0;
4824 return ns;
4827 unsigned long long task_delta_exec(struct task_struct *p)
4829 unsigned long flags;
4830 struct rq *rq;
4831 u64 ns = 0;
4833 rq = task_rq_lock(p, &flags);
4834 ns = do_task_delta_exec(p, rq);
4835 task_rq_unlock(rq, &flags);
4837 return ns;
4841 * Return accounted runtime for the task.
4842 * In case the task is currently running, return the runtime plus current's
4843 * pending runtime that have not been accounted yet.
4845 unsigned long long task_sched_runtime(struct task_struct *p)
4847 unsigned long flags;
4848 struct rq *rq;
4849 u64 ns = 0;
4851 rq = task_rq_lock(p, &flags);
4852 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4853 task_rq_unlock(rq, &flags);
4855 return ns;
4859 * Return sum_exec_runtime for the thread group.
4860 * In case the task is currently running, return the sum plus current's
4861 * pending runtime that have not been accounted yet.
4863 * Note that the thread group might have other running tasks as well,
4864 * so the return value not includes other pending runtime that other
4865 * running tasks might have.
4867 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4869 struct task_cputime totals;
4870 unsigned long flags;
4871 struct rq *rq;
4872 u64 ns;
4874 rq = task_rq_lock(p, &flags);
4875 thread_group_cputime(p, &totals);
4876 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4877 task_rq_unlock(rq, &flags);
4879 return ns;
4883 * Account user cpu time to a process.
4884 * @p: the process that the cpu time gets accounted to
4885 * @cputime: the cpu time spent in user space since the last update
4886 * @cputime_scaled: cputime scaled by cpu frequency
4888 void account_user_time(struct task_struct *p, cputime_t cputime,
4889 cputime_t cputime_scaled)
4891 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4892 cputime64_t tmp;
4894 /* Add user time to process. */
4895 p->utime = cputime_add(p->utime, cputime);
4896 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4897 account_group_user_time(p, cputime);
4899 /* Add user time to cpustat. */
4900 tmp = cputime_to_cputime64(cputime);
4901 if (TASK_NICE(p) > 0)
4902 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4903 else
4904 cpustat->user = cputime64_add(cpustat->user, tmp);
4906 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4907 /* Account for user time used */
4908 acct_update_integrals(p);
4912 * Account guest cpu time to a process.
4913 * @p: the process that the cpu time gets accounted to
4914 * @cputime: the cpu time spent in virtual machine since the last update
4915 * @cputime_scaled: cputime scaled by cpu frequency
4917 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4918 cputime_t cputime_scaled)
4920 cputime64_t tmp;
4921 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4923 tmp = cputime_to_cputime64(cputime);
4925 /* Add guest time to process. */
4926 p->utime = cputime_add(p->utime, cputime);
4927 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4928 account_group_user_time(p, cputime);
4929 p->gtime = cputime_add(p->gtime, cputime);
4931 /* Add guest time to cpustat. */
4932 cpustat->user = cputime64_add(cpustat->user, tmp);
4933 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4937 * Account system cpu time to a process.
4938 * @p: the process that the cpu time gets accounted to
4939 * @hardirq_offset: the offset to subtract from hardirq_count()
4940 * @cputime: the cpu time spent in kernel space since the last update
4941 * @cputime_scaled: cputime scaled by cpu frequency
4943 void account_system_time(struct task_struct *p, int hardirq_offset,
4944 cputime_t cputime, cputime_t cputime_scaled)
4946 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4947 cputime64_t tmp;
4949 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4950 account_guest_time(p, cputime, cputime_scaled);
4951 return;
4954 /* Add system time to process. */
4955 p->stime = cputime_add(p->stime, cputime);
4956 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4957 account_group_system_time(p, cputime);
4959 /* Add system time to cpustat. */
4960 tmp = cputime_to_cputime64(cputime);
4961 if (hardirq_count() - hardirq_offset)
4962 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4963 else if (softirq_count())
4964 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4965 else
4966 cpustat->system = cputime64_add(cpustat->system, tmp);
4968 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4970 /* Account for system time used */
4971 acct_update_integrals(p);
4975 * Account for involuntary wait time.
4976 * @steal: the cpu time spent in involuntary wait
4978 void account_steal_time(cputime_t cputime)
4980 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4981 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4983 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4987 * Account for idle time.
4988 * @cputime: the cpu time spent in idle wait
4990 void account_idle_time(cputime_t cputime)
4992 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4993 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4994 struct rq *rq = this_rq();
4996 if (atomic_read(&rq->nr_iowait) > 0)
4997 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4998 else
4999 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5002 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5005 * Account a single tick of cpu time.
5006 * @p: the process that the cpu time gets accounted to
5007 * @user_tick: indicates if the tick is a user or a system tick
5009 void account_process_tick(struct task_struct *p, int user_tick)
5011 cputime_t one_jiffy = jiffies_to_cputime(1);
5012 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5013 struct rq *rq = this_rq();
5015 if (user_tick)
5016 account_user_time(p, one_jiffy, one_jiffy_scaled);
5017 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5018 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5019 one_jiffy_scaled);
5020 else
5021 account_idle_time(one_jiffy);
5025 * Account multiple ticks of steal time.
5026 * @p: the process from which the cpu time has been stolen
5027 * @ticks: number of stolen ticks
5029 void account_steal_ticks(unsigned long ticks)
5031 account_steal_time(jiffies_to_cputime(ticks));
5035 * Account multiple ticks of idle time.
5036 * @ticks: number of stolen ticks
5038 void account_idle_ticks(unsigned long ticks)
5040 account_idle_time(jiffies_to_cputime(ticks));
5043 #endif
5046 * Use precise platform statistics if available:
5048 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5049 cputime_t task_utime(struct task_struct *p)
5051 return p->utime;
5054 cputime_t task_stime(struct task_struct *p)
5056 return p->stime;
5058 #else
5059 cputime_t task_utime(struct task_struct *p)
5061 clock_t utime = cputime_to_clock_t(p->utime),
5062 total = utime + cputime_to_clock_t(p->stime);
5063 u64 temp;
5066 * Use CFS's precise accounting:
5068 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5070 if (total) {
5071 temp *= utime;
5072 do_div(temp, total);
5074 utime = (clock_t)temp;
5076 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5077 return p->prev_utime;
5080 cputime_t task_stime(struct task_struct *p)
5082 clock_t stime;
5085 * Use CFS's precise accounting. (we subtract utime from
5086 * the total, to make sure the total observed by userspace
5087 * grows monotonically - apps rely on that):
5089 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5090 cputime_to_clock_t(task_utime(p));
5092 if (stime >= 0)
5093 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5095 return p->prev_stime;
5097 #endif
5099 inline cputime_t task_gtime(struct task_struct *p)
5101 return p->gtime;
5105 * This function gets called by the timer code, with HZ frequency.
5106 * We call it with interrupts disabled.
5108 * It also gets called by the fork code, when changing the parent's
5109 * timeslices.
5111 void scheduler_tick(void)
5113 int cpu = smp_processor_id();
5114 struct rq *rq = cpu_rq(cpu);
5115 struct task_struct *curr = rq->curr;
5117 sched_clock_tick();
5119 spin_lock(&rq->lock);
5120 update_rq_clock(rq);
5121 update_cpu_load(rq);
5122 curr->sched_class->task_tick(rq, curr, 0);
5123 spin_unlock(&rq->lock);
5125 perf_counter_task_tick(curr, cpu);
5127 #ifdef CONFIG_SMP
5128 rq->idle_at_tick = idle_cpu(cpu);
5129 trigger_load_balance(rq, cpu);
5130 #endif
5133 notrace unsigned long get_parent_ip(unsigned long addr)
5135 if (in_lock_functions(addr)) {
5136 addr = CALLER_ADDR2;
5137 if (in_lock_functions(addr))
5138 addr = CALLER_ADDR3;
5140 return addr;
5143 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5144 defined(CONFIG_PREEMPT_TRACER))
5146 void __kprobes add_preempt_count(int val)
5148 #ifdef CONFIG_DEBUG_PREEMPT
5150 * Underflow?
5152 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5153 return;
5154 #endif
5155 preempt_count() += val;
5156 #ifdef CONFIG_DEBUG_PREEMPT
5158 * Spinlock count overflowing soon?
5160 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5161 PREEMPT_MASK - 10);
5162 #endif
5163 if (preempt_count() == val)
5164 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5166 EXPORT_SYMBOL(add_preempt_count);
5168 void __kprobes sub_preempt_count(int val)
5170 #ifdef CONFIG_DEBUG_PREEMPT
5172 * Underflow?
5174 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5175 return;
5177 * Is the spinlock portion underflowing?
5179 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5180 !(preempt_count() & PREEMPT_MASK)))
5181 return;
5182 #endif
5184 if (preempt_count() == val)
5185 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5186 preempt_count() -= val;
5188 EXPORT_SYMBOL(sub_preempt_count);
5190 #endif
5193 * Print scheduling while atomic bug:
5195 static noinline void __schedule_bug(struct task_struct *prev)
5197 struct pt_regs *regs = get_irq_regs();
5199 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5200 prev->comm, prev->pid, preempt_count());
5202 debug_show_held_locks(prev);
5203 print_modules();
5204 if (irqs_disabled())
5205 print_irqtrace_events(prev);
5207 if (regs)
5208 show_regs(regs);
5209 else
5210 dump_stack();
5214 * Various schedule()-time debugging checks and statistics:
5216 static inline void schedule_debug(struct task_struct *prev)
5219 * Test if we are atomic. Since do_exit() needs to call into
5220 * schedule() atomically, we ignore that path for now.
5221 * Otherwise, whine if we are scheduling when we should not be.
5223 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5224 __schedule_bug(prev);
5226 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5228 schedstat_inc(this_rq(), sched_count);
5229 #ifdef CONFIG_SCHEDSTATS
5230 if (unlikely(prev->lock_depth >= 0)) {
5231 schedstat_inc(this_rq(), bkl_count);
5232 schedstat_inc(prev, sched_info.bkl_count);
5234 #endif
5237 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5239 if (prev->state == TASK_RUNNING) {
5240 u64 runtime = prev->se.sum_exec_runtime;
5242 runtime -= prev->se.prev_sum_exec_runtime;
5243 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5246 * In order to avoid avg_overlap growing stale when we are
5247 * indeed overlapping and hence not getting put to sleep, grow
5248 * the avg_overlap on preemption.
5250 * We use the average preemption runtime because that
5251 * correlates to the amount of cache footprint a task can
5252 * build up.
5254 update_avg(&prev->se.avg_overlap, runtime);
5256 prev->sched_class->put_prev_task(rq, prev);
5260 * Pick up the highest-prio task:
5262 static inline struct task_struct *
5263 pick_next_task(struct rq *rq)
5265 const struct sched_class *class;
5266 struct task_struct *p;
5269 * Optimization: we know that if all tasks are in
5270 * the fair class we can call that function directly:
5272 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5273 p = fair_sched_class.pick_next_task(rq);
5274 if (likely(p))
5275 return p;
5278 class = sched_class_highest;
5279 for ( ; ; ) {
5280 p = class->pick_next_task(rq);
5281 if (p)
5282 return p;
5284 * Will never be NULL as the idle class always
5285 * returns a non-NULL p:
5287 class = class->next;
5292 * schedule() is the main scheduler function.
5294 asmlinkage void __sched schedule(void)
5296 struct task_struct *prev, *next;
5297 unsigned long *switch_count;
5298 struct rq *rq;
5299 int cpu;
5301 need_resched:
5302 preempt_disable();
5303 cpu = smp_processor_id();
5304 rq = cpu_rq(cpu);
5305 rcu_qsctr_inc(cpu);
5306 prev = rq->curr;
5307 switch_count = &prev->nivcsw;
5309 release_kernel_lock(prev);
5310 need_resched_nonpreemptible:
5312 schedule_debug(prev);
5314 if (sched_feat(HRTICK))
5315 hrtick_clear(rq);
5317 spin_lock_irq(&rq->lock);
5318 update_rq_clock(rq);
5319 clear_tsk_need_resched(prev);
5321 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5322 if (unlikely(signal_pending_state(prev->state, prev)))
5323 prev->state = TASK_RUNNING;
5324 else
5325 deactivate_task(rq, prev, 1);
5326 switch_count = &prev->nvcsw;
5329 #ifdef CONFIG_SMP
5330 if (prev->sched_class->pre_schedule)
5331 prev->sched_class->pre_schedule(rq, prev);
5332 #endif
5334 if (unlikely(!rq->nr_running))
5335 idle_balance(cpu, rq);
5337 put_prev_task(rq, prev);
5338 next = pick_next_task(rq);
5340 if (likely(prev != next)) {
5341 sched_info_switch(prev, next);
5342 perf_counter_task_sched_out(prev, next, cpu);
5344 rq->nr_switches++;
5345 rq->curr = next;
5346 ++*switch_count;
5348 context_switch(rq, prev, next); /* unlocks the rq */
5350 * the context switch might have flipped the stack from under
5351 * us, hence refresh the local variables.
5353 cpu = smp_processor_id();
5354 rq = cpu_rq(cpu);
5355 } else
5356 spin_unlock_irq(&rq->lock);
5358 if (unlikely(reacquire_kernel_lock(current) < 0))
5359 goto need_resched_nonpreemptible;
5361 preempt_enable_no_resched();
5362 if (need_resched())
5363 goto need_resched;
5365 EXPORT_SYMBOL(schedule);
5367 #ifdef CONFIG_SMP
5369 * Look out! "owner" is an entirely speculative pointer
5370 * access and not reliable.
5372 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5374 unsigned int cpu;
5375 struct rq *rq;
5377 if (!sched_feat(OWNER_SPIN))
5378 return 0;
5380 #ifdef CONFIG_DEBUG_PAGEALLOC
5382 * Need to access the cpu field knowing that
5383 * DEBUG_PAGEALLOC could have unmapped it if
5384 * the mutex owner just released it and exited.
5386 if (probe_kernel_address(&owner->cpu, cpu))
5387 goto out;
5388 #else
5389 cpu = owner->cpu;
5390 #endif
5393 * Even if the access succeeded (likely case),
5394 * the cpu field may no longer be valid.
5396 if (cpu >= nr_cpumask_bits)
5397 goto out;
5400 * We need to validate that we can do a
5401 * get_cpu() and that we have the percpu area.
5403 if (!cpu_online(cpu))
5404 goto out;
5406 rq = cpu_rq(cpu);
5408 for (;;) {
5410 * Owner changed, break to re-assess state.
5412 if (lock->owner != owner)
5413 break;
5416 * Is that owner really running on that cpu?
5418 if (task_thread_info(rq->curr) != owner || need_resched())
5419 return 0;
5421 cpu_relax();
5423 out:
5424 return 1;
5426 #endif
5428 #ifdef CONFIG_PREEMPT
5430 * this is the entry point to schedule() from in-kernel preemption
5431 * off of preempt_enable. Kernel preemptions off return from interrupt
5432 * occur there and call schedule directly.
5434 asmlinkage void __sched preempt_schedule(void)
5436 struct thread_info *ti = current_thread_info();
5439 * If there is a non-zero preempt_count or interrupts are disabled,
5440 * we do not want to preempt the current task. Just return..
5442 if (likely(ti->preempt_count || irqs_disabled()))
5443 return;
5445 do {
5446 add_preempt_count(PREEMPT_ACTIVE);
5447 schedule();
5448 sub_preempt_count(PREEMPT_ACTIVE);
5451 * Check again in case we missed a preemption opportunity
5452 * between schedule and now.
5454 barrier();
5455 } while (need_resched());
5457 EXPORT_SYMBOL(preempt_schedule);
5460 * this is the entry point to schedule() from kernel preemption
5461 * off of irq context.
5462 * Note, that this is called and return with irqs disabled. This will
5463 * protect us against recursive calling from irq.
5465 asmlinkage void __sched preempt_schedule_irq(void)
5467 struct thread_info *ti = current_thread_info();
5469 /* Catch callers which need to be fixed */
5470 BUG_ON(ti->preempt_count || !irqs_disabled());
5472 do {
5473 add_preempt_count(PREEMPT_ACTIVE);
5474 local_irq_enable();
5475 schedule();
5476 local_irq_disable();
5477 sub_preempt_count(PREEMPT_ACTIVE);
5480 * Check again in case we missed a preemption opportunity
5481 * between schedule and now.
5483 barrier();
5484 } while (need_resched());
5487 #endif /* CONFIG_PREEMPT */
5489 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5490 void *key)
5492 return try_to_wake_up(curr->private, mode, sync);
5494 EXPORT_SYMBOL(default_wake_function);
5497 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5498 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5499 * number) then we wake all the non-exclusive tasks and one exclusive task.
5501 * There are circumstances in which we can try to wake a task which has already
5502 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5503 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5505 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5506 int nr_exclusive, int sync, void *key)
5508 wait_queue_t *curr, *next;
5510 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5511 unsigned flags = curr->flags;
5513 if (curr->func(curr, mode, sync, key) &&
5514 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5515 break;
5520 * __wake_up - wake up threads blocked on a waitqueue.
5521 * @q: the waitqueue
5522 * @mode: which threads
5523 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5524 * @key: is directly passed to the wakeup function
5526 * It may be assumed that this function implies a write memory barrier before
5527 * changing the task state if and only if any tasks are woken up.
5529 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5530 int nr_exclusive, void *key)
5532 unsigned long flags;
5534 spin_lock_irqsave(&q->lock, flags);
5535 __wake_up_common(q, mode, nr_exclusive, 0, key);
5536 spin_unlock_irqrestore(&q->lock, flags);
5538 EXPORT_SYMBOL(__wake_up);
5541 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5543 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5545 __wake_up_common(q, mode, 1, 0, NULL);
5548 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5550 __wake_up_common(q, mode, 1, 0, key);
5554 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5555 * @q: the waitqueue
5556 * @mode: which threads
5557 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5558 * @key: opaque value to be passed to wakeup targets
5560 * The sync wakeup differs that the waker knows that it will schedule
5561 * away soon, so while the target thread will be woken up, it will not
5562 * be migrated to another CPU - ie. the two threads are 'synchronized'
5563 * with each other. This can prevent needless bouncing between CPUs.
5565 * On UP it can prevent extra preemption.
5567 * It may be assumed that this function implies a write memory barrier before
5568 * changing the task state if and only if any tasks are woken up.
5570 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5571 int nr_exclusive, void *key)
5573 unsigned long flags;
5574 int sync = 1;
5576 if (unlikely(!q))
5577 return;
5579 if (unlikely(!nr_exclusive))
5580 sync = 0;
5582 spin_lock_irqsave(&q->lock, flags);
5583 __wake_up_common(q, mode, nr_exclusive, sync, key);
5584 spin_unlock_irqrestore(&q->lock, flags);
5586 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5589 * __wake_up_sync - see __wake_up_sync_key()
5591 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5593 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5595 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5598 * complete: - signals a single thread waiting on this completion
5599 * @x: holds the state of this particular completion
5601 * This will wake up a single thread waiting on this completion. Threads will be
5602 * awakened in the same order in which they were queued.
5604 * See also complete_all(), wait_for_completion() and related routines.
5606 * It may be assumed that this function implies a write memory barrier before
5607 * changing the task state if and only if any tasks are woken up.
5609 void complete(struct completion *x)
5611 unsigned long flags;
5613 spin_lock_irqsave(&x->wait.lock, flags);
5614 x->done++;
5615 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5616 spin_unlock_irqrestore(&x->wait.lock, flags);
5618 EXPORT_SYMBOL(complete);
5621 * complete_all: - signals all threads waiting on this completion
5622 * @x: holds the state of this particular completion
5624 * This will wake up all threads waiting on this particular completion event.
5626 * It may be assumed that this function implies a write memory barrier before
5627 * changing the task state if and only if any tasks are woken up.
5629 void complete_all(struct completion *x)
5631 unsigned long flags;
5633 spin_lock_irqsave(&x->wait.lock, flags);
5634 x->done += UINT_MAX/2;
5635 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5636 spin_unlock_irqrestore(&x->wait.lock, flags);
5638 EXPORT_SYMBOL(complete_all);
5640 static inline long __sched
5641 do_wait_for_common(struct completion *x, long timeout, int state)
5643 if (!x->done) {
5644 DECLARE_WAITQUEUE(wait, current);
5646 wait.flags |= WQ_FLAG_EXCLUSIVE;
5647 __add_wait_queue_tail(&x->wait, &wait);
5648 do {
5649 if (signal_pending_state(state, current)) {
5650 timeout = -ERESTARTSYS;
5651 break;
5653 __set_current_state(state);
5654 spin_unlock_irq(&x->wait.lock);
5655 timeout = schedule_timeout(timeout);
5656 spin_lock_irq(&x->wait.lock);
5657 } while (!x->done && timeout);
5658 __remove_wait_queue(&x->wait, &wait);
5659 if (!x->done)
5660 return timeout;
5662 x->done--;
5663 return timeout ?: 1;
5666 static long __sched
5667 wait_for_common(struct completion *x, long timeout, int state)
5669 might_sleep();
5671 spin_lock_irq(&x->wait.lock);
5672 timeout = do_wait_for_common(x, timeout, state);
5673 spin_unlock_irq(&x->wait.lock);
5674 return timeout;
5678 * wait_for_completion: - waits for completion of a task
5679 * @x: holds the state of this particular completion
5681 * This waits to be signaled for completion of a specific task. It is NOT
5682 * interruptible and there is no timeout.
5684 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5685 * and interrupt capability. Also see complete().
5687 void __sched wait_for_completion(struct completion *x)
5689 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5691 EXPORT_SYMBOL(wait_for_completion);
5694 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5695 * @x: holds the state of this particular completion
5696 * @timeout: timeout value in jiffies
5698 * This waits for either a completion of a specific task to be signaled or for a
5699 * specified timeout to expire. The timeout is in jiffies. It is not
5700 * interruptible.
5702 unsigned long __sched
5703 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5705 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5707 EXPORT_SYMBOL(wait_for_completion_timeout);
5710 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5711 * @x: holds the state of this particular completion
5713 * This waits for completion of a specific task to be signaled. It is
5714 * interruptible.
5716 int __sched wait_for_completion_interruptible(struct completion *x)
5718 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5719 if (t == -ERESTARTSYS)
5720 return t;
5721 return 0;
5723 EXPORT_SYMBOL(wait_for_completion_interruptible);
5726 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5727 * @x: holds the state of this particular completion
5728 * @timeout: timeout value in jiffies
5730 * This waits for either a completion of a specific task to be signaled or for a
5731 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5733 unsigned long __sched
5734 wait_for_completion_interruptible_timeout(struct completion *x,
5735 unsigned long timeout)
5737 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5739 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5742 * wait_for_completion_killable: - waits for completion of a task (killable)
5743 * @x: holds the state of this particular completion
5745 * This waits to be signaled for completion of a specific task. It can be
5746 * interrupted by a kill signal.
5748 int __sched wait_for_completion_killable(struct completion *x)
5750 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5751 if (t == -ERESTARTSYS)
5752 return t;
5753 return 0;
5755 EXPORT_SYMBOL(wait_for_completion_killable);
5758 * try_wait_for_completion - try to decrement a completion without blocking
5759 * @x: completion structure
5761 * Returns: 0 if a decrement cannot be done without blocking
5762 * 1 if a decrement succeeded.
5764 * If a completion is being used as a counting completion,
5765 * attempt to decrement the counter without blocking. This
5766 * enables us to avoid waiting if the resource the completion
5767 * is protecting is not available.
5769 bool try_wait_for_completion(struct completion *x)
5771 int ret = 1;
5773 spin_lock_irq(&x->wait.lock);
5774 if (!x->done)
5775 ret = 0;
5776 else
5777 x->done--;
5778 spin_unlock_irq(&x->wait.lock);
5779 return ret;
5781 EXPORT_SYMBOL(try_wait_for_completion);
5784 * completion_done - Test to see if a completion has any waiters
5785 * @x: completion structure
5787 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5788 * 1 if there are no waiters.
5791 bool completion_done(struct completion *x)
5793 int ret = 1;
5795 spin_lock_irq(&x->wait.lock);
5796 if (!x->done)
5797 ret = 0;
5798 spin_unlock_irq(&x->wait.lock);
5799 return ret;
5801 EXPORT_SYMBOL(completion_done);
5803 static long __sched
5804 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5806 unsigned long flags;
5807 wait_queue_t wait;
5809 init_waitqueue_entry(&wait, current);
5811 __set_current_state(state);
5813 spin_lock_irqsave(&q->lock, flags);
5814 __add_wait_queue(q, &wait);
5815 spin_unlock(&q->lock);
5816 timeout = schedule_timeout(timeout);
5817 spin_lock_irq(&q->lock);
5818 __remove_wait_queue(q, &wait);
5819 spin_unlock_irqrestore(&q->lock, flags);
5821 return timeout;
5824 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5826 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5828 EXPORT_SYMBOL(interruptible_sleep_on);
5830 long __sched
5831 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5833 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5835 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5837 void __sched sleep_on(wait_queue_head_t *q)
5839 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5841 EXPORT_SYMBOL(sleep_on);
5843 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5845 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5847 EXPORT_SYMBOL(sleep_on_timeout);
5849 #ifdef CONFIG_RT_MUTEXES
5852 * rt_mutex_setprio - set the current priority of a task
5853 * @p: task
5854 * @prio: prio value (kernel-internal form)
5856 * This function changes the 'effective' priority of a task. It does
5857 * not touch ->normal_prio like __setscheduler().
5859 * Used by the rt_mutex code to implement priority inheritance logic.
5861 void rt_mutex_setprio(struct task_struct *p, int prio)
5863 unsigned long flags;
5864 int oldprio, on_rq, running;
5865 struct rq *rq;
5866 const struct sched_class *prev_class = p->sched_class;
5868 BUG_ON(prio < 0 || prio > MAX_PRIO);
5870 rq = task_rq_lock(p, &flags);
5871 update_rq_clock(rq);
5873 oldprio = p->prio;
5874 on_rq = p->se.on_rq;
5875 running = task_current(rq, p);
5876 if (on_rq)
5877 dequeue_task(rq, p, 0);
5878 if (running)
5879 p->sched_class->put_prev_task(rq, p);
5881 if (rt_prio(prio))
5882 p->sched_class = &rt_sched_class;
5883 else
5884 p->sched_class = &fair_sched_class;
5886 p->prio = prio;
5888 if (running)
5889 p->sched_class->set_curr_task(rq);
5890 if (on_rq) {
5891 enqueue_task(rq, p, 0);
5893 check_class_changed(rq, p, prev_class, oldprio, running);
5895 task_rq_unlock(rq, &flags);
5898 #endif
5900 void set_user_nice(struct task_struct *p, long nice)
5902 int old_prio, delta, on_rq;
5903 unsigned long flags;
5904 struct rq *rq;
5906 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5907 return;
5909 * We have to be careful, if called from sys_setpriority(),
5910 * the task might be in the middle of scheduling on another CPU.
5912 rq = task_rq_lock(p, &flags);
5913 update_rq_clock(rq);
5915 * The RT priorities are set via sched_setscheduler(), but we still
5916 * allow the 'normal' nice value to be set - but as expected
5917 * it wont have any effect on scheduling until the task is
5918 * SCHED_FIFO/SCHED_RR:
5920 if (task_has_rt_policy(p)) {
5921 p->static_prio = NICE_TO_PRIO(nice);
5922 goto out_unlock;
5924 on_rq = p->se.on_rq;
5925 if (on_rq)
5926 dequeue_task(rq, p, 0);
5928 p->static_prio = NICE_TO_PRIO(nice);
5929 set_load_weight(p);
5930 old_prio = p->prio;
5931 p->prio = effective_prio(p);
5932 delta = p->prio - old_prio;
5934 if (on_rq) {
5935 enqueue_task(rq, p, 0);
5937 * If the task increased its priority or is running and
5938 * lowered its priority, then reschedule its CPU:
5940 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5941 resched_task(rq->curr);
5943 out_unlock:
5944 task_rq_unlock(rq, &flags);
5946 EXPORT_SYMBOL(set_user_nice);
5949 * can_nice - check if a task can reduce its nice value
5950 * @p: task
5951 * @nice: nice value
5953 int can_nice(const struct task_struct *p, const int nice)
5955 /* convert nice value [19,-20] to rlimit style value [1,40] */
5956 int nice_rlim = 20 - nice;
5958 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5959 capable(CAP_SYS_NICE));
5962 #ifdef __ARCH_WANT_SYS_NICE
5965 * sys_nice - change the priority of the current process.
5966 * @increment: priority increment
5968 * sys_setpriority is a more generic, but much slower function that
5969 * does similar things.
5971 SYSCALL_DEFINE1(nice, int, increment)
5973 long nice, retval;
5976 * Setpriority might change our priority at the same moment.
5977 * We don't have to worry. Conceptually one call occurs first
5978 * and we have a single winner.
5980 if (increment < -40)
5981 increment = -40;
5982 if (increment > 40)
5983 increment = 40;
5985 nice = TASK_NICE(current) + increment;
5986 if (nice < -20)
5987 nice = -20;
5988 if (nice > 19)
5989 nice = 19;
5991 if (increment < 0 && !can_nice(current, nice))
5992 return -EPERM;
5994 retval = security_task_setnice(current, nice);
5995 if (retval)
5996 return retval;
5998 set_user_nice(current, nice);
5999 return 0;
6002 #endif
6005 * task_prio - return the priority value of a given task.
6006 * @p: the task in question.
6008 * This is the priority value as seen by users in /proc.
6009 * RT tasks are offset by -200. Normal tasks are centered
6010 * around 0, value goes from -16 to +15.
6012 int task_prio(const struct task_struct *p)
6014 return p->prio - MAX_RT_PRIO;
6018 * task_nice - return the nice value of a given task.
6019 * @p: the task in question.
6021 int task_nice(const struct task_struct *p)
6023 return TASK_NICE(p);
6025 EXPORT_SYMBOL(task_nice);
6028 * idle_cpu - is a given cpu idle currently?
6029 * @cpu: the processor in question.
6031 int idle_cpu(int cpu)
6033 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6037 * idle_task - return the idle task for a given cpu.
6038 * @cpu: the processor in question.
6040 struct task_struct *idle_task(int cpu)
6042 return cpu_rq(cpu)->idle;
6046 * find_process_by_pid - find a process with a matching PID value.
6047 * @pid: the pid in question.
6049 static struct task_struct *find_process_by_pid(pid_t pid)
6051 return pid ? find_task_by_vpid(pid) : current;
6054 /* Actually do priority change: must hold rq lock. */
6055 static void
6056 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6058 BUG_ON(p->se.on_rq);
6060 p->policy = policy;
6061 switch (p->policy) {
6062 case SCHED_NORMAL:
6063 case SCHED_BATCH:
6064 case SCHED_IDLE:
6065 p->sched_class = &fair_sched_class;
6066 break;
6067 case SCHED_FIFO:
6068 case SCHED_RR:
6069 p->sched_class = &rt_sched_class;
6070 break;
6073 p->rt_priority = prio;
6074 p->normal_prio = normal_prio(p);
6075 /* we are holding p->pi_lock already */
6076 p->prio = rt_mutex_getprio(p);
6077 set_load_weight(p);
6081 * check the target process has a UID that matches the current process's
6083 static bool check_same_owner(struct task_struct *p)
6085 const struct cred *cred = current_cred(), *pcred;
6086 bool match;
6088 rcu_read_lock();
6089 pcred = __task_cred(p);
6090 match = (cred->euid == pcred->euid ||
6091 cred->euid == pcred->uid);
6092 rcu_read_unlock();
6093 return match;
6096 static int __sched_setscheduler(struct task_struct *p, int policy,
6097 struct sched_param *param, bool user)
6099 int retval, oldprio, oldpolicy = -1, on_rq, running;
6100 unsigned long flags;
6101 const struct sched_class *prev_class = p->sched_class;
6102 struct rq *rq;
6104 /* may grab non-irq protected spin_locks */
6105 BUG_ON(in_interrupt());
6106 recheck:
6107 /* double check policy once rq lock held */
6108 if (policy < 0)
6109 policy = oldpolicy = p->policy;
6110 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
6111 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6112 policy != SCHED_IDLE)
6113 return -EINVAL;
6115 * Valid priorities for SCHED_FIFO and SCHED_RR are
6116 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6117 * SCHED_BATCH and SCHED_IDLE is 0.
6119 if (param->sched_priority < 0 ||
6120 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6121 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6122 return -EINVAL;
6123 if (rt_policy(policy) != (param->sched_priority != 0))
6124 return -EINVAL;
6127 * Allow unprivileged RT tasks to decrease priority:
6129 if (user && !capable(CAP_SYS_NICE)) {
6130 if (rt_policy(policy)) {
6131 unsigned long rlim_rtprio;
6133 if (!lock_task_sighand(p, &flags))
6134 return -ESRCH;
6135 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6136 unlock_task_sighand(p, &flags);
6138 /* can't set/change the rt policy */
6139 if (policy != p->policy && !rlim_rtprio)
6140 return -EPERM;
6142 /* can't increase priority */
6143 if (param->sched_priority > p->rt_priority &&
6144 param->sched_priority > rlim_rtprio)
6145 return -EPERM;
6148 * Like positive nice levels, dont allow tasks to
6149 * move out of SCHED_IDLE either:
6151 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6152 return -EPERM;
6154 /* can't change other user's priorities */
6155 if (!check_same_owner(p))
6156 return -EPERM;
6159 if (user) {
6160 #ifdef CONFIG_RT_GROUP_SCHED
6162 * Do not allow realtime tasks into groups that have no runtime
6163 * assigned.
6165 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6166 task_group(p)->rt_bandwidth.rt_runtime == 0)
6167 return -EPERM;
6168 #endif
6170 retval = security_task_setscheduler(p, policy, param);
6171 if (retval)
6172 return retval;
6176 * make sure no PI-waiters arrive (or leave) while we are
6177 * changing the priority of the task:
6179 spin_lock_irqsave(&p->pi_lock, flags);
6181 * To be able to change p->policy safely, the apropriate
6182 * runqueue lock must be held.
6184 rq = __task_rq_lock(p);
6185 /* recheck policy now with rq lock held */
6186 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6187 policy = oldpolicy = -1;
6188 __task_rq_unlock(rq);
6189 spin_unlock_irqrestore(&p->pi_lock, flags);
6190 goto recheck;
6192 update_rq_clock(rq);
6193 on_rq = p->se.on_rq;
6194 running = task_current(rq, p);
6195 if (on_rq)
6196 deactivate_task(rq, p, 0);
6197 if (running)
6198 p->sched_class->put_prev_task(rq, p);
6200 oldprio = p->prio;
6201 __setscheduler(rq, p, policy, param->sched_priority);
6203 if (running)
6204 p->sched_class->set_curr_task(rq);
6205 if (on_rq) {
6206 activate_task(rq, p, 0);
6208 check_class_changed(rq, p, prev_class, oldprio, running);
6210 __task_rq_unlock(rq);
6211 spin_unlock_irqrestore(&p->pi_lock, flags);
6213 rt_mutex_adjust_pi(p);
6215 return 0;
6219 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6220 * @p: the task in question.
6221 * @policy: new policy.
6222 * @param: structure containing the new RT priority.
6224 * NOTE that the task may be already dead.
6226 int sched_setscheduler(struct task_struct *p, int policy,
6227 struct sched_param *param)
6229 return __sched_setscheduler(p, policy, param, true);
6231 EXPORT_SYMBOL_GPL(sched_setscheduler);
6234 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6235 * @p: the task in question.
6236 * @policy: new policy.
6237 * @param: structure containing the new RT priority.
6239 * Just like sched_setscheduler, only don't bother checking if the
6240 * current context has permission. For example, this is needed in
6241 * stop_machine(): we create temporary high priority worker threads,
6242 * but our caller might not have that capability.
6244 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6245 struct sched_param *param)
6247 return __sched_setscheduler(p, policy, param, false);
6250 static int
6251 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6253 struct sched_param lparam;
6254 struct task_struct *p;
6255 int retval;
6257 if (!param || pid < 0)
6258 return -EINVAL;
6259 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6260 return -EFAULT;
6262 rcu_read_lock();
6263 retval = -ESRCH;
6264 p = find_process_by_pid(pid);
6265 if (p != NULL)
6266 retval = sched_setscheduler(p, policy, &lparam);
6267 rcu_read_unlock();
6269 return retval;
6273 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6274 * @pid: the pid in question.
6275 * @policy: new policy.
6276 * @param: structure containing the new RT priority.
6278 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6279 struct sched_param __user *, param)
6281 /* negative values for policy are not valid */
6282 if (policy < 0)
6283 return -EINVAL;
6285 return do_sched_setscheduler(pid, policy, param);
6289 * sys_sched_setparam - set/change the RT priority of a thread
6290 * @pid: the pid in question.
6291 * @param: structure containing the new RT priority.
6293 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6295 return do_sched_setscheduler(pid, -1, param);
6299 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6300 * @pid: the pid in question.
6302 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6304 struct task_struct *p;
6305 int retval;
6307 if (pid < 0)
6308 return -EINVAL;
6310 retval = -ESRCH;
6311 read_lock(&tasklist_lock);
6312 p = find_process_by_pid(pid);
6313 if (p) {
6314 retval = security_task_getscheduler(p);
6315 if (!retval)
6316 retval = p->policy;
6318 read_unlock(&tasklist_lock);
6319 return retval;
6323 * sys_sched_getscheduler - get the RT priority of a thread
6324 * @pid: the pid in question.
6325 * @param: structure containing the RT priority.
6327 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6329 struct sched_param lp;
6330 struct task_struct *p;
6331 int retval;
6333 if (!param || pid < 0)
6334 return -EINVAL;
6336 read_lock(&tasklist_lock);
6337 p = find_process_by_pid(pid);
6338 retval = -ESRCH;
6339 if (!p)
6340 goto out_unlock;
6342 retval = security_task_getscheduler(p);
6343 if (retval)
6344 goto out_unlock;
6346 lp.sched_priority = p->rt_priority;
6347 read_unlock(&tasklist_lock);
6350 * This one might sleep, we cannot do it with a spinlock held ...
6352 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6354 return retval;
6356 out_unlock:
6357 read_unlock(&tasklist_lock);
6358 return retval;
6361 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6363 cpumask_var_t cpus_allowed, new_mask;
6364 struct task_struct *p;
6365 int retval;
6367 get_online_cpus();
6368 read_lock(&tasklist_lock);
6370 p = find_process_by_pid(pid);
6371 if (!p) {
6372 read_unlock(&tasklist_lock);
6373 put_online_cpus();
6374 return -ESRCH;
6378 * It is not safe to call set_cpus_allowed with the
6379 * tasklist_lock held. We will bump the task_struct's
6380 * usage count and then drop tasklist_lock.
6382 get_task_struct(p);
6383 read_unlock(&tasklist_lock);
6385 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6386 retval = -ENOMEM;
6387 goto out_put_task;
6389 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6390 retval = -ENOMEM;
6391 goto out_free_cpus_allowed;
6393 retval = -EPERM;
6394 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6395 goto out_unlock;
6397 retval = security_task_setscheduler(p, 0, NULL);
6398 if (retval)
6399 goto out_unlock;
6401 cpuset_cpus_allowed(p, cpus_allowed);
6402 cpumask_and(new_mask, in_mask, cpus_allowed);
6403 again:
6404 retval = set_cpus_allowed_ptr(p, new_mask);
6406 if (!retval) {
6407 cpuset_cpus_allowed(p, cpus_allowed);
6408 if (!cpumask_subset(new_mask, cpus_allowed)) {
6410 * We must have raced with a concurrent cpuset
6411 * update. Just reset the cpus_allowed to the
6412 * cpuset's cpus_allowed
6414 cpumask_copy(new_mask, cpus_allowed);
6415 goto again;
6418 out_unlock:
6419 free_cpumask_var(new_mask);
6420 out_free_cpus_allowed:
6421 free_cpumask_var(cpus_allowed);
6422 out_put_task:
6423 put_task_struct(p);
6424 put_online_cpus();
6425 return retval;
6428 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6429 struct cpumask *new_mask)
6431 if (len < cpumask_size())
6432 cpumask_clear(new_mask);
6433 else if (len > cpumask_size())
6434 len = cpumask_size();
6436 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6440 * sys_sched_setaffinity - set the cpu affinity of a process
6441 * @pid: pid of the process
6442 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6443 * @user_mask_ptr: user-space pointer to the new cpu mask
6445 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6446 unsigned long __user *, user_mask_ptr)
6448 cpumask_var_t new_mask;
6449 int retval;
6451 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6452 return -ENOMEM;
6454 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6455 if (retval == 0)
6456 retval = sched_setaffinity(pid, new_mask);
6457 free_cpumask_var(new_mask);
6458 return retval;
6461 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6463 struct task_struct *p;
6464 int retval;
6466 get_online_cpus();
6467 read_lock(&tasklist_lock);
6469 retval = -ESRCH;
6470 p = find_process_by_pid(pid);
6471 if (!p)
6472 goto out_unlock;
6474 retval = security_task_getscheduler(p);
6475 if (retval)
6476 goto out_unlock;
6478 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6480 out_unlock:
6481 read_unlock(&tasklist_lock);
6482 put_online_cpus();
6484 return retval;
6488 * sys_sched_getaffinity - get the cpu affinity of a process
6489 * @pid: pid of the process
6490 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6491 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6493 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6494 unsigned long __user *, user_mask_ptr)
6496 int ret;
6497 cpumask_var_t mask;
6499 if (len < cpumask_size())
6500 return -EINVAL;
6502 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6503 return -ENOMEM;
6505 ret = sched_getaffinity(pid, mask);
6506 if (ret == 0) {
6507 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6508 ret = -EFAULT;
6509 else
6510 ret = cpumask_size();
6512 free_cpumask_var(mask);
6514 return ret;
6518 * sys_sched_yield - yield the current processor to other threads.
6520 * This function yields the current CPU to other tasks. If there are no
6521 * other threads running on this CPU then this function will return.
6523 SYSCALL_DEFINE0(sched_yield)
6525 struct rq *rq = this_rq_lock();
6527 schedstat_inc(rq, yld_count);
6528 current->sched_class->yield_task(rq);
6531 * Since we are going to call schedule() anyway, there's
6532 * no need to preempt or enable interrupts:
6534 __release(rq->lock);
6535 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6536 _raw_spin_unlock(&rq->lock);
6537 preempt_enable_no_resched();
6539 schedule();
6541 return 0;
6544 static void __cond_resched(void)
6546 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6547 __might_sleep(__FILE__, __LINE__);
6548 #endif
6550 * The BKS might be reacquired before we have dropped
6551 * PREEMPT_ACTIVE, which could trigger a second
6552 * cond_resched() call.
6554 do {
6555 add_preempt_count(PREEMPT_ACTIVE);
6556 schedule();
6557 sub_preempt_count(PREEMPT_ACTIVE);
6558 } while (need_resched());
6561 int __sched _cond_resched(void)
6563 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6564 system_state == SYSTEM_RUNNING) {
6565 __cond_resched();
6566 return 1;
6568 return 0;
6570 EXPORT_SYMBOL(_cond_resched);
6573 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6574 * call schedule, and on return reacquire the lock.
6576 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6577 * operations here to prevent schedule() from being called twice (once via
6578 * spin_unlock(), once by hand).
6580 int cond_resched_lock(spinlock_t *lock)
6582 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6583 int ret = 0;
6585 if (spin_needbreak(lock) || resched) {
6586 spin_unlock(lock);
6587 if (resched && need_resched())
6588 __cond_resched();
6589 else
6590 cpu_relax();
6591 ret = 1;
6592 spin_lock(lock);
6594 return ret;
6596 EXPORT_SYMBOL(cond_resched_lock);
6598 int __sched cond_resched_softirq(void)
6600 BUG_ON(!in_softirq());
6602 if (need_resched() && system_state == SYSTEM_RUNNING) {
6603 local_bh_enable();
6604 __cond_resched();
6605 local_bh_disable();
6606 return 1;
6608 return 0;
6610 EXPORT_SYMBOL(cond_resched_softirq);
6613 * yield - yield the current processor to other threads.
6615 * This is a shortcut for kernel-space yielding - it marks the
6616 * thread runnable and calls sys_sched_yield().
6618 void __sched yield(void)
6620 set_current_state(TASK_RUNNING);
6621 sys_sched_yield();
6623 EXPORT_SYMBOL(yield);
6626 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6627 * that process accounting knows that this is a task in IO wait state.
6629 * But don't do that if it is a deliberate, throttling IO wait (this task
6630 * has set its backing_dev_info: the queue against which it should throttle)
6632 void __sched io_schedule(void)
6634 struct rq *rq = &__raw_get_cpu_var(runqueues);
6636 delayacct_blkio_start();
6637 atomic_inc(&rq->nr_iowait);
6638 schedule();
6639 atomic_dec(&rq->nr_iowait);
6640 delayacct_blkio_end();
6642 EXPORT_SYMBOL(io_schedule);
6644 long __sched io_schedule_timeout(long timeout)
6646 struct rq *rq = &__raw_get_cpu_var(runqueues);
6647 long ret;
6649 delayacct_blkio_start();
6650 atomic_inc(&rq->nr_iowait);
6651 ret = schedule_timeout(timeout);
6652 atomic_dec(&rq->nr_iowait);
6653 delayacct_blkio_end();
6654 return ret;
6658 * sys_sched_get_priority_max - return maximum RT priority.
6659 * @policy: scheduling class.
6661 * this syscall returns the maximum rt_priority that can be used
6662 * by a given scheduling class.
6664 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6666 int ret = -EINVAL;
6668 switch (policy) {
6669 case SCHED_FIFO:
6670 case SCHED_RR:
6671 ret = MAX_USER_RT_PRIO-1;
6672 break;
6673 case SCHED_NORMAL:
6674 case SCHED_BATCH:
6675 case SCHED_IDLE:
6676 ret = 0;
6677 break;
6679 return ret;
6683 * sys_sched_get_priority_min - return minimum RT priority.
6684 * @policy: scheduling class.
6686 * this syscall returns the minimum rt_priority that can be used
6687 * by a given scheduling class.
6689 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6691 int ret = -EINVAL;
6693 switch (policy) {
6694 case SCHED_FIFO:
6695 case SCHED_RR:
6696 ret = 1;
6697 break;
6698 case SCHED_NORMAL:
6699 case SCHED_BATCH:
6700 case SCHED_IDLE:
6701 ret = 0;
6703 return ret;
6707 * sys_sched_rr_get_interval - return the default timeslice of a process.
6708 * @pid: pid of the process.
6709 * @interval: userspace pointer to the timeslice value.
6711 * this syscall writes the default timeslice value of a given process
6712 * into the user-space timespec buffer. A value of '0' means infinity.
6714 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6715 struct timespec __user *, interval)
6717 struct task_struct *p;
6718 unsigned int time_slice;
6719 int retval;
6720 struct timespec t;
6722 if (pid < 0)
6723 return -EINVAL;
6725 retval = -ESRCH;
6726 read_lock(&tasklist_lock);
6727 p = find_process_by_pid(pid);
6728 if (!p)
6729 goto out_unlock;
6731 retval = security_task_getscheduler(p);
6732 if (retval)
6733 goto out_unlock;
6736 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6737 * tasks that are on an otherwise idle runqueue:
6739 time_slice = 0;
6740 if (p->policy == SCHED_RR) {
6741 time_slice = DEF_TIMESLICE;
6742 } else if (p->policy != SCHED_FIFO) {
6743 struct sched_entity *se = &p->se;
6744 unsigned long flags;
6745 struct rq *rq;
6747 rq = task_rq_lock(p, &flags);
6748 if (rq->cfs.load.weight)
6749 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6750 task_rq_unlock(rq, &flags);
6752 read_unlock(&tasklist_lock);
6753 jiffies_to_timespec(time_slice, &t);
6754 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6755 return retval;
6757 out_unlock:
6758 read_unlock(&tasklist_lock);
6759 return retval;
6762 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6764 void sched_show_task(struct task_struct *p)
6766 unsigned long free = 0;
6767 unsigned state;
6769 state = p->state ? __ffs(p->state) + 1 : 0;
6770 printk(KERN_INFO "%-13.13s %c", p->comm,
6771 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6772 #if BITS_PER_LONG == 32
6773 if (state == TASK_RUNNING)
6774 printk(KERN_CONT " running ");
6775 else
6776 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6777 #else
6778 if (state == TASK_RUNNING)
6779 printk(KERN_CONT " running task ");
6780 else
6781 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6782 #endif
6783 #ifdef CONFIG_DEBUG_STACK_USAGE
6784 free = stack_not_used(p);
6785 #endif
6786 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6787 task_pid_nr(p), task_pid_nr(p->real_parent),
6788 (unsigned long)task_thread_info(p)->flags);
6790 show_stack(p, NULL);
6793 void show_state_filter(unsigned long state_filter)
6795 struct task_struct *g, *p;
6797 #if BITS_PER_LONG == 32
6798 printk(KERN_INFO
6799 " task PC stack pid father\n");
6800 #else
6801 printk(KERN_INFO
6802 " task PC stack pid father\n");
6803 #endif
6804 read_lock(&tasklist_lock);
6805 do_each_thread(g, p) {
6807 * reset the NMI-timeout, listing all files on a slow
6808 * console might take alot of time:
6810 touch_nmi_watchdog();
6811 if (!state_filter || (p->state & state_filter))
6812 sched_show_task(p);
6813 } while_each_thread(g, p);
6815 touch_all_softlockup_watchdogs();
6817 #ifdef CONFIG_SCHED_DEBUG
6818 sysrq_sched_debug_show();
6819 #endif
6820 read_unlock(&tasklist_lock);
6822 * Only show locks if all tasks are dumped:
6824 if (state_filter == -1)
6825 debug_show_all_locks();
6828 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6830 idle->sched_class = &idle_sched_class;
6834 * init_idle - set up an idle thread for a given CPU
6835 * @idle: task in question
6836 * @cpu: cpu the idle task belongs to
6838 * NOTE: this function does not set the idle thread's NEED_RESCHED
6839 * flag, to make booting more robust.
6841 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6843 struct rq *rq = cpu_rq(cpu);
6844 unsigned long flags;
6846 spin_lock_irqsave(&rq->lock, flags);
6848 __sched_fork(idle);
6849 idle->se.exec_start = sched_clock();
6851 idle->prio = idle->normal_prio = MAX_PRIO;
6852 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6853 __set_task_cpu(idle, cpu);
6855 rq->curr = rq->idle = idle;
6856 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6857 idle->oncpu = 1;
6858 #endif
6859 spin_unlock_irqrestore(&rq->lock, flags);
6861 /* Set the preempt count _outside_ the spinlocks! */
6862 #if defined(CONFIG_PREEMPT)
6863 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6864 #else
6865 task_thread_info(idle)->preempt_count = 0;
6866 #endif
6868 * The idle tasks have their own, simple scheduling class:
6870 idle->sched_class = &idle_sched_class;
6871 ftrace_graph_init_task(idle);
6875 * In a system that switches off the HZ timer nohz_cpu_mask
6876 * indicates which cpus entered this state. This is used
6877 * in the rcu update to wait only for active cpus. For system
6878 * which do not switch off the HZ timer nohz_cpu_mask should
6879 * always be CPU_BITS_NONE.
6881 cpumask_var_t nohz_cpu_mask;
6884 * Increase the granularity value when there are more CPUs,
6885 * because with more CPUs the 'effective latency' as visible
6886 * to users decreases. But the relationship is not linear,
6887 * so pick a second-best guess by going with the log2 of the
6888 * number of CPUs.
6890 * This idea comes from the SD scheduler of Con Kolivas:
6892 static inline void sched_init_granularity(void)
6894 unsigned int factor = 1 + ilog2(num_online_cpus());
6895 const unsigned long limit = 200000000;
6897 sysctl_sched_min_granularity *= factor;
6898 if (sysctl_sched_min_granularity > limit)
6899 sysctl_sched_min_granularity = limit;
6901 sysctl_sched_latency *= factor;
6902 if (sysctl_sched_latency > limit)
6903 sysctl_sched_latency = limit;
6905 sysctl_sched_wakeup_granularity *= factor;
6907 sysctl_sched_shares_ratelimit *= factor;
6910 #ifdef CONFIG_SMP
6912 * This is how migration works:
6914 * 1) we queue a struct migration_req structure in the source CPU's
6915 * runqueue and wake up that CPU's migration thread.
6916 * 2) we down() the locked semaphore => thread blocks.
6917 * 3) migration thread wakes up (implicitly it forces the migrated
6918 * thread off the CPU)
6919 * 4) it gets the migration request and checks whether the migrated
6920 * task is still in the wrong runqueue.
6921 * 5) if it's in the wrong runqueue then the migration thread removes
6922 * it and puts it into the right queue.
6923 * 6) migration thread up()s the semaphore.
6924 * 7) we wake up and the migration is done.
6928 * Change a given task's CPU affinity. Migrate the thread to a
6929 * proper CPU and schedule it away if the CPU it's executing on
6930 * is removed from the allowed bitmask.
6932 * NOTE: the caller must have a valid reference to the task, the
6933 * task must not exit() & deallocate itself prematurely. The
6934 * call is not atomic; no spinlocks may be held.
6936 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6938 struct migration_req req;
6939 unsigned long flags;
6940 struct rq *rq;
6941 int ret = 0;
6943 rq = task_rq_lock(p, &flags);
6944 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6945 ret = -EINVAL;
6946 goto out;
6949 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6950 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6951 ret = -EINVAL;
6952 goto out;
6955 if (p->sched_class->set_cpus_allowed)
6956 p->sched_class->set_cpus_allowed(p, new_mask);
6957 else {
6958 cpumask_copy(&p->cpus_allowed, new_mask);
6959 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6962 /* Can the task run on the task's current CPU? If so, we're done */
6963 if (cpumask_test_cpu(task_cpu(p), new_mask))
6964 goto out;
6966 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6967 /* Need help from migration thread: drop lock and wait. */
6968 task_rq_unlock(rq, &flags);
6969 wake_up_process(rq->migration_thread);
6970 wait_for_completion(&req.done);
6971 tlb_migrate_finish(p->mm);
6972 return 0;
6974 out:
6975 task_rq_unlock(rq, &flags);
6977 return ret;
6979 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6982 * Move (not current) task off this cpu, onto dest cpu. We're doing
6983 * this because either it can't run here any more (set_cpus_allowed()
6984 * away from this CPU, or CPU going down), or because we're
6985 * attempting to rebalance this task on exec (sched_exec).
6987 * So we race with normal scheduler movements, but that's OK, as long
6988 * as the task is no longer on this CPU.
6990 * Returns non-zero if task was successfully migrated.
6992 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6994 struct rq *rq_dest, *rq_src;
6995 int ret = 0, on_rq;
6997 if (unlikely(!cpu_active(dest_cpu)))
6998 return ret;
7000 rq_src = cpu_rq(src_cpu);
7001 rq_dest = cpu_rq(dest_cpu);
7003 double_rq_lock(rq_src, rq_dest);
7004 /* Already moved. */
7005 if (task_cpu(p) != src_cpu)
7006 goto done;
7007 /* Affinity changed (again). */
7008 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7009 goto fail;
7011 on_rq = p->se.on_rq;
7012 if (on_rq)
7013 deactivate_task(rq_src, p, 0);
7015 set_task_cpu(p, dest_cpu);
7016 if (on_rq) {
7017 activate_task(rq_dest, p, 0);
7018 check_preempt_curr(rq_dest, p, 0);
7020 done:
7021 ret = 1;
7022 fail:
7023 double_rq_unlock(rq_src, rq_dest);
7024 return ret;
7028 * migration_thread - this is a highprio system thread that performs
7029 * thread migration by bumping thread off CPU then 'pushing' onto
7030 * another runqueue.
7032 static int migration_thread(void *data)
7034 int cpu = (long)data;
7035 struct rq *rq;
7037 rq = cpu_rq(cpu);
7038 BUG_ON(rq->migration_thread != current);
7040 set_current_state(TASK_INTERRUPTIBLE);
7041 while (!kthread_should_stop()) {
7042 struct migration_req *req;
7043 struct list_head *head;
7045 spin_lock_irq(&rq->lock);
7047 if (cpu_is_offline(cpu)) {
7048 spin_unlock_irq(&rq->lock);
7049 break;
7052 if (rq->active_balance) {
7053 active_load_balance(rq, cpu);
7054 rq->active_balance = 0;
7057 head = &rq->migration_queue;
7059 if (list_empty(head)) {
7060 spin_unlock_irq(&rq->lock);
7061 schedule();
7062 set_current_state(TASK_INTERRUPTIBLE);
7063 continue;
7065 req = list_entry(head->next, struct migration_req, list);
7066 list_del_init(head->next);
7068 spin_unlock(&rq->lock);
7069 __migrate_task(req->task, cpu, req->dest_cpu);
7070 local_irq_enable();
7072 complete(&req->done);
7074 __set_current_state(TASK_RUNNING);
7076 return 0;
7079 #ifdef CONFIG_HOTPLUG_CPU
7081 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7083 int ret;
7085 local_irq_disable();
7086 ret = __migrate_task(p, src_cpu, dest_cpu);
7087 local_irq_enable();
7088 return ret;
7092 * Figure out where task on dead CPU should go, use force if necessary.
7094 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7096 int dest_cpu;
7097 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7099 again:
7100 /* Look for allowed, online CPU in same node. */
7101 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7102 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7103 goto move;
7105 /* Any allowed, online CPU? */
7106 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7107 if (dest_cpu < nr_cpu_ids)
7108 goto move;
7110 /* No more Mr. Nice Guy. */
7111 if (dest_cpu >= nr_cpu_ids) {
7112 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7113 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7116 * Don't tell them about moving exiting tasks or
7117 * kernel threads (both mm NULL), since they never
7118 * leave kernel.
7120 if (p->mm && printk_ratelimit()) {
7121 printk(KERN_INFO "process %d (%s) no "
7122 "longer affine to cpu%d\n",
7123 task_pid_nr(p), p->comm, dead_cpu);
7127 move:
7128 /* It can have affinity changed while we were choosing. */
7129 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7130 goto again;
7134 * While a dead CPU has no uninterruptible tasks queued at this point,
7135 * it might still have a nonzero ->nr_uninterruptible counter, because
7136 * for performance reasons the counter is not stricly tracking tasks to
7137 * their home CPUs. So we just add the counter to another CPU's counter,
7138 * to keep the global sum constant after CPU-down:
7140 static void migrate_nr_uninterruptible(struct rq *rq_src)
7142 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7143 unsigned long flags;
7145 local_irq_save(flags);
7146 double_rq_lock(rq_src, rq_dest);
7147 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7148 rq_src->nr_uninterruptible = 0;
7149 double_rq_unlock(rq_src, rq_dest);
7150 local_irq_restore(flags);
7153 /* Run through task list and migrate tasks from the dead cpu. */
7154 static void migrate_live_tasks(int src_cpu)
7156 struct task_struct *p, *t;
7158 read_lock(&tasklist_lock);
7160 do_each_thread(t, p) {
7161 if (p == current)
7162 continue;
7164 if (task_cpu(p) == src_cpu)
7165 move_task_off_dead_cpu(src_cpu, p);
7166 } while_each_thread(t, p);
7168 read_unlock(&tasklist_lock);
7172 * Schedules idle task to be the next runnable task on current CPU.
7173 * It does so by boosting its priority to highest possible.
7174 * Used by CPU offline code.
7176 void sched_idle_next(void)
7178 int this_cpu = smp_processor_id();
7179 struct rq *rq = cpu_rq(this_cpu);
7180 struct task_struct *p = rq->idle;
7181 unsigned long flags;
7183 /* cpu has to be offline */
7184 BUG_ON(cpu_online(this_cpu));
7187 * Strictly not necessary since rest of the CPUs are stopped by now
7188 * and interrupts disabled on the current cpu.
7190 spin_lock_irqsave(&rq->lock, flags);
7192 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7194 update_rq_clock(rq);
7195 activate_task(rq, p, 0);
7197 spin_unlock_irqrestore(&rq->lock, flags);
7201 * Ensures that the idle task is using init_mm right before its cpu goes
7202 * offline.
7204 void idle_task_exit(void)
7206 struct mm_struct *mm = current->active_mm;
7208 BUG_ON(cpu_online(smp_processor_id()));
7210 if (mm != &init_mm)
7211 switch_mm(mm, &init_mm, current);
7212 mmdrop(mm);
7215 /* called under rq->lock with disabled interrupts */
7216 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7218 struct rq *rq = cpu_rq(dead_cpu);
7220 /* Must be exiting, otherwise would be on tasklist. */
7221 BUG_ON(!p->exit_state);
7223 /* Cannot have done final schedule yet: would have vanished. */
7224 BUG_ON(p->state == TASK_DEAD);
7226 get_task_struct(p);
7229 * Drop lock around migration; if someone else moves it,
7230 * that's OK. No task can be added to this CPU, so iteration is
7231 * fine.
7233 spin_unlock_irq(&rq->lock);
7234 move_task_off_dead_cpu(dead_cpu, p);
7235 spin_lock_irq(&rq->lock);
7237 put_task_struct(p);
7240 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7241 static void migrate_dead_tasks(unsigned int dead_cpu)
7243 struct rq *rq = cpu_rq(dead_cpu);
7244 struct task_struct *next;
7246 for ( ; ; ) {
7247 if (!rq->nr_running)
7248 break;
7249 update_rq_clock(rq);
7250 next = pick_next_task(rq);
7251 if (!next)
7252 break;
7253 next->sched_class->put_prev_task(rq, next);
7254 migrate_dead(dead_cpu, next);
7260 * remove the tasks which were accounted by rq from calc_load_tasks.
7262 static void calc_global_load_remove(struct rq *rq)
7264 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7266 #endif /* CONFIG_HOTPLUG_CPU */
7268 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7270 static struct ctl_table sd_ctl_dir[] = {
7272 .procname = "sched_domain",
7273 .mode = 0555,
7275 {0, },
7278 static struct ctl_table sd_ctl_root[] = {
7280 .ctl_name = CTL_KERN,
7281 .procname = "kernel",
7282 .mode = 0555,
7283 .child = sd_ctl_dir,
7285 {0, },
7288 static struct ctl_table *sd_alloc_ctl_entry(int n)
7290 struct ctl_table *entry =
7291 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7293 return entry;
7296 static void sd_free_ctl_entry(struct ctl_table **tablep)
7298 struct ctl_table *entry;
7301 * In the intermediate directories, both the child directory and
7302 * procname are dynamically allocated and could fail but the mode
7303 * will always be set. In the lowest directory the names are
7304 * static strings and all have proc handlers.
7306 for (entry = *tablep; entry->mode; entry++) {
7307 if (entry->child)
7308 sd_free_ctl_entry(&entry->child);
7309 if (entry->proc_handler == NULL)
7310 kfree(entry->procname);
7313 kfree(*tablep);
7314 *tablep = NULL;
7317 static void
7318 set_table_entry(struct ctl_table *entry,
7319 const char *procname, void *data, int maxlen,
7320 mode_t mode, proc_handler *proc_handler)
7322 entry->procname = procname;
7323 entry->data = data;
7324 entry->maxlen = maxlen;
7325 entry->mode = mode;
7326 entry->proc_handler = proc_handler;
7329 static struct ctl_table *
7330 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7332 struct ctl_table *table = sd_alloc_ctl_entry(13);
7334 if (table == NULL)
7335 return NULL;
7337 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7338 sizeof(long), 0644, proc_doulongvec_minmax);
7339 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7340 sizeof(long), 0644, proc_doulongvec_minmax);
7341 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7342 sizeof(int), 0644, proc_dointvec_minmax);
7343 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7344 sizeof(int), 0644, proc_dointvec_minmax);
7345 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7346 sizeof(int), 0644, proc_dointvec_minmax);
7347 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7348 sizeof(int), 0644, proc_dointvec_minmax);
7349 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7350 sizeof(int), 0644, proc_dointvec_minmax);
7351 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7352 sizeof(int), 0644, proc_dointvec_minmax);
7353 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7354 sizeof(int), 0644, proc_dointvec_minmax);
7355 set_table_entry(&table[9], "cache_nice_tries",
7356 &sd->cache_nice_tries,
7357 sizeof(int), 0644, proc_dointvec_minmax);
7358 set_table_entry(&table[10], "flags", &sd->flags,
7359 sizeof(int), 0644, proc_dointvec_minmax);
7360 set_table_entry(&table[11], "name", sd->name,
7361 CORENAME_MAX_SIZE, 0444, proc_dostring);
7362 /* &table[12] is terminator */
7364 return table;
7367 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7369 struct ctl_table *entry, *table;
7370 struct sched_domain *sd;
7371 int domain_num = 0, i;
7372 char buf[32];
7374 for_each_domain(cpu, sd)
7375 domain_num++;
7376 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7377 if (table == NULL)
7378 return NULL;
7380 i = 0;
7381 for_each_domain(cpu, sd) {
7382 snprintf(buf, 32, "domain%d", i);
7383 entry->procname = kstrdup(buf, GFP_KERNEL);
7384 entry->mode = 0555;
7385 entry->child = sd_alloc_ctl_domain_table(sd);
7386 entry++;
7387 i++;
7389 return table;
7392 static struct ctl_table_header *sd_sysctl_header;
7393 static void register_sched_domain_sysctl(void)
7395 int i, cpu_num = num_online_cpus();
7396 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7397 char buf[32];
7399 WARN_ON(sd_ctl_dir[0].child);
7400 sd_ctl_dir[0].child = entry;
7402 if (entry == NULL)
7403 return;
7405 for_each_online_cpu(i) {
7406 snprintf(buf, 32, "cpu%d", i);
7407 entry->procname = kstrdup(buf, GFP_KERNEL);
7408 entry->mode = 0555;
7409 entry->child = sd_alloc_ctl_cpu_table(i);
7410 entry++;
7413 WARN_ON(sd_sysctl_header);
7414 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7417 /* may be called multiple times per register */
7418 static void unregister_sched_domain_sysctl(void)
7420 if (sd_sysctl_header)
7421 unregister_sysctl_table(sd_sysctl_header);
7422 sd_sysctl_header = NULL;
7423 if (sd_ctl_dir[0].child)
7424 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7426 #else
7427 static void register_sched_domain_sysctl(void)
7430 static void unregister_sched_domain_sysctl(void)
7433 #endif
7435 static void set_rq_online(struct rq *rq)
7437 if (!rq->online) {
7438 const struct sched_class *class;
7440 cpumask_set_cpu(rq->cpu, rq->rd->online);
7441 rq->online = 1;
7443 for_each_class(class) {
7444 if (class->rq_online)
7445 class->rq_online(rq);
7450 static void set_rq_offline(struct rq *rq)
7452 if (rq->online) {
7453 const struct sched_class *class;
7455 for_each_class(class) {
7456 if (class->rq_offline)
7457 class->rq_offline(rq);
7460 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7461 rq->online = 0;
7466 * migration_call - callback that gets triggered when a CPU is added.
7467 * Here we can start up the necessary migration thread for the new CPU.
7469 static int __cpuinit
7470 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7472 struct task_struct *p;
7473 int cpu = (long)hcpu;
7474 unsigned long flags;
7475 struct rq *rq;
7477 switch (action) {
7479 case CPU_UP_PREPARE:
7480 case CPU_UP_PREPARE_FROZEN:
7481 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7482 if (IS_ERR(p))
7483 return NOTIFY_BAD;
7484 kthread_bind(p, cpu);
7485 /* Must be high prio: stop_machine expects to yield to it. */
7486 rq = task_rq_lock(p, &flags);
7487 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7488 task_rq_unlock(rq, &flags);
7489 get_task_struct(p);
7490 cpu_rq(cpu)->migration_thread = p;
7491 break;
7493 case CPU_ONLINE:
7494 case CPU_ONLINE_FROZEN:
7495 /* Strictly unnecessary, as first user will wake it. */
7496 wake_up_process(cpu_rq(cpu)->migration_thread);
7498 /* Update our root-domain */
7499 rq = cpu_rq(cpu);
7500 spin_lock_irqsave(&rq->lock, flags);
7501 rq->calc_load_update = calc_load_update;
7502 rq->calc_load_active = 0;
7503 if (rq->rd) {
7504 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7506 set_rq_online(rq);
7508 spin_unlock_irqrestore(&rq->lock, flags);
7509 break;
7511 #ifdef CONFIG_HOTPLUG_CPU
7512 case CPU_UP_CANCELED:
7513 case CPU_UP_CANCELED_FROZEN:
7514 if (!cpu_rq(cpu)->migration_thread)
7515 break;
7516 /* Unbind it from offline cpu so it can run. Fall thru. */
7517 kthread_bind(cpu_rq(cpu)->migration_thread,
7518 cpumask_any(cpu_online_mask));
7519 kthread_stop(cpu_rq(cpu)->migration_thread);
7520 put_task_struct(cpu_rq(cpu)->migration_thread);
7521 cpu_rq(cpu)->migration_thread = NULL;
7522 break;
7524 case CPU_DEAD:
7525 case CPU_DEAD_FROZEN:
7526 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7527 migrate_live_tasks(cpu);
7528 rq = cpu_rq(cpu);
7529 kthread_stop(rq->migration_thread);
7530 put_task_struct(rq->migration_thread);
7531 rq->migration_thread = NULL;
7532 /* Idle task back to normal (off runqueue, low prio) */
7533 spin_lock_irq(&rq->lock);
7534 update_rq_clock(rq);
7535 deactivate_task(rq, rq->idle, 0);
7536 rq->idle->static_prio = MAX_PRIO;
7537 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7538 rq->idle->sched_class = &idle_sched_class;
7539 migrate_dead_tasks(cpu);
7540 spin_unlock_irq(&rq->lock);
7541 cpuset_unlock();
7542 migrate_nr_uninterruptible(rq);
7543 BUG_ON(rq->nr_running != 0);
7544 calc_global_load_remove(rq);
7546 * No need to migrate the tasks: it was best-effort if
7547 * they didn't take sched_hotcpu_mutex. Just wake up
7548 * the requestors.
7550 spin_lock_irq(&rq->lock);
7551 while (!list_empty(&rq->migration_queue)) {
7552 struct migration_req *req;
7554 req = list_entry(rq->migration_queue.next,
7555 struct migration_req, list);
7556 list_del_init(&req->list);
7557 spin_unlock_irq(&rq->lock);
7558 complete(&req->done);
7559 spin_lock_irq(&rq->lock);
7561 spin_unlock_irq(&rq->lock);
7562 break;
7564 case CPU_DYING:
7565 case CPU_DYING_FROZEN:
7566 /* Update our root-domain */
7567 rq = cpu_rq(cpu);
7568 spin_lock_irqsave(&rq->lock, flags);
7569 if (rq->rd) {
7570 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7571 set_rq_offline(rq);
7573 spin_unlock_irqrestore(&rq->lock, flags);
7574 break;
7575 #endif
7577 return NOTIFY_OK;
7581 * Register at high priority so that task migration (migrate_all_tasks)
7582 * happens before everything else. This has to be lower priority than
7583 * the notifier in the perf_counter subsystem, though.
7585 static struct notifier_block __cpuinitdata migration_notifier = {
7586 .notifier_call = migration_call,
7587 .priority = 10
7590 static int __init migration_init(void)
7592 void *cpu = (void *)(long)smp_processor_id();
7593 int err;
7595 /* Start one for the boot CPU: */
7596 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7597 BUG_ON(err == NOTIFY_BAD);
7598 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7599 register_cpu_notifier(&migration_notifier);
7601 return err;
7603 early_initcall(migration_init);
7604 #endif
7606 #ifdef CONFIG_SMP
7608 #ifdef CONFIG_SCHED_DEBUG
7610 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7611 struct cpumask *groupmask)
7613 struct sched_group *group = sd->groups;
7614 char str[256];
7616 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7617 cpumask_clear(groupmask);
7619 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7621 if (!(sd->flags & SD_LOAD_BALANCE)) {
7622 printk("does not load-balance\n");
7623 if (sd->parent)
7624 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7625 " has parent");
7626 return -1;
7629 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7631 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7632 printk(KERN_ERR "ERROR: domain->span does not contain "
7633 "CPU%d\n", cpu);
7635 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7636 printk(KERN_ERR "ERROR: domain->groups does not contain"
7637 " CPU%d\n", cpu);
7640 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7641 do {
7642 if (!group) {
7643 printk("\n");
7644 printk(KERN_ERR "ERROR: group is NULL\n");
7645 break;
7648 if (!group->__cpu_power) {
7649 printk(KERN_CONT "\n");
7650 printk(KERN_ERR "ERROR: domain->cpu_power not "
7651 "set\n");
7652 break;
7655 if (!cpumask_weight(sched_group_cpus(group))) {
7656 printk(KERN_CONT "\n");
7657 printk(KERN_ERR "ERROR: empty group\n");
7658 break;
7661 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7662 printk(KERN_CONT "\n");
7663 printk(KERN_ERR "ERROR: repeated CPUs\n");
7664 break;
7667 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7669 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7671 printk(KERN_CONT " %s", str);
7672 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7673 printk(KERN_CONT " (__cpu_power = %d)",
7674 group->__cpu_power);
7677 group = group->next;
7678 } while (group != sd->groups);
7679 printk(KERN_CONT "\n");
7681 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7682 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7684 if (sd->parent &&
7685 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7686 printk(KERN_ERR "ERROR: parent span is not a superset "
7687 "of domain->span\n");
7688 return 0;
7691 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7693 cpumask_var_t groupmask;
7694 int level = 0;
7696 if (!sd) {
7697 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7698 return;
7701 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7703 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7704 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7705 return;
7708 for (;;) {
7709 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7710 break;
7711 level++;
7712 sd = sd->parent;
7713 if (!sd)
7714 break;
7716 free_cpumask_var(groupmask);
7718 #else /* !CONFIG_SCHED_DEBUG */
7719 # define sched_domain_debug(sd, cpu) do { } while (0)
7720 #endif /* CONFIG_SCHED_DEBUG */
7722 static int sd_degenerate(struct sched_domain *sd)
7724 if (cpumask_weight(sched_domain_span(sd)) == 1)
7725 return 1;
7727 /* Following flags need at least 2 groups */
7728 if (sd->flags & (SD_LOAD_BALANCE |
7729 SD_BALANCE_NEWIDLE |
7730 SD_BALANCE_FORK |
7731 SD_BALANCE_EXEC |
7732 SD_SHARE_CPUPOWER |
7733 SD_SHARE_PKG_RESOURCES)) {
7734 if (sd->groups != sd->groups->next)
7735 return 0;
7738 /* Following flags don't use groups */
7739 if (sd->flags & (SD_WAKE_IDLE |
7740 SD_WAKE_AFFINE |
7741 SD_WAKE_BALANCE))
7742 return 0;
7744 return 1;
7747 static int
7748 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7750 unsigned long cflags = sd->flags, pflags = parent->flags;
7752 if (sd_degenerate(parent))
7753 return 1;
7755 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7756 return 0;
7758 /* Does parent contain flags not in child? */
7759 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7760 if (cflags & SD_WAKE_AFFINE)
7761 pflags &= ~SD_WAKE_BALANCE;
7762 /* Flags needing groups don't count if only 1 group in parent */
7763 if (parent->groups == parent->groups->next) {
7764 pflags &= ~(SD_LOAD_BALANCE |
7765 SD_BALANCE_NEWIDLE |
7766 SD_BALANCE_FORK |
7767 SD_BALANCE_EXEC |
7768 SD_SHARE_CPUPOWER |
7769 SD_SHARE_PKG_RESOURCES);
7770 if (nr_node_ids == 1)
7771 pflags &= ~SD_SERIALIZE;
7773 if (~cflags & pflags)
7774 return 0;
7776 return 1;
7779 static void free_rootdomain(struct root_domain *rd)
7781 cpupri_cleanup(&rd->cpupri);
7783 free_cpumask_var(rd->rto_mask);
7784 free_cpumask_var(rd->online);
7785 free_cpumask_var(rd->span);
7786 kfree(rd);
7789 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7791 struct root_domain *old_rd = NULL;
7792 unsigned long flags;
7794 spin_lock_irqsave(&rq->lock, flags);
7796 if (rq->rd) {
7797 old_rd = rq->rd;
7799 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7800 set_rq_offline(rq);
7802 cpumask_clear_cpu(rq->cpu, old_rd->span);
7805 * If we dont want to free the old_rt yet then
7806 * set old_rd to NULL to skip the freeing later
7807 * in this function:
7809 if (!atomic_dec_and_test(&old_rd->refcount))
7810 old_rd = NULL;
7813 atomic_inc(&rd->refcount);
7814 rq->rd = rd;
7816 cpumask_set_cpu(rq->cpu, rd->span);
7817 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7818 set_rq_online(rq);
7820 spin_unlock_irqrestore(&rq->lock, flags);
7822 if (old_rd)
7823 free_rootdomain(old_rd);
7826 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7828 gfp_t gfp = GFP_KERNEL;
7830 memset(rd, 0, sizeof(*rd));
7832 if (bootmem)
7833 gfp = GFP_NOWAIT;
7835 if (!alloc_cpumask_var(&rd->span, gfp))
7836 goto out;
7837 if (!alloc_cpumask_var(&rd->online, gfp))
7838 goto free_span;
7839 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7840 goto free_online;
7842 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7843 goto free_rto_mask;
7844 return 0;
7846 free_rto_mask:
7847 free_cpumask_var(rd->rto_mask);
7848 free_online:
7849 free_cpumask_var(rd->online);
7850 free_span:
7851 free_cpumask_var(rd->span);
7852 out:
7853 return -ENOMEM;
7856 static void init_defrootdomain(void)
7858 init_rootdomain(&def_root_domain, true);
7860 atomic_set(&def_root_domain.refcount, 1);
7863 static struct root_domain *alloc_rootdomain(void)
7865 struct root_domain *rd;
7867 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7868 if (!rd)
7869 return NULL;
7871 if (init_rootdomain(rd, false) != 0) {
7872 kfree(rd);
7873 return NULL;
7876 return rd;
7880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7881 * hold the hotplug lock.
7883 static void
7884 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7886 struct rq *rq = cpu_rq(cpu);
7887 struct sched_domain *tmp;
7889 /* Remove the sched domains which do not contribute to scheduling. */
7890 for (tmp = sd; tmp; ) {
7891 struct sched_domain *parent = tmp->parent;
7892 if (!parent)
7893 break;
7895 if (sd_parent_degenerate(tmp, parent)) {
7896 tmp->parent = parent->parent;
7897 if (parent->parent)
7898 parent->parent->child = tmp;
7899 } else
7900 tmp = tmp->parent;
7903 if (sd && sd_degenerate(sd)) {
7904 sd = sd->parent;
7905 if (sd)
7906 sd->child = NULL;
7909 sched_domain_debug(sd, cpu);
7911 rq_attach_root(rq, rd);
7912 rcu_assign_pointer(rq->sd, sd);
7915 /* cpus with isolated domains */
7916 static cpumask_var_t cpu_isolated_map;
7918 /* Setup the mask of cpus configured for isolated domains */
7919 static int __init isolated_cpu_setup(char *str)
7921 cpulist_parse(str, cpu_isolated_map);
7922 return 1;
7925 __setup("isolcpus=", isolated_cpu_setup);
7928 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7929 * to a function which identifies what group(along with sched group) a CPU
7930 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7931 * (due to the fact that we keep track of groups covered with a struct cpumask).
7933 * init_sched_build_groups will build a circular linked list of the groups
7934 * covered by the given span, and will set each group's ->cpumask correctly,
7935 * and ->cpu_power to 0.
7937 static void
7938 init_sched_build_groups(const struct cpumask *span,
7939 const struct cpumask *cpu_map,
7940 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7941 struct sched_group **sg,
7942 struct cpumask *tmpmask),
7943 struct cpumask *covered, struct cpumask *tmpmask)
7945 struct sched_group *first = NULL, *last = NULL;
7946 int i;
7948 cpumask_clear(covered);
7950 for_each_cpu(i, span) {
7951 struct sched_group *sg;
7952 int group = group_fn(i, cpu_map, &sg, tmpmask);
7953 int j;
7955 if (cpumask_test_cpu(i, covered))
7956 continue;
7958 cpumask_clear(sched_group_cpus(sg));
7959 sg->__cpu_power = 0;
7961 for_each_cpu(j, span) {
7962 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7963 continue;
7965 cpumask_set_cpu(j, covered);
7966 cpumask_set_cpu(j, sched_group_cpus(sg));
7968 if (!first)
7969 first = sg;
7970 if (last)
7971 last->next = sg;
7972 last = sg;
7974 last->next = first;
7977 #define SD_NODES_PER_DOMAIN 16
7979 #ifdef CONFIG_NUMA
7982 * find_next_best_node - find the next node to include in a sched_domain
7983 * @node: node whose sched_domain we're building
7984 * @used_nodes: nodes already in the sched_domain
7986 * Find the next node to include in a given scheduling domain. Simply
7987 * finds the closest node not already in the @used_nodes map.
7989 * Should use nodemask_t.
7991 static int find_next_best_node(int node, nodemask_t *used_nodes)
7993 int i, n, val, min_val, best_node = 0;
7995 min_val = INT_MAX;
7997 for (i = 0; i < nr_node_ids; i++) {
7998 /* Start at @node */
7999 n = (node + i) % nr_node_ids;
8001 if (!nr_cpus_node(n))
8002 continue;
8004 /* Skip already used nodes */
8005 if (node_isset(n, *used_nodes))
8006 continue;
8008 /* Simple min distance search */
8009 val = node_distance(node, n);
8011 if (val < min_val) {
8012 min_val = val;
8013 best_node = n;
8017 node_set(best_node, *used_nodes);
8018 return best_node;
8022 * sched_domain_node_span - get a cpumask for a node's sched_domain
8023 * @node: node whose cpumask we're constructing
8024 * @span: resulting cpumask
8026 * Given a node, construct a good cpumask for its sched_domain to span. It
8027 * should be one that prevents unnecessary balancing, but also spreads tasks
8028 * out optimally.
8030 static void sched_domain_node_span(int node, struct cpumask *span)
8032 nodemask_t used_nodes;
8033 int i;
8035 cpumask_clear(span);
8036 nodes_clear(used_nodes);
8038 cpumask_or(span, span, cpumask_of_node(node));
8039 node_set(node, used_nodes);
8041 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8042 int next_node = find_next_best_node(node, &used_nodes);
8044 cpumask_or(span, span, cpumask_of_node(next_node));
8047 #endif /* CONFIG_NUMA */
8049 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8052 * The cpus mask in sched_group and sched_domain hangs off the end.
8054 * ( See the the comments in include/linux/sched.h:struct sched_group
8055 * and struct sched_domain. )
8057 struct static_sched_group {
8058 struct sched_group sg;
8059 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8062 struct static_sched_domain {
8063 struct sched_domain sd;
8064 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8068 * SMT sched-domains:
8070 #ifdef CONFIG_SCHED_SMT
8071 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8072 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8074 static int
8075 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8076 struct sched_group **sg, struct cpumask *unused)
8078 if (sg)
8079 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8080 return cpu;
8082 #endif /* CONFIG_SCHED_SMT */
8085 * multi-core sched-domains:
8087 #ifdef CONFIG_SCHED_MC
8088 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8089 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8090 #endif /* CONFIG_SCHED_MC */
8092 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8093 static int
8094 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8095 struct sched_group **sg, struct cpumask *mask)
8097 int group;
8099 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8100 group = cpumask_first(mask);
8101 if (sg)
8102 *sg = &per_cpu(sched_group_core, group).sg;
8103 return group;
8105 #elif defined(CONFIG_SCHED_MC)
8106 static int
8107 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8108 struct sched_group **sg, struct cpumask *unused)
8110 if (sg)
8111 *sg = &per_cpu(sched_group_core, cpu).sg;
8112 return cpu;
8114 #endif
8116 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8117 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8119 static int
8120 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8121 struct sched_group **sg, struct cpumask *mask)
8123 int group;
8124 #ifdef CONFIG_SCHED_MC
8125 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8126 group = cpumask_first(mask);
8127 #elif defined(CONFIG_SCHED_SMT)
8128 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8129 group = cpumask_first(mask);
8130 #else
8131 group = cpu;
8132 #endif
8133 if (sg)
8134 *sg = &per_cpu(sched_group_phys, group).sg;
8135 return group;
8138 #ifdef CONFIG_NUMA
8140 * The init_sched_build_groups can't handle what we want to do with node
8141 * groups, so roll our own. Now each node has its own list of groups which
8142 * gets dynamically allocated.
8144 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8145 static struct sched_group ***sched_group_nodes_bycpu;
8147 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8148 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8150 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8151 struct sched_group **sg,
8152 struct cpumask *nodemask)
8154 int group;
8156 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8157 group = cpumask_first(nodemask);
8159 if (sg)
8160 *sg = &per_cpu(sched_group_allnodes, group).sg;
8161 return group;
8164 static void init_numa_sched_groups_power(struct sched_group *group_head)
8166 struct sched_group *sg = group_head;
8167 int j;
8169 if (!sg)
8170 return;
8171 do {
8172 for_each_cpu(j, sched_group_cpus(sg)) {
8173 struct sched_domain *sd;
8175 sd = &per_cpu(phys_domains, j).sd;
8176 if (j != group_first_cpu(sd->groups)) {
8178 * Only add "power" once for each
8179 * physical package.
8181 continue;
8184 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8186 sg = sg->next;
8187 } while (sg != group_head);
8189 #endif /* CONFIG_NUMA */
8191 #ifdef CONFIG_NUMA
8192 /* Free memory allocated for various sched_group structures */
8193 static void free_sched_groups(const struct cpumask *cpu_map,
8194 struct cpumask *nodemask)
8196 int cpu, i;
8198 for_each_cpu(cpu, cpu_map) {
8199 struct sched_group **sched_group_nodes
8200 = sched_group_nodes_bycpu[cpu];
8202 if (!sched_group_nodes)
8203 continue;
8205 for (i = 0; i < nr_node_ids; i++) {
8206 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8208 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8209 if (cpumask_empty(nodemask))
8210 continue;
8212 if (sg == NULL)
8213 continue;
8214 sg = sg->next;
8215 next_sg:
8216 oldsg = sg;
8217 sg = sg->next;
8218 kfree(oldsg);
8219 if (oldsg != sched_group_nodes[i])
8220 goto next_sg;
8222 kfree(sched_group_nodes);
8223 sched_group_nodes_bycpu[cpu] = NULL;
8226 #else /* !CONFIG_NUMA */
8227 static void free_sched_groups(const struct cpumask *cpu_map,
8228 struct cpumask *nodemask)
8231 #endif /* CONFIG_NUMA */
8234 * Initialize sched groups cpu_power.
8236 * cpu_power indicates the capacity of sched group, which is used while
8237 * distributing the load between different sched groups in a sched domain.
8238 * Typically cpu_power for all the groups in a sched domain will be same unless
8239 * there are asymmetries in the topology. If there are asymmetries, group
8240 * having more cpu_power will pickup more load compared to the group having
8241 * less cpu_power.
8243 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8244 * the maximum number of tasks a group can handle in the presence of other idle
8245 * or lightly loaded groups in the same sched domain.
8247 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8249 struct sched_domain *child;
8250 struct sched_group *group;
8252 WARN_ON(!sd || !sd->groups);
8254 if (cpu != group_first_cpu(sd->groups))
8255 return;
8257 child = sd->child;
8259 sd->groups->__cpu_power = 0;
8262 * For perf policy, if the groups in child domain share resources
8263 * (for example cores sharing some portions of the cache hierarchy
8264 * or SMT), then set this domain groups cpu_power such that each group
8265 * can handle only one task, when there are other idle groups in the
8266 * same sched domain.
8268 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8269 (child->flags &
8270 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8271 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8272 return;
8276 * add cpu_power of each child group to this groups cpu_power
8278 group = child->groups;
8279 do {
8280 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8281 group = group->next;
8282 } while (group != child->groups);
8286 * Initializers for schedule domains
8287 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8290 #ifdef CONFIG_SCHED_DEBUG
8291 # define SD_INIT_NAME(sd, type) sd->name = #type
8292 #else
8293 # define SD_INIT_NAME(sd, type) do { } while (0)
8294 #endif
8296 #define SD_INIT(sd, type) sd_init_##type(sd)
8298 #define SD_INIT_FUNC(type) \
8299 static noinline void sd_init_##type(struct sched_domain *sd) \
8301 memset(sd, 0, sizeof(*sd)); \
8302 *sd = SD_##type##_INIT; \
8303 sd->level = SD_LV_##type; \
8304 SD_INIT_NAME(sd, type); \
8307 SD_INIT_FUNC(CPU)
8308 #ifdef CONFIG_NUMA
8309 SD_INIT_FUNC(ALLNODES)
8310 SD_INIT_FUNC(NODE)
8311 #endif
8312 #ifdef CONFIG_SCHED_SMT
8313 SD_INIT_FUNC(SIBLING)
8314 #endif
8315 #ifdef CONFIG_SCHED_MC
8316 SD_INIT_FUNC(MC)
8317 #endif
8319 static int default_relax_domain_level = -1;
8321 static int __init setup_relax_domain_level(char *str)
8323 unsigned long val;
8325 val = simple_strtoul(str, NULL, 0);
8326 if (val < SD_LV_MAX)
8327 default_relax_domain_level = val;
8329 return 1;
8331 __setup("relax_domain_level=", setup_relax_domain_level);
8333 static void set_domain_attribute(struct sched_domain *sd,
8334 struct sched_domain_attr *attr)
8336 int request;
8338 if (!attr || attr->relax_domain_level < 0) {
8339 if (default_relax_domain_level < 0)
8340 return;
8341 else
8342 request = default_relax_domain_level;
8343 } else
8344 request = attr->relax_domain_level;
8345 if (request < sd->level) {
8346 /* turn off idle balance on this domain */
8347 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8348 } else {
8349 /* turn on idle balance on this domain */
8350 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8355 * Build sched domains for a given set of cpus and attach the sched domains
8356 * to the individual cpus
8358 static int __build_sched_domains(const struct cpumask *cpu_map,
8359 struct sched_domain_attr *attr)
8361 int i, err = -ENOMEM;
8362 struct root_domain *rd;
8363 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8364 tmpmask;
8365 #ifdef CONFIG_NUMA
8366 cpumask_var_t domainspan, covered, notcovered;
8367 struct sched_group **sched_group_nodes = NULL;
8368 int sd_allnodes = 0;
8370 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8371 goto out;
8372 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8373 goto free_domainspan;
8374 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8375 goto free_covered;
8376 #endif
8378 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8379 goto free_notcovered;
8380 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8381 goto free_nodemask;
8382 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8383 goto free_this_sibling_map;
8384 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8385 goto free_this_core_map;
8386 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8387 goto free_send_covered;
8389 #ifdef CONFIG_NUMA
8391 * Allocate the per-node list of sched groups
8393 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8394 GFP_KERNEL);
8395 if (!sched_group_nodes) {
8396 printk(KERN_WARNING "Can not alloc sched group node list\n");
8397 goto free_tmpmask;
8399 #endif
8401 rd = alloc_rootdomain();
8402 if (!rd) {
8403 printk(KERN_WARNING "Cannot alloc root domain\n");
8404 goto free_sched_groups;
8407 #ifdef CONFIG_NUMA
8408 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8409 #endif
8412 * Set up domains for cpus specified by the cpu_map.
8414 for_each_cpu(i, cpu_map) {
8415 struct sched_domain *sd = NULL, *p;
8417 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8419 #ifdef CONFIG_NUMA
8420 if (cpumask_weight(cpu_map) >
8421 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8422 sd = &per_cpu(allnodes_domains, i).sd;
8423 SD_INIT(sd, ALLNODES);
8424 set_domain_attribute(sd, attr);
8425 cpumask_copy(sched_domain_span(sd), cpu_map);
8426 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8427 p = sd;
8428 sd_allnodes = 1;
8429 } else
8430 p = NULL;
8432 sd = &per_cpu(node_domains, i).sd;
8433 SD_INIT(sd, NODE);
8434 set_domain_attribute(sd, attr);
8435 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8436 sd->parent = p;
8437 if (p)
8438 p->child = sd;
8439 cpumask_and(sched_domain_span(sd),
8440 sched_domain_span(sd), cpu_map);
8441 #endif
8443 p = sd;
8444 sd = &per_cpu(phys_domains, i).sd;
8445 SD_INIT(sd, CPU);
8446 set_domain_attribute(sd, attr);
8447 cpumask_copy(sched_domain_span(sd), nodemask);
8448 sd->parent = p;
8449 if (p)
8450 p->child = sd;
8451 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8453 #ifdef CONFIG_SCHED_MC
8454 p = sd;
8455 sd = &per_cpu(core_domains, i).sd;
8456 SD_INIT(sd, MC);
8457 set_domain_attribute(sd, attr);
8458 cpumask_and(sched_domain_span(sd), cpu_map,
8459 cpu_coregroup_mask(i));
8460 sd->parent = p;
8461 p->child = sd;
8462 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8463 #endif
8465 #ifdef CONFIG_SCHED_SMT
8466 p = sd;
8467 sd = &per_cpu(cpu_domains, i).sd;
8468 SD_INIT(sd, SIBLING);
8469 set_domain_attribute(sd, attr);
8470 cpumask_and(sched_domain_span(sd),
8471 topology_thread_cpumask(i), cpu_map);
8472 sd->parent = p;
8473 p->child = sd;
8474 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8475 #endif
8478 #ifdef CONFIG_SCHED_SMT
8479 /* Set up CPU (sibling) groups */
8480 for_each_cpu(i, cpu_map) {
8481 cpumask_and(this_sibling_map,
8482 topology_thread_cpumask(i), cpu_map);
8483 if (i != cpumask_first(this_sibling_map))
8484 continue;
8486 init_sched_build_groups(this_sibling_map, cpu_map,
8487 &cpu_to_cpu_group,
8488 send_covered, tmpmask);
8490 #endif
8492 #ifdef CONFIG_SCHED_MC
8493 /* Set up multi-core groups */
8494 for_each_cpu(i, cpu_map) {
8495 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8496 if (i != cpumask_first(this_core_map))
8497 continue;
8499 init_sched_build_groups(this_core_map, cpu_map,
8500 &cpu_to_core_group,
8501 send_covered, tmpmask);
8503 #endif
8505 /* Set up physical groups */
8506 for (i = 0; i < nr_node_ids; i++) {
8507 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8508 if (cpumask_empty(nodemask))
8509 continue;
8511 init_sched_build_groups(nodemask, cpu_map,
8512 &cpu_to_phys_group,
8513 send_covered, tmpmask);
8516 #ifdef CONFIG_NUMA
8517 /* Set up node groups */
8518 if (sd_allnodes) {
8519 init_sched_build_groups(cpu_map, cpu_map,
8520 &cpu_to_allnodes_group,
8521 send_covered, tmpmask);
8524 for (i = 0; i < nr_node_ids; i++) {
8525 /* Set up node groups */
8526 struct sched_group *sg, *prev;
8527 int j;
8529 cpumask_clear(covered);
8530 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8531 if (cpumask_empty(nodemask)) {
8532 sched_group_nodes[i] = NULL;
8533 continue;
8536 sched_domain_node_span(i, domainspan);
8537 cpumask_and(domainspan, domainspan, cpu_map);
8539 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8540 GFP_KERNEL, i);
8541 if (!sg) {
8542 printk(KERN_WARNING "Can not alloc domain group for "
8543 "node %d\n", i);
8544 goto error;
8546 sched_group_nodes[i] = sg;
8547 for_each_cpu(j, nodemask) {
8548 struct sched_domain *sd;
8550 sd = &per_cpu(node_domains, j).sd;
8551 sd->groups = sg;
8553 sg->__cpu_power = 0;
8554 cpumask_copy(sched_group_cpus(sg), nodemask);
8555 sg->next = sg;
8556 cpumask_or(covered, covered, nodemask);
8557 prev = sg;
8559 for (j = 0; j < nr_node_ids; j++) {
8560 int n = (i + j) % nr_node_ids;
8562 cpumask_complement(notcovered, covered);
8563 cpumask_and(tmpmask, notcovered, cpu_map);
8564 cpumask_and(tmpmask, tmpmask, domainspan);
8565 if (cpumask_empty(tmpmask))
8566 break;
8568 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8569 if (cpumask_empty(tmpmask))
8570 continue;
8572 sg = kmalloc_node(sizeof(struct sched_group) +
8573 cpumask_size(),
8574 GFP_KERNEL, i);
8575 if (!sg) {
8576 printk(KERN_WARNING
8577 "Can not alloc domain group for node %d\n", j);
8578 goto error;
8580 sg->__cpu_power = 0;
8581 cpumask_copy(sched_group_cpus(sg), tmpmask);
8582 sg->next = prev->next;
8583 cpumask_or(covered, covered, tmpmask);
8584 prev->next = sg;
8585 prev = sg;
8588 #endif
8590 /* Calculate CPU power for physical packages and nodes */
8591 #ifdef CONFIG_SCHED_SMT
8592 for_each_cpu(i, cpu_map) {
8593 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8595 init_sched_groups_power(i, sd);
8597 #endif
8598 #ifdef CONFIG_SCHED_MC
8599 for_each_cpu(i, cpu_map) {
8600 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8602 init_sched_groups_power(i, sd);
8604 #endif
8606 for_each_cpu(i, cpu_map) {
8607 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8609 init_sched_groups_power(i, sd);
8612 #ifdef CONFIG_NUMA
8613 for (i = 0; i < nr_node_ids; i++)
8614 init_numa_sched_groups_power(sched_group_nodes[i]);
8616 if (sd_allnodes) {
8617 struct sched_group *sg;
8619 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8620 tmpmask);
8621 init_numa_sched_groups_power(sg);
8623 #endif
8625 /* Attach the domains */
8626 for_each_cpu(i, cpu_map) {
8627 struct sched_domain *sd;
8628 #ifdef CONFIG_SCHED_SMT
8629 sd = &per_cpu(cpu_domains, i).sd;
8630 #elif defined(CONFIG_SCHED_MC)
8631 sd = &per_cpu(core_domains, i).sd;
8632 #else
8633 sd = &per_cpu(phys_domains, i).sd;
8634 #endif
8635 cpu_attach_domain(sd, rd, i);
8638 err = 0;
8640 free_tmpmask:
8641 free_cpumask_var(tmpmask);
8642 free_send_covered:
8643 free_cpumask_var(send_covered);
8644 free_this_core_map:
8645 free_cpumask_var(this_core_map);
8646 free_this_sibling_map:
8647 free_cpumask_var(this_sibling_map);
8648 free_nodemask:
8649 free_cpumask_var(nodemask);
8650 free_notcovered:
8651 #ifdef CONFIG_NUMA
8652 free_cpumask_var(notcovered);
8653 free_covered:
8654 free_cpumask_var(covered);
8655 free_domainspan:
8656 free_cpumask_var(domainspan);
8657 out:
8658 #endif
8659 return err;
8661 free_sched_groups:
8662 #ifdef CONFIG_NUMA
8663 kfree(sched_group_nodes);
8664 #endif
8665 goto free_tmpmask;
8667 #ifdef CONFIG_NUMA
8668 error:
8669 free_sched_groups(cpu_map, tmpmask);
8670 free_rootdomain(rd);
8671 goto free_tmpmask;
8672 #endif
8675 static int build_sched_domains(const struct cpumask *cpu_map)
8677 return __build_sched_domains(cpu_map, NULL);
8680 static struct cpumask *doms_cur; /* current sched domains */
8681 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8682 static struct sched_domain_attr *dattr_cur;
8683 /* attribues of custom domains in 'doms_cur' */
8686 * Special case: If a kmalloc of a doms_cur partition (array of
8687 * cpumask) fails, then fallback to a single sched domain,
8688 * as determined by the single cpumask fallback_doms.
8690 static cpumask_var_t fallback_doms;
8693 * arch_update_cpu_topology lets virtualized architectures update the
8694 * cpu core maps. It is supposed to return 1 if the topology changed
8695 * or 0 if it stayed the same.
8697 int __attribute__((weak)) arch_update_cpu_topology(void)
8699 return 0;
8703 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8704 * For now this just excludes isolated cpus, but could be used to
8705 * exclude other special cases in the future.
8707 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8709 int err;
8711 arch_update_cpu_topology();
8712 ndoms_cur = 1;
8713 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8714 if (!doms_cur)
8715 doms_cur = fallback_doms;
8716 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8717 dattr_cur = NULL;
8718 err = build_sched_domains(doms_cur);
8719 register_sched_domain_sysctl();
8721 return err;
8724 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8725 struct cpumask *tmpmask)
8727 free_sched_groups(cpu_map, tmpmask);
8731 * Detach sched domains from a group of cpus specified in cpu_map
8732 * These cpus will now be attached to the NULL domain
8734 static void detach_destroy_domains(const struct cpumask *cpu_map)
8736 /* Save because hotplug lock held. */
8737 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8738 int i;
8740 for_each_cpu(i, cpu_map)
8741 cpu_attach_domain(NULL, &def_root_domain, i);
8742 synchronize_sched();
8743 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8746 /* handle null as "default" */
8747 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8748 struct sched_domain_attr *new, int idx_new)
8750 struct sched_domain_attr tmp;
8752 /* fast path */
8753 if (!new && !cur)
8754 return 1;
8756 tmp = SD_ATTR_INIT;
8757 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8758 new ? (new + idx_new) : &tmp,
8759 sizeof(struct sched_domain_attr));
8763 * Partition sched domains as specified by the 'ndoms_new'
8764 * cpumasks in the array doms_new[] of cpumasks. This compares
8765 * doms_new[] to the current sched domain partitioning, doms_cur[].
8766 * It destroys each deleted domain and builds each new domain.
8768 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8769 * The masks don't intersect (don't overlap.) We should setup one
8770 * sched domain for each mask. CPUs not in any of the cpumasks will
8771 * not be load balanced. If the same cpumask appears both in the
8772 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8773 * it as it is.
8775 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8776 * ownership of it and will kfree it when done with it. If the caller
8777 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8778 * ndoms_new == 1, and partition_sched_domains() will fallback to
8779 * the single partition 'fallback_doms', it also forces the domains
8780 * to be rebuilt.
8782 * If doms_new == NULL it will be replaced with cpu_online_mask.
8783 * ndoms_new == 0 is a special case for destroying existing domains,
8784 * and it will not create the default domain.
8786 * Call with hotplug lock held
8788 /* FIXME: Change to struct cpumask *doms_new[] */
8789 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8790 struct sched_domain_attr *dattr_new)
8792 int i, j, n;
8793 int new_topology;
8795 mutex_lock(&sched_domains_mutex);
8797 /* always unregister in case we don't destroy any domains */
8798 unregister_sched_domain_sysctl();
8800 /* Let architecture update cpu core mappings. */
8801 new_topology = arch_update_cpu_topology();
8803 n = doms_new ? ndoms_new : 0;
8805 /* Destroy deleted domains */
8806 for (i = 0; i < ndoms_cur; i++) {
8807 for (j = 0; j < n && !new_topology; j++) {
8808 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8809 && dattrs_equal(dattr_cur, i, dattr_new, j))
8810 goto match1;
8812 /* no match - a current sched domain not in new doms_new[] */
8813 detach_destroy_domains(doms_cur + i);
8814 match1:
8818 if (doms_new == NULL) {
8819 ndoms_cur = 0;
8820 doms_new = fallback_doms;
8821 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8822 WARN_ON_ONCE(dattr_new);
8825 /* Build new domains */
8826 for (i = 0; i < ndoms_new; i++) {
8827 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8828 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8829 && dattrs_equal(dattr_new, i, dattr_cur, j))
8830 goto match2;
8832 /* no match - add a new doms_new */
8833 __build_sched_domains(doms_new + i,
8834 dattr_new ? dattr_new + i : NULL);
8835 match2:
8839 /* Remember the new sched domains */
8840 if (doms_cur != fallback_doms)
8841 kfree(doms_cur);
8842 kfree(dattr_cur); /* kfree(NULL) is safe */
8843 doms_cur = doms_new;
8844 dattr_cur = dattr_new;
8845 ndoms_cur = ndoms_new;
8847 register_sched_domain_sysctl();
8849 mutex_unlock(&sched_domains_mutex);
8852 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8853 static void arch_reinit_sched_domains(void)
8855 get_online_cpus();
8857 /* Destroy domains first to force the rebuild */
8858 partition_sched_domains(0, NULL, NULL);
8860 rebuild_sched_domains();
8861 put_online_cpus();
8864 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8866 unsigned int level = 0;
8868 if (sscanf(buf, "%u", &level) != 1)
8869 return -EINVAL;
8872 * level is always be positive so don't check for
8873 * level < POWERSAVINGS_BALANCE_NONE which is 0
8874 * What happens on 0 or 1 byte write,
8875 * need to check for count as well?
8878 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8879 return -EINVAL;
8881 if (smt)
8882 sched_smt_power_savings = level;
8883 else
8884 sched_mc_power_savings = level;
8886 arch_reinit_sched_domains();
8888 return count;
8891 #ifdef CONFIG_SCHED_MC
8892 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8893 char *page)
8895 return sprintf(page, "%u\n", sched_mc_power_savings);
8897 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8898 const char *buf, size_t count)
8900 return sched_power_savings_store(buf, count, 0);
8902 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8903 sched_mc_power_savings_show,
8904 sched_mc_power_savings_store);
8905 #endif
8907 #ifdef CONFIG_SCHED_SMT
8908 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8909 char *page)
8911 return sprintf(page, "%u\n", sched_smt_power_savings);
8913 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8914 const char *buf, size_t count)
8916 return sched_power_savings_store(buf, count, 1);
8918 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8919 sched_smt_power_savings_show,
8920 sched_smt_power_savings_store);
8921 #endif
8923 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8925 int err = 0;
8927 #ifdef CONFIG_SCHED_SMT
8928 if (smt_capable())
8929 err = sysfs_create_file(&cls->kset.kobj,
8930 &attr_sched_smt_power_savings.attr);
8931 #endif
8932 #ifdef CONFIG_SCHED_MC
8933 if (!err && mc_capable())
8934 err = sysfs_create_file(&cls->kset.kobj,
8935 &attr_sched_mc_power_savings.attr);
8936 #endif
8937 return err;
8939 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8941 #ifndef CONFIG_CPUSETS
8943 * Add online and remove offline CPUs from the scheduler domains.
8944 * When cpusets are enabled they take over this function.
8946 static int update_sched_domains(struct notifier_block *nfb,
8947 unsigned long action, void *hcpu)
8949 switch (action) {
8950 case CPU_ONLINE:
8951 case CPU_ONLINE_FROZEN:
8952 case CPU_DEAD:
8953 case CPU_DEAD_FROZEN:
8954 partition_sched_domains(1, NULL, NULL);
8955 return NOTIFY_OK;
8957 default:
8958 return NOTIFY_DONE;
8961 #endif
8963 static int update_runtime(struct notifier_block *nfb,
8964 unsigned long action, void *hcpu)
8966 int cpu = (int)(long)hcpu;
8968 switch (action) {
8969 case CPU_DOWN_PREPARE:
8970 case CPU_DOWN_PREPARE_FROZEN:
8971 disable_runtime(cpu_rq(cpu));
8972 return NOTIFY_OK;
8974 case CPU_DOWN_FAILED:
8975 case CPU_DOWN_FAILED_FROZEN:
8976 case CPU_ONLINE:
8977 case CPU_ONLINE_FROZEN:
8978 enable_runtime(cpu_rq(cpu));
8979 return NOTIFY_OK;
8981 default:
8982 return NOTIFY_DONE;
8986 void __init sched_init_smp(void)
8988 cpumask_var_t non_isolated_cpus;
8990 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8992 #if defined(CONFIG_NUMA)
8993 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8994 GFP_KERNEL);
8995 BUG_ON(sched_group_nodes_bycpu == NULL);
8996 #endif
8997 get_online_cpus();
8998 mutex_lock(&sched_domains_mutex);
8999 arch_init_sched_domains(cpu_online_mask);
9000 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9001 if (cpumask_empty(non_isolated_cpus))
9002 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9003 mutex_unlock(&sched_domains_mutex);
9004 put_online_cpus();
9006 #ifndef CONFIG_CPUSETS
9007 /* XXX: Theoretical race here - CPU may be hotplugged now */
9008 hotcpu_notifier(update_sched_domains, 0);
9009 #endif
9011 /* RT runtime code needs to handle some hotplug events */
9012 hotcpu_notifier(update_runtime, 0);
9014 init_hrtick();
9016 /* Move init over to a non-isolated CPU */
9017 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9018 BUG();
9019 sched_init_granularity();
9020 free_cpumask_var(non_isolated_cpus);
9022 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9023 init_sched_rt_class();
9025 #else
9026 void __init sched_init_smp(void)
9028 sched_init_granularity();
9030 #endif /* CONFIG_SMP */
9032 const_debug unsigned int sysctl_timer_migration = 1;
9034 int in_sched_functions(unsigned long addr)
9036 return in_lock_functions(addr) ||
9037 (addr >= (unsigned long)__sched_text_start
9038 && addr < (unsigned long)__sched_text_end);
9041 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9043 cfs_rq->tasks_timeline = RB_ROOT;
9044 INIT_LIST_HEAD(&cfs_rq->tasks);
9045 #ifdef CONFIG_FAIR_GROUP_SCHED
9046 cfs_rq->rq = rq;
9047 #endif
9048 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9051 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9053 struct rt_prio_array *array;
9054 int i;
9056 array = &rt_rq->active;
9057 for (i = 0; i < MAX_RT_PRIO; i++) {
9058 INIT_LIST_HEAD(array->queue + i);
9059 __clear_bit(i, array->bitmap);
9061 /* delimiter for bitsearch: */
9062 __set_bit(MAX_RT_PRIO, array->bitmap);
9064 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9065 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9066 #ifdef CONFIG_SMP
9067 rt_rq->highest_prio.next = MAX_RT_PRIO;
9068 #endif
9069 #endif
9070 #ifdef CONFIG_SMP
9071 rt_rq->rt_nr_migratory = 0;
9072 rt_rq->overloaded = 0;
9073 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
9074 #endif
9076 rt_rq->rt_time = 0;
9077 rt_rq->rt_throttled = 0;
9078 rt_rq->rt_runtime = 0;
9079 spin_lock_init(&rt_rq->rt_runtime_lock);
9081 #ifdef CONFIG_RT_GROUP_SCHED
9082 rt_rq->rt_nr_boosted = 0;
9083 rt_rq->rq = rq;
9084 #endif
9087 #ifdef CONFIG_FAIR_GROUP_SCHED
9088 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9089 struct sched_entity *se, int cpu, int add,
9090 struct sched_entity *parent)
9092 struct rq *rq = cpu_rq(cpu);
9093 tg->cfs_rq[cpu] = cfs_rq;
9094 init_cfs_rq(cfs_rq, rq);
9095 cfs_rq->tg = tg;
9096 if (add)
9097 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9099 tg->se[cpu] = se;
9100 /* se could be NULL for init_task_group */
9101 if (!se)
9102 return;
9104 if (!parent)
9105 se->cfs_rq = &rq->cfs;
9106 else
9107 se->cfs_rq = parent->my_q;
9109 se->my_q = cfs_rq;
9110 se->load.weight = tg->shares;
9111 se->load.inv_weight = 0;
9112 se->parent = parent;
9114 #endif
9116 #ifdef CONFIG_RT_GROUP_SCHED
9117 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9118 struct sched_rt_entity *rt_se, int cpu, int add,
9119 struct sched_rt_entity *parent)
9121 struct rq *rq = cpu_rq(cpu);
9123 tg->rt_rq[cpu] = rt_rq;
9124 init_rt_rq(rt_rq, rq);
9125 rt_rq->tg = tg;
9126 rt_rq->rt_se = rt_se;
9127 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9128 if (add)
9129 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9131 tg->rt_se[cpu] = rt_se;
9132 if (!rt_se)
9133 return;
9135 if (!parent)
9136 rt_se->rt_rq = &rq->rt;
9137 else
9138 rt_se->rt_rq = parent->my_q;
9140 rt_se->my_q = rt_rq;
9141 rt_se->parent = parent;
9142 INIT_LIST_HEAD(&rt_se->run_list);
9144 #endif
9146 void __init sched_init(void)
9148 int i, j;
9149 unsigned long alloc_size = 0, ptr;
9151 #ifdef CONFIG_FAIR_GROUP_SCHED
9152 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9153 #endif
9154 #ifdef CONFIG_RT_GROUP_SCHED
9155 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9156 #endif
9157 #ifdef CONFIG_USER_SCHED
9158 alloc_size *= 2;
9159 #endif
9160 #ifdef CONFIG_CPUMASK_OFFSTACK
9161 alloc_size += num_possible_cpus() * cpumask_size();
9162 #endif
9164 * As sched_init() is called before page_alloc is setup,
9165 * we use alloc_bootmem().
9167 if (alloc_size) {
9168 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9170 #ifdef CONFIG_FAIR_GROUP_SCHED
9171 init_task_group.se = (struct sched_entity **)ptr;
9172 ptr += nr_cpu_ids * sizeof(void **);
9174 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9175 ptr += nr_cpu_ids * sizeof(void **);
9177 #ifdef CONFIG_USER_SCHED
9178 root_task_group.se = (struct sched_entity **)ptr;
9179 ptr += nr_cpu_ids * sizeof(void **);
9181 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9182 ptr += nr_cpu_ids * sizeof(void **);
9183 #endif /* CONFIG_USER_SCHED */
9184 #endif /* CONFIG_FAIR_GROUP_SCHED */
9185 #ifdef CONFIG_RT_GROUP_SCHED
9186 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9187 ptr += nr_cpu_ids * sizeof(void **);
9189 init_task_group.rt_rq = (struct rt_rq **)ptr;
9190 ptr += nr_cpu_ids * sizeof(void **);
9192 #ifdef CONFIG_USER_SCHED
9193 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9194 ptr += nr_cpu_ids * sizeof(void **);
9196 root_task_group.rt_rq = (struct rt_rq **)ptr;
9197 ptr += nr_cpu_ids * sizeof(void **);
9198 #endif /* CONFIG_USER_SCHED */
9199 #endif /* CONFIG_RT_GROUP_SCHED */
9200 #ifdef CONFIG_CPUMASK_OFFSTACK
9201 for_each_possible_cpu(i) {
9202 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9203 ptr += cpumask_size();
9205 #endif /* CONFIG_CPUMASK_OFFSTACK */
9208 #ifdef CONFIG_SMP
9209 init_defrootdomain();
9210 #endif
9212 init_rt_bandwidth(&def_rt_bandwidth,
9213 global_rt_period(), global_rt_runtime());
9215 #ifdef CONFIG_RT_GROUP_SCHED
9216 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9217 global_rt_period(), global_rt_runtime());
9218 #ifdef CONFIG_USER_SCHED
9219 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9220 global_rt_period(), RUNTIME_INF);
9221 #endif /* CONFIG_USER_SCHED */
9222 #endif /* CONFIG_RT_GROUP_SCHED */
9224 #ifdef CONFIG_GROUP_SCHED
9225 list_add(&init_task_group.list, &task_groups);
9226 INIT_LIST_HEAD(&init_task_group.children);
9228 #ifdef CONFIG_USER_SCHED
9229 INIT_LIST_HEAD(&root_task_group.children);
9230 init_task_group.parent = &root_task_group;
9231 list_add(&init_task_group.siblings, &root_task_group.children);
9232 #endif /* CONFIG_USER_SCHED */
9233 #endif /* CONFIG_GROUP_SCHED */
9235 for_each_possible_cpu(i) {
9236 struct rq *rq;
9238 rq = cpu_rq(i);
9239 spin_lock_init(&rq->lock);
9240 rq->nr_running = 0;
9241 rq->calc_load_active = 0;
9242 rq->calc_load_update = jiffies + LOAD_FREQ;
9243 init_cfs_rq(&rq->cfs, rq);
9244 init_rt_rq(&rq->rt, rq);
9245 #ifdef CONFIG_FAIR_GROUP_SCHED
9246 init_task_group.shares = init_task_group_load;
9247 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9248 #ifdef CONFIG_CGROUP_SCHED
9250 * How much cpu bandwidth does init_task_group get?
9252 * In case of task-groups formed thr' the cgroup filesystem, it
9253 * gets 100% of the cpu resources in the system. This overall
9254 * system cpu resource is divided among the tasks of
9255 * init_task_group and its child task-groups in a fair manner,
9256 * based on each entity's (task or task-group's) weight
9257 * (se->load.weight).
9259 * In other words, if init_task_group has 10 tasks of weight
9260 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9261 * then A0's share of the cpu resource is:
9263 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9265 * We achieve this by letting init_task_group's tasks sit
9266 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9268 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9269 #elif defined CONFIG_USER_SCHED
9270 root_task_group.shares = NICE_0_LOAD;
9271 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9273 * In case of task-groups formed thr' the user id of tasks,
9274 * init_task_group represents tasks belonging to root user.
9275 * Hence it forms a sibling of all subsequent groups formed.
9276 * In this case, init_task_group gets only a fraction of overall
9277 * system cpu resource, based on the weight assigned to root
9278 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9279 * by letting tasks of init_task_group sit in a separate cfs_rq
9280 * (init_cfs_rq) and having one entity represent this group of
9281 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9283 init_tg_cfs_entry(&init_task_group,
9284 &per_cpu(init_cfs_rq, i),
9285 &per_cpu(init_sched_entity, i), i, 1,
9286 root_task_group.se[i]);
9288 #endif
9289 #endif /* CONFIG_FAIR_GROUP_SCHED */
9291 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9292 #ifdef CONFIG_RT_GROUP_SCHED
9293 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9294 #ifdef CONFIG_CGROUP_SCHED
9295 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9296 #elif defined CONFIG_USER_SCHED
9297 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9298 init_tg_rt_entry(&init_task_group,
9299 &per_cpu(init_rt_rq, i),
9300 &per_cpu(init_sched_rt_entity, i), i, 1,
9301 root_task_group.rt_se[i]);
9302 #endif
9303 #endif
9305 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9306 rq->cpu_load[j] = 0;
9307 #ifdef CONFIG_SMP
9308 rq->sd = NULL;
9309 rq->rd = NULL;
9310 rq->active_balance = 0;
9311 rq->next_balance = jiffies;
9312 rq->push_cpu = 0;
9313 rq->cpu = i;
9314 rq->online = 0;
9315 rq->migration_thread = NULL;
9316 INIT_LIST_HEAD(&rq->migration_queue);
9317 rq_attach_root(rq, &def_root_domain);
9318 #endif
9319 init_rq_hrtick(rq);
9320 atomic_set(&rq->nr_iowait, 0);
9323 set_load_weight(&init_task);
9325 #ifdef CONFIG_PREEMPT_NOTIFIERS
9326 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9327 #endif
9329 #ifdef CONFIG_SMP
9330 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9331 #endif
9333 #ifdef CONFIG_RT_MUTEXES
9334 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9335 #endif
9338 * The boot idle thread does lazy MMU switching as well:
9340 atomic_inc(&init_mm.mm_count);
9341 enter_lazy_tlb(&init_mm, current);
9344 * Make us the idle thread. Technically, schedule() should not be
9345 * called from this thread, however somewhere below it might be,
9346 * but because we are the idle thread, we just pick up running again
9347 * when this runqueue becomes "idle".
9349 init_idle(current, smp_processor_id());
9351 calc_load_update = jiffies + LOAD_FREQ;
9354 * During early bootup we pretend to be a normal task:
9356 current->sched_class = &fair_sched_class;
9358 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9359 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9360 #ifdef CONFIG_SMP
9361 #ifdef CONFIG_NO_HZ
9362 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9363 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9364 #endif
9365 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9366 #endif /* SMP */
9368 perf_counter_init();
9370 scheduler_running = 1;
9373 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9374 void __might_sleep(char *file, int line)
9376 #ifdef in_atomic
9377 static unsigned long prev_jiffy; /* ratelimiting */
9379 if ((!in_atomic() && !irqs_disabled()) ||
9380 system_state != SYSTEM_RUNNING || oops_in_progress)
9381 return;
9382 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9383 return;
9384 prev_jiffy = jiffies;
9386 printk(KERN_ERR
9387 "BUG: sleeping function called from invalid context at %s:%d\n",
9388 file, line);
9389 printk(KERN_ERR
9390 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9391 in_atomic(), irqs_disabled(),
9392 current->pid, current->comm);
9394 debug_show_held_locks(current);
9395 if (irqs_disabled())
9396 print_irqtrace_events(current);
9397 dump_stack();
9398 #endif
9400 EXPORT_SYMBOL(__might_sleep);
9401 #endif
9403 #ifdef CONFIG_MAGIC_SYSRQ
9404 static void normalize_task(struct rq *rq, struct task_struct *p)
9406 int on_rq;
9408 update_rq_clock(rq);
9409 on_rq = p->se.on_rq;
9410 if (on_rq)
9411 deactivate_task(rq, p, 0);
9412 __setscheduler(rq, p, SCHED_NORMAL, 0);
9413 if (on_rq) {
9414 activate_task(rq, p, 0);
9415 resched_task(rq->curr);
9419 void normalize_rt_tasks(void)
9421 struct task_struct *g, *p;
9422 unsigned long flags;
9423 struct rq *rq;
9425 read_lock_irqsave(&tasklist_lock, flags);
9426 do_each_thread(g, p) {
9428 * Only normalize user tasks:
9430 if (!p->mm)
9431 continue;
9433 p->se.exec_start = 0;
9434 #ifdef CONFIG_SCHEDSTATS
9435 p->se.wait_start = 0;
9436 p->se.sleep_start = 0;
9437 p->se.block_start = 0;
9438 #endif
9440 if (!rt_task(p)) {
9442 * Renice negative nice level userspace
9443 * tasks back to 0:
9445 if (TASK_NICE(p) < 0 && p->mm)
9446 set_user_nice(p, 0);
9447 continue;
9450 spin_lock(&p->pi_lock);
9451 rq = __task_rq_lock(p);
9453 normalize_task(rq, p);
9455 __task_rq_unlock(rq);
9456 spin_unlock(&p->pi_lock);
9457 } while_each_thread(g, p);
9459 read_unlock_irqrestore(&tasklist_lock, flags);
9462 #endif /* CONFIG_MAGIC_SYSRQ */
9464 #ifdef CONFIG_IA64
9466 * These functions are only useful for the IA64 MCA handling.
9468 * They can only be called when the whole system has been
9469 * stopped - every CPU needs to be quiescent, and no scheduling
9470 * activity can take place. Using them for anything else would
9471 * be a serious bug, and as a result, they aren't even visible
9472 * under any other configuration.
9476 * curr_task - return the current task for a given cpu.
9477 * @cpu: the processor in question.
9479 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9481 struct task_struct *curr_task(int cpu)
9483 return cpu_curr(cpu);
9487 * set_curr_task - set the current task for a given cpu.
9488 * @cpu: the processor in question.
9489 * @p: the task pointer to set.
9491 * Description: This function must only be used when non-maskable interrupts
9492 * are serviced on a separate stack. It allows the architecture to switch the
9493 * notion of the current task on a cpu in a non-blocking manner. This function
9494 * must be called with all CPU's synchronized, and interrupts disabled, the
9495 * and caller must save the original value of the current task (see
9496 * curr_task() above) and restore that value before reenabling interrupts and
9497 * re-starting the system.
9499 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9501 void set_curr_task(int cpu, struct task_struct *p)
9503 cpu_curr(cpu) = p;
9506 #endif
9508 #ifdef CONFIG_FAIR_GROUP_SCHED
9509 static void free_fair_sched_group(struct task_group *tg)
9511 int i;
9513 for_each_possible_cpu(i) {
9514 if (tg->cfs_rq)
9515 kfree(tg->cfs_rq[i]);
9516 if (tg->se)
9517 kfree(tg->se[i]);
9520 kfree(tg->cfs_rq);
9521 kfree(tg->se);
9524 static
9525 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9527 struct cfs_rq *cfs_rq;
9528 struct sched_entity *se;
9529 struct rq *rq;
9530 int i;
9532 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9533 if (!tg->cfs_rq)
9534 goto err;
9535 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9536 if (!tg->se)
9537 goto err;
9539 tg->shares = NICE_0_LOAD;
9541 for_each_possible_cpu(i) {
9542 rq = cpu_rq(i);
9544 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9545 GFP_KERNEL, cpu_to_node(i));
9546 if (!cfs_rq)
9547 goto err;
9549 se = kzalloc_node(sizeof(struct sched_entity),
9550 GFP_KERNEL, cpu_to_node(i));
9551 if (!se)
9552 goto err;
9554 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9557 return 1;
9559 err:
9560 return 0;
9563 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9565 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9566 &cpu_rq(cpu)->leaf_cfs_rq_list);
9569 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9571 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9573 #else /* !CONFG_FAIR_GROUP_SCHED */
9574 static inline void free_fair_sched_group(struct task_group *tg)
9578 static inline
9579 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9581 return 1;
9584 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9588 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9591 #endif /* CONFIG_FAIR_GROUP_SCHED */
9593 #ifdef CONFIG_RT_GROUP_SCHED
9594 static void free_rt_sched_group(struct task_group *tg)
9596 int i;
9598 destroy_rt_bandwidth(&tg->rt_bandwidth);
9600 for_each_possible_cpu(i) {
9601 if (tg->rt_rq)
9602 kfree(tg->rt_rq[i]);
9603 if (tg->rt_se)
9604 kfree(tg->rt_se[i]);
9607 kfree(tg->rt_rq);
9608 kfree(tg->rt_se);
9611 static
9612 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9614 struct rt_rq *rt_rq;
9615 struct sched_rt_entity *rt_se;
9616 struct rq *rq;
9617 int i;
9619 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9620 if (!tg->rt_rq)
9621 goto err;
9622 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9623 if (!tg->rt_se)
9624 goto err;
9626 init_rt_bandwidth(&tg->rt_bandwidth,
9627 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9629 for_each_possible_cpu(i) {
9630 rq = cpu_rq(i);
9632 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9633 GFP_KERNEL, cpu_to_node(i));
9634 if (!rt_rq)
9635 goto err;
9637 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9638 GFP_KERNEL, cpu_to_node(i));
9639 if (!rt_se)
9640 goto err;
9642 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9645 return 1;
9647 err:
9648 return 0;
9651 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9653 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9654 &cpu_rq(cpu)->leaf_rt_rq_list);
9657 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9659 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9661 #else /* !CONFIG_RT_GROUP_SCHED */
9662 static inline void free_rt_sched_group(struct task_group *tg)
9666 static inline
9667 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9669 return 1;
9672 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9676 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9679 #endif /* CONFIG_RT_GROUP_SCHED */
9681 #ifdef CONFIG_GROUP_SCHED
9682 static void free_sched_group(struct task_group *tg)
9684 free_fair_sched_group(tg);
9685 free_rt_sched_group(tg);
9686 kfree(tg);
9689 /* allocate runqueue etc for a new task group */
9690 struct task_group *sched_create_group(struct task_group *parent)
9692 struct task_group *tg;
9693 unsigned long flags;
9694 int i;
9696 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9697 if (!tg)
9698 return ERR_PTR(-ENOMEM);
9700 if (!alloc_fair_sched_group(tg, parent))
9701 goto err;
9703 if (!alloc_rt_sched_group(tg, parent))
9704 goto err;
9706 spin_lock_irqsave(&task_group_lock, flags);
9707 for_each_possible_cpu(i) {
9708 register_fair_sched_group(tg, i);
9709 register_rt_sched_group(tg, i);
9711 list_add_rcu(&tg->list, &task_groups);
9713 WARN_ON(!parent); /* root should already exist */
9715 tg->parent = parent;
9716 INIT_LIST_HEAD(&tg->children);
9717 list_add_rcu(&tg->siblings, &parent->children);
9718 spin_unlock_irqrestore(&task_group_lock, flags);
9720 return tg;
9722 err:
9723 free_sched_group(tg);
9724 return ERR_PTR(-ENOMEM);
9727 /* rcu callback to free various structures associated with a task group */
9728 static void free_sched_group_rcu(struct rcu_head *rhp)
9730 /* now it should be safe to free those cfs_rqs */
9731 free_sched_group(container_of(rhp, struct task_group, rcu));
9734 /* Destroy runqueue etc associated with a task group */
9735 void sched_destroy_group(struct task_group *tg)
9737 unsigned long flags;
9738 int i;
9740 spin_lock_irqsave(&task_group_lock, flags);
9741 for_each_possible_cpu(i) {
9742 unregister_fair_sched_group(tg, i);
9743 unregister_rt_sched_group(tg, i);
9745 list_del_rcu(&tg->list);
9746 list_del_rcu(&tg->siblings);
9747 spin_unlock_irqrestore(&task_group_lock, flags);
9749 /* wait for possible concurrent references to cfs_rqs complete */
9750 call_rcu(&tg->rcu, free_sched_group_rcu);
9753 /* change task's runqueue when it moves between groups.
9754 * The caller of this function should have put the task in its new group
9755 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9756 * reflect its new group.
9758 void sched_move_task(struct task_struct *tsk)
9760 int on_rq, running;
9761 unsigned long flags;
9762 struct rq *rq;
9764 rq = task_rq_lock(tsk, &flags);
9766 update_rq_clock(rq);
9768 running = task_current(rq, tsk);
9769 on_rq = tsk->se.on_rq;
9771 if (on_rq)
9772 dequeue_task(rq, tsk, 0);
9773 if (unlikely(running))
9774 tsk->sched_class->put_prev_task(rq, tsk);
9776 set_task_rq(tsk, task_cpu(tsk));
9778 #ifdef CONFIG_FAIR_GROUP_SCHED
9779 if (tsk->sched_class->moved_group)
9780 tsk->sched_class->moved_group(tsk);
9781 #endif
9783 if (unlikely(running))
9784 tsk->sched_class->set_curr_task(rq);
9785 if (on_rq)
9786 enqueue_task(rq, tsk, 0);
9788 task_rq_unlock(rq, &flags);
9790 #endif /* CONFIG_GROUP_SCHED */
9792 #ifdef CONFIG_FAIR_GROUP_SCHED
9793 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9795 struct cfs_rq *cfs_rq = se->cfs_rq;
9796 int on_rq;
9798 on_rq = se->on_rq;
9799 if (on_rq)
9800 dequeue_entity(cfs_rq, se, 0);
9802 se->load.weight = shares;
9803 se->load.inv_weight = 0;
9805 if (on_rq)
9806 enqueue_entity(cfs_rq, se, 0);
9809 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9811 struct cfs_rq *cfs_rq = se->cfs_rq;
9812 struct rq *rq = cfs_rq->rq;
9813 unsigned long flags;
9815 spin_lock_irqsave(&rq->lock, flags);
9816 __set_se_shares(se, shares);
9817 spin_unlock_irqrestore(&rq->lock, flags);
9820 static DEFINE_MUTEX(shares_mutex);
9822 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9824 int i;
9825 unsigned long flags;
9828 * We can't change the weight of the root cgroup.
9830 if (!tg->se[0])
9831 return -EINVAL;
9833 if (shares < MIN_SHARES)
9834 shares = MIN_SHARES;
9835 else if (shares > MAX_SHARES)
9836 shares = MAX_SHARES;
9838 mutex_lock(&shares_mutex);
9839 if (tg->shares == shares)
9840 goto done;
9842 spin_lock_irqsave(&task_group_lock, flags);
9843 for_each_possible_cpu(i)
9844 unregister_fair_sched_group(tg, i);
9845 list_del_rcu(&tg->siblings);
9846 spin_unlock_irqrestore(&task_group_lock, flags);
9848 /* wait for any ongoing reference to this group to finish */
9849 synchronize_sched();
9852 * Now we are free to modify the group's share on each cpu
9853 * w/o tripping rebalance_share or load_balance_fair.
9855 tg->shares = shares;
9856 for_each_possible_cpu(i) {
9858 * force a rebalance
9860 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9861 set_se_shares(tg->se[i], shares);
9865 * Enable load balance activity on this group, by inserting it back on
9866 * each cpu's rq->leaf_cfs_rq_list.
9868 spin_lock_irqsave(&task_group_lock, flags);
9869 for_each_possible_cpu(i)
9870 register_fair_sched_group(tg, i);
9871 list_add_rcu(&tg->siblings, &tg->parent->children);
9872 spin_unlock_irqrestore(&task_group_lock, flags);
9873 done:
9874 mutex_unlock(&shares_mutex);
9875 return 0;
9878 unsigned long sched_group_shares(struct task_group *tg)
9880 return tg->shares;
9882 #endif
9884 #ifdef CONFIG_RT_GROUP_SCHED
9886 * Ensure that the real time constraints are schedulable.
9888 static DEFINE_MUTEX(rt_constraints_mutex);
9890 static unsigned long to_ratio(u64 period, u64 runtime)
9892 if (runtime == RUNTIME_INF)
9893 return 1ULL << 20;
9895 return div64_u64(runtime << 20, period);
9898 /* Must be called with tasklist_lock held */
9899 static inline int tg_has_rt_tasks(struct task_group *tg)
9901 struct task_struct *g, *p;
9903 do_each_thread(g, p) {
9904 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9905 return 1;
9906 } while_each_thread(g, p);
9908 return 0;
9911 struct rt_schedulable_data {
9912 struct task_group *tg;
9913 u64 rt_period;
9914 u64 rt_runtime;
9917 static int tg_schedulable(struct task_group *tg, void *data)
9919 struct rt_schedulable_data *d = data;
9920 struct task_group *child;
9921 unsigned long total, sum = 0;
9922 u64 period, runtime;
9924 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9925 runtime = tg->rt_bandwidth.rt_runtime;
9927 if (tg == d->tg) {
9928 period = d->rt_period;
9929 runtime = d->rt_runtime;
9932 #ifdef CONFIG_USER_SCHED
9933 if (tg == &root_task_group) {
9934 period = global_rt_period();
9935 runtime = global_rt_runtime();
9937 #endif
9940 * Cannot have more runtime than the period.
9942 if (runtime > period && runtime != RUNTIME_INF)
9943 return -EINVAL;
9946 * Ensure we don't starve existing RT tasks.
9948 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9949 return -EBUSY;
9951 total = to_ratio(period, runtime);
9954 * Nobody can have more than the global setting allows.
9956 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9957 return -EINVAL;
9960 * The sum of our children's runtime should not exceed our own.
9962 list_for_each_entry_rcu(child, &tg->children, siblings) {
9963 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9964 runtime = child->rt_bandwidth.rt_runtime;
9966 if (child == d->tg) {
9967 period = d->rt_period;
9968 runtime = d->rt_runtime;
9971 sum += to_ratio(period, runtime);
9974 if (sum > total)
9975 return -EINVAL;
9977 return 0;
9980 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9982 struct rt_schedulable_data data = {
9983 .tg = tg,
9984 .rt_period = period,
9985 .rt_runtime = runtime,
9988 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9991 static int tg_set_bandwidth(struct task_group *tg,
9992 u64 rt_period, u64 rt_runtime)
9994 int i, err = 0;
9996 mutex_lock(&rt_constraints_mutex);
9997 read_lock(&tasklist_lock);
9998 err = __rt_schedulable(tg, rt_period, rt_runtime);
9999 if (err)
10000 goto unlock;
10002 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10003 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10004 tg->rt_bandwidth.rt_runtime = rt_runtime;
10006 for_each_possible_cpu(i) {
10007 struct rt_rq *rt_rq = tg->rt_rq[i];
10009 spin_lock(&rt_rq->rt_runtime_lock);
10010 rt_rq->rt_runtime = rt_runtime;
10011 spin_unlock(&rt_rq->rt_runtime_lock);
10013 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10014 unlock:
10015 read_unlock(&tasklist_lock);
10016 mutex_unlock(&rt_constraints_mutex);
10018 return err;
10021 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10023 u64 rt_runtime, rt_period;
10025 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10026 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10027 if (rt_runtime_us < 0)
10028 rt_runtime = RUNTIME_INF;
10030 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10033 long sched_group_rt_runtime(struct task_group *tg)
10035 u64 rt_runtime_us;
10037 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10038 return -1;
10040 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10041 do_div(rt_runtime_us, NSEC_PER_USEC);
10042 return rt_runtime_us;
10045 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10047 u64 rt_runtime, rt_period;
10049 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10050 rt_runtime = tg->rt_bandwidth.rt_runtime;
10052 if (rt_period == 0)
10053 return -EINVAL;
10055 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10058 long sched_group_rt_period(struct task_group *tg)
10060 u64 rt_period_us;
10062 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10063 do_div(rt_period_us, NSEC_PER_USEC);
10064 return rt_period_us;
10067 static int sched_rt_global_constraints(void)
10069 u64 runtime, period;
10070 int ret = 0;
10072 if (sysctl_sched_rt_period <= 0)
10073 return -EINVAL;
10075 runtime = global_rt_runtime();
10076 period = global_rt_period();
10079 * Sanity check on the sysctl variables.
10081 if (runtime > period && runtime != RUNTIME_INF)
10082 return -EINVAL;
10084 mutex_lock(&rt_constraints_mutex);
10085 read_lock(&tasklist_lock);
10086 ret = __rt_schedulable(NULL, 0, 0);
10087 read_unlock(&tasklist_lock);
10088 mutex_unlock(&rt_constraints_mutex);
10090 return ret;
10093 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10095 /* Don't accept realtime tasks when there is no way for them to run */
10096 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10097 return 0;
10099 return 1;
10102 #else /* !CONFIG_RT_GROUP_SCHED */
10103 static int sched_rt_global_constraints(void)
10105 unsigned long flags;
10106 int i;
10108 if (sysctl_sched_rt_period <= 0)
10109 return -EINVAL;
10112 * There's always some RT tasks in the root group
10113 * -- migration, kstopmachine etc..
10115 if (sysctl_sched_rt_runtime == 0)
10116 return -EBUSY;
10118 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10119 for_each_possible_cpu(i) {
10120 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10122 spin_lock(&rt_rq->rt_runtime_lock);
10123 rt_rq->rt_runtime = global_rt_runtime();
10124 spin_unlock(&rt_rq->rt_runtime_lock);
10126 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10128 return 0;
10130 #endif /* CONFIG_RT_GROUP_SCHED */
10132 int sched_rt_handler(struct ctl_table *table, int write,
10133 struct file *filp, void __user *buffer, size_t *lenp,
10134 loff_t *ppos)
10136 int ret;
10137 int old_period, old_runtime;
10138 static DEFINE_MUTEX(mutex);
10140 mutex_lock(&mutex);
10141 old_period = sysctl_sched_rt_period;
10142 old_runtime = sysctl_sched_rt_runtime;
10144 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10146 if (!ret && write) {
10147 ret = sched_rt_global_constraints();
10148 if (ret) {
10149 sysctl_sched_rt_period = old_period;
10150 sysctl_sched_rt_runtime = old_runtime;
10151 } else {
10152 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10153 def_rt_bandwidth.rt_period =
10154 ns_to_ktime(global_rt_period());
10157 mutex_unlock(&mutex);
10159 return ret;
10162 #ifdef CONFIG_CGROUP_SCHED
10164 /* return corresponding task_group object of a cgroup */
10165 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10167 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10168 struct task_group, css);
10171 static struct cgroup_subsys_state *
10172 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10174 struct task_group *tg, *parent;
10176 if (!cgrp->parent) {
10177 /* This is early initialization for the top cgroup */
10178 return &init_task_group.css;
10181 parent = cgroup_tg(cgrp->parent);
10182 tg = sched_create_group(parent);
10183 if (IS_ERR(tg))
10184 return ERR_PTR(-ENOMEM);
10186 return &tg->css;
10189 static void
10190 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10192 struct task_group *tg = cgroup_tg(cgrp);
10194 sched_destroy_group(tg);
10197 static int
10198 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10199 struct task_struct *tsk)
10201 #ifdef CONFIG_RT_GROUP_SCHED
10202 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10203 return -EINVAL;
10204 #else
10205 /* We don't support RT-tasks being in separate groups */
10206 if (tsk->sched_class != &fair_sched_class)
10207 return -EINVAL;
10208 #endif
10210 return 0;
10213 static void
10214 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10215 struct cgroup *old_cont, struct task_struct *tsk)
10217 sched_move_task(tsk);
10220 #ifdef CONFIG_FAIR_GROUP_SCHED
10221 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10222 u64 shareval)
10224 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10227 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10229 struct task_group *tg = cgroup_tg(cgrp);
10231 return (u64) tg->shares;
10233 #endif /* CONFIG_FAIR_GROUP_SCHED */
10235 #ifdef CONFIG_RT_GROUP_SCHED
10236 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10237 s64 val)
10239 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10242 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10244 return sched_group_rt_runtime(cgroup_tg(cgrp));
10247 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10248 u64 rt_period_us)
10250 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10253 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10255 return sched_group_rt_period(cgroup_tg(cgrp));
10257 #endif /* CONFIG_RT_GROUP_SCHED */
10259 static struct cftype cpu_files[] = {
10260 #ifdef CONFIG_FAIR_GROUP_SCHED
10262 .name = "shares",
10263 .read_u64 = cpu_shares_read_u64,
10264 .write_u64 = cpu_shares_write_u64,
10266 #endif
10267 #ifdef CONFIG_RT_GROUP_SCHED
10269 .name = "rt_runtime_us",
10270 .read_s64 = cpu_rt_runtime_read,
10271 .write_s64 = cpu_rt_runtime_write,
10274 .name = "rt_period_us",
10275 .read_u64 = cpu_rt_period_read_uint,
10276 .write_u64 = cpu_rt_period_write_uint,
10278 #endif
10281 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10283 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10286 struct cgroup_subsys cpu_cgroup_subsys = {
10287 .name = "cpu",
10288 .create = cpu_cgroup_create,
10289 .destroy = cpu_cgroup_destroy,
10290 .can_attach = cpu_cgroup_can_attach,
10291 .attach = cpu_cgroup_attach,
10292 .populate = cpu_cgroup_populate,
10293 .subsys_id = cpu_cgroup_subsys_id,
10294 .early_init = 1,
10297 #endif /* CONFIG_CGROUP_SCHED */
10299 #ifdef CONFIG_CGROUP_CPUACCT
10302 * CPU accounting code for task groups.
10304 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10305 * (balbir@in.ibm.com).
10308 /* track cpu usage of a group of tasks and its child groups */
10309 struct cpuacct {
10310 struct cgroup_subsys_state css;
10311 /* cpuusage holds pointer to a u64-type object on every cpu */
10312 u64 *cpuusage;
10313 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10314 struct cpuacct *parent;
10317 struct cgroup_subsys cpuacct_subsys;
10319 /* return cpu accounting group corresponding to this container */
10320 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10322 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10323 struct cpuacct, css);
10326 /* return cpu accounting group to which this task belongs */
10327 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10329 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10330 struct cpuacct, css);
10333 /* create a new cpu accounting group */
10334 static struct cgroup_subsys_state *cpuacct_create(
10335 struct cgroup_subsys *ss, struct cgroup *cgrp)
10337 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10338 int i;
10340 if (!ca)
10341 goto out;
10343 ca->cpuusage = alloc_percpu(u64);
10344 if (!ca->cpuusage)
10345 goto out_free_ca;
10347 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10348 if (percpu_counter_init(&ca->cpustat[i], 0))
10349 goto out_free_counters;
10351 if (cgrp->parent)
10352 ca->parent = cgroup_ca(cgrp->parent);
10354 return &ca->css;
10356 out_free_counters:
10357 while (--i >= 0)
10358 percpu_counter_destroy(&ca->cpustat[i]);
10359 free_percpu(ca->cpuusage);
10360 out_free_ca:
10361 kfree(ca);
10362 out:
10363 return ERR_PTR(-ENOMEM);
10366 /* destroy an existing cpu accounting group */
10367 static void
10368 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10370 struct cpuacct *ca = cgroup_ca(cgrp);
10371 int i;
10373 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10374 percpu_counter_destroy(&ca->cpustat[i]);
10375 free_percpu(ca->cpuusage);
10376 kfree(ca);
10379 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10381 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10382 u64 data;
10384 #ifndef CONFIG_64BIT
10386 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10388 spin_lock_irq(&cpu_rq(cpu)->lock);
10389 data = *cpuusage;
10390 spin_unlock_irq(&cpu_rq(cpu)->lock);
10391 #else
10392 data = *cpuusage;
10393 #endif
10395 return data;
10398 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10400 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10402 #ifndef CONFIG_64BIT
10404 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10406 spin_lock_irq(&cpu_rq(cpu)->lock);
10407 *cpuusage = val;
10408 spin_unlock_irq(&cpu_rq(cpu)->lock);
10409 #else
10410 *cpuusage = val;
10411 #endif
10414 /* return total cpu usage (in nanoseconds) of a group */
10415 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10417 struct cpuacct *ca = cgroup_ca(cgrp);
10418 u64 totalcpuusage = 0;
10419 int i;
10421 for_each_present_cpu(i)
10422 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10424 return totalcpuusage;
10427 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10428 u64 reset)
10430 struct cpuacct *ca = cgroup_ca(cgrp);
10431 int err = 0;
10432 int i;
10434 if (reset) {
10435 err = -EINVAL;
10436 goto out;
10439 for_each_present_cpu(i)
10440 cpuacct_cpuusage_write(ca, i, 0);
10442 out:
10443 return err;
10446 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10447 struct seq_file *m)
10449 struct cpuacct *ca = cgroup_ca(cgroup);
10450 u64 percpu;
10451 int i;
10453 for_each_present_cpu(i) {
10454 percpu = cpuacct_cpuusage_read(ca, i);
10455 seq_printf(m, "%llu ", (unsigned long long) percpu);
10457 seq_printf(m, "\n");
10458 return 0;
10461 static const char *cpuacct_stat_desc[] = {
10462 [CPUACCT_STAT_USER] = "user",
10463 [CPUACCT_STAT_SYSTEM] = "system",
10466 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10467 struct cgroup_map_cb *cb)
10469 struct cpuacct *ca = cgroup_ca(cgrp);
10470 int i;
10472 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10473 s64 val = percpu_counter_read(&ca->cpustat[i]);
10474 val = cputime64_to_clock_t(val);
10475 cb->fill(cb, cpuacct_stat_desc[i], val);
10477 return 0;
10480 static struct cftype files[] = {
10482 .name = "usage",
10483 .read_u64 = cpuusage_read,
10484 .write_u64 = cpuusage_write,
10487 .name = "usage_percpu",
10488 .read_seq_string = cpuacct_percpu_seq_read,
10491 .name = "stat",
10492 .read_map = cpuacct_stats_show,
10496 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10498 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10502 * charge this task's execution time to its accounting group.
10504 * called with rq->lock held.
10506 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10508 struct cpuacct *ca;
10509 int cpu;
10511 if (unlikely(!cpuacct_subsys.active))
10512 return;
10514 cpu = task_cpu(tsk);
10516 rcu_read_lock();
10518 ca = task_ca(tsk);
10520 for (; ca; ca = ca->parent) {
10521 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10522 *cpuusage += cputime;
10525 rcu_read_unlock();
10529 * Charge the system/user time to the task's accounting group.
10531 static void cpuacct_update_stats(struct task_struct *tsk,
10532 enum cpuacct_stat_index idx, cputime_t val)
10534 struct cpuacct *ca;
10536 if (unlikely(!cpuacct_subsys.active))
10537 return;
10539 rcu_read_lock();
10540 ca = task_ca(tsk);
10542 do {
10543 percpu_counter_add(&ca->cpustat[idx], val);
10544 ca = ca->parent;
10545 } while (ca);
10546 rcu_read_unlock();
10549 struct cgroup_subsys cpuacct_subsys = {
10550 .name = "cpuacct",
10551 .create = cpuacct_create,
10552 .destroy = cpuacct_destroy,
10553 .populate = cpuacct_populate,
10554 .subsys_id = cpuacct_subsys_id,
10556 #endif /* CONFIG_CGROUP_CPUACCT */